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In this paper we propose a new family of algorithms, ATENT, for training adversarially
robust deep neural networks. We formulate a new loss function that is equipped with an
additional entropic regularization. Our loss function considers the contribution of
adversarial samples that are drawn from a specially designed distribution in the data
space that assigns high probability to points with high loss and in the immediate
neighborhood of training samples. Our proposed algorithms optimize this loss to seek
adversarially robust valleys of the loss landscape. Our approach achieves competitive (or
better) performance in terms of robust classification accuracy as compared to several
state-of-the-art robust learning approaches on benchmark datasets such as MNIST and
CIFAR-10.

Keywords: adversarial learning, robustness, adversarial attack, regularization, neural network training

1 INTRODUCTION

Deep neural networks have led to significant breakthroughs in the fields of computer vision
(Krizhevsky et al., 2012), natural language processing (Zhang et al., 2020), speech processing
(Carlini et al., 2016), recommendation systems (Tang et al., 2019) and forensic imaging (Rota
et al. (2016)). However, deep networks have also been shown to be very susceptible to carefully
designed “attacks” (Goodfellow et al., 2014; Papernot et al., 2016; Biggio and Roli, 2018). In
particular, the outputs of networks trained via traditional approaches are rather brittle to
maliciously crafted perturbations in both input data as well as network weights (Biggio et al.,
2013).

Formally put, suppose the forward map between the inputs x and outputs y is modeled via a
neural network as y � f(w; x) where w represents the set of trainable weight parameters. For a
classification task, given a labeled dataset {xi, yi}, i � 1, . . . , n where X and Y represents all training
data pairs, the standard procedure for training neural networks is to seek the weight parameters w
that minimize the empirical risk:

ŵ � argmin
w

1
n
∑n
i�1

L f w;xi( ), yi( )dargmin
w

L X;Y,w( ).

However, the prediction ŷ(x) � f(ŵ;x) can be very sensitive to changes in both ŵ and x. For
example, if a bounded perturbation to a test image input (or to the neural network weights) is
permitted, i.e., ŷi � f(ŵ;xi + δi)where δi represents the perturbation, then the predicted label ŷi can
be made arbitrarily different from the true label yi.

Several techniques for finding such adversarial perturbations have been put forth. Typically, this
can be achieved by maximizing the loss function within a neighborhood around the test point x
(Tramèr et al., 2017; Madry et al., 2018):
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�xworst � argmax
δ∈Δp

L f ŵ;x + δ( ), y( ), (1)

where ŵ are the final weights of a pre-trained network. The
perturbation setΔp is typically chosen to be an ℓp-ball for some p ∈
{0, 1, 2, ∞}.

The existence of adversarial attacks motivates the need for a
“defense” mechanism that makes the network under
consideration more robust. Despite a wealth of proposed
defense techniques, the jury is still out on how optimal
defenses should be constructed (Athalye et al., 2018).

We discuss several families of effective defenses. The first
involves adversarial training (Madry et al., 2018). Here, a set of
adversarial perturbations of the training data is constructed by
solving a min-max objective of the form:

ŵ � min
w

max
δ∈Δp

1
n
∑n
i�1

L f w;xi + δ( ), yi( ).
Wong and Kolter (2018) use a convex outer adversarial

polytope as an upper bound for worst-case loss in robust
training; here the network is trained by generating adversarial
as well as few non-adversarial examples in the convex polytope of
the attack via a linear program. Along the same vein include a
mixed-integer programming based certified training for piece-
wise linear neural networks (Tjeng et al., 2018) and integer bound
propagation (Gowal et al., 2019).

The last family of approaches involves randomized smoothing.
Here, both training the network as well as the inference made by
the network are smoothed out over several stochastic
perturbations of the target example (Lecuyer et al., 2019;
Cohen et al., 2019; Salman et al., 2019a). This has the effect of
optimizing a smoothed-adversarial version of the empirical risk.
Randomized smoothing has also been used in combination with
adversarial training (Salman et al., 2019b) for improved
adversarial robustness under ℓ2 attacks

1.

In this paper, we propose a new approach for training
adversarially robust neural networks. The key conceptual
ingredient underlying our approach is entropic regularization.
Borrowing intuition from Chaudhari et al. (2019), instead of the
empirical risk (or its adversarial counterpart), our algorithm
instead optimizes over a local entropy-regularized version of
the empirical risk:

ŵ � argmin
w

LDE,

LDE � ∫
X′
L X′;Y,w( ) e

L X′;Y,w( )− c
2
‖X −X′‖pp( )

Z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dX′.
(2)

Intuitively, this new loss function can be viewed as the
convolution of the empirical risk with a Gibbs-like distribution
to sample points from the neighborhoods, X′, of the training data
points X that have high loss. Therefore, compared to adversarial
training, we have replaced the inner maximization with an
expected value with respect to a modified Gibbs measure
which is matched to the geometry of the perturbation set.

Since the above loss function is difficult to optimize (or even
evaluate exactly), we instead approximate it via Monte Carlo
techniques. In particular, we use Stochastic Gradient Langevin
Dynamics (Welling and Teh, 2011); in this manner, our approach
blends in elements from adversarial training, randomized
smoothing, and entropic regularization. We posit that the
combination of these techniques will encourage a classifier to
learn a better robust decision boundary as compared to prior art
(see visualization in Figure 1).

To summarize, our specific contributions are as follows:

1. We propose a new entropy-regularized loss function for
training deep neural networks (Eq. 2) that is a robust
version of the empirical risk.

2. We propose a new Monte Carlo algorithm to optimize this
new loss function that is based on Stochastic Gradient
Langevin Dynamics. We call this approach Adversarial
Training with ENTropy (ATENT).

FIGURE 1 | TSNE visualization of decision boundaries for a 3-layer neural network trained using different defenses; corresponding natural and robust test
accuracies against ℓ∞ attacks for classifying MNIST digits 5 and 8.

1This family of methods has the additional benefit of being certifiably robust: all
points within a ball of a given radius around the test point are provably classified
with the correct label.
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3. We show that ATENT-trained networks provide improved
(robust) test accuracy when compared to existing defense
approaches.

4. We combine randomized smoothing with ATENT to show
competitive performance with the smoothed version of
TRADES.

In particular, we are able to train an ℓ∞-robust CIFAR-10
model to 57.23% accuracy at PGD attack level ϵ � 8/255, which is
higher than the latest benchmark defenses based on both
adversarial training using early stopping (Salman et al., 2019b)
(56.8%) as well as TRADES (56.6%) (Zhang et al., 2019b).

2 PRIOR WORK

Evidence for the existence of adversarial inputs for deep
neural networks is by now well established (Carlini N. and
Wagner D. A., 2017; Dathathri et al., 2017; Goodfellow et al.,
2015; Goodfellow, 2018; Szegedy et al., 2013; Moosavi-
Dezfooli et al., 2017). In image classification, the majority
of attacks have focused on the setting where the adversary
confounds the classifier by adding an imperceptible
perturbation to a given input image. The range of the
perturbation is pre-specified in terms of bounded pixel-
space ℓp-norm balls. Specifically, an ℓp- attack model
allows the adversary to search over the set of input
perturbations Δp,ϵ � {δ: ‖δ‖p ≤ ϵ} for p � {0, 1, 2, ∞}.

Initial attack methods, including the Fast Gradient Sign
Method (FGSM) and its variants (Goodfellow et al., 2014;
Kurakin et al., 2016), proposed techniques for generating
adversarial examples by ascending along the sign of the loss
gradient:

xadv � x + ϵsgn ∇xL f ŵ;x( ), y( )( ),
where (xadv − x) ∈ Δ∞,ϵ. Madry et al. (2018) proposed a stronger
adversarial attack via projected gradient descent (PGD) by
iterating FGSM several times, such that

xt+1 � Πx+Δp,ϵ(xt + αsgn ∇xL f ŵ;x( ), y( )( ),
where p � {2, ∞}. These attacks are (arguably) the most
successful available attack techniques reported to date, and
serve as the starting point for our comparisons. Both Deep
Fool Moosavi-Dezfooli et al., 2016) and Carlini-Wagner
(Carlini N. and Wagner D., 2017) construct an attack by
finding smallest possible perturbation that can flip the label
of the network output.

Several strategies for defending against attacks have been
developed. In Madry et al. (2018), adversarial training is
performed via the min-max formulation Eq. 1. The inner
maximization is solved using PGD, while the outer objective is
minimized using stochastic gradient descent (SGD) with respect
to w. This can be slow to implement, and speed-ups have been
proposed in Shafahi et al. (2019) and Wong et al. (2020). In Li B.
et al. (2018); Cohen et al. (2019); Lecuyer et al. (2019); Salman
et al. (2019a, Salman et al. (2019b), the authors developed

certified defense strategies via randomized smoothing. This
approach consists of two stages: the first stage consists of
training with noisy samples, and the second stage produces an
ensemble-based inference. See Ren et al. (2020) for a more
thorough review of the literature on various attack and
defense models.

Apart from minimizing the worst case loss, approaches which
minimize the upper bound on worst case loss inclu Wong et al.,
2018; Tjeng et al. (2018); Gowal et al. (2019). Another breed of
approaches use a modified loss function which considers
surrogate adversarial loss as an added regularization, where
the surrogate is cross entropy (Zhang et al., 2019b)
(TRADES), maximum margin cross entropy (Ding et al.,
2019) (MMA) and KL divergence (Wang et al., 2019) (MART)
between adversarial sample predictions and natural sample
predictions.

In a different line of work, there have been efforts towards
building neural network networks with improved generalization
properties. In particular, heuristic experiments by Hochreiter and
Schmidhuber (1997); Keskar et al. (2016); Li H. et al. (2018)
suggest that the loss surface at the final learned weights for well-
generalizing models is relatively “flat”2. Building on this intuition,
Chaudhari et al. (2019) showed that by explicitly introducing a
smoothing term (via entropic regularization) to the training
objective, the learning procedure weights towards regions with
flatter minima by design. Their approach, Entropy-SGD (or
ESGD), is shown to induce better generalization properties in
deep networks. We leverage this intuition, but develop a new
algorithm for training deep networks with better adversarial
robustness properties. We also highlight some papers written
concurrently in Supplementary Material.

3 PROBLEM FORMULATION

The task of classification, given a training labelled dataset
{xi ∈ X , yi}, i ∈ {1, . . . , n}, consists of solving the standard
objective by optimizing weight parameters w,
minw1

n∑n
i�1L(f(w;xi), yi) where yi is a one-hot class encoding

vector of length m and m is the total number of classes. The
training data matrix itself is represented using shorthand
X ∈ Rn×d and labels in Y ∈ Rn where we have access to n
training samples which are d-dimensional each. Given this
formulation, the primary task is to minimize the cross-entropy
Loss function L(w;X,Y) � −1

n∑n
i�1∑m

j�1yi,j logŷi,j. In this paper,
we design an augmented version of the loss function L which
models a class of adversarial perturbations and also introduce a
new procedure to minimize it.

We first recap the Entropy SGD (Chaudhari et al., 2019) (see
also Supplementary Material). Entropy-SGD considers an
augmented loss function of the form

2This is not strictly necessary, as demonstrated by good generalization at certain
sharp minima (Dinh et al., 2017).
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Lent w;X,Y( ) � −log∫
w′
e−L w′;X,Y( )−c

2‖w−w′‖22dw′.

By design, minimization of this augmented loss function
promotes minima with wide valleys. Such a minimum would
be robust to perturbations in w, but is not necessarily
advantageous against adversarial data samples xadv. In our
experiments (Section 4) we show that networks trained with
Entropy-SGD perform only marginally better against adversarial
attacks as compared to those trained with standard SGD.

For the task of adversarial robustness, we instead develop a
data-space version of Entropy-SGD. To model for perturbations
in the samples, we design an augmented loss that regularizes the
data space. Note that we only seek specific perturbations of data x
that increase the overall loss value of prediction. In order to
formally motivate our approach, we first make some assumptions.

Assumption 1. The distribution of possible adversarial data
inputs of the neural network obeys a positive exponential
distribution of the form below, where the domain of
L(X;Y,w) is bounded:

p X;Y,w, β( ) � Z−1
w,βe

βL X;Y,w( ) if L X;Y,w( )≤R,
0 if L X;Y,w( )>R,{ (3)

and Zw,β is the partition function that normalizes the probability
distribution.

Note here that cross entropy lossL is always lower bounded as
L≥ 0. flushleft

Intuitively, the neural network is more likely to “see”
perturbed examples from the adversary corresponding to
higher loss values as compared to lower loss values. The
parameter R is chosen to ensure that the integral of the
probability curve is bounded. When the temperature
parameter β → ∞, the above Gibbs distribution
concentrates at the maximizer(s) of L( �X;Y, w), where �X is
the “worst possible” set of adversarial inputs to the domain of
the loss function for fixed weights w. For a given attack ball
Δp,ϵ with radius ϵ and norm p, and fixed weights w, this value
equates to:

�X � arg max
X′∈Δp,ϵ

L X′;X,Y, w( ),
where maxX′∈Δp,ϵL(X′;X,Y, w)≤R.

Assumption 2. A modified distribution, (without loss of
generality, setting β � 1) with an additional smoothing
parameter, assumes the form:

p X′;X,Y, w, c( ) � Z−1
X,w,ce

L X′ ;Y,w( )− c
2
‖X′ −X‖2F if L X′;Y,w( )≤R

0 if L X′;Y,w( )>R
⎧⎪⎪⎪⎨⎪⎪⎪⎩

where ZX,w,γ is the partition function that normalizes the
probability distribution.

Here c controls the penalty of the distance of the adversary
from true data X; if c→∞, the sampling is sharp, i.e. p(X′ � X; X,

Y, w, c) � 1 and p(X′ ≠ X; X, Y, w, c) � 0, which is the same as
sampling only the standard loss L, meanwhile c→ 0 corresponds
to a uniform contribution from all possible data points in the loss
manifold.

Now, we develop an augmented loss function which
incorporates the probabilistic formulation in Assumption 2.
The standard objective can be re-written as the functional
convolution:

min
w

L w;X,Y( )dmin
w

∫
X′
L X′;Y,w( )δ X −X′( )dX′,

which can be seen as a sharp sampling of the loss function at
training points X. Now, define the Data-Entropy Loss:

LDE w;X,Y, c( ) � ∫
X′
L X′;Y,w( )p X′;X,Y,w, c( )dX′ (4)

our new objective is to minimize this augmented objective
function LDE(w;X,Y, c), which resembles expected value of
the standard loss function sampled according to a distribution
that (i) penalizes points further away from the true training data
2) boosts data points which correspond to high loss values.
Specifically, the adversarial samples generated by the
distribution in Assumption 2 will correspond to those with
high loss values in the immediate neighborhood of the true
data samples. This sampling process is also described in
Figure 2. We also highlight theoretical properties of our
augmented loss function via Lemma 3.1, proof of which can
be found in of supplement B.

Lemma 3.1. The effective loss F(X′;X,Y,w)dc
2‖X −X′‖2F −

L(X′;Y,w) which guides the Langevin sampling process in
Eq. 8 is

FIGURE 2 | Illustration of the sampling procedure in Assumption 2 at
fixed weights w. The distribution produces samples x′ from distribution p(x′|
x � 0.4), and we compute the average loss over these samples. Effectively, this
encourages ATENT to search for w where L(x; w) is relatively flat in the
neighborhood of x.
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1. β + γ smooth if L(X;Y,w) is β-smooth in X.
2.(c4, L

2

c + c
2‖X‖2F) dissipative if L(X;Y,w) is L-Lipschitz in X.

If gradient descent is used to minimize the loss in Eq. 4, the
gradient update corresponding to the augmented loss function
can be computed as follows

∇wLde w;X,Y, c( ) � ∇w∫
X′
L X′;Y,w( )p X′;X,Y,w, c( )dX′

� ∇wEX′ ∼ p X′;X,Y,w,c( ) L X′;Y,w( )[ ] (5)

Correspondingly, the weights of the network, when trained
using gradient descent, using Eq. 5, can be updated as

w+ � w − η∇wEX′ ∼ p X′;X,Y,w,c( ) L X′ ;Y,w( )[ ] (6)

where η is the step size. The expectation in Eq. 5 is carried
out over the probability distribution of data samples X′ as
defined in Assumption 2. This can be seen as the adversarial
version of the formulation developed in Entropy SGD
(Chaudhari et al. (2019)), where the authors use a Gibbs
distribution to model an augmented loss function that
explores the loss surface at points that are perturbed from
the current weights w, denoted by w′ (see Supplementary
Material). In contrast, in our approach, we consider loss
contributions from perturbations X′ of data points X. This
analogue is driven by the fact that the core objective in
Chaudhari et al. (2019) is to design a network which is robust
to perturbations in weights (generalization), where as the
core objective of this paper is to design a network that is
robust to perturbations in the inputs (adversarial
robustness).

The expectation in Eq. 5 is computationally intractable to
optimize (or evaluate). However, using the Euler discretization of
the Langevin Stochastic Differential Equation (Welling and Teh,
2011), it can be approximated well. Samples can be generated
from p(X′) as:

X′k+1 � X′k + η′∇X′ logp X′t( ) + ���
2η′

√
εN 0, I( ) (7)

where η′ is the step size for Langevin sampling, ε is a scaling factor
that controls additive noise. In Langevin dynamics, when one
considers a starting point of X′0 then the procedure above yields
samples X′1 . . . X′t that follow the distribution p(X′). Intuitively,
the stochastic process X′t is more likely to visit points in the
immediate neighborhoods of the entire training dataset X
corresponding to high loss values.

Observe that X′ and X have the same dimensions and the
gradient term in the above equation needs to be computed over n,
d-dimensional data points. In practice this can be
computationally expensive. Therefore, we discuss a stochastic
variant of this update rule, which considers mini-batches of

training data instead. Plugging in the distribution in Eq.3, and
using the Euler discretization for Langevin Stochastic Differential
Equations, the update rule for sampling X′ is

X′k+1 −X′k

η′
� ∇

X′k L X′k;Y,w( ) − c

2
‖X −X′k‖2F( ) +

���
2ε2

η′

√
N 0, I( )

� ∇
X′kL X′k;Y,w( ) + c X −X′k( ) +

���
2ε2

η′

√
N 0, I( )

(8)

where we have incorporated ZX,wc in the step size η′. Note that as the
number of updates k→ ∞, the estimates from the procedure in Eq. 8
converge to samples from the true distribution. p(X′; X, Y, w, c). We
then want to estimate ∇wLde(w;X,Y, c) �
∇wEX′ ∼ p(X′ )[L(w;X′ ,Y, c)] using the samples obtained from the
above iterative procedure. Chaudhari et al. (2019), use an exponentially
decaying averaging process to estimate the expected value.

Batch-wise updates for stochastic gradient estimates: As is
typical with large datasets, instead of using the entire training data
for computing gradients in Eq. 5 and Eq. 7, one can use batch-
wise data where the training data is segmented into J batches
[XB1, XB2 . . .XBJ]. This is essentially a combination of Stochastic
Gradient Descent and Langevin Dynamics and is known as
Stochastic Gradient Langevin Dynamics in recent literature
Welling and Teh, 2011).

This discussion effectively leads to the algorithm shown in
Algorithm 1, which we refer to as Adversarial Training using
Entropy (or ATENT), designed for ℓ2 attacks. Note that we have
considered exponentially decaying averaging over sample loss μk

in Line 10 of Algorithm 1.

Algorithm 1. ℓ2-ATENT

Comparison to PGD Adversarial Training: (see also
Algorithm 2 Madry et al., 2018 in Supplementary Material,
referred as PGD-AT). It is easy to see that the updates of PGD-
AT are similar to that of Algorithm 1, consisting broadly of two
types of gradient operations in an alternating fashion—1) an
(inner) gradient with respect to samples X (or batch-wise
samples XBj) and 2) an (outer) gradient with respect to
weights w. While PGD-AT minimizes the worst-case loss in
an ϵ-neighborhood (specifically ℓ2 or ℓ∞ ball) of X, ATENT
minimizes an average loss over our specifically designed
probability distribution (Assumption 3) in the neighborhood
of X. Note that the gradient operation in Eq. 8 is also the

1This family of methods has the additional benefit of being certifiably robust: all
points within a ball of a given radius around the test point are provably classified
with the correct label.
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gradient for the regularized version of inner maximation of the
adversarial training problem (Madry et al., 2018), but with
added noise term,

max
X′

L X′;X,Y, w( ) s.t. ‖X′ −X‖2F ≤ ϵ 5 max
X′

L X′;X,Y, w( ) − c

2
‖X′ − X‖2F (9)

constraint being satisfied if ‖X′ − X‖F is minimized, or
− ‖X′ − X‖F is maximized).

The width of the Gaussian smoothing is adjusted with c, which
is analogous to controlling the projection radius ϵ in the inner-
maximization of PGD-AT. Then the second and third terms in
Eq. 8 are simply gradient of an ℓ2-regularization term over data
space X′ and noise. In this way, ATENT can be re-interpreted as a
stochastic formalization of ℓ2-PGD-AT, with noisy controlled
updates.

Comparison to randomized smoothing: Cohen et al. (2019),
describe a defense to adversarial perturbations, in the form of
smoothing. A smoothed classifier g, under isotropic Gaussian
noise ε � N (0, σ2I), produces an output:

g x( ) � argmax
j

P f x + ε( ) �j( ). (10)

where P denotes probability distribution (see Supplementary
Material for detailed discussion). SmoothAdv Salman et al.,
2019b) is an adversarial attack as well as defense for
smoothed classifiers, which replaces standard loss with
cross entropy loss of a smoothed classier. In comparison,
we compute a smoothed version of the cross entropy loss of a
standard classifier. This is similar to the setup of Blum et al.
(2020) (TRADES with smoothing). The procedure in
Algorithm 1 is therefore amenable to randomized
smoothing in its evaluation. We discuss a smoothed
evaluation of ATENT in the next section.

Algorithm 2. ℓ∞-ATENT

Extension to defense against ℓ‘-attacks: It is evident that due
to the isotropic structure of the Gibbs measure around each data
point, Algorithm 1, ℓ2-ATENT is best suited for ℓ2 attacks.
However this may not necessarily translate to robustness
against ℓ∞ attacks. For this case, one can use an alternate
assumption on the distribution of potential adversarial
examples. flushleft

Assumption 3.We consider a modification of the distribution in
Assumption 2 to account for robustness against ℓ∞ type attacks:

p X′;X,Y, w, c( ) � Z−1
X,w,ce

L X′ ;Y,w( )− c
2
‖X′ −X‖∞( )

if L X′;Y,w( )≤R

0 if L X′;Y,w( )>R

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where ‖·‖∞ is the ℓ∞ norm on the vectorization of its argument and
ZX,w,c normalizes the probability.

The corresponding Data Entropy Loss for ℓ∞ defenses is:
flushleft

LDE,∞ w;X,Y( ) � Z−1
X,w,c∫

X′
L X′;Y,w( )e L X′;Y,w( )−c

2‖X−X′‖∞( )dX′

This resembles a smoothed version of the loss function with a
exponential ℓ∞ kernel along the data dimension to model points
in the ℓ∞ neighborhood of X which have high loss. The SGD
update to minimize this loss becomes:

∇wLDE,∞ w;X,Y( ) � ∇wEX′ ∼ p X′( ) L w;X′, Y( )[ ]
0 w+ � w − η∇wLDE,∞ w;X,Y( )

where the expectation over p(X′) is computed by using samples
generated via Langevin Dynamics:

X′k+1 � X′k + η′∇X′ logp X′k( ) + ���
2η′

√
εN 0, I( )

Plugging in the distribution in Assumption 3 the update rule
for sampling X′:

X′k+1 −X′k

η′
� ∇

X′k L X′k;Y,w( ) − c

2
‖X − X′k‖∞( ) +

���
2ε2

η′

√
N 0, I( )

� ∇
X′k L X′k;Y,w( ) + csign Xi −X′k

i( ) · 1 +
���
2ε2

η′

√
N 0, I( )

(11)

where i � argmaxj|Xj −X′k
j | and j scans all elements of the

tensors X, X′k and 1j � δi,j. The second term in the update
rule navigates the updates X′k+1 to lie in the immediate ℓ∞
neighborhood of X. Note that this training process requires
taking gradients of ℓ∞ distance. In the update rule in Eq. 11,
the gradient update only happens along one coordinate. In
practice when we test this update rule, the algorithm fails to
converge. This is due to the fact that typically a sizeable number of
elements of X′ − X have a large magnitude.

The expression in the penultimate step of Eq. 11, is the
gradient of a regularized maximization problem,

max
X′

L X′;X,Y,w( )
s.t. ‖X′ −X‖∞ ≤ ϵ 5 max

X′
L X′;X,Y,w( ) − c‖X′ −X‖∞

where c is inversely proportional to ϵ (constraint is satisfied if ‖X′
− X‖∞ is minimized, or − ‖X′ − X‖∞ is maximized). This
expression can be maximized only if X′ ∈ Δ∞,ϵ of X; however
when we take gradients along only one coordinate, this may not
be sufficient to drive all coordinates of X′ towards Δ∞,ϵ of X.

Similar to the ℓ∞CarliniWagner attack (Carlini N. andWagner
D., 2017), we replace the gradient update of the ℓ∞ term, with a
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clipping based projection oracle. We design an accelerated version
of the update rule in Eq. 11, in which we perform a clipping
operation, i.e., an ℓ∞ ball projection of the form:

X′k+1 −X′k � η′∇X′L X′k;Y,w( ) + ���
2η′

√
εN 0, I( ),

X′K −X′K−1 � Pc η′∇X′L X′K−1
;Y,w( ) + ���

2η′
√

εN 0, I( )( )
(12)

where element-wise projection Pc(z)� z if |z|< 1/c and Pc(z) � 1/c if
|z| > 1/c. Empirically, we also explored an alternate implementation
where the projection takes place in each inner iteration k, however,
we find the version in Algorithm 2 to give better results.

In both Algorithms 1 and 2, we initialize the Langevin update
step with a random normal perturbation δi of benign samples,
which is constructed to lie inside within approximately 1/c radius
of the natural samples.

4 EXPERIMENTS

In this section we perform experiments on a five-layer convolutional
model with 3 CNN and 2 fully connected layers, used in Zhang et al.
(2019b); Carlini N. andWagner D. (2017), trained onMNIST. We also
train aWideResNet-34-10 onCIFAR10 [as used inZhang et al. (2019b)]
as well as ResNet20. Due to space constraints, we present supplemental
results in Supplementary Material. We conduct our experiments
separately on networks specifically trained for ℓ2 attacks and those
trained for ℓ∞ attacks. We also test randomized smoothing for our ℓ2-
ATENTmodel. Source code is provided in the supplementary material.

Attacks: For ℓ2 attacks, we test PGD-40 with 10 random
restarts, and CW2 attacks at radius ϵ2 � 2 for MNIST and
PGD-40 and CW2 attacks at ϵ2 � 0.43 ( ≈ ϵ∞ � 2/255) and ϵ2
� 0.5 � 128/255 for CIFAR10. For ℓ∞ attacks, we test PGD-20,
ℓ∞CW, DeepFool attacks at radiii ϵ∞ � 0.3 for MNIST and ϵ∞ �
0.031 � 8/255 for CIFAR10. We test ATENT at other attack radii
in Supplementary Material. For implementing the attacks, we
use the Foolbox library (Rauber et al., 2017) and the Adversarial
Robustness Toolbox (Nicolae et al. (2018)).

Defenses: We compare models trained using: SGD (vanilla),
Entropy SGD (Chaudhari et al., 2019), PGD-AT (Madry et al.,
2018) with random starts [or PGD-AT(E) with random start,
early stopping (Rice et al., 2020)], TRADES (Zhang et al.,
2019b), MMA (Ding et al., 2019) and MART (Wang et al.,
2019). Wherever available, we use pretrained models to tabulate
robust accuracy results for PGD-AT, TRADES, MMA and
MART as presented in their published versions. Classifiers
giving the best and second best accuracies are highlighted in
each category. We note here that a good defense mechanism
should give better robust accuracies across different attack
strategies. Since no single defense strategy outperforms every
other defenses across all attacks, we highlight the best two robust
accuracies. We find that ATENT obtains either the best or
second best robust accuracy against all methods tested. This
suggests that ATENT generalizes better than other defense
strategies against various attacks.

Smoothing:We also test randomized smoothing (Cohen et al.,
2019) in addition to our adversarial training to evaluate certified
robust accuracies.

The results were generated using an Intel(R) Xeon(R) W-2195
CPU 2.30 GHz Lambda cluster with 18 cores and a NVIDIA
TITAN GPU running PyTorch version 1.4.0.

4.1 MNIST
In Tables 1 and 2, we tabulate the robust accuracy for 5-
layer convolutional network trained using the various approaches
discussed above for both ℓ2 and ℓ∞ attacks respectively.

Training setup: Complete details are provided in
Supplementary Material. Our experiments for ℓ2 attack are
presented in Table 1. We perform these experiments on a
LeNet5 model imported from the Advertorch toolbox
(architecture details are provided in the supplement). For ℓ2-
ATENT we use a batch-size of 50 and SGD with learning rate of η
� 0.001 for updating weights. We set c � 0.05 and noise

TABLE 1 | Robust percentage accuracies of 5-layer convolutional net for MNIST
against ℓ2, ϵ � 2 attack.

Attack → Benign Acc ℓ2 PGD-40 ℓ2 CW
↓ Defense

SGD 99.38 19.40 13.20
Entropy SGD 99.24 19.12 14.52
ℓ2 PGD-AT 98.76 72.94 -
TRADES 97.54 76.08 -
MMA 99.27 73.02 72.72

ℓ2 ATENT 98.66 77.21 76.72

The highest two accuracy values in each column are highlighted in bold.

TABLE 2 | Robust accuracies (in percentages) of 5-layer convolutional net for
MNIST against ℓ∞, ϵ � 0.3 attack.

Attack → Benign ℓ∞ PGD-20 ℓ∞ CW
↓ Defense Acc ϵ‘ = 0.3 ϵ‘ = 0.3

SGD 99.39 0.97 32.37
Entropy SGD 99.24 1.17 34.34
ℓ∞ PGD-AT 99.36 96.01 94.25
TRADES 99.48 96.07 94.03
MMA 98.92 95.25 94.77
MART 98.74 96.48 96.10

ℓ∞ ATENT 99.45 96.44 97.40

The highest two accuracy values in each column are highlighted in bold.

TABLE 3 | Robust accuracies of WRN34-10 net for CIFAR10 against ℓ∞ attack of
ϵ � 8/255.

Defense → PGD TRADES MART ATENT
↓ Attack AT ℓ‘

Benign 87.30 84.92 84.17 85.67
ℓ∞ PGD-20 47.04 56.61 57.39 57.23
(E) 56.80
ℓ∞ CW 49.27 62.67 54.53 62.34

ℓ∞ DeepFool - 58.15 55.89 57.21

The highest two accuracy values in each row are highlighted.
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ε ∼ 0.001N (0, I). We perform K � 40 Langevin epochs and set
the Langevin parameter α � 0.9, and step η′ � 0.25. For attack, we
do a 40-step PGD attack with ℓ2-ball radius of ϵ � 2. The step size
for the PGD attack is 0.25, consistent with the configuration in
Ding et al. (2019). We perform early stopping by tracking robust
accuracies of validation set and report the best accuracy found.

In Table 2, we use a SmallCNN configuration as described in
Zhang et al. (2019b) (architecture in supplement). We use a batch-size
of 128, SGD optimizer with learning rate of η � 0.01 for updating
weights.We set c � 3.33 and noise ε ∼ 0.001N (0, I).We perform L�
40 Langevin epochs and we set the Langevin parameter α � 0.9, and
step η′ � 0.01, consistent with the configuration in Zhang et al. (2019b).
For the PGDattack,we use a 20-stepPGDattackwith step-size 0.01, for
ℓ∞-ball radius of ϵ � 0.3. We perform an early stopping by tracking
robust accuracies on the validation set and report the best accuracy
found. Other attack configurations can be found in the supplement.

Our experiments on the Entropy-SGD (row 2 in Tables 1 and 2)
trained network suggests that networks trained to find flat minima
(with respect to weights) are notmore robust to adversarial samples as
compared to vanilla SGD.

4.2 CIFAR10
Next, we extend our experiments to CIFAR-10 using a
WideResNet 34-10 as described in Zhang et al. (2019b); Wang
et al. (2019) as well as ResNet-20. For PGD-AT (and PGD-AT
(E)), TRADES, and MART, we use the default values stated in
their corresponding papers.

Training setup: Complete details in Supplementary Material.
Robust accuracies ofWRN-34-10 classifer trained using state of art
defense models are evaluated at the ℓ∞ attack benchmark
requirement of radius ϵ � 8/255, on CIFAR10 dataset and
tabulated in Table 3. For ℓ∞-ATENT, we use a batch-size of
128, SGD optimizer for weights, with learning rate η � 0.1 (decayed
to 0.01 at epoch 76), 76 total epochs, weight decay of 5 × 10–4 and
momentum 0.9. We set c � 1/(0.0031), K � 10 Langevin iterations,
ε � 0.001N (0, I), at step size η′ � 0.007. We test against 20-step
PGD attack, with step size 0.003, as well as ℓ∞-CW and Deep Fool
attacks using FoolBox. ℓ∞-ATENT is consistently among the top
two performers at benchmark configurations.

Importance of early stopping: Because WRN34-10 is highly
overparameterized with approximately 48 million trainable
parameters, it tends to overfit adversarially-perturbed
CIFAR10 examples. The success of TRADES (and also PGD)
in Rice et al. (2020) relies on an early stopping condition and
corresponding learning rate scheduler. We strategically search
different early stopping points and report the best possible robust
accuracy from different stopping points.

We test efficiency of our ℓ2-based defense on both ℓ2 attacks, as
well as compute ℓ2 certified robustness for the smoothed version
of ATENT against smoothed TRADES (Blum et al., 2020) in
Supplementary Table S2 in Supplementary Material. We find
that our formulation of ℓ2 ATENT is both robust against ℓ2

attacks, as well as gives a competitive certificate against
adversarial perturbations for ResNet20 on CIFAR10.

In Supplementary Material we also demonstrate a fine-tuning
approach for ATENT, where we consider a pre-trainedWRN34-10
and fine tune it using ATENT, similar to the approach in Jeddi et al.

(2020). We find that ATENT can be used to fine tune a naturally
pretrained model at lower computational complexity to give
competitive robust accuracies while almost retaining the
performance on benign data.

4.3 Discussion
We propose a new algorithm for defending neural networks against
adversarial attacks. We demonstrate competitive (and often improved)
performance of our family of algorithms (ATENT) against the state of
the art. We analyze the connections of ATENT with both PGD-
adversarial training as well as randomized smoothing. Future work
includes extending to larger datasets such as ImageNet, as well as
theoretical analysis for algorithm convergence.
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