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Ocean ecosystems are changing, and the climate envelope paradigm predicts a steady shift, approximately
poleward, of species ranges. The Gulf of Maine presents a test case of this paradigm, as temperatures have
warmed extremely rapidly, Some species have shifted northeastward, matching predictions. Others—namely
harmful algal species like Pseudo-nitzschia australis and Karenia mikimotoi—do not appear to have followed
climate trajectories, arriving as surprises in the Gulf of Maine. Rare-biosphere dynamics offer one possible
ecological lens for understanding and predicting this type of surprise. Rare species in the plankton, possibly
more so than southerly ones, may provide management challenges in the future. Improved monitoring and
broader coordination of monitoring of the rare biosphere could help develop early warning systems for
harmful and toxic algae. A better theoretical understanding of rare biosphere dynamics is also needed. A
challenge for the next cohort of ecosystem projections is to predict the newly emerging harmful species of
the type that catch us by surprise.
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Introduction: The climate envelope paradigm

If one theme lies at the forefront of contempaorary ecology,
it is providing guidance about how our ecosystems will
respond as cdimate changes. Plenty of fundamental ecal-
ogy is embedded within this theme, but overshadowing so
much ecological work is the very pressing issue of the
changing planet. This global challenge without precedent
calls for everyone, including ecologists, to view the world
through new lenses.

As we prepare ourselves for a rapidly changing environ-
ment, key pieces of information are where and when spe-
ces will occur. The need for this information holds for
both common and rare species. One of the most standard
methods of ecological analysis involves the climate enve-
lope projection (Hijmans and Graham, 2006; Thafiez et al.,
2006). The idea is first to describe a spedies distribution
using a species distribution model based on cimatic cov-
ariates and then to project this distribution onto future
conditions. Species distribution models describe the abun-
dance, density, or occurrence of an organism as a function
of the environment and the organism's ability to shape its
range. Typically, this modeling approach uses a statistical
model, though there are examples of mechanistic and
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process-based models (Pearson and Dawson, 2003; Hij-
mans and Graham, 2006), and temperature is usually the
dominant explanatory variable, The approach has its roots
in terrestrial ecalogy, where the land is divided into a fixed
grid, over which conditions and species occurrence change
and range maps shift following dimate velocity vectors.
Such projections attempt to answer the natural question:
What will future ecosystems look like? In the ocean, there
is evidence that these types of projections fall short of
answering this question (Brun et al, 2015). In many cases,
we will have to wait for future researchers and generations
to confirm or refute our projections. However, recent in-
stances of rapid warming can provide insights into
whether the information provided by this approach is
telling an accurate story and thus preparing us adequately.

One such example is the Gulf of Maine (United States
and Canada), which over the past 15 years has been a case
study in the effects of rapid climate change. Surface waters
have warmed extremely rapidly, already reaching approxi-
mate projected year-2100 conditions (Pershing etal., 2015),
and corresponding shifts in the ecosystem are already hap-
pening, from within the plankton to the endangered
whales (Balch et al., 2012; Record et al., 2019). This rapid
change has provided a valuable opportunity to discern
whether the climate envelope paradigm for species distri-
bution shifts plays out the way we expect. There are some
cases where marine species have shifted predictably with
changing isotherms. The narthern shrimp (Pandalus borea-
lis) supported a robust fishery in the Gulf of Maine at the
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Figure 1. Karenia mikimotoi bloom in Boothbay Harbor, ME, USA. The harmful algal species K. mikimotoi is a relatively
new component of the bloom-forming phytoplankton community in coastal Maine. A bloom of K mikimotoi was
detected at a site in Boothbay Harbor, ME (A) in September 2020, Water collected from the site at the time of the
bloom showing the coloration and intense cell density (B); verification by quantitative polymerase chain reaction
assay of the spedies identity as K mikimotoi, adapting the approach employed by Wawrik et al. (2002) targeting the
rbel gene (C); and photomicrographs of the Boothbay Harbor K mikimotoi—cells are approximately 20 pm in
diameter (D). DOIL: https://doi.org/10.1525/elementa.2020.00056.f1

southern end of its range but quickly declined beyond the
point of supporting a fishery during the period of change
(Eckert et al., 2017). Similarly, studies examining shifting
ranges far lobster (Homarus americanus; Jaini et al., 2018;
Goode et al,, 2019), cod (Gadus morhua; Pershing et al.,
2015), scallops (Placopecten magellarticus; Torre et al.,
2019), and likely green crabs (Carcinus maenas, Neckles,
2015) support the climate envelope paradigm. Some spe-
cies range shifts are more nuanced, showing some aspect of
a climate envelope shift overlaid with other important dri-
vers such as subsurface currents and dispersal dynamics, as
seen in kelp communities (Witman and Lamb, 2018), the
keystone copepod Calarus finmarchicus (Ji etal,, 2017), and
right whales (Eubalaena glacialis; Record et al., 2019). In
general, although there is some local variability, climate
velocity vectors point strongly from southern regions, such
as the mid-Atlantic bight and southern New England,
toward the Gulf of Maine (Kleisner et al,, 2016), and further
northeastward beyond. This poleward shift has been the
primary lens, provided by the climate envelope paradigm,

through which we tend to view the future Gulf of Maine
ecosystem (Nye et al., 2009).

There are, however, counterexamples to the prediction
that species will follow climate velocity vectors, From a man-
agement point of view, some of the most challenging
changes in the Gulf of Maine ecosystem have occurred
within the planktonic community. Over the past few years,
the appearance of blooms of new toxic and harmful phy-
toplankton species (Figure 1) along coastal Maine has led
to shellfish recalls and temporary closures of shellfish har-
vesting, Within these communities is where the shifting
climate envelope paradigm can fall short. For example,
Pseudo-nitzchia australis blooms were recorded along the
eastern coast of Maine in 2016 (Clark et al., 2019) and again
in 2017, leading to closures and recalls for shellfish. This
plankton species had not been recorded previously in
coastal Maine, nor does it appear to be an invader from

warmer southem waters: Previous observations of P aus-

tralis come from northern Europe, southemn South America,
and the western coast of North America (Figure 2;
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Figure 2. Historical observations of Pseudo-nitzschia australis and Karenia mikimotoi from literature and databases.
Recorded detection locations for P-r. australis and K mikimotoi from the Ocean Biodiversity Information System
database and from a literature review (Table 1) prior to the recent detections. Darker colors indicate a higher density
of points. The orange box outlines the Gulf of Maine, where recent detections have occurred. DOI: https://doi.org/

10.1525/elementa. 2020.00056.f2

Schnetzer et al., 2013; McCabe et al., 2016). When or how
the species first arrived is not clear, and unreported or
unrecognized instances may have occurred in the past, but
these impactful blooms are apparently a new phenomenon.
Similarly, Karenia mikimotoi has recently been observed in
the Gulf of Maine, presenting harmful blooms that are new
to management (Figure 1), and prior observations around
this region also do not suggest movement along climate
velocity vectors (Figure 2; Li et al, 2019). As recently as
2015, these species were not considered potential threats
to the Gulf of Maine. Now, they are foci of monitoring,
research, and management challenges, which raises the
question: In 5 years, what new toxic species will we be
grappling with? In some cases, it could be southerly species.
In many cases, however, the climate envelope paradigm
does not appear to equip us to answer this question.

The rare biosphere surprise hypothesis

We can draw from other frontiers of ecological research to
find alternative lenses for viewing this problem. One pos-
sibility is that the unexpected emergence of these species
derives from rare biosphere dynamics. The rare bicsphere
is the long tail of diversity that persists at low, sometimes
undetectable levels (Sogin et al., 2006). As local conditions
change, new niches open, and rare species can shift to
a dominant position within the abundance ranking
(Figure 3A—C; Box 1; Countway et al., 2005; Caron and
Countway, 2009; Logares et al., 2015). These species may
have arrived at some point in the past via shipping and
trade (e.g., ballast waters) or have been present naturally

but remained below detection limits due to environmen-
tal and community dynamics. With many decades of
global shipping and transport of species through ballast
water, it seems unlikely that the species never found their
way to this region before, but the conditions supporting
their intensive blooms are new. Even without secular
changes in mean conditions, as is often the focus of di-
mate projections, and without shifting climate envelopes,
changes in variance around environmental conditions can
rapidly change community composition (Pershing et al.,
2019). Theoretical trait-based models of diversity (Record
et al., 2014a, 2014b) support the prediction that as vari-
ance in conditions increases, the diversity of specialists
increases, with many rare spedialists becoming opportu-
nistically abundant when conditions allow (Figure 3D).
Multiple stressors, which increase the niche dimensional-
ity, would amplify this effect (White et al., 2015). Collec-
tively, this evidence points to a rare-biosphere hypothesis:
Rare species, more so than southerly ones, will become the
emerging harmful species in the ocean microbiome as con-
ditions change.

This “rare binsphere surprise hypothesis™ is in the early
stages of examination, and many fundamental questions
remain. For example, what are all of the rare species
doing? Does the long tail of rare species in a rank-
abundance curve confer resilience or stability or does it
simply reflect random variation? Is it a reservoir for func-
tional redundancy? Does our often-debated definition of
“species” even adequately delineate the rare biosphere?
We need a better theoretical understanding of the rare
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Figure 3, llustrative example of rare biosphere dynamics using the ¢-diversity model (Record et al., 2014a, 2014b; Box
1) as formulated as a trade-off between generalists and specialists (cf. Pershing et al., 2019). The ¢ model is built on
a simplified population growth model with a community of interacting populations, derived from the theory that
inspired the plankton paradox (Lotka, 1932; Hutchinson, 1961; Box 1). The model deals with a community of
populations, which can represent spedies or other taxonomic delineations. (A—C) Rare species become dominant as
conditions change (as hypothesized in Caron and Countway, 2009). (A) The initial rank-abundance curve. (B) Adjusted
abundances after an environmental change, but with the initial ranking. (C) New ranking after the change. The dark
bars highlight the 10 species that become most abundant after the change—the same 10 species in all three plots. (D)
When variance in conditions changes, the diversity of specialists increases, as previously rare species temporarily
exploit new conditions, DO https:/ /doi.org/10.1525/elementa.2020.00056.f3

biosphere, particularly as it pertains to plankton, to
answer these questions.

On the monitoring side, the proliferation of environ-
mental DNA (eDNA) data sources (Table 2) could
become a source of valuable information. Many of these
programs are focused on the detection of key taxa—such
as endangered,/threatened species (Wood et al, 2019),
species harmful to humans (Marquis et al., 2019), or
commercially important species (Bayer et al, 2019; Mar
quis et al., 2020)—often using quantitative PCR and/or
DNA metabarcoding to target those species (Coyne et al.,
2005; Shaw et al., 2019). The use of eDNA is an emerg-
ing technique and more work is needed to establish
eDMNA as a consistent and reliable source of information,
but it has potential applications for taxa beyond plank-
tan. If such data sources are aggregated, an early warn-
ing system could cross-reference these data sources with
global records of harmful species elsewhere. Particularly
where the full planktonic community is measured, ob-
servations of changes in community composition in one
region could be used to inform early warnings in other
regions. This approach would require a global network of
eDNA monitoring. Crowd science programs add to this
potential, as eDNA technologies become more accessible,
providing a means for early detection with coverage in
time and space that is not feasible with conventional
surveys. In the case of invasions, early warning can be
crucial because of the time lag that sometimes exists
between arrival and a major bloom. Yet a great deal of
work remains to be done both to clarify what type of
eDNA measurements are most biologically meaningful
and will remain consistent as technology advances and
to more fully account for microbial and planktonic

dynamics in assessing climate change impacts (Cavicchio-
li et al., 2019). A deeper understanding of the rare hio-
sphere will require a critical evaluation of the techniques
that capture the broader taxonomic diversity and func-
tional potential in the gene pool. The question of taxo-
nomic resolution, and species delineation, is at the
frontier of biological research, and genomic technologies
are a critical tool for resolving these issues (Pachiadaki et
al., 2019). Even without eDNA technology, crowd science
and community science programs have great promise for
early warning systems (Record, 2017). A richer, spatio-
temporally broad data set including rare taxa would lay
the groundwork for developing a more comprehensive,
mechanistic, and predictive theory of rare biosphere
dynamics.

The rare biosphere surprise hypothesis is still
a hypothesis, and whether it provides a useful lens for
viewing, understanding, and coping with rapid dimate
changes and their associated ecological effects remains
to be seen. Still, the environment continues to deliver
surprises that often catch us unprepared, particularly
when it comes to human health hazards. The climate
envelope paradigm is certainly useful in many contexts,
especially for smooth, gradual changes that closely track
temperature. On the other hand, the approach might not
tell us which new species will be management concems
within 5 or 10 years. In the Gulf of Maine, a wide range
of new environmental niches are expected to open by
2050, including changes to currents and acidification, in
addition to warming (Pershing et al., n.d.; Siedlecki et al.,
2021). Merely translating ecological communities pole-
ward is clearly insufficient when preparing for the poten-
tially problematic species we will be managing. A
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Table 1. Published observations of Pseudo-nitzschia australis and Karenin mikimotoi, incuding peer-reviewed
sources and professional reports where latitude—longitude locations can be determined to the nearest 10th
degree, excluding the recent appearances in the Gulf of Maine. DOI: https://doi.org/10.1525/
elementa.2020.00056.11

Latitude Longitude Reference
Pseudo-nitzschia australis

—-43.0 ~64.0 Almandoz et al. (2017)
=271 -70.9 Alvarez et al. (2009)

—30.3 -71.5 Alvarez et al. (2009)

342 -11949 Andersen et al. (2006)

44.7 -12 Ayache et al (2019)

40.7 -8.8 Churro et al. {2009)

329 -8.9 Ennaffah et al. (2012)

32.8 -8.0 Ennaffah et al. (2012)

48.5 -123.0 Hasle and Lundhaolm (2005)
42.4 -5.8 Hasle and Lundhaolm (2005)
=34.2 18.2 Hasle and Lundholm (2005)
24.8 -1127 Hemandez-Becerril (1998)
57 -1133 Hemandez-Becerril {1998)
477 -124.4 Holtermann et al. {2010)
46.6 -126.1 Holtermann et al. {2010)
46.8 =-124.1 Holtermann et al. {2010)
472 -124.2 Holtermann et al. {2010)
48.3 -124.7 Holtermann et al. {2010)
436 -31 Orive et al. (2013)

19.1 -104.4 Rivera-Vilarelle et al. (2013)
30.7 -1166 Santiago-Morales and Garcia-Mendoza (2011)
434 -8.3 Zapata et al. (2011)

42.4 -8.8 Zapata et al. (2011)

42.2 -8.8 Zapata et al. (2011)

42.8 -9.0 Zapata et al. (2011)

Kareria mikimeatoi

—-38.2 1448 Andersen (2011)

190 -91.8 Escobar-Morales and Hemnandez-Becerril (2015)
189 -105.0 Escobar-Morales and Hemnandez-Becerril (2015)
17.1 -100.3 Escobar-Morales and Hemandez-Becerril (2015)
159 -95.1 Escobar-Morales and Hemandez-Becerril (2015)
34.3 136.7 Faust and Gulledge (2002)

50.4 -4.1 Garces et al. (2006)

56.9 115 Hallfors (2004)

549 14.1 Hallfors (2004)

(continued)
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Latitude Longitude Reference
334 1358 Haywood et al. (2004)
-370 175.3 Haywood et al. (2004)
50.4 4.1 Haywood et al. (2004)
=379 1449 Haywood et al, (2004)
59.5 105 Haywood et al, (2004)
340 131.8 Haywood et al, (2004)
2756 -97.1 Henrichs et al. (2013)
470 -2.2 Hemandez Farifias et al. (2017)
345 1280 Jeong et al. [2017)

542 79 Kraberg et al. (2019)
26.3 1199 Luo et al. (2018)

256 1197 Luo et al. (2018)

273 826 Mikulski et al. (2005)
336 131.3 Mikulski et al. (2005)
225 1144 Qi et al. (2004)

223 1136 Qi et al. (2004)

226 1145 Qi et al. (2004)

226 1150 Qi et al. (2004)

=34.7 1729 Rhodes and Smith [2018)
43.0 131.9 Shevchenko et al. (2019)
330 131.9 Yuasa et al. (2018)

Table 2. Environmental DNA open-data portals and data ageregators in development for aquatic systems, as of the
publication of this article. DOI: https:/ /doi.org/ 10.1525/elementa.2020.00056.12

Data Portal Data Type Hosting Institution Link
Aquatic eDNAtlas Targeted species Rocky Mountain Research https://www s fed.us/rm/boise/ AWAE
detection Station projects,/the-aquatic-eDNAtlas-project. html
Australian Microbiome Multiple Consortium https://data bioplatforms.com/
Initiative
Earth microbiome project  Taxonomiccounts  Consortium https://earthmicrobiome.org/
eDNA detections in Great  Taxonomic University of New Hampshire https://gbhabitat herokuapp.com/
Bay Habitats detections
ME-cDNA Taxonomiccounts  Bigelow Laboratory for Ocean hittps://edna bigelow.org/
Sdences, University of Maine
MGnify Multiple European Bioinformatics https://www.ebi.acuk/metagenomics/
Institute
TARA Oceans Data Portal — Taxonomiccounts  Tara Oceans http:/ /www taraoceans-dataportal org/

challenge for the next cohort of ecosystem projections is
to predict the newly emerging species of the type that
catch us by surprise. Framed as a forecasting challenge,
it can drive new monitoring efforts and improved

theoretical understanding of the dynamics of rare taxa.
We will need new ways of viewing ecosystems and their
dynamics if we are to be proactive in adapting to
climate-driven changes.
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Box 1. The ¢ model for diverse community.

The g model is built on a simplified population growth
model with a community of interacting populations.
The abundance of the ith population is N, and the
dynamics are described by:

I'-'f-'“"'il:-.I'IIJ':‘II-‘ = ]'I'J‘n"rf - E‘_N’]_1"l|ur‘_l+‘pj

where w; and §; are, respectively, the growth rate and
mortality rate for the ith population, N is the sum of
abundance over the full community, and ¢ is an inter-
action parameter that structures coexistence within the
community (Record et al., 2014a, 2014b). Each popula-
tion has an environmental niche described by two para-
meters: an optimal environmental condition for growth,
1, and a spread around that optimal condition, o, Thus,
u;is a function of the environmental variable (T) shaped
by the two parameters t; and o

w(T) = ep(—(T —.)*/(267))//(2rG7").

This function could represent different taxa or differ-
ent strategies within a taxon. In either case, it formu-
lates the trade-off between higher growth rate at
optimal conditions (specialist) and lower growth rate
but wider range of suitable conditions [generalist)
across a range of environmental conditions. The equi-
librium  community, described by N= =

—1
(1,/8)"° (zf[j.h-,"ﬁ,-fl"r"')‘p , allows us to explaore the

community structure (i.e., rank abundance or compara-
tive diversity of spedalists vs. generalists) as we change
the variance around the environmental condition T. The
community properties illustrated (Figure 3) each repre-
sent the mean of an ensemble of 10 randomized runs.
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