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Authentic Microgrid State Estimation

Fei Feng
and Yifan Zhou

Abstract—An error-resilient state estimation is devised to cal-
culate authentic states for microgrids equipped with hierarchical
controls. New contributions include: 1) a state estimation incorpo-
rating droop control which helps mitigate estimation errors due
to transient disturbance; 2) a secondary-control-empowered mi-
crogrid state estimation for leveraging power sharing and voltage
regulation among DERs. Case studies demonstrate the robustness,
efficiency and excellent convergence performance of the authentic
state estimation approach.

Index Terms—State estimation, microgrid, droop control,
secondary control.

I. INTRODUCTION

ICROGRID is a promising paradigm for hosting dis-
M tributed energy resources (DERs) and improving elec-
tricity resiliency [1]. Reliable operations of microgrids depend
on situational awareness and accurate power flow observa-
tions [2], which in turn rely on accurate state estimation (SE) to
provide high quality initial inputs [3].

Today’s microgrids unexceptionally adopt hierarchical power
sharing and voltage control schemes to enable stable and au-
tonomous islanded operations. Existing state estimation ap-
proaches based on traditional power flow formulations, however,
fail to represent the physics of microgrids. The main reason is
that none of the DERs equipped with droop and secondary con-
trollers should be modeled as a swing bus which balances power
mismatch [2]. Recently, a decentralized approach is developed
to estate the states in a distribution network integrated with
microgrids [4]. A state estimation for hybrid ac/dc microgrids
is established in [5] where Lagrangian multipliers are used to
decompose the microgrid subsystems and to distributionally
solve the state estimation problem. In those existing algorithms,
microgrids are modeled in the same way as traditional distri-
bution feeders where a main grid or an infinite source supports
the downstream system. Failing to represent droop/secondary
regulation in DERS renders state estimation unable to find true
microgrid states. When a microgrid is subject to unforeseeable
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disturbances, traditional state estimation can provide erroneous
results, which jeopardize its usefulness in microgrid energy
management and operations.

To tackle the challenges, this letter devises an authentic micro-
grid state estimation (AMSE) approach which effectively offsets
evaluation errors that otherwise would be significant. By fully
incorporating droop/secondary control functionalities, AMSE
creates an accurate replica of microgrids states and is resilient
to exogenous disturbances or false data injections.

II. AUTHENTIC MICROGRID STATE ESTIMATION

A. Droop-Incorporated AMSE

Weighted least square is adopted to minimize the squared
errors of state measurements. For a microgrid equipped with
hierarical control, a new cost function is devised as follows:

T
IOV, ) =[z=mo,v.0)| B [z=h0,V, /)
ey
where @ and V € RV*! are angles and magnitudes of bus
voltages, respectively, z is the measurement vector, R is the
error variance matrix. Here h(0, V', f) is the function mapping
the measurements to the electrical variables and is detailed as:

5(V.0) Y(0)- VoV
h(O,V,f) = Skl(“//, 0) _ Y (0) O“//k oV, o
! !

where S(V,0) = [P(V,0),Q(V,0)]7 is the power injection
vector; Sy (V,0) = [Py (V,0),Qu(V,0)]T is a vector of
branch flow from bus k& to bus [; and o denotes Hadamard
product. Different from traditional state estimation, frequency
f is considered as a variable coupled with the outputs of DERs.
Y (0)is the extended admittance matrix of microgrid, defined
as:

}_/(0) _ Yp(g) _ |Yk:l| COS(G}C — 91 — 5kl) (3)
Y ,(0) Y| sin(0 — 0; — 0p1)

where |Y;| and dy; are the admittance magnitude and angle of
branch k — [. The new formula can be iteratively updated to
achieve the minimal cost function as follows:

H'R '(z-h(z)) = (H'R'H)Ax “4)

T
where, x = [0,V7f} is set to simply the scale, H is the
Jacobian matrix of the measurement h(x).
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In the steady state, the active/reactive power sharing among
DERSs can be incorporated into power injections of DERs by
droop logics as follows:

Y,(0) VoV +mgo(f—f)

S(V,0>f) = Yq(9)~VOV+nGO(V*VTef)

&)
where, m¢ and ng are the reciprocal of droop coefficients
vectors, respectively; f7¢7 is the frequency reference; and V7¢/
is the voltage reference vector.

Once H and h(x) are evaluated at the end of each iteration,
the microgrid variables @, V, f can be updated for the next
iteration by (4). The AMSE iterations continue until the errors
in those variables reaches the tolerance £. See Algorithm 1 for
the AMSE pseudo code.

B. AMSE Scheme Empowered With Secondary Control

Secondary control aims to achieve power sharing and voltage
recovery. Real power increments can be adjusted among DERs.
To be specific, a secondary control variable is added to assist
frequency recovery. Then, the secondary control effect can be
integrated into real power injections from DERs, as follows:

P(V.0.1) = [Y,(6)- VoV 4meo(f—f77)] ®

where, f7¢/" = fr¢/ 4 ) is a desired frequency reference con-
taining the integral of the local frequency error 2.

The adjustment of the DERs’ reactive power estimation de-
pends on secondary control schemes, exemplified using three
representative schemes as follows:

1) Power Sharing Mode (PS): The PS scheme aims to shift
DERs’ droop-based curves to achieve proportional power shar-
ing. The adjustment of reactive power can be devised as follows:

QV.0)=|Y,(0) VoV —7.Q; %)

where Q¢ indicates the rated values of DERs’ power injections,
the sharing ratio v = QGJ/Q*GJ, Q¢ and Qg ; are the droop-
based reactive power output and rated value of the leader DER,
respectively.

2) Voltage Regulation Mode (VR): The target of VR is to
fully recover the DER bus voltages back to their rated values.
In steady state, we integrate a dummy bus to regulate the var
injections from the DER buses, which can be expressed as:

Q(V,0)
= [Y,(0)- VoV —diag(V)Y4(Va+V*—2V)] (8)

Here, dummy bus voltages V', are defined as V, = V? +
V* —V,where V? are the dummy bus voltages at the previous
iteration, and V'* denotes the rated voltages. When a DER bus’
estimated voltage is lower than its rated value, a positive devi-
ation will be superimposed to the dummy bus voltage to adjust
the DERSs’ reactive power output based on (8). The opposite
will be performed when the DER bus voltage is higher than the
rated value. Such a negative feedback process, if convergent,
will recover DER bus voltages to rated values. We insert a
virtual admittance matrix Y ; between each dummy bus and
its corresponding DER bus, which not only convert voltage to
reactive power but also can adjust convergence rate.
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Algorithm 1: AMSE Algorithm.

Initialize: z, 0, V, f, &, Yy, R;
Update: z (PS/VR/ST) Eq. (2-4);
while AO, Af,AV,A~(PS/ST),AV,(VR/ST) >¢ do
if DER bus then
| Update: H, h(x) Eq. (5-8);
else
| Update: H, h(z)Eq. (2);
end
Update: 0, V, f;

end
Result: 6, V, f.

TABLE I
MEAN SQUARED ERRORS OF AMSE AND CSE UNDER DISTURBANCES

. Droop PS VR ST
AMSE/CSE AMSE/CSE AMSE/CSE AMSE/CSE
0.01  2.38e-5/0.0037  1.42e-5/0.0031  1.79e-7/0.0041  3.20e-6/0.0034
0.02 5.21e-5/0.0120  6.64e-5/0.0145  2.77e-7/0.0123  4.54e-6/0.0118
0.03  1.17e-4/0.0290  1.49e-4/0.0285  4.32¢-7/0.0316  6.07e-6/0.0309
0.04 2.13e-4/0.0442  2.53e-4/0.0455  6.23e-7/0.0591  8.65e-6/0.0487
0.05 2.45e-4/0.0672  3.55e-4/0.0843  1.05e-6/0.0752  1.01e-5/0.0854

3) Smart Tuning Mode (ST): One DER bus in outer loop
implements the VR mode while others adopt the PS mode [6].

Without loss of generality, the aforementioned AMSE frame-
work is discussed in the context of AC microgrids. Nevertheless,
the principle of AMSE is generic and equally applicable for DC
microgrids where hierarchical P/V control schemes are adopted.

III. CASE STUDY

The effectiveness and efficiency of AMSE are verified on a 33-
bus system with 5 DERs [6]. The P/ f and Q/V droop coefficients
of the DER buses 1, 6, 13, 25 and 33 are respectively selected as
mg = ng = [0.05,1,0.1,1,0.2]7. Virtual admittance Y 4 for
VR mode is unity. All the algorithms are implemented in MAT-
LAB 2018a on a2.50 GHz PC. The following measurements are
taken for state estimation implementations: 1) active/reactive
flows through all lines; 2) active/reactive power injections at
those buses with loads; 3) frequency of the system; 4) voltages
at selected buses.

A. Validity of AMSE

This subsection verifies the effectiveness of AMSE by com-
paring AMSE results against those from classical Gauss Newton
method (CSE) [7].

1) Robustness Against Disturbances: We first validate the
robustness of AMSE against disturbances. It is assumed that
injected disturbances follow Gauss distribution with N (u, o).
Fig. 1 presents the distributions of bus voltages obtained from
AMSE and CSE under different controls (i.e., droop, PS,
VR, and ST modes). Specifically, for each control mode, 100
cases are randomly generated with disturbances sampled from
N(0.01,0.01%). AMSE and CSE are conducted using those dis-
turbed measurements. Table I further presents the mean squared
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Fig. 1. Voltage distributions of AMSE v.s. CSE with disturbances under
different controls, (a) Droop, (b) PS, (¢) VR, (d) ST.

errors of AMSE and CSE under different disturbance levels.
Following observations can be obtained:

1) The droop-based AMSE outperforms CSE in terms of the
robustness against disturbances. For instance, in Fig. 1(a),
the voltage distributions of AMSE under the disturbance
of N(0.01,0.01%) are much narrower than those of CSE.
This is because CSE relies on a swing bus to balance
the disturbances. Rather, AMSE reassigns the disturbance
into multiple DERs which desensitize the droop-based
microgrid state estimation to disturbed data. Figs. 1(b)-(d)
show the secondary-based AMSE methods (e.g. PS, VR
and ST) are robust against disturbances as well.

2) Table I further validates the accuracy and robustness
of both droop-based and secondary-based AMSE under
different scales of disturbances. For instance, with the
disturbances N (0.01,0.012), the error of droop-based
AMSE (2.38e-5) is much lower than that of CSE (0.0037).
Meanwhile, CSE results deteriorate with the growth of
disturbance substantially. Nonetheless, those of AMSE are
slightly increased.

2) Robustness Against Bad Data Injections: Next, we
demonstrate AMSE’s robustness against bad data injections. It
is assumed that the measurements of power injections at buses
4, 5, and 9 are maliciously modified by +10%. Simulation
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Fig. 2. Voltage estimation results under bad data injections.

TABLE II
MEAN SQUARED ERRORS OF AMSE AND CSE UNDER BAD DATA INJECTIONS

Droop PS VR ST
AMSE/CSE AMSE/CSE AMSE/CSE AMSE/CSE

5.26e-8/2.35e-6  1.45e-6/1.02e-5 4.12e-8/8.37e-6 1.63e-6/9.41e-6

TABLE III
CONVERGENCE AND COMPUTING TIME OF AMSE V.s. CSE

o Droop PS VR ST
AMSE/CSE  AMSE/CSEE ~ AMSE/CSE ~ AMSE/CSE
0.01 Iter. 8/4 8/4 8/4 11/4
) T/s  0.0467/0.0298 0.0525/0.0329 0.0618/0.0320 0.0739/0.0257
005 ler 8/4 8/6 8/5 11/4

T/s  0.0458/0.0292 0.0519/0.0407 0.0683/0.0334 0.0695/0.0289

results are provided in Fig. 2 and Table II. Fig. 2 illustrates
partial voltages of AMSE and CSE under different controls
with the presence of bad data injections. It can be observed that
AMSE relieves state estimation errors when bad data exist in the
measurement. For example, compared with CSE, the voltages
of AMSE under different modes are closer to SE which is state
estimation results without noise and bad data. Further, Table II
presents the mean squared errors of AMSE and CSE. Simulation
shows that under all control modes, the accuracy of AMSE
is consistently improved compared with that of CSE, which
validates the robustness of AMSE against bad data effects.

B. AMSE Convergence Performance

Table III summarizes the convergence and computation per-
formances of AMSE and CSE under different disturbances. It
can be observed that:

1) The AMSE has similar convergence performances with
those of CSE under different controls. For instance, the
AMSE with N (0.01,0.012) requires 8 iterations to reach
the tolerance while CSE requires 4 iterations.

2) The convergence of AMSE is less affected by distur-
bances. For instance, as shown in Table III, the number
of iteration of AMSE with N(0.01,0.012) is 8 which
is identical to that with N(0.01,0.05%). Meanwhile, the
computation time of AMSE (about 0.05-0.07 s) is accept-
able as well.

Specifically, the VR-based AMSE relies on Y4 to perform

the iterative computation, as defined in (8). Therefore, Table IV
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TABLE IV IV. CONCLUSION
CONVERGENCE OF VR-AMSE WITH DIFFERENT Y ; AND DISTURBANCES

We devise an authentic state estimation algorithm which in-

Y, 1000 333 200 125 100 33 20 10 corporates hierarchical control effects and tolerates disturbances
S —00l 8 11 19 38 46 156 301 622 or false injections in datz%. Case studies Vahdzflte the eff.ectlveness
o=002 8 11 19 38 46 156 301 622 of the new state estimation method under different disturbance
c=2003 8 1l 19 38 46 162 311 624 levels and various control modes.
o= 0.04 8 11 19 38 46 165 311 625
o = 0.05 8 11 19 38 46 170 320 629
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