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Abstract

In uncertainty quantification, it is commonly required to solve a forward model consist-
ing of a partial differential equation (PDE) with a spatially varying uncertain coefficient
that is represented as an affine function of a set of random variables, or parameters.
Discretizing such models using stochastic Galerkin finite element methods (SGFEMs)
leads to very high-dimensional discrete problems that can be cast as linear multi-
term matrix equations (LMTMEs). We develop efficient computational methods for
approximating solutions of such matrix equations in low rank. To do this, we follow
an alternating energy minimization (AEM) framework, wherein the solution is repre-
sented as a product of two matrices, and approximations to each component are sought
by solving certain minimization problems repeatedly. Inspired by proper generalized
decomposition methods, the iterative solution algorithms we present are based on a
rank-adaptive variant of AEM methods that successively computes a rank-one solution
component at each step. We introduce and evaluate new enhancement procedures to
improve the accuracy of the approximations these algorithms deliver. The efficiency
and accuracy of the enhanced AEM methods is demonstrated through numerical exper-

Communicated by Lothar Reichel.

< Kookjin Lee
kookjin.lee @asu.edu

Howard C. Elman
elman@cs.umd.edu

Catherine E. Powell
c.powell @manchester.ac.uk

Dongeun Lee

dongeun.lee @tamuc.edu

School of Computing and Augmented Intelligence, Arizona State University, Tempe, USA
Department of Computer Science, University of Maryland, College Park, USA
Department of Mathematics, University of Manchester, Manchester, UK

Department of Computer Science, Texas A&M University-Commerce, Commerce, USA

Published online: 03 January 2022 @ Springer



K. Leeetal.

iments with LMTMEs associated with SGFEM discretizations of parameterized linear
elliptic PDEs.

Keywords Low-rank approximation - Alternating energy minimization - Stochastic
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quantification
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1 Introduction

We are interested in computing low-rank approximate solutions of linear systems
Au = b with the Kronecker-product structure

(ZGi®Ki)u=Zgj®ﬁ, (1.1)
i=0 =0

where A = Z?:o G; ® K; is symmetric positive definite, ® is the Kronecker product,
{Kl }‘:":0 € Rnl xm H {Gl}:n:() € anxnz! {ﬁ}:":[) € Rnl » and {gl}:n:() € an, and we
assume that m, m < n1, n>. The solution vector u € R""2 consists of ns subvectors of

dimension ny,i.e.,u = [u], ..., u},]T, where {u;}72, € R™. The solution also has an
alternative representation in matrix format, U = [uy, ..., un,] € R"1*"2, Exploiting

this, and using standard properties of the Kronecker product, one can show that the
linear system (1.1) is equivalent to a linear multi-term matrix equation (LMTME) [36]

m m
> K;UG] =B, where B=Y figl € R"™, (1.2)
i=0 i=0

Systems with such structure arise, for example, in the discretization of deter-
ministic linear elliptic PDEs on high-dimensional domains [2,20-22] as well as
in the discretization, via stochastic Galerkin finite element methods (SGFEMs)
[13,18,25,28,47], of linear elliptic PDEs parameterized with random or unknown coef-
ficients (see Eqgs. (1.4)—(1.5) below). When the matrices K; and G; are sparse, then for
moderately large values of n; and n5 it is feasible to solve (1.1) using standard iter-
ative methods. Indeed, in the case of parameterized PDEs, standard Krylov subspace
methods [34,35] and multigrid methods [4,10,24] have been considered. However, the
dimensions of the system matrices can grow rapidly when the discretization is refined
and, in the case of parameterized PDEs, when the number m of input random variables
is increased.

For large n1 and n», direct application of standard iterative methods may be compu-
tationally prohibitive and storing or explicitly forming the matrix U/ may be prohibitive
in terms of memory. Motivated by this, we are interested in inexpensive computation
of approximate solutions of LMTMEs of the form (1.2) of low rank, using methods
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that do not require constructions of matrices of size n; x n>. We begin by introducing
a factored representation of U € R"1*"2,

U=VW',

where, if U is of full rank r := min(nq, ny), V € R™*" and W € R"2*", Our aim is
then to find a low-rank approximation to this factored matrix of the form

Up = V,W, € R"*"2, (1.3)

where V, = [vi,...,vp] e R"*P and W), = [wi, ..., wpl e R™*Pand p K 1,
and we want to derive solution algorithms for computing U, that operate only on the
smaller factors V), and W, without explicitly forming the large matrix U,.

One such solution algorithm has been developed for matrix completion/sensing
problems [16,17], which, at the pthiteration, computes V), and W), by alternately solv-
ing certain minimization problems. Although the algorithm computes highly accurate
approximations, it can become very expensive as p increases (see Sect. 2.4). Another
approach is to use successive rank-one approximations and successively compute pairs
of vectors {(v;,w;)} le to build the factors V, and W, of (1.3) until a stopping cri-
terion is satisfied. The pth iteration starts with V,,_; and W, and constructs v,
and w, as the solutions of certain minimization problems. This approach for solving
parameterized PDEs is one component of a methodology known as Proper Generalized
Decomposition (PGD) [30,31,46]. As observed in those works, using only successive
rank-one approximations is less expensive but may not be practical because it typically
results in approximations with an unnecessarily large value of p.

Our goal in this study is to develop solution algorithms that preserve only the
good properties of the above two types of solution strategies, i.e., algorithms that
compute an accurate low-rank approximate solution in a computationally efficient
way. In developing such algorithms, we take our cue from PGD methods, in which,
to improve accuracy, the successive rank-one constructions are supplemented with an
updating procedure that is performed intermittently during the iteration. Inspired by
this approach, we propose a solution algorithm that adaptively computes approximate
solutions in an inexpensive way via the successive rank-one approximation method.
This is supplemented by an enhancement procedure, which effectively improves the
accuracy of the resulting approximate solutions. We propose two novel enhancement
procedures developed by modifying some ideas in [17] used for matrix completion
problems [38]. An algebraic formulation of PGD methods corresponds to alternating
minimizations of errors in a particular norm, e.g., the energy norm or the £2 norm.
Since we are considering linear systems with symmetric and positive definite matrices,
we use the energy norm, and refer to the resulting methods as alternating energy
minimization (AEM) methods.

Some other rank-adaptive approaches for approximating solutions of LMTMESs in
low-rank format are as follows. An approach close to the ideas considered in this
paper is a greedy low-rank algorithm, developed in [20], where the successive rank-
one algorithm is followed by an enhancement procedure. This method is also used
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in [23] for a regression problem arising in a neuroscientific model of synaptic con-
nections. A method in [5], called the AMEn algorithm, uses AEM techniques in
combination with tensor-train (TT) decompositions [32]; AMEn is designed for high-
dimensional problems with multiple terms in the Kronecker product format. Another
class of approaches includes incrementally computing rank-p solution pairs by solv-
ing a residual minimization problem, an approach known as alternating least-squares
(ALS). This has been used to compute low-rank approximate solutions of parame-
terized PDEs in [6,7], and to solve matrix recovery problems, matrix sensing and
completion problems, [15-17,38]. In [36], an adaptive iterative procedure to solve
LMTME:s (1.2) associated with SGFEM discretizations is given, which incrementally
computes a set of orthonormal basis vectors to form V, which represents the spatial
part of the solution. Two other classes of iterative low-rank algorithms are low-rank
Krylov subspace methods [2,3,21,22,29,33,40,45] and low-rank multigrid methods
[12,44]. These methods operate on iterates represented in Kronecker product format
(e.g., Zf;l w; ® v; for representing a vector with p terms) and employ so-called
truncation operators (e.g., based on singular value decomposition) to keep the iterates
in low rank. See also [43] for a comprehensive overview of computational approaches
for solving linear matrix equations.

Although we only exploit the abstract structure (1.2) to derive solution algorithms,
we are motivated by the need to solve LMTMESs associated with SGFEM discretiza-
tions of parameterized PDEs arising in forward uncertainty quantification. Here we
briefly mention their key features; more details are given in Sect. 4. Consider the model
problem

—V-(a(x,§)Vux, §)) = f(x) x,§)eDx T, (1.4)

where D C R23 is the spatial domain and the diffusion coefficient has the form

a(x, §) = ao(x) + ) ai(x)&, (15)

i=1

where & = [£1, ..., &,]1s a vector of m independent random variables taking values
in a parameter domain I' € R™. In the SGFEM approach, the solution u(x, &) to (1.4)
is approximated in a finite-dimensional space with tensor product structure X, ® S;
where X, is a standard finite element space associated with D and S, is a space of
(usually, global) polynomials on I". Applying such a scheme leads to a LMTME (1.2)
in which the K; matrices are associated with the chosen finite element discretization,
and the G; matrices are associated with the polynomial approximation on the m-
dimensional parameter domain. In particular, X; is a finite element stiffness matrix
weighted by the coefficient a; (x) appearing in (1.5). These matrices are ill-conditioned
with respect to the mesh parameter &, and due to the properties of the coefficients in
(1.5), they have decaying importance in terms of their contribution to the sum in (1.1).
Moreover, the first term Gy @ Ko usually dominates and serves as an effective and
computationally efficient preconditioner [35]. We will exploit this fact in numerical
experiments in Sect. 4.

@ Springer



Enhanced alternating energy minimization methods for stochastic...

An outline of the rest of the paper is as follows. In Sect. 2, we introduce and
derive alternating energy minimization (AEM) methods for (1.2) using the well-known
general projection framework and discuss a collection of methods developed for con-
structing low-rank approximate solutions of the form (1.3). In Sect. 3, we discuss
enhancement procedures and derive two new approaches for performing such updates.
In Sect. 4, we perform extensive numerical experiments and measure the effective-
ness and the efficiency of the enhanced AEM methods for LMTME:s associated with
SGFEM discretizations of parameterized elliptic PDESs of the form (1.4). We also com-
pare our methods with the greedy low-rank algorithm [20] on the same benchmark
problems as that method shares many features with the proposed methods and can
easily be described within the enhanced AEM framework. Finally, in Sect. 5, we draw
some conclusions.

2 Alternating energy minimization (AEM) methods

In this section, we derive AEM methods for solving the matrix Eq. (1.2) from the
optimal projection framework and review two variants of such methods. We first
introduce some notation. Upper-case and lower-case letters are used to denote matrices
and vectors, respectively. An inner product between two matrices X, Y € R™*"2 js
definedas (X, Y) = w(XTY) = w(XYT) = }_, ; X;;Y;;, where tris the trace operator,
and tr(X) = Y 7_; x;; if X € R"*". The norm induced by (-, -) is the Frobenius norm
| X||[r = +/{X, X). For shorthand notation, we introduce a linear operator & (X) =
> o KiXG] for X € R"*m2, Using this, we can define the weighted inner product
(X, Y)a = (Z(X),Y) = (X, &(Y)) and the induced A-norm | - || 4. Finally, vec
denotes a vectorization operator, vec(X) = x, where X = [x,...,xp,] € R"*™
andx =[x],...,x) [T e R""™ forx; e RM,i=1,...,n.

2.1 General projection framework

For the computation of V), and W, in (1.3), we rely on the classical theory of orthogonal
(Galerkin) projection methods [39]. Let £~ C R"1*"2 be a search space in which an
approximate solution U, € R"'*"2 is sought, and let .Z’ be a constraint space onto
which the residual B — &/ (U)) is projected. Following [39, Proposition 5.2], if the
system matrix A is symmetric positive definite and £ = %', then a matrix U}, is the
result of an orthogonal projection onto .& if and only if it minimizes the A-norm of
the error over ¥, i.e.,

U; = argmin J4(U,),
Uyeit”

where the objective function is

1
JaUp) = 5 IIU - U,l3. 2.1
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Because we seek a factored representation of U, we slightly modify (2.1) to give
1 T2
IaVp, Wp) = S1IU = Vo W, i (2.2)

and a new minimization problem

min Ta(Vy, Wp). (2.3)
Vp eRM*P W,eR"2*P

Since J, is quadratic, gradients with respect to V,, and W, can be easily obtained as

m
Vi, da = (VW) — B) W, = > (KiV,W]GDHW, — BW,, 2.4)
i=0

T m
Vi, Ja = (d(vag) - B) Vo =) (KiV,W,GD'V, —BV,.  (25)

i=0

Employing the first-order optimality condition on (2.4)<2.5) (i.e., setting (2.4) and
(the transpose of) (2.5) to be zero) results in the set of equations

m
Y (KiV,W,G)W, = BW, € R"*?, (2.6)
i=0
m
> VI(KiV,W,G]) =V, B € RP*". (2.7)
i=0

These equations can be interpreted as projections of the residual B — o/ (V,, W;) onto
the spaces spanned by the columns of W, and V,, respectively.

Given (2.6)—(2.7), a widely used strategy for solving the minimization problem
(2.3) is to compute each component of the solution pair (V,, W,) alternately [5-
7,15-17]. That is, one can fix W, and solve the system of equations of order np
in (2.6) for V),, and then one can fix V), and solve the system of equations of order
n2p in (2.7) for W,. However, in this approach, suitable choices of p for satisfying
a fixed error tolerance are typically not known a priori. Thus, adaptive schemes that
incrementally compute solution pairs (v;,w;) have been introduced [17,30,31,46]. All
of these schemes are based on alternately solving two systems of equations for two
types of variables in an effort to minimize a certain error measure. In this study, we
employ alternating methods for minimizing the energy norm of the error (2.3) and,
thus, we refer to approaches of this type as alternating energy minimization (AEM)
methods. In the following sections, we present two adaptive variants of AEM methods:
a Stage-p AEM method and a successive rank-one AEM method.
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2.2 Stage-p AEM method

In[17], an ALS method that entails solving a sequence of least-squares problems whose
dimensions increase with p was developed for solving matrix-recovery problems [15—
17]. We adapt this approach to the energy minimization problem (2.3) and refer to it
as the Stage-p AEM method. It is an iterative method that runs until an approximate
solution satisfies a stopping criterion (e.g., the relative difference of two consecutive
iterates || V, W] — V)1 W;_ I < €[IV, W] || with a user-specified stopping tolerance
€.) At the pth iteration, called a “stage” in [17], this method seeks p-column factors
V, and W), determining an approximate solution by initializing Wl(,o) and solving the
following systems of equations in sequence:

Y &V EwEDTgwE)T = pwD, (2.8)
i=0
m
Z(V;k)TKi V;k))wlgk)T(GiT) — V’gk)TB, (2.9
i=0
for k = 1,..., kmax, where the superscript indicates the number of alternations

between the two systems of Equations (2.8)—(2.9). Note that the method can also
begin by initializing V" and alternating between (2.9) and (2.8). Algorithm 1 sum-
marizes the entire procedure. The CHECKCONVERGENCE procedure (line 9) is detailed
in Sect. 3. Terms of the form V), 1 or W, that appear in several places for p = 1
(for example, in line 3 of Algorithm 1) correspond to null or “zero-column™ matrices.

Algorithm 1 Stage-p AEM method
INPUT: ppax: the maximum number of solution pairs,
kmax: the maximum number of alternations in each stage,
€: a parameter for checking convergence,

1: function STAGEPAEM(pmax. kmax. €)

2: for p=1,..., pmax do

3: Set a random initial guess for wm) and W(D) — [W,_1 w(o)]
P P p-1.%p

4: for k=1,..., kpax do

5: viE  solve (2.8)

6: Wf,k) < solve (2.9)

7: end for

8: Vp < VE and w, < wP

9: Vp, Wp < CHECKCONVERGENCE(V, Wp, €)

10:  end for
11: end function

Systems of equations for “vectorized” versions of the matrix factors V, and W,
can be derived! from (2.8) and (2.9) as follows

! The left-hand sides of (2.10)—(2.11) are derived using vec(KUG) = (G ® K)vec(U). Note that (2.11)
is derived by first transposing (2.9) and then vectorizing the resulting equation.
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m
Z[(WF(,"")TGi WF(,’"”) ® K;] vec(vg"?)) = vec(B W}j"”), (2.10)
=0
m -
Z[(V;’”Txi V) @ Gilvec(WH) = vec(BTV ). (2.1
i=0

Thus, solving (2.8) entails solving a linear system of dimensionn p x 11 p, and solving
(2.9) entails solving a system of dimension n; p x n, p. Both systems are smaller than
the original system (1.2) when p is small. However, the blocks of the reduced matrices
of size p x p such as (W;Gi W, and V; K;V,) are dense, even if the original ones are
sparse, and so as p increases, the computational costs for solving (2.8)—+2.9) increase
and the Stage- p AEM method may be impractical for large-scale problems.

2.3 Successive rank-one AEM method

We now describe a successive rank-one (S-rank-1) approximation method which,
at each iteration, adds a rank-one correction to the current iterate. This is a basic
component of PGD methods [30,31,46] for solving parameterized PDEs. The method
only requires solutions of linear systems with coefficient matrices of size n| x n; and
n2 x np rather than coupled systems like those in the Stage- p AEM method that grow
in size with the step counter p.

Assume that p— 1 pairs of solutions are computed, giving V,—1 and W, 1. The next
step is to compute a new solution pair (v,, wp) by choosing the objective function

1 T T2
JA(UP, wp) = EHU_ Vp_lwp—l _vap”Av
and solving the following minimization problem

min Ja(vy, wy).
v, €R" w, R P

The gradients of J4 with respect to v, and w, are

Yy, Ja = (ﬁf(va;) + A (VWD) — B) w 2.12)

P
T

Vapda = (9 (pwp) + 7 (Vi W)_1) — B) vy, (2.13)

Employing the first-order optimality conditions (setting (2.12) and (the transpose

of) (2.13) to zero) results in systems of equations for which, 1n a succession of steps
k =1, ..., kmax, vp is updated using fixed w, and then w, is updated using fixed v ,:

m
> &P VTG wE N = Bwl D — (v, W) _puwlh, (2.14)
i=0
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Algorithm 2 Successive rank-one AEM method
INPUT: ppmax. kmax. and €
1: function SRANKONEAEM( pmax., kmax. €)

2: for p=1,..., pmax do

3: Set a random initial guess for wg)) .

4 for k=1,..., kmax do

5: vg{) <« solve (2.14)

6: wg‘) <« solve (2.15)

7 end for

8: vp v_E,) and wp + w{k)

9: Add to solution matrices, Vp, < [V, 1, vpl, Wp < [W, 1, wp]
10: Vp, Wp < CHECKCONVERGENCE(V),, W), €)

11:  end for

12: end function

m
Y @O wOTGT) = vPTB — v O T (VW ). (2.15)
=0

Algorithm 2 summarizes this procedure, which randomly initializes wg)) and then

alternately solves (2.14)-(2.15). Like the Stage-p AEM method, the algorithm can
start with either wg)) or vg)-).

2.4 Algebraic interpretation of the methods

Algorithms 1 and 2 both entail an “outer iteration” with counter p and an “inner
iteration” with counter k, and both are designed to minimize the objective function
(2.2). It is instructive to see the difference between the two methods in vectorized
format. To this end, let

m mn
i, w) =3 Kl GTw) e RM™M oy, v)) = 3 G@IK] v;) € R,
=0 =0

and let us assume p = 2 for simplifying the presentation.
Both methods seek solution pairs (Va2, W2) = ([vy, v2], [wy, wa]) satisfying the
systems of Egs. (2.6)—(2.7), which can be written in a vectorized form:

[Aw(wl, w1) Aw(w1, wz)} [vl} _ [Bwl] (2.16)

Ay(wy, wy) Ay (w2, wy) || v2 Bw;
Ay(ur,v) Ap(vi,v2) [[wi] _ [BTv
[Au(vz, v1) Ay(va, vz)] [wz] = [BTvz] ' (@17

In the second outer iteration, the Stage- p AEM method alternately solves fully coupled

linear systems (2.8)—(2.9) specified by Wz(k_l) and Vz(k), respectively , which can be
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written in vectorized form as in (2.16) and (2.17), respectively:
k—1 k—1 k—1 k—1 k k—1
w(wg ) g ))A (.w( ) g )) g ) ng )
w(w(k 1) (k 1)) Aw(w(k 1) (k l)) (k) Bw;k_” ’
k (k k k k k
Au(vfk), vlk)) A (v(k), (k)) (k) BTvgk) 2.18)
Av(vé )’vl ))A (Ué )’vé )) ( ) BTvé)
In contrast, the S-rank-1 method seeks approximate solutions of (2.16)—(2.17) by

solving systems of equations associated with the diagonal blocks. In the first outer
iteration, the method alternates between the following equations to find vy and w;:

[ w(w(k 1), gk—l))] [vgk)] _ [ngk—l)],
[Au(vik),vlk)) ] [ (k)] [BT (k)]

In the second outer iteration, the method alternately solves the systems of equations
in the second rows of the following equations to find v and wj:

wl(wi, wi) vy Buw
[ w(w(k D ) Aw(w(k l)’wék—l)):l I:v;k)il=|:Bw£k—l)i|:
v(vi, v1) w1 BTy
[ W% o) 4,0, 5"’)] [ ""] N [BTvé"’]'

Because v; and w are fixed, the (2,1)-block matrices are multiplied by v; and w and
the resulting vectors are moved to the right-hand sides. Then solving the equations
associated with the (2,2)-block matrices gives vg ) and w(k) As illustrated in this
example, the S-rank-1 AEM method approximately solves (2.16)+2.17) by taking
the matrices in the lower-triangular blocks to the right-hand sides and solving only
the systems associated with the diagonal blocks, as opposed to solving fully coupled
systems as in the Stage- p AEM method.

The system matrices that arise in Algorithm 1 have reduced components that are
dense but small (of size p x p) whereas the “non-reduced” components are large but
sparse. In Algorithm 2, the system matrices are sparse and of order ny and n; (as
the reduced components are of size 1 x 1). Thus in both cases, we may use Krylov
subspace methods to solve the systems. Then, with the iteration counter p, the cost
of the Stage-p AEM method grows quadratically (since the reduced components are
dense), whereas that of the S-rank-1 AEM method grows linearly with p. Thus, using
the Stage-p AEM method can be impractical for large-scale applications. On the
other hand, as the S-rank-1 AEM method employs only the lower-triangular part of
the system matrices, convergence tends to be slow and the level of accuracy that can
be achieved in a small number of steps is limited. To overcome these shortcomings,
we will consider several ways to modify and enhance them to improve accuracy.
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Remark 2.1 The Stage-p AEM and S-rank-1 AEM methods can be seen as two extreme
versions of AEM methods. The former solves fully coupled systems and the latter
sequentially solves systems associated with the diagonal blocks. Although it has not
been explored in this study, in an intermediate approach, more than one consecu-
tive pair of solution vectors ({v,, ..., Vpie}, {Wp, ..., Wpip)), With £ € N, can be
computed in a coupled manner at each outer iteration.

3 Enhancements
We now describe variants of the S-rank-1 AEM method that perform extra computa-

tions to improve accuracy. The general strategy is to compute an enhancement of the
approximate solution at every nypdate OUter iterations as specified in Algorithms 3-5.

Algorithm 3 Enhanced AEM method

INPUT: pmax. Kmax, Mupdate. and €
1: function ENHANCEDAEM (pmax . kmax. Rupdate. €)

2 for p=1,..., pmax do

3 Vp, Wp R‘ANKON]‘-ECORRECHON(VP_], Wp—1, kmax)

4 Add to solution matrices, Vp <« [Vp_1, vpl, Wp < [W,_1, wp]
5: if p mod nypdale == 0 then

6: Vp, W, < ENHANCEMENT(V ), W))

7 end if

8 Vp, Wp < CHECKCONVERGENCE(Vp, Wp, €)

9 end for

10: end function

Algorithm 4 Rank one correction
INPUT: V,,_1, W,_1, and kmax
1: function RANKONECORRECTION(V, 1, W1 .kmax)

2:  Setarandom initial guess for wg)).
3: for k=1,..., kpa do

4: vg‘) < solve (2.14)

5: w® « solve (2.15)

6: end for

7 vy <—v§, andwpewg‘)

8

: end function

We present three enhancement procedures, one taken from the literature and two
new ones. These are (i) a procedure adopted from an updating technique developed in
[46, Section 2.5], which defines one variant of PGD methods; (ii) a refined version of
this approach, which only solves systems associated with the diagonal blocks of the
system matrices but incorporates information (upper-triangular blocks) in a manner
similar to Gauss-Seidel iterations; and (iii) an adaptive enhancement of the Stage-p
AEM method that decreases costs with negligible impact on accuracy. In discussing
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Algorithm 5 Checking for convergence
INPUT: V,, Wy, and €
1: function CHECKCONVERGENCE(V,, W), ,€)

2 A VW) — Voot W) lIF < €]V, Wy | then

3 Vp, W, < ENHANCEMENT(V,, W)

4 if ||va; -V, 1WZ g < e||va;||p then Stop
5: end if

6 end if

7: end function

these ideas, we distinguish updated solutions using the notation, v;, w; (for vectors),
and V, = [vy,...,7,], W, = [wy,...,w,] (for matrices). In addition, we also
review the method proposed in [23].

Before we detail each method, we first elaborate on the CHECKCONVERGENCE
procedure in Algorithm 5. This checks the relative difference between the current
iterate and the previous iterate ||V, W; — Vo1 W;_ il = €llVp W; || in the Frobenius
norm. To compute ||V, W ||% while avoiding explicitly forming the large matrix V, W7,
we form X = (V]V,) © (W] W,) € RP*P, where © is the Hadamard product, and
then sum up all the elements of X. The product V,, W; is never explicitly formed. If this
condition is met, we apply the ENHANCEMENT procedure and check the convergence
with the same criterion. The purpose of this extra enhancement is to help prevent
Algorithm 3 from terminating prematurely (i.e., the stopping condition can be met
when Algorithm 3 stagnates).

3.1 PGD-updated AEM

Suppose the factors V), and W, obtained from RANKONECORRECTION do not satisfy
the first-order optimality conditions (2.6)—2.7). An enhancement like that of the PGD
update [30,31,46] modifies one of these factors (e.g., the one corresponding to the
smaller dimension n; or n3) by solving the associated minimization problem for V,,
(given W, when n; < np) or for W, (given V, when n; > n2) so that one of
the first-order conditions holds. We outline the procedure for approximating W,;
the procedure for V, is analogous. The basic procedure is to solve the optimization
problem [ninWPEanxp Ja (Vp, Wp) EVETY Ny pdare Steps. Inplace of V), an orthonormal

matrix V), is used, so that the construction entails solving

W, = argmin Ja (V,, W,), (3.1)
WpeRn2*P

where J4 is the quadratic objective function defined in (2.2). The gradient of the
objective function J4 with respect to W, can be computed as

~ T~ ™ ~ ~ ~
Vi, Ja = (o (VWD) - B) ¥, = 3 (¥, wiGD'V, - BTV,
=0
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Algorithm 6 PGD-update enhancement
Input: Vj, and W),
1: function PGDUPDATE(V,, W)

2:  ifnj < n; then

3: W), <« orthonormalize W .

4: Vp < solve 31, (K)V (W G W,)T = BW,
5: Vp < Vp

6: else

7: Vp < orthonormalize V.

8: Wp < solve Yo (VIK; ﬁ.)WI, Gh=V)B
9: Wp « Wp

10:  endif

11: end function

Thus, solving the minimization problem (3.1) by employing the first-order optimality
condition is equivalent to solving a system of equations similar in structure to (2.7),

m
S (VTK: V)W, (G]) = V1B € RP™. (3.2)
i=0

Compared to the original system (1.2), the dimension of this matrix is reduced via
a “single-sided” reduction; in (3.2), the reduction is on the side of the first dimension,
i.e., nj is reduced to p. The vectorized form of this system, for p = 2, is

[Au(ﬁl, DA, (U1, ﬁz)] [wl] _ [BTfu]

Ay(v2, 11)Ay (02, 02) | [ W2 BTy, |

which has structure like that of the second system in (2.18) of the Stage-p AEM
method. We summarize this single-sided enhancement method in Algorithm 6.

Remark 3.1 Another approach for computing a set of orthonormal basis vectors and
computing a low-rank solution by solving a reduced system of type (3.2) is given
in [36]. The MultiRB method of [36] incrementally computes a set of orthonormal
basis vectors for the spatial part of the solution (i.e., Vp € R™*P) using rational
Krylov subspace methods and solves a reduced system for Wp and, consequently,

Up =V, W,
3.2 PGD/Gauss-Seidel-updated AEM

The second strategy for enhancement, like Algorithm 2 (and in contrast to PGD-
updated AEM), only requires solutions of linear systems with coefficient matrices of
dimensions n; x n; and ny X ny, independent of p. As observed in Sect. 2.4, the S-
rank-1 AEM method loosely corresponds to solving lower block-triangular systems of
equations. We modify these computations by using more information (from the upper
triangular part), as soon as it becomes available. This leads to a method that resembles
the (block) Gauss—Seidel method for linear systems [14]. Suppose {(v;, u)i)}:-u=1 are
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Algorithm 7 PGD/GS enhancement
Input: V,, and W,

1: function PGD/GS(Vp, Wp)

2 fori=1,...,pdo

3 v; < solution of Eq. (3.3)

4: w; <« solution of Eq. (3.4)

5:  endfor

6

7

V <—V W <—W
: end functmn

obtained from p iterations of Algorithm 3. When the condition on line 5 of Algo-
rithm 3 is met, these quantities will be updated in sequence to produce {(v;, E;-)}f;l
using the most recently computed quantities. In particular, suppose the updated pairs
{(v;, E,‘)}g;{ have been computed. Then the /th pair (v7, w;) is updated as follows.
First, given wy, the update v; is computed by solving

-1

P
ey (wr, w0y = Bwy — Yy (wy, wi)oi — D do(wr, wivi. (3.3)
i=1 i=I+1

Then given vy, w; 1s computed by solving

I-1 2
o, (0;, v))w; = BTo; — Z%(ﬁl, vHw; — Z 2y (U], vi)w;. (3.4)
i=1 i=I+1

With p = 2 as an example, in vector format, the first step of this enhancement is
to update (vy, wy) to (vy, wi) by solving the following equations:

[ Awwiw) AuGor,w)] [m = [Buw1].
[ 4G  AGLw ] [E] = [B™w1].

and the second step is to update (v;, w;) to (v,, wp) by solving the second row of the
following equations:

Bw,

Bws |’

Ay(wy, wy)  Ap(wy, wy) [ | V1| _
Aw(wz, w1) Aw(wz, w2) | [V2
Ay, o) Ay@LT) | [w] _ [B™0
Ay(va,v1) Ay(v2,02) | [w2 By |
This strategy, which we call the PGD/GS enhancement, is summarized in Algorithm
7.1t 1s an alternative to Algorithm 6 and is also applied every nypdae OUter iterations.
For a comparison of Algorithms 6 and 7, note that Algorithm 6 (PGD-update) works

with a larger system but it can exploit the matricized representation (3.2). Once the
system matrices G, = W G W or K, = V K; V are formed, if it is not too large,
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the system in (3.2) (of order n; p in this example) can be approximately solved using
an iterative method such as the preconditioned conjugate gradient (PCG) method. In
contrast, Algorithm 7 (PGD/GS) requires sequential updates of individual components
in Egs. (3.3)—(3.4), but with smaller blocks, of order n; and n,. As we will show in
Sect. 4, the PGD/GS-updated AEM method exhibits better performance in some error
measures.

We have found that in practice, the enhancement procedure can be improved by
updating only a chosen subset of solution pairs rather than all the solution pairs
{(vi, wy)} f=1. ‘We discuss a criterion to choose such a subset next.

3.3 Reduced stage-p AEM method

The third enhancement procedure excerpts and modifies certain computations in the
Stage-p AEM method (Lines 5 and 6 in Algorithm 1) in a computationally efficient
way. The procedure adaptively chooses solution pairs to be updated and solves reduced
systems to update only those pairs. Let us assume for now that a subset of the solution
pairs to be updated has been chosen. Denote the set of indices of those solution pairs
by £(p) € {1, ..., p— 1} and the remaining indices by £°(p) = {1, ..., p—1}\ £(p).
Then the update is performed by solving the following equations for V¢(,) and Wy (p):

m m
D KDV ey (W] ) Gi W) = BWagpy — Y (Ki) Vie () (W), Gi Wi )
i=0 i=0
(3.5)

where ﬁ’e( p) 1s obtained by orthonormalizing the columns of W), and

m m

~ ~ . ~ ~
2 Vi KiVep) W) (G) = Vi) B = ) (Vi KiVee() Wik ) (G]), - (3.6)
i=0 i=0

where Vg(p) is obtained by orthonormalizing the columns of V(,). Then, V;(,) and
We(p) are updated to V() and W), while Vie(,) and Wye () remain the same.

We now describe a criterion to choose a subset of the solution pairs to be updated.
Let us assume that p — 1 iterations of Algorithm 3 have been performed, and V,_;
and W, have been computed. The pth solution pair (v, wp) is then computed via
Algorithm 4. If p mod nypdate = 0, then a subset of the previous p — 1 solution pairs
is chosen by inspecting the angles between v, and the columns of V,,_; and similarly

for w, and W, ;. We normalize all vectors v; = "—l::‘“—z and compute By = V;_lﬂp €

RP~! (the vector of cosines of the angles), and an analogous vector fw using w,
and W,_;. The entries of Sy and Bw indicate how far from orthogonal all previous
vectors are to v, and w,. Ideally, we want the method to compute p left and right
singular vectors of the solution U (i.e.,fy = Bw =0). As the aim is to find good basis
vectors for approximating U, it is undesirable to keep vectors that are far from being
orthogonal to v, and w . To resolve this, we choose a subset of columns of V), _; and
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Algorithm 8 Reduced stage- p enhancement
Input: Vj,, Wp,and ©
1: function RSTAGEP(V,,, W, 1)

2:  Normalize the columns U = =, W = —i—
= Tl 7 T Twilz

Compute Sy = {/";_lﬁp,ﬁw W _Wp

Select £(p) ={i € [1...., p—1] I[ﬂv]:l > tor|[Bwlil > t}
ﬁufg( p) < orthonormalize Wy(p)

Vf(p) <« solve (3.5)

fori=1,...,p

Vf( p) < orthonormalize V[( P
Wg(P) < solve (3.6)

Vi) = Vf(p)'wf(p) Wl(p)
0 end function

PRI R D

W1 for which the entries of By and Bw are too large; we fix r > 0 and choose

tp)={ie{l,....p— 1} ||[Bv]il > tor [[Bwli| > T}. (3.7)

Algorithm 8 summarizes the resulting reduced stage-p (R-stage-p) enhancement.

3.4 PGD-greedy AEM

As a baseline for comparison, we review the greedy low-rank method proposed in [20]
and further examined in [23], which can be interpreted as another variant of the S-rank-
1 AEM method with ENHANCEMENT. We denote this method as PGD-greedy AEM
in this study The method seeks an approximate solution in a three-factor form Up, =
Vp Z, Wp, where the columns of V and W are orthonormal; this can be achieved
by (i) slightly modifying RANKONECORRECHON (Algorithm 4) and (ii) employing a
particular enhancement procedure. The modified version of RANKONECORRECTION
computes a new basis pair (U, wp), where each vector has unit norm, by setting w(o)

to have unit norm and alternately performing the following procedure:

Solve e,y U, wy Vi =Bay Vo) _pay U, oY <ol /v,
B =)y, (K _(k X _(k )y
Solve o, (1%, 55wl =BT —a W] TP, B e w®wP ;.

This inner iteration continues until a stopping criterion |||v§,k) 2/l w,(pk) 2 — 1‘ <4dis
satisfied, where 4 is a stopping tolerance. Then (at each outer iteration) the approximate

solution U, is computed by solving a reduced linear system of equations, which is
obtained via a “double-sided” reduction, for Z, such that

Vil (VpZp W)Wy = VIBW, € RF*P. (3.8)
We refer readers to [20,23] for more details on this method.

At the pth outer iteration, this double-sided reduction technique requires the com-
putation of the solution of Eq. (3.8) which is of size p x p, whereas the PGD-update
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method employs a single-sided reduction requiring the computation of solutions of
Eq. (2.7) which are of size min(n1, n2) x p. The R-stage- p method, on the other hand,
updates only the solution pairs chosen based on the criterion (3.7) and, thus, the size
of problems arising in that approach is affected by the value of 7.

4 Numerical experiments

In this section, we present the results of numerical experiments with the algorithms
described in Sects. 2 and 3. For benchmark problems, we consider stochastic diffusion
problems, where the stochasticity is assumed to be characterized by a prescribed
set of m real-valued random variables. We apply suitable SGFEM discretizations to
these problems, resulting in LMTMES of the form (1.2) whose system matrices are
symmetric positive-definite. All experiments are performed on an INTEL 3.1 GHz i7
CPU, with 16 GB RAM, using MATLAB R2019b.

4.1 Stochastic diffusion problems

Let (£2, %, P) be a probability space and let D = [0, 1] x [0, 1] be the spatial domain.
Next, let & : 2 — I; C R, fori = 1,...,m, be independent and identically
distributed random variables and define £ = [£y, ..., &,]. Then, & : 2 — " where
I' =[]/, I} denotes the image. Given a second-order random fielda : D x I' — R,
we consider the following boundary value problem with constant forcing term f(x) =
l1.Findu : D x I' — R such that
[ —V - (a(x,&)Vu(x,£)) = f(x) nDx T, @1
u(x,&) =0 ondD x I', ’

where a(x, &) has the form (1.5) and the &; are chosen to be independent uniform
random variables. Note that (1.5) has the same structure as a truncated Karhunen-
Loeve (KL) expansion [27]. If we denote the joint probability density function of £ by
p (&) then the expected value of arandom function v(§) on I" is (v}, = f,, v(&)pE)dE.

For the discretization, we consider the stochastic Galerkin method [1,13,28,47],
which seeks an approximation to the solution of the following weak formulation of
(4.1): Findu(x,&)inV = Ho1 (D) ® L%(I‘) such that

(f a(x, &)Vu(x, &) - Vu(x, i;)dx) = (f f(x)v(x, §)dx> , YveV. @2
D el D p

In particular, we seek an approximation of form it (x, &) = Zfil :,“:1 Ursr (X5 (),
where {qﬁw,}'r'i1 is a set of standard finite element basis functions, which arises from
using continuous piecewise bilinear approximation on a uniform mesh of square ele-
ments (Q1 elements) and n, is related to the refinement level of the spatial mesh (our
implementation uses the Incompressible Flow & Iterative Solver Software (IFISS)
[11,42]). In addition, {/ }:il is chosen to be a finite subset of the set of orthonor-
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mal polynomials that provides a basis for Lf,(]‘) (also known as a generalized
polynomial chaos (gPC), [48]). As the random variables are uniformly distributed,
we use m-variate normalized Legendre polynomials {y[rs}:il, which are constructed
as products of univariate Legendre polynomials, V(&) = []/L, 4 (s (&). Here,
d(s) = (di(s),...,dy,(s)) 1s a mult-index and 7, () is the d;(s)-order univariate
Legendre polynomial in &;. A set of multi-indices {d(s)}:i is specified as a set
Am,dy = {d(s) € Nj : ld(s)|l1 =< din}, where Ny is the set of non-negative
integers, and ||d(s)[l; = Y.7_,d;(s). With this construction, span({;(§)},- )
is the set of polynomials in £ of total degree di, or less, and with dimension
ng =dim(Apm, ) = Ll

Galerkin projection of (4.2) onto the chosen finite-dimensional space (i.e., using
the same test basis functions as the trial basis functions), with the coefficients of the

solution expansion ordered as u = [u11, ..., Un, 1, U125 ..., u,,m&]T results in
(Z Gi® Ki) u=go® fo, (4.3)
i=0
where the system matrices are defined as
[Gols: = (Ys(E)Yre (8)), [Kolke = fDao(X)V«ﬁk(x) - Vg (x)dx,
[(Gilse = (& ¥s(5)Y:(8)),, [Kilke = [Dai(x)Vth(x) -V (x)dx,
fori =1,...,m,s,t =1,...,n; and k, £ = 1,...nx. Due to the deterministic

forcing term f(x) = 1, the right-hand side has a rank-one structure (i.e., m = 0 in
(1.1)), with [ folx = [}, f(xX)¢r(x)dx, and [go]; = (¥ (£)) .- Matricizing (4.3) gives
an LMTME of the form (1.2) with ny = n, and ny = ng, where m is the number of
terms in Eq. (1.5), and we can now apply the AEM methods to compute an approximate
solution.

4.2 Benchmark problem 1: separable exponential covariance

In this problem, we assume that the random field a(x, £) is a truncated KL expansion

a(x.£) =p+o0 Y Ve, (4.4)

i=1

where w is the mean of a(x, &), {(g; (x), A;)}" | are eigenpairs of the integral operator

associated with the covariance kernel C(x, y) = exp (— '“;“' — 'ng"‘), c is the

associated correlation length, and o2 is the variance of the untruncated random field.
In addition, each & ~ U (—\/5 , ﬁ) and so has mean zero and variance one.

In the following sections, we compare the six AEM variants: Stage-p (Algorithm 1),
S-rank-1 (Algorithm 2), PGD-updated (Algorithm 6), PGD/GS-updated (Algorithm
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7), reduced stage-p (Algorithm 8), and PGD-greedy from [20,23]. For orthonormal-
ization in PGD-updated (Algorithm 6) and reduced stage-p (Algorithm 8), we use
MATLAB’s gr function to implement the so-called skinny QR method. For assessing
performance, we explore two key aspects. The first is the accuracy of the computed
solutions, which we assess by computing two error metrics: cosines of angles between
the truth singular vectors and the columns of the computed factors (Sect. 4.2.1), and
errors between the truth solution and the computed solution measured in three differ-
ent norms (Sect. 4.2.2). The second aspect is timings and scalability (Sect. 4.2.3). As
the assessment of the first aspect requires the ground truth solution of (4.3), which
is computed using MATLAB’s backslash operator, and its singular vectors, we choose
small-sized problems in Sects. 4.2.1-4.2.2. When making comparisons with the truth
solution, we force all the AEM methods to execute pyax = min(ny, ng) = 56 iter-
ations. Larger problems are considered in Sect. 4.2.3, where scalability matters and
finding the truth solution is impossible with the available resources.

In producing experimental results in Sects. 4.2.1-4.2.2, we attempt to see each
method’s best possible results without considering the computational costs. Hence,
we setkmax = 5, nypdate = 1 (i.e., enhancements are performed at every outer iteration)
in Algorithm 3. For the same reason, we set PGD/GS to update all the solution pairs
and, for R-stage-p, we set t = .001. For PGD-greedy we use § = .1 (the inner
iteration stopping tolerance) following [23].2 All linear systems that arise in each
AEM method are solved using PCG. The stopping criterion for these iterations is
for the relative residual to be less than the stopping tolerance 10712, We also apply
so-called mean-based preconditioners, which we will discuss in detail in Sect. 4.2.3.

4.2.1 Relation to singular vectors

We begin by exploring how the factors in the approximate solutions constructed by
each of the methods compare with the left and right singular vectors of the true solution
matrix U. This is important because (i) singular vectors represent the most effective
choice with respect to the Frobenius norm for approximating a matrix U. That 1s,
the minimum error over all rank- p approximations is ||U — V X, W lg, where U =

VEWT is the singular value decomposition [8], and (ii) in some apphcauons such
as collaborative filtering for recommendation systems, computing singular vectors
accurately is very important for precise predictions [17,19,49]. For these tests, the
diffusion coefficient is given by (4.4) with (u, o) = (1, 1) and ¢ = 2. We use a
spatial discretization with grid level 4 (i.e., grid spacing 24 , and n, = 225) and we
truncate the expansion (4.4) at m = 5. For the SGFEM approximation, we choose
dior = 3 which gives ng = 56.

For any approximation of the form (1.3), let V and W be normalized versions
of the factors, i.e., each column of V and W 18 scaled to have unit norm. From the
ground truth so]ution U, the matrices V* and W* of left and right singular vectors are
computed. The entries of V*TVP, the cosines of the angles between the left singular
vectors of the true solution and the left vectors defining the approximate solution,

2 We also tested a variant of PGD-greedy that performed kmax = 5 inner iteration steps (as done for the
other Enhanced AEM methods) and observed only minor differences.
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Fig. 1 Cosines of angles (plotted in log scale) between the left singular vectors V* and Vp, where ‘7_9
are computed using the Stage- p and S-rank-1 AEM methods, and the Enhanced AEM methods with PGD-
update, PGD/GS, R-stage- p enhancements, and PGD-greedy

together with the analogous angles for the right vectors, WHTW,,, give insight into the
quality of the approximate solution. Figs. 1a and 2a and Figs. 1b and 2b depict the
cosines of the angles between the singular vectors and the columns of 17,, and Wp
computed using the Stage- p AEM and S-rank-1 AEM methods discussed in Sect. 2. It
can be seen from these results (in Figs. 1a and 2a) that the Stage-p AEM method does
a good job of approximating the singular vectors of the solution. That is, the values of
the diagonal entries are close to one and the values of the off-diagonal entries are close
to zero. On the other hand, the S-rank-1 AEM method (see Figs. 1b and 2b) is far less
effective. The 2 x 2 blocks on the diagonals in Figs. 1a and 1a reflect the presence of
equal singular values.

Figures 1c—f and 2¢c—f show analogous results for the four enhanced AEM methods.
With PGD-update, the spatial component gets reduced (i.e., we form K; = !7; K; Vp)
and W, is updated. Figures 1c and 2¢ show that this computation improves the quality
of the resulting factor W, (and V, as well) as approximate singular vectors, compared
to those obtained with the S-rank-1 method. It is evident that PGD/GS further improves
the quality of f/Jp and ﬁ}p (Figs. 1d and 2d) as approximate singular vectors, and R-
stage-p is nearly as effective as Stage-p (Figs. le and 2e). The PGD-greedy AEM
method is less effective in finding the left and the right singular vectors (Figs. 1f and
2f) than PGD/GS and R-stage-p.
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Fig. 2 Cosines of angles (plotted in log scale) between the right singular vectors W* and ﬁ"fp, where

Wp are computed using the Stage-p and S-rank-1 AEM methods, and the Enhanced AEM methods with
PGD-update, PGD/GS, R-stage- p enhancements, and PGD-greedy

4.2.2 Assessment of solution accuracy

We now compare the convergence behavior of the variants of the AEM methods
introduced in Sects. 2 and 3. We use two different settings for the stochastic diffusion
coefficient: [expl] (¢, o) = (1,.1), c = 2 and [exp2] (u,0) = (1,.2),c = .5. We
again truncate the series (4.4) at m = 5 and, for the Legendre basis polynomials, we
consider dix = 3 which gives ng = 56. We deliberately keep the same value for m
and d,; for both settings so that we can keep the dimensions of the problem the same
and, thus, directly compare the behavior of each method in different problem settings.

For each method, the approximate solution U, is computed and we measure the
accuracy compared to the reference solution U. We did this using three different
metrics: the energy norm error |U — U, || 4, the error in the Frobenius norm ||U — U, ||g,
and the residual in the Frobenius norm || B — &/ (U)||g. Note that direct computation
of the residual norm is only possible due to the small size of the problem. See [22]
for a method to compute this norm using skinny QR factorization in cases where m,
p and m are not too large. Here, we only report the energy norm errors (in Fig. 3),
as behavior for the other two metrics is virtually identical. For comparison, a rank-p
reference solution (referred to as “full” in Fig. 3) is obtained directly from the first p
singular values and singular vectors of U.

For both settings, as expected, the convergence behavior of the S-rank-1 AEM
method is significantly worse than that of the rank-p reference solution, whereas
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Fig.3 Solution errors measured in the energy norm

that of the Stage-p AEM method is virtually the same as for the full direct solver.
The Enhanced AEM method with PGD-update converges well until a certain level of
accuracy is achieved, but it fails to achieve a high level of accuracy. The Enhanced AEM
methods with PGD/GS and R-stage-p enhancement are more effective than with the
PGD-update. The accuracy that those two methods achieve is virtually the same as
that of the Stage-p AEM method and the full direct solver.

4.2.3 Computational timings

The above results do not account for computational costs; we now investigate timings
under various experimental settings with a more practical outer stopping criterion. This
is important for large-scale applications, and so we now consider a finer spatial grid,
with grid level 6 (i.e., grid spacing 2—'5, and n, = 3969), as well as larger parameter
spaces, with m = {20, 24} (the number of random variables in (4.4)) and dioy = 4,
which results in ng = {10626, 20475}. We use the same settings for the stochastic
diffusion coefficient [expl] (u, o) = (1,.1), ¢ = 2 and [exp2] (u, o) = (1,.2),
¢ = .5. Again, we set m and di to be the same for both problems, as we want to keep
the dimensions fixed so that we can make direct and fair comparisons.

Before we present these results, we summarize the systems of equations to be solved
for each of the Enhanced AEM methods and the adjustable parameters that affect the
performances of the methods.? We first describe how we solve the systems arising
at the pth outer iteration when the condition for applying the enhancement is met,
as well as the systems arising in RANKONECORRECTION (Algorithm 4). We use PCG
to solve each system of equations using mean-based preconditioners [35], which are

3 The results of using the Stage-p and S-rank-1 AEM methods are not reported because the Stage-p AEM
method is computationally too expensive and the S-rank-1 AEM method exhibits poor convergence behavior
and, indeed, fails to satisfy the given convergence criterion.
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Table1 System matrices and preconditioners for each ENHANCEMENT procedure

Name X K G; My Mg Egs
S-rank-1 vp K; whGiwp Ko 1 (2.14)
(Alg. 4) wh vhKivp G; 1 Go (2.15)
PGD-update V), K; wiG:w, Ko wIGow,

(Alg. 6) w! V1KV, G; V1KoV, Go (3.2)
PGD/GS y K; wl G Ky 1 (3.3)
(Alg. 7) w) o) Kty G; 1 Go (3.4)
R-stage-p Viy  Ki WLP) GiWy, Ko Wg(p) GoWy(py (3.5
(Alg. 8) W), ») 7] oKiVep) G 7 nKoVep)  Go (3.6)
PGD-greedy Z VIK;iVp WlG;iWp VIKoVp Wl GoW, (3.8)

constructed using reduced versions of the matrices Ky and Gy, that are adapted to
each method. For all systems, each PCG iteration requires matrix-vector products in
the matricized form (see [2,22,26] for detailed matrix operations)

m
Y (MIKHX(M;'GYT,
i=0

where X is a quantity to be updated, K ; and 5,- are reduced matrices, and M, and Mg
are the preconditioner factors. Table 1 summarizes each system matrix and precondi-
tioner.*

Now, we discuss adjustable parameters. The Enhanced AEM methods (Algorithms
3-5) require parameters Pmax, Kmax, Mupdate, and €. We set pmax = 1000 to prevent
excessive computations. We found that choosing kp,x > 2 results in negligible dif-
ference in accuracy, but requires extra computations and, thus, we use kmax = {1, 2}.
For nypdate, which determines how often the enhancement procedure is called, we vary
nupdate 88 {3, 10, 20, 30}. Next, we use € to check the convergence of the outer iteration
in Algorithm 5), and we vary € as {1071°, 10~°, 1078, 10~7}. Finally, for PGD/GS and
R-stage- p, we empirically found that choosing T > 0.05 results in decreased accuracy
in the approximate solution and, thus, we set T = 0.05. Again, for PGD-greedy we
use § = .1 (the inner iteration stopping tolerance) following [23].

Next, we set parameters for the PCG method. For all systems, the stopping criterion
uses the relative residual in the Frobenius norm. We use two different tolerances: thagis
for solving systems that arise in RANKONECORRECTION and PGD/GS, and Tcoupled
for solving systems that arise in PGD-update, R-stage-p, and PGD-greedy. Table 2
summarizes the parameters used for the experiments. We found that larger values of

4 Note that, for PGD-update, one can always choose the smallest solution component to update. In practice,
however, updating the W component (i.e., reductionin { K; }_,) always requires the smallest computational
costs and, thus, we only report the result of updating Wp.
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Table2 Parameters used in the experiments for measuring timings

The maximum number of outer iterations Pmax = 1000

The maximum number of inner iterations kmax = {1, 2}

The frequency of the enhancement procedure Mypdate = {5, 10, 20, 30}

The stopping tolerance for outer iterations e={10710,107%, 1078, 1077}
PCG stopping tolerance for RANKONECORRECTION and PGD/GS Thasis = 103

PCG stopping tolerance for PGD-update and R-stage-p Teoupled = 10%¢

the tolerances Thasis and Teoupled led to poor performance and smaller values did not
improve accuracy.

In Fig. 4, we plot elapsed time (in seconds) against the relative residual error
in the Frobenius norm of the final iterate for both [expl] and [exp2]. Recall that
we use the stopping condition in Algorithm 5 for the outer iteration, which has a
lower computational cost and lower storage requirements. Here, we compute the final
relative residual error in a separate post-processing step, simply for comparison. For
these experiments, the relative residual error is observed to be up to three orders of
magnitude larger than the value of € used for the chosen stopping condition (see
Algorithm 5). A discussion about using the relative residual error and the backwards
error as stopping criteria for smaller-scale stochastic Galerkin matrix equations is
given in [37].

Results obtained with the Enhanced AEM methods with PGD-update, PGD/GS,
R-stage-p, and PGD-greedy are marked in red, green, blue, and magenta respectively,
and each configuration of nypgae and k., is marked with a different symbol. It can
be seen from the figures that

— the costs of R-stage- p and PGD/GS are less sensitive to nypdate and kmax than those
of PGD-update;

— the costs of PGD-greedy, which solves a reduced system at every outer iteration,
tend to be larger then other methods;

— R-stage-p is more efficient for smaller values of 7ypdae Whereas PGD/GS and
PGD-update are better with larger nypdate;

— for PGD-update and PGD/GS, relatively large nypdae > 10 and kpyax = 2 results
in better performances, and, for R-stage-p, relatively small nypgae < 10 and
kmax = 1 results in better performances.

Table 3 reports the number of outer iterations p required to achieve the stopping tol-
erance € for problems [expl] and [exp2] when PGD-update, PGD/GS, and R-stage-p
are used. The benefit of using R-stage- p becomes more pronounced as we seek highly
accurate solutions with smaller €. Our general observation is that among the four
enhancement approaches, the R-stage-p method is less sensitive to the choice of algo-
rithm parameter inputs, scales better for larger problem sizes, and is the most effective
of the four approaches.

We now briefly consider a second benchmark problem whose solution matrix has
different rank characteristics and for which low-rank solvers ought to perform well.
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Fig.4 Computational timings (in seconds) of four Enhanced AEM methods for varying kmax and nypdate-
Timings of each method with each parameter set-up are averaged over 5 testing runs

4.3 Benchmark problem 2: fast decay coefficients

We define the random field a(x, &) as in (1.5) but now we choose & ~ U(—1,1)
and the functions a;(x) have coefficients that decay more rapidly than in the first
benchmark problem. The details of this problem can be found in [9]. Specifically, the

coefficients of the expansion are

1,2

ap=1, a;(x) = a; cos(2mj(i)x1) cos(2mea(i)xz), i v 2,0,
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Table 3 The number of outer iterations p required to achieve the stopping tolerance € for solving the
problems [expl] and [exp2] when PGD-update, PGD/GS, and R-stage-p are used. The reported values of p
are computed by averaging values of p obtained with the eight different combinations of nypdate and kmax
shown in the legend of Fig. 4

[expl] m =20 m =24
PGD-update = PGD/GS  R-stage-p  PGD-update = PGD/GS  R-stage-p

e=10"" 163.8 160.4 152.9 184.9 177.8 173.0
e=10 8 264.6 273.9 2595 306.6 3123 206.7
e=10"° 356.3 363.7 340.1 415.0 4215 397.3
e=10"10 5311 520.6 486.0 609.4 593.7 563.9
[exp2] m =20 m=24

PGD-update PGD/GS R-stage-p PGD-update PGD/GS R-stage-p

e=10" 293.1 287.7 282.1 344.0 334.9 330.6
e=10"% 4146 4227 397.7 4928 506.7 4783
e=10"° 569.8 544.6 511.6 673.7 640.5 616.7
e=10"19 8216 716.4 677.1 933.1 848.1 810.1

wherea; = @i~ witho > 1 and @ satisfies0 < @ < 1/ (o), where { is the Riemann
zeta function. Furthermore, 01(i) =i — k(@) (k(i) + 1)/2 and 02(i) = k(i) — 01(7)
where k(i) = |—1/2 + 4/1/4 + 2i|. For computing the coefficients, we use the
MATLAB software package S- IFISS [41]. In the following experiment, we choose
m = 20, 0 = 4 and @ = 0.832. The parameter o controls the rate of algebraic decay
of the coefficients. The specific choice o = 4 leads to fast decay and this causes the
true solution matrix to have a lower rank than in the first benchmark problem.

We investigate computational timings of the Enhanced AEM methods with the same
experimental settings used 1n Sect. 4.2.3. Here, we vary the stopping tolerance for the
outer iterations as € = {10'9, 10'3, 10‘7, 10'6} and we choose the same values of
Nupdate aNd kmax as before. Figure 5 reports elapsed time (in seconds) against relative
residual error. In nearly all cases, our observations agree with the findings in Fig.
4. However, the impact of nypdaee 15 slightly less clear for these tests. The R-stage-p
method is generally still less sensitive than the other two methods to the choices of
Nupdate and kmax, With one exception, indicated by the blue triangle marker, which
is located to the far right in Fig. 5. With nygae = 30, kyax = 2, and € = 1079
(giving the right-most blue triangle), the R-stage-p method does not meet the stopping
criterion until p ~ 125, which is larger than the value p ~ 90 needed for the other
choices of algorithm inputs. We attribute this to the large number of steps (30) between
enhancements; in this case, the method fell just short of the stopping criterion after
90 steps. Finally, we report the number of outer iterations p required to achieve the
stopping tolerance € in Table 4. As the true solution matrix has an intrinsic low-rank
structure, the reported values of p are much smaller than those shown in Table 3.

Remark 4.1 We found the solvers to be largely insensitive to the choice of the param-
eters Kmax and nypdate: @ similar observation was made in [30].
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Fig.5 Computational timings (in seconds) of four Enhanced AEM methods for varying kmax and nypdate-
Timings of each method with each parameter set-up are averaged over 5 testing runs

Table4 The number of outer iterations p required to achieve the stopping tolerance e for solving the second
benchmark problem when PGD-update, PGD/GS, R-stage- p, and PGD-greedy are used. The reported values
of p are computed by averaging values of p obtained with the eight different combinations of 7544, and
kmax shown in the legend of Fig. 5

PGD-update PGD/GS R-stage-p PGD-greedy
e=10"° 43.7 49.0 30.1 4438
e=10"" 58.3 68.3 414 73.0
e=10"8 81.7 91.7 61.3 102.8
e=10"° 130.9 121.6 91.6 162.8

4.4 Further extensions

We tested all the AEM methods on matrix equations obtained from SGFEM dis-
cretizations of stochastic convection-diffusion problems [26, Section 5.2], where the
randomness is in the diffusion coefficient as in Sect. 4.2. Although the energy norm can-
not be defined for this problem as it has a non-symmetric operator, the same projection
framework described herein can be applied to compute approximate solutions. Exper-
iments (not reported here) were conducted similar to the ones in Sects. 4.2.1-4.2.2.
We observed that the R-stage-p method produces qualitatively better approximate
factors V), and W), as measured in the error metrics used in Sects. 4.2.1-4.2.2, than
the S-rank-1 AEM method and the other two EnhancedAEM methods. We also note
that for problems with a non-symmetric operator, rank-one update ALS algorithms
such as the ones in [20,23] can be used.
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5 Conclusions

In this study, we have investigated several variants of alternating minimization methods
to compute low-rank solutions of matrix equations that arise from SGFEM discretiza-
tions of parameterized elliptic PDEs. Using a general formulation of alternating
minimization of errors in the energy norm, derived from the well-known general
projection method, our starting point was a variant of the stagewise ALS method, a
technique for building rank- p approximate solutions developed for matrix completion
and matrix sensing. Our main contribution consists of a combination of this approach
with so-called enhancement procedures of the type used for PGD methods [30,31] in
which rank-one approximate solutions are enhanced by adaptive use of higher-rank
gquantities that improve solution quality but limit costs by adaptively restricting the
rank of updates. Experimental results demonstrate that the proposed PGD/GS and
R-stage- p methods produce accurate low-rank approximate solutions built from good
approximations of the singular vectors of the matricized parameter-dependent solu-
tions. Moreover, the results show that the R-stage-p method scales better for larger
problems, is less sensitive to algorithm inputs, and produces approximate solutions in
the fastest times.

Funding This work was supported by the U.S. Department of Energy Office of Advanced Scientific Com-
puting Research, Applied Mathematics program under award DE-SC0009301 and by the U.S. National
Science Foundation under grant DMS1819115
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