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Abstract
Training personalized speech enhancement models is innately
a no-shot learning problem due to privacy constraints and
limited access to noise-free speech from the target user. If
there is an abundance of unlabeled noisy speech from the test-
time user, one may train a personalized speech enhancement
model using self-supervised learning. One straightforward ap-
proach to model personalization is to use the target speaker’s
noisy recordings as pseudo-sources. Then, a pseudo denoising
model learns to remove injected training noises and recover the
pseudo-sources. However, this approach is volatile as it depends
on the quality of the pseudo-sources, which may be too noisy.
To remedy this, we propose a data purification step that refines
the self-supervised approach. We first train an SNR predic-
tor model to estimate the frame-by-frame SNR of the pseudo-
sources. Then, we convert the predictor’s estimates into weights
that adjust the pseudo-sources’ frame-by-frame contribution to-
wards training the personalized model. We empirically show
that the proposed data purification step improves the usability
of the speaker-specific noisy data in the context of personalized
speech enhancement. Our approach may be seen as privacy-
preserving as it does not rely on any clean speech recordings or
speaker embeddings.
Index Terms: speech enhancement, self-supervised learning,
privacy-preserving machine learning, model compression

1. Introduction
Speech enhancement is a well-studied research area within sig-
nal processing [1–3] which has experienced significant progress
in the past decade due to the pervasiveness of machine learn-
ing models and deep neural networks (DNNs) [4–8]. The ma-
jority of automated noise suppression algorithms introduced
over the years are geared towards general-purpose (“univer-
sal” or “speaker-agnostic”) speech enhancement. In this con-
text, denoising models are trained to separate speech from noise
without prior knowledge of the speaker identity or the noises
present. However, given the proliferation of voice-controlled
devices (e.g., smart headphones and smart speakers), we antic-
ipate the need for “personalized speech enhancement” models
that can optimize a single speaker’s enhancement with respect
to their unique acoustic environment.

Comprehensive studies of DNN-based speech enhancement
or speech separation systems have shown that a model’s gen-
eralization power depends on its complexity and architecture.
It was shown, for example, that a large fully-connected DNN
with 2048 units and 5 layers can generalize well to unseen noise
sources [9] but may not adapt to unseen test speakers. Instead,
a long short-term memory cell (LSTM) network achieved the
generalization goal in speaker- and noise-agnostic separation
tasks [10]. However, it still requires a substantially large net-
work architecture (1024 × 4). Other studies have also shown

that a mismatch between the training and test input signals may
result in highly varied performance unless the model has been
exposed to an excessive amount of data [11]. Mismatching fac-
tors include the type and loudness of the noise and the char-
acteristics of the speaker. In summary, for a speaker-agnostic
generalist model to optimally address the peculiarities of a par-
ticular test-time user and their environment, one must both in-
crease the diversity of the training speech and noise corpora and
increase the model complexity.

These increases in training data and model complexity in-
duce a trade-off, as with personal devices, efficient test-time
inference is of prime importance given to the often limited re-
sources. In this paper, we address this trade-off by developing
a specialist model. We define a specialist as a smaller model
which solves a subset of the original problem intended for the
generalist. As such, we can afford a reduction in the overall
number of parameters. Recent research has explored the ben-
efits of specialization towards speech enhancement in recent
years. The VoiceFilter model informs the speech enhancement
model of the estimated speaker-identifying information [12].
In [13], speaker- or gender-specific models outperform a gen-
eralist model. These studies did not utilize personalization as a
manner of reducing model complexity; however, one study ex-
tends the idea to a mixture of local expert architecture, where
the test-time specificity is identified and then assigned to a few
pre-defined specialists, achieving model compression [14].

Another challenge in personalized speech enhancement is
that it is not always possible to acquire clean speech data from
the test-time user. For example, speech enhancement mod-
els within modern-day smart devices might be trained through
always-on ambient data collection. This trend is at odds with
user concerns regarding privacy and security [15]. A recent
DNN-based system required as little as five seconds of clean
speech data from a test-time speaker in order to convinc-
ingly synthesize new utterances out of the previously unseen
speaker’s voice [16]. Breakthroughs such as these may make
users reluctant to provide any clean speech recordings to their
smart devices. Realistically then, training a personalized model
should be viewed as a no-shot machine learning task [17, 18].
While eliminating reliance on clean speech recordings from the
test-time user may not fully remedy all privacy concerns, we
believe speech enhancement models which minimize personal
data collection are always desirable from the user’s perspective.

In this paper, we take a less intrusive route to achieve per-
sonalization by using only noisy data from the test-time speaker.
This setup exceeds the scope of a fully supervised formulation
for training a denoising model, which typically requires pairs of
artificial mixtures and clean reference signals. Instead, a self-
supervised learning approach may be better suited; this works
by optimizing the model based on a pretext task which prox-
ies the intended task [19]. This paradigm has seen extensive
usage in computer vision research [20, 21], with recent studies

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-18682676



applying the concept towards speaker-agnostic speech enhance-
ment [22]; our paper uses self-supervised learning directly to-
wards speaker-specific personalized speech enhancement.

To this end, we improve the quality of the test user’s noisy
data by incorporating a data purification step, as conceivably,
some audio frames of the noisy speaker-specific dataset may
contain more clean speech than others. Rather than consider-
ing every frame as equal, the self-supervised formulation may
benefit from additional prior knowledge which emphasizes spe-
cific frames based on the presence of clean speech. Our pro-
posed method introduces a weighting scheme derived from a
frame-by-frame estimate of the noisy speech’s signal-to-noise
ratio (SNR). An explicit SNR prediction step has been used be-
fore to boost the performance of DNNs for speech enhancement
in a fully supervised setup [23, 24]. However, our work is the
first to apply this step in the context of personalized speech en-
hancement. By weighting the frames based on their SNR, we
inexpensively label the unlabeled noisy data. This data purifi-
cation can guide the speaker-specific self-supervised learning
objective towards better approximating a hypothetical speaker-
specific fully-supervised learning objective.

Our paper’s contributions may be summarized as follows:
(1) we formulate the personalized speech enhancement con-
text, whose training is done using noisy data of the intended
test-time speaker rather than the clean voice; (2) we introduce
one method of self-supervised learning for personalized speech
enhancement, which treats the noisy speaker data as pseudo-
sources; (3) we propose a data purification step which modifies
the self-supervised learning loss function to weight the contri-
butions of the noisy pseudo-source training data based on the
frame-by-frame “cleanliness score”, or SNR.

By avoiding explicit calculation of any speaker-identifying
embedding vectors and without using any clean speech data, we
assert that the proposed methods are first steps towards privacy-
preserving personalized speech enhancement.

2. Methods
2.1. Fully-Supervised Speech Enhancement

Speech enhancement (SE) is commonly posed as a fully super-
vised learning problem, in which a model learns to map noisy
mixture signals to clean speech signals by processing pairs of
inputs and targets. The input mixtures x are made by artificially
mixing clean speech utterances s with training noise signals n;
the amplitude of n may be scaled to simulate various SNRs.
The utterances are sampled from a large training dataset con-
taining many speakers, s ∈ G, and the noises from a similarly
large dataset of diverse noises, n ∈ N. The denoising model g
updates its parametersWg with each iteration such that the dis-
tance E between the denoised estimate signal y and the target
clean speech signal s is minimized. The learning procedure for
the generalist model may be summarized as follows:

Mixture: x = s+ n; s ∈ G, n ∈ N (1)
SE Objective: argmin

Wg

E(y = g(x;Wg) ‖ s) (2)

There are many potential choices for the loss function E—
in this study, we utilize time-domain mean square error (LMSE),
which is the per-sample squared distance between the estimate
(y) and target (s) waveform pairs of length L,

LMSE(y, s) =
1

L

L∑
i=0

(si − yi)2 . (3)

MSE has been shown to correlate well with improving the ob-
jective signal quality [25], but denoising performance is com-
monly reported in scale-invariant signal-to-distortion ratio (SI-
SDR) [26].

A naı̈ve approach to personalized speech enhancement
would be to replicate this procedure using only speaker-specific
data. But because we consider the personalized speech en-
hancement to be a no-shot learning problem, our study assumes
that we do not have access to ground-truth clean speech ut-
terances. Therefore, the conventional fully-supervised learn-
ing objective cannot be used directly in training a personalized
speech enhancement model.

2.2. Self-Supervised (Pseudo) Speech Enhancement

We assume that the test-time speaker’s easily collected noisy
speech data can be described as a mixture of their clean utter-
ances corrupted by a set of unknown additive noises, S̃(k) =
S(k) + M. We can simulate this “premixture” process in our
experiments by sampling utterances from the test-time speaker,
s(k) ∈ S(k), and mixing them with a corpus of designated pre-
mixture noises,m ∈ M; the model is only allowed to access the
premixed signals s̃ and not its components s(k) and m. From
here, we omit the speaker index, superscript k, for brevity.

Our proposed self-supervised learning strategy treats the
premixtures as the new set of training targets. Therefore, the
premixtures s̃ are injected with further training noises, n ∈ N,
to create a new set of input mixtures x̃. The self-supervised
model fPSE updates its parameters WfPSE by mapping the
doubly-corrupted input mixtures x̃ to a pseudo-denoised esti-
mate signal ỹ and minimizing its distance to the originating
premixture source s̃—in other words, the self-supervised model
learns to undo only the second noise injection.

The two discussed mapping functions are non-equivalent,
i.e., fPSE 6= g, not only because g is trained on data from many
speakers while fPSE is trained on data from a single speaker,
but also because fPSE is trained using non-clean source signals
which makes it a pseudo speech enhancement (PSE) model.
Suppose there exists a hypothetical optimal speaker-specific de-
noising function (f∗); our hypothesis is that fPSE better approx-
imates f∗ as opposed to the fully-supervised speaker-agnostic
generalist function g.

Because it does not directly solve the speech enhancement
problem, while it still mimics the source-separating nature via
data augmentation on unlabeled signals, we consider our pro-
posed learning objective analogous to being a pretext task. The
self-supervised training procedure summarized as follows:

Premixture: s̃ = s+m; s ∈ S(k), m ∈ M (4)
Mixture: x̃ = s̃+ n; n ∈ N (5)

PSE Objective: argmin
WfPSE

E(ỹ = fPSE(x̃;WfPSE ‖ s̃) (6)

Figure 1 illustrates the impact of the two stages of noise
which are applied to the clean speech waveform. In short, our
specialist models trained using pseudo speech enhancement are
optimized in the same manner as the generalist models, by min-
imizing the per-sample distance between pairs of estimates and
targets, however the target in this case is a pseudo-source, i.e.
E(ỹ || s̃) = LMSE(ỹ, s̃). This approach bears similarity to
the recently proposed mixture invariant training (MixIT) pro-
cedure [27].

2677



<latexit sha1_base64="WdUF3Sji8CnTpMd+OUUDNK2Mm1s="></latexit>
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Figure 1: Illustration of the audio data transformations through
pseudo speech enhancement (PSE). Premixtures s̃ represent
real-world noisy audio recordings from the test-time speaker,
and are the training target of pseudo-denoising model fPSE.

2.3. Data-Purified Pseudo Speech Enhancement

The success of deriving meaningful speaker-specific features
from pseudo speech enhancement depends on the quality of
the premixture—more specifically, the sparsity of m in time,
as well as the instantaneous SNR between s and m, are both
factors as to whether s̃ is too degraded to be usable. If m is
sufficiently sparse, portions of the premixture may contain near-
clean speech. Our goal is to inform the enhancement model of
where these near-clean frames may be. We propose introducing
“data purification” (DP) to pseudo speech enhancement train-
ing; the data-purified model fDP estimates a weighting vector p
which diminishes the contribution of contaminated frames to-
wards the loss function E . By masking out the noisy premixture
frames, the personalized model will hypothetically learn only
using snippets of clean speech from the test-time user. This will
differ from the original self-supervised model, i.e. fDP 6= fPSE,
but our hypothesis is that it may better approximate the ideal
denoising function, i.e. fDP ≈ f∗.

Our method for generating p is to train a separate model h
which can estimate the segmental SNR of the premixtures, cal-
culated over a set of windowed overlapping frames. The SNR
predictor is a regressive model, trained over the diverse set of
training speakers and noises (i.e., G and N), which outputs a
vector of instantaneous SNRs, α; it has no knowledge of the
test-time speaker or the test-time noise environment. Given an
estimate signal v̂ and a target signal v, both of length L, their
residual is r = v − v̂, and the frame-by-frame/segmental SNR
(SegSNR) can be defined as:

SegSNRj(v, v̂) = 10 log10

[∑Hj+N−1
i=Hj (wivi)

2∑Hj+N−1
i=Hj (wiri)

2

]
, (7)

where N is the frame size, H is the hop size, j is a zero-based
frame index (i.e. 0 ≤ j ≤ d L

H
e− 1), and vectorw comes from

the Hann window function of length N . Note that the SNR
predictor inputs are of length L and outputs are of length d L

H
e.

Its training objective may then be summarized as:

Mixture: x = s+ n; s ∈ G, n ∈ N (8)
Target: α = SegSNR(s,x) (9)

SNR-Predictor
Objective: argmin

Wh

E(α̂ = h(x;Wh) ‖ α), (10)

When training the pseudo-denoising model, the fully-
trained SNR predictor first analyzes input premixtures to esti-
mate the instantaneous SNRs, α̂ = h(s̃); we apply the logistic
function σ to the α̂ logits to obtain frame-by-frame weights:

p = σ(α̂) =
1

1 + e−α̂
(11)
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Figure 2: Illustration of the fully-trained SNR predictor inputs
and outputs. The first subplot features an example premixture /
pseudo-source s̃. In the second subplot, the SNR predictor net-
work h estimates the instantaneous SNR of the premixture. The
third subplot shows α̂ converted to weights using the logistic
function, i.e. p = σ(h(s̃)).

The training procedure for the data purified pseudo speech
enhancement (PSE + DP) model mirrors Eq. (4)–(6) except
that we modify the loss function to now incorporate the frame-
by-frame weighting vector through a custom segmental MSE
function, i.e. E(ỹ ‖ s̃) = LSegMSE(ỹ, s̃;p), where

LSegMSE =
1

J

J−1∑
j=0

pj

[
1

N

Hj+N−1∑
i=Hj

(wis̃i − wiỹi)
2

]
. (12)

Here J is the number of frames d L
H
e. The mean-squared differ-

ence is taken between the windowed segments, which are then
weighted by p then averaged across all frames.

3. Experiment Setup
3.1. Configurations

Our experiment considers a baseline and four proposed train-
ing procedures in potentially developing personalized speech
enhancement models. We group the proposed methods based
on whether we pretrain the models using random initialization
or speaker-agnostic fully-supervised pretraining. Regardless of
initialization, all the proposed configurations use pseudo speech
enhancement as the self-supervised learning approach to per-
sonalization. We additionally examine the impact of the pro-
posed data purification scheme.

• SE: Trained to minimize Eq. (2). This is our generalist base-
line, the speaker-agnostic speech enhancement system.

• PSE: The proposed plain pseudo speech enhancement
method. This self-supervised learning method relies solely
on noisy speaker-specific data to minimize Eq. (6).

• PSE+DP: A self-supervised setup using Eq. (6). However,
the model uses the weighted segmental MSE LSegMSE instead
Eq. (12) to purify the noisy speaker-specific dataset.

• SE→PSE: Instead of random initialization, a model is first
trained to minimize Eq. (2), then fine-tuned to minimize Eq.
(6).

• SE→PSE+DP: Same as above, but with data purification.

3.2. Data Preparation

We opt for an online data augmentation procedure which
combines three different public audio datasets (Librispeech
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[28], MUSAN [29], and FSD50K [30]) to test our meth-
ods’ robustness cross-dataset. Our speaker-specific datasets
S(k) are stochastically sampled out of all utterances from one
test speaker. This is done for twenty folded-out test speak-
ers. The speaker-agnostic dataset G is stochastically sam-
pled out of all utterances across the remaining 211 speakers
within the Librispeech train-clean-100 split. The au-
dio clips from the FSD50K dev split serve as the premix-
ture noises M. The training noises N come from the MU-
SAN free-sound split. Model performance is evaluated on
a set of random mixtures between unseen utterances within the
test-time speaker dataset combined with unseen noises from the
MUSAN sound-bible split.

During training, for any given mixture, the sampled signals
(s,m,n) are 1 sec in length with a sample rate of 16 kHz. Each
premixture noisem is scaled uniformly at random such that the
premixture SNR falls between 0 to 15 dB, whereas the train-
ing noises n are scaled uniformly at random such that the mix-
ture SNR falls between −5 to 5 dB. Our decision of premix-
ture SNR range is based on real-world scenarios, e.g., a smart
speaker collecting noisy speech data in the living room.

3.3. Models

Our experiment focuses on the correlation between the num-
ber of effective model parameters and the improvement in
speech enhancement quality (SI-SDR) obtained through the
SNR-informed data purification method. Because our real-
world use case relates to compute-constrained smart devices
likely to perform low-latency speech enhancement on-device,
we evaluate small neural network architectures which do not
compete with popular speech separation models, e.g., Conv-
TasNet [31], or Dual-Path RNN [32]. Our hypothesis is that
low-capacity models will benefit the most from personalization,
as they do not generalize well.

We compare three two-layer GRU-based models (varying
hidden units: 64, 128, and 256) so as to compare the rela-
tionship between the five training configurations and increased
model complexity. These models perform denoising via time-
frequency masking [33]—audio waveforms are converted to
the time-frequency domain using the short-time Fourier Trans-
form (STFT) with a frame size N = 1024 and a hop size
of H = 256; as the waveforms are 16000 samples in length
(1 sec), this results in J = 63 STFT frames. The denoised sig-
nal is obtained by applying the estimated time-frequency mask
onto the input STFT and performing the inverse transform. The
loss is computed in the time domain.

The SNR predictor model uses a GRU with 1024 hidden
units and 3 hidden layers; it processes STFTs with the same N
andH , performing a frame-by-frame regression. These choices
of N , H , and J apply towards Eq. (7) and (12). We defer the
investigation of smaller SNR predictor networks intended for
on-device training to future work.

4. Results
Fig. 3 summarizes the results of our experiment. We can ob-
serve the model compression benefits of personalized speech
enhancement by comparing the specialist models with fewer
parameters with the generalist models with more parameters.
E.g., a 64 hidden unit network, trained using SE→PSE+DP,
slightly exceeds the average denoising performance of a gener-
alist model SE with 128 hidden units—this is an effective 59%
reduction in model size (from 412 k to 169 k parameters).
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Figure 3: Box plot of experiment results with notches showing
the 95% confidence interval. We report mean SI-SDR improve-
ment over unseen mixtures across each test-time user. Model
configurations are detailed in Sec. 3.1.

The personalized models trained with the naı̈ve pretext task,
PSE, underperform compared to the baseline non-personalized
SE models with an equivalent number of parameters. This
indicates that the configuration of our experiment—a realis-
tic premixture SNR range of 0 to 15 dB—challenges the self-
supervised model with obtaining speech denoising features out
of noisy speech. As hypothesized, data purification overcomes
this difficulty by ignoring the too-noisy frames. We see across
all model sizes that the data purified self-supervised models
PSE+DP consistently outperform equivalently sized baselines.

Our experiments show that the generalist-initialized spe-
cialists outperform the randomly-initialized specialists only
marginally, at most by 0.22 dB. This suggests that the large
multi-speaker corpus G and the model trained from it g are lim-
ited in their ability to address all the peculiarities of our 20 test-
time speakers. In other words, the denoising models g, fPSE,
and fDP do not approximate one another.

Lastly, we see that the smallest personalized GRU model
benefits the most from self-supervised learning with data purifi-
cation, e.g., SE→PSE+DP outperforms SE by 0.91 dB, while
the largest GRU model gains the least, e.g., SE→PSE+DP out-
performs SE by 0.34 dB.

5. Conclusion
This work introduced personalized speech enhancement as a no-
shot learning problem which motivated a self-supervised learn-
ing solution. Our method treated noisy data as pseudo-sources.
We personalized speech denoising models for twenty differ-
ent speakers using three neural network architectures with var-
ied model complexity. We compared a speaker-agnostic fully-
supervised model against two proposed self-supervised mod-
els: one without and another with the proposed data purifica-
tion that suppresses the contribution of low-SNR frames to the
learning objective. Our study showed that the smallest models
improved the most from personalization, for which the data pu-
rified self-supervised learning scheme yields the best denoising
performance. Audio examples and source code are available at:
https://saige.sice.indiana.edu/research-
projects/pse-ssl-dp
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