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Authentic Microgrid State Estimation
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Abstract—An error-resilient state estimation is devised to cal-
culate authentic states for microgrids equipped with hierarchical
controls. New contributions include: 1) a state estimation incorpo-
rating droop control which helps mitigate estimation errors due
to transient disturbance; 2) a secondary-control-empowered mi-
crogrid state estimation for leveraging power sharing and voltage
regulation among DERs. Case studies demonstrate the robustness,
efficiency and excellent convergence performance of the authentic
state estimation approach.

Index Terms—State estimation, microgrid, droop control,
secondary control.

I. INTRODUCTION

M
ICROGRID is a promising paradigm for hosting dis-

tributed energy resources (DERs) and improving elec-

tricity resiliency [1]. Reliable operations of microgrids depend

on situational awareness and accurate power flow observa-

tions [2], which in turn rely on accurate state estimation (SE) to

provide high quality initial inputs [3].

Today’s microgrids unexceptionally adopt hierarchical power

sharing and voltage control schemes to enable stable and au-

tonomous islanded operations. Existing state estimation ap-

proaches based on traditional power flow formulations, however,

fail to represent the physics of microgrids. The main reason is

that none of the DERs equipped with droop and secondary con-

trollers should be modeled as a swing bus which balances power

mismatch [2]. Recently, a decentralized approach is developed

to estate the states in a distribution network integrated with

microgrids [4]. A state estimation for hybrid ac/dc microgrids

is established in [5] where Lagrangian multipliers are used to

decompose the microgrid subsystems and to distributionally

solve the state estimation problem. In those existing algorithms,

microgrids are modeled in the same way as traditional distri-

bution feeders where a main grid or an infinite source supports

the downstream system. Failing to represent droop/secondary

regulation in DERs renders state estimation unable to find true

microgrid states. When a microgrid is subject to unforeseeable
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disturbances, traditional state estimation can provide erroneous

results, which jeopardize its usefulness in microgrid energy

management and operations.

To tackle the challenges, this letter devises an authentic micro-

grid state estimation (AMSE) approach which effectively offsets

evaluation errors that otherwise would be significant. By fully

incorporating droop/secondary control functionalities, AMSE

creates an accurate replica of microgrids states and is resilient

to exogenous disturbances or false data injections.

II. AUTHENTIC MICROGRID STATE ESTIMATION

A. Droop-Incorporated AMSE

Weighted least square is adopted to minimize the squared

errors of state measurements. For a microgrid equipped with

hierarical control, a new cost function is devised as follows:

J(θ,V , f) =
[

z − h(θ,V , f)
]T

R−1

[

z − h(θ,V , f)
]

(1)

where θ and V ∈ R
N×1 are angles and magnitudes of bus

voltages, respectively, z is the measurement vector, R is the

error variance matrix. Here h(θ,V , f) is the function mapping

the measurements to the electrical variables and is detailed as:
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where S(V ,θ) = [P (V ,θ),Q(V ,θ)]T is the power injection

vector; Skl(V ,θ) = [P kl(V ,θ),Qkl(V ,θ)]T is a vector of

branch flow from bus k to bus l; and ◦ denotes Hadamard

product. Different from traditional state estimation, frequency

f is considered as a variable coupled with the outputs of DERs.

Ȳ (θ)is the extended admittance matrix of microgrid, defined

as:

Ȳ (θ) =

[

Y p(θ)

Y q(θ)

]

=

[

|Ykl| cos(θk − θl − δkl)

|Ykl| sin(θk − θl − δkl)

]

(3)

where |Ykl| and δkl are the admittance magnitude and angle of

branch k − l. The new formula can be iteratively updated to

achieve the minimal cost function as follows:

HTR−1(z − h(x)) = (HTR−1H)∆x (4)

where, x =
[

θ,V , f
]T

is set to simply the scale, H is the

Jacobian matrix of the measurement h(x).
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In the steady state, the active/reactive power sharing among

DERs can be incorporated into power injections of DERs by

droop logics as follows:

S(V ,θ, f) =

[

Y p(θ) · V ◦ V +mG ◦ (f − fref )

Y q(θ) · V ◦ V + nG ◦ (V − V ref )

]

(5)

where, mG and nG are the reciprocal of droop coefficients

vectors, respectively; fref is the frequency reference; and V ref

is the voltage reference vector.

Once H and h(x) are evaluated at the end of each iteration,

the microgrid variables θ, V, f can be updated for the next

iteration by (4). The AMSE iterations continue until the errors

in those variables reaches the tolerance ξ. See Algorithm 1 for

the AMSE pseudo code.

B. AMSE Scheme Empowered With Secondary Control

Secondary control aims to achieve power sharing and voltage

recovery. Real power increments can be adjusted among DERs.

To be specific, a secondary control variable is added to assist

frequency recovery. Then, the secondary control effect can be

integrated into real power injections from DERs, as follows:

P (V ,θ, f) =
[

Y p(θ) · V ◦ V +mG ◦ (f − fref ∗
)
]

(6)

where, fref ∗
= fref +Ω is a desired frequency reference con-

taining the integral of the local frequency error Ω.

The adjustment of the DERs’ reactive power estimation de-

pends on secondary control schemes, exemplified using three

representative schemes as follows:

1) Power Sharing Mode (PS): The PS scheme aims to shift

DERs’ droop-based curves to achieve proportional power shar-

ing. The adjustment of reactive power can be devised as follows:

Q(V ,θ) =
[

Y q(θ) · V ◦ V − γ ·Q∗
G

]

(7)

where Q∗
G indicates the rated values of DERs’ power injections,

the sharing ratio γ = QG,l/Q
∗
G,l, QG,l and Q∗

G,l are the droop-

based reactive power output and rated value of the leader DER,

respectively.

2) Voltage Regulation Mode (VR): The target of VR is to

fully recover the DER bus voltages back to their rated values.

In steady state, we integrate a dummy bus to regulate the var

injections from the DER buses, which can be expressed as:

Q(V ,θ)

= [Y q(θ) · V ◦ V − diag(V )Y d(V a + V ∗ − 2V )] (8)

Here, dummy bus voltages V a are defined as V a = V p
a +

V ∗ − V , where V p
a are the dummy bus voltages at the previous

iteration, and V ∗ denotes the rated voltages. When a DER bus’

estimated voltage is lower than its rated value, a positive devi-

ation will be superimposed to the dummy bus voltage to adjust

the DERs’ reactive power output based on (8). The opposite

will be performed when the DER bus voltage is higher than the

rated value. Such a negative feedback process, if convergent,

will recover DER bus voltages to rated values. We insert a

virtual admittance matrix Y d between each dummy bus and

its corresponding DER bus, which not only convert voltage to

reactive power but also can adjust convergence rate.

TABLE I
MEAN SQUARED ERRORS OF AMSE AND CSE UNDER DISTURBANCES

3) Smart Tuning Mode (ST): One DER bus in outer loop

implements the VR mode while others adopt the PS mode [6].

Without loss of generality, the aforementioned AMSE frame-

work is discussed in the context of AC microgrids. Nevertheless,

the principle of AMSE is generic and equally applicable for DC

microgrids where hierarchical P/V control schemes are adopted.

III. CASE STUDY

The effectiveness and efficiency of AMSE are verified on a 33-

bus system with 5 DERs [6]. The P/f and Q/V droop coefficients

of the DER buses 1, 6, 13, 25 and 33 are respectively selected as

mG = nG = [0.05, 1, 0.1, 1, 0.2]T . Virtual admittance Y d for

VR mode is unity. All the algorithms are implemented in MAT-

LAB 2018a on a 2.50 GHz PC. The following measurements are

taken for state estimation implementations: 1) active/reactive

flows through all lines; 2) active/reactive power injections at

those buses with loads; 3) frequency of the system; 4) voltages

at selected buses.

A. Validity of AMSE

This subsection verifies the effectiveness of AMSE by com-

paring AMSE results against those from classical Gauss Newton

method (CSE) [7].

1) Robustness Against Disturbances: We first validate the

robustness of AMSE against disturbances. It is assumed that

injected disturbances follow Gauss distribution with N(µ, σ2).
Fig. 1 presents the distributions of bus voltages obtained from

AMSE and CSE under different controls (i.e., droop, PS,

VR, and ST modes). Specifically, for each control mode, 100

cases are randomly generated with disturbances sampled from

N(0.01, 0.012). AMSE and CSE are conducted using those dis-

turbed measurements. Table I further presents the mean squared
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Fig. 1. Voltage distributions of AMSE v.s. CSE with disturbances under
different controls, (a) Droop, (b) PS, (c) VR, (d) ST.

errors of AMSE and CSE under different disturbance levels.

Following observations can be obtained:

1) The droop-based AMSE outperforms CSE in terms of the

robustness against disturbances. For instance, in Fig. 1(a),

the voltage distributions of AMSE under the disturbance

of N(0.01, 0.012) are much narrower than those of CSE.

This is because CSE relies on a swing bus to balance

the disturbances. Rather, AMSE reassigns the disturbance

into multiple DERs which desensitize the droop-based

microgrid state estimation to disturbed data. Figs. 1(b)-(d)

show the secondary-based AMSE methods (e.g. PS, VR

and ST) are robust against disturbances as well.

2) Table I further validates the accuracy and robustness

of both droop-based and secondary-based AMSE under

different scales of disturbances. For instance, with the

disturbances N(0.01, 0.012), the error of droop-based

AMSE (2.38e-5) is much lower than that of CSE (0.0037).

Meanwhile, CSE results deteriorate with the growth of

disturbance substantially. Nonetheless, those of AMSE are

slightly increased.

2) Robustness Against Bad Data Injections: Next, we

demonstrate AMSE’s robustness against bad data injections. It

is assumed that the measurements of power injections at buses

4, 5, and 9 are maliciously modified by ±10%. Simulation

Fig. 2. Voltage estimation results under bad data injections.

TABLE II
MEAN SQUARED ERRORS OF AMSE AND CSE UNDER BAD DATA INJECTIONS

TABLE III
CONVERGENCE AND COMPUTING TIME OF AMSE V.S. CSE

results are provided in Fig. 2 and Table II. Fig. 2 illustrates

partial voltages of AMSE and CSE under different controls

with the presence of bad data injections. It can be observed that

AMSE relieves state estimation errors when bad data exist in the

measurement. For example, compared with CSE, the voltages

of AMSE under different modes are closer to SE0 which is state

estimation results without noise and bad data. Further, Table II

presents the mean squared errors of AMSE and CSE. Simulation

shows that under all control modes, the accuracy of AMSE

is consistently improved compared with that of CSE, which

validates the robustness of AMSE against bad data effects.

B. AMSE Convergence Performance

Table III summarizes the convergence and computation per-

formances of AMSE and CSE under different disturbances. It

can be observed that:

1) The AMSE has similar convergence performances with

those of CSE under different controls. For instance, the

AMSE with N(0.01, 0.012) requires 8 iterations to reach

the tolerance while CSE requires 4 iterations.

2) The convergence of AMSE is less affected by distur-

bances. For instance, as shown in Table III, the number

of iteration of AMSE with N(0.01, 0.012) is 8 which

is identical to that with N(0.01, 0.052). Meanwhile, the

computation time of AMSE (about 0.05-0.07 s) is accept-

able as well.

Specifically, the VR-based AMSE relies on Y d to perform

the iterative computation, as defined in (8). Therefore, Table IV
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TABLE IV
CONVERGENCE OF VR-AMSE WITH DIFFERENT Y d AND DISTURBANCES

investigates the convergence of VR-based AMSE under different

Y d and disturbances.

1) The convergence performance of VR-AMSE is signif-

icantly impacted by Y d. For instance, the number of

iteration under Y d = 1000 is 8, whereas 301 iterations

are required under Y d = 20. This is because VR-AMSE

with a larger Y d will take more aggressive reactions to

the difference of voltages at each iteration.

2) Meanwhile, the convergence of VR-AMSE with largerY d

is more robust against disturbances. For example, given a

disturbance of N(0.01, 0.012), the number of iteration of

AMSE is 301 under Y d = 20. When the disturbance is

as large as N(0.01, 0.052), the iteration number reaches

320.

IV. CONCLUSION

We devise an authentic state estimation algorithm which in-

corporates hierarchical control effects and tolerates disturbances

or false injections in data. Case studies validate the effectiveness

of the new state estimation method under different disturbance

levels and various control modes.
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