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Abstract: The problem of a geophysical western boundary current negotiating a gap in its supporting
boundary is considered. For traditional straight, parallel gaps, such systems are known to exhibit two
dominant states, gap penetrating and leaping, with the transitional dynamics between states display-
ing hysteresis. However, for more complex geometries, such as angled or offset gap configurations,
the question of multiple states and hysteresis is unresolved. In such cases, the inertia of the western
boundary current is oriented into the gap, hence the assumption that increased inertia promotes gap
penetrating loop current states. Here we address the problem numerically in an idealized setting. It
is found that despite the inertia of the current being directed into the gap, for large western boundary
current transport values, leaping states will be present. That is, we show here that the presence of
multiple states with hysteresis for gap-leaping western boundary current systems is robust to both
angled and offset gap geometries.

Keywords: western boundary current; loop current; hysteresis; geophysical fluid dynamics

1. Introduction

Loop current systems, like the Loop Current in the Gulf of Mexico, which flows
between the Yucatan Peninsula and Florida, or the Kuroshio current near the Luzon Strait,
between the islands of Luzon and Taiwan, are known to admit at least two fundamental
states: gap penetrating and leaping (Figure 1). Which state the system assumes and when
the system will transition between states is a major factor influencing hurricane intensity,
offshore energy applications, local fisheries, and regional climate [1]. Despite decades of
scientific inquiry and major field program initiatives, the fundamental question of loop
current predictability remains [1]. Several theories have been proposed to address the
underlying physical mechanisms governing transitions between penetrating and leaping
states: Farris and Wimbush [2] related the accumulation of local wind stress exceeding a
critical value with transitions from leaping to penetrating states for the Kuroshio. Wind
forcing has also been shown to affect the seasonal variation of the Kuroshio Intrusion [3,4]
including the inertia of the Kuroshio Current upstream of the Luzon Strait [5–7]. Metzger
and Hurlburt [8] proposed that mesoscale instabilities cause the Kuroshio penetration
to be nondeterministic on long timescales, which is consistent with Yuan et al. [9] who
showed how perturbation from mesoscale eddies influence Kuroshio intrusion variability.
Sheremet [10] considered changes in the inertia of the western boundary current as a major
controlling influence on state transitions and was the first to point out the existence of
hysteresis in such systems.

This manuscript seeks to extend the original work of Sheremet, who considered
an idealized model for a gap-leaping western boundary current. Transitions between
penetrating and leaping states were studied as the gap width was varied in a quasi-
geostrophic numerical model. When the gap width is sufficiently large, the western
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boundary current inertia competes with the β-effect in the gap, resulting in leaping and
penetrating states with hysteresis. Penetrating-to-leaping transitions occur when the width
of the zonal jet flowing into the gap becomes comparable with the gap halfwidth. Leaping-
to-penetrating transitions occur when meridional advection balances the β-effect. For
sufficiently narrow gaps, there are only direct transitions between leaping and penetrating
states (no hysteresis). Sheremet’s results suggest that when analyzing observational data,
it is important to take into account the history of parameters in order to interpret loop
current state transitions (and not just parameters describing the current state). It should be
noted that this is supported qualitatively by the authors of [2], who related transitions to
penetrating states to if local wind stress accumulation exceeded a critical value.

These idealized numerical results have been verified via single-layer model rotating
table experiments by Sheremet and Kuehl [11]. This early confirmation was important as it
showed that hysteresis in gap-traversing systems is not a numerical artifact. Kuehl and
Sheremet [12] continued work on the same laboratory model by considering an expanded
parameter space. The ranges of flow rates that exhibited hysteresis were studied for
different table rotation rates, Ω, which controls the β-effect in the model. The width
of the hysteresis region increased as the rotation rate was increased. The state of the
system (penetrating or leaping) was formulated in a two-dimensional phase space as
the western boundary current inertia and planetary vorticity varied, which resulted in
a mathematical cusp catastrophe surface [13]. Because of the bifurcation of this surface,
it is noted that in such systems transitions from one state to another are a result of the
disappearance or turning of a particular solution branch, and not necessarily due to an
instability to small-scale perturbations as emphasized by [14]. Kuehl and Sheremet [15]
further examined hysteresis for a two-layer system to better model more realistic western
boundary currents [16]. The bifurcation set for hysteresis was studied for variable Ω.
Periodic eddy shedding states were studied as well, and it was noted that eddies shed
from a periodic state are fundamentally different from eddies shed during a transition
event. For strong penetrating flows, Ekman dissipation can no longer balance the vorticity
advection and vorticity must be dissipated from the current as westward-traveling eddies,
which is consistent with the momentum imbalance paradox of Pichevin and Nof [17]. Most
recently McMahon et al. have extended both the experimental and numerical investigations
to include the effects of mean flow through the gap [18,19] and applied a Newton iteration
solution method to the numerical model which enables identification of unstable loop
current states [20].

Despite the demonstrated resilience of hysteresis to stratification, multiple param-
eter variations, and mean flow through the gap in the idealized setting, as well as for
realistic ocean parameters [21] including the presence of islands in the gap [22], eddy forc-
ing [23–25], and western boundary current variability [18], the hypothesis has not widely
been adopted by the Gulf of Mexico Loop current community. The likely reason for this is
the unique geometry of the Gulf of Mexico (Figure 2). Notice that the Yucatan Peninsula
has a zonal “offset” from the southern tip of Florida by about 2.5◦. Further, the orientation
of the boundary current forming along the Yucatan is not parallel to the southern coast of
Florida. Instead, the inflowing current makes an approximately 120◦ degree angle with the
outflowing current (180◦ being straight gap with parallel flow). The goal of this manuscript
is to show that hysteresis in such gap-leaping western boundary current systems is robust
both to gap angle and gap offset.
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Figure 1. Gulf of Mexico topography with light grey indicating isobaths 5:100:3500 m and dark grey
indicating isobaths 250, 500, 1000, and 2000 m. Grey mask indicates land. Superimposed are sea
surface height contours for: (Left) on and around the 193rd day of 2015. (Right) on and around the
57th day of 2017.

Figure 2. Gulf of Mexico topography with light grey indicating isobaths and dark grey contours
indicating the slope. Grey mask indicates land. Dashed lines extend regions of slope against which
boundary currents flow. Notice that the Yucatan Peninsula has a zonal “offset” from the southern tip
of Florida by about 2.5◦. Further, the orientation of the boundary current forming along the Yucatan
is not parallel to the southern coast of Florida. Instead, the inflowing current makes an approximately
120◦ degree angle with the outflowing current (180◦ being a straight gap with parallel flow).

2. Numerical Model

The numerical model utilized in this study is a barotropic version of the baroclinic
model developed and validated in [16,26]. The numerical model was developed to support
a series of rotating table laboratory experiments (referenced above). Both the experimental
setup and validation of the numerical model have been well-established in the literature,
so only a brief summary is provided here. The idealized setup consists of a square tank of
width 2L = 1 m with a sloping bottom to induce a topographic β-effect. In Figure 3, north
corresponds to up and east corresponds to right. The flow is driven by a broad Sverdrup
interior circulation from the east, which impinges on a north–south oriented vertical ridge,
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which extends to the surface, where a predominantly inertial western boundary current
forms. Note, in the lab and also in the present model study, it is more convenient to consider
a southward flowing western boundary current (flowing from top to bottom in the figures),
but, due to the north–south invariance of the quasi-geostrophic barotropic equations, this
does not present an issue when interpreting our results in the context of northward-flowing
oceanic western boundary currents. The ridge is interrupted at its center by a gap with
halfwidth Lg = 6 cm, which the western boundary current must negotiate. In the gap
region, the western boundary current will either follow geostrophic contours (in this case,
constant depth contours) turning into the western basin and forming a loop current or
leap directly across the gap. The computations correspond to a mean water depth of
H0 = 20 cm, topographic slope of S = 0.2 (where β = S f /H0), and a table rotation rate of
Ω = 0.65 rad/sec (where f = 2Ω).

The nondimensional problem is formulated as the potential vorticity advection–
diffusion equation, as in the quasi-geostrophic approximation

J(ψ, q) + λS
1
h ω− λ3

M∇2ω = 0

−∇( 1
h∇ψ)−ω = 0,

(1)

where ψ is the transport function (defined through the Helmholtz decomposition hu =
k̂ × ∇ψ +∇φ with ∇2φ = 1

2 hEω representing Ekman divergence), ω = ∇ × ~u is the

relative vorticity, and q = (1/β̂ + λ2
I ω)/h, h = 1− β̂y and hE =

(
ν
Ω
) 1

2 is the Ekman depth.
The nondimensional parameter β̂ = βL/ f = SL/H0 is the relative meridional variation of
depth over the basin due to the sloping bottom, and h is the fluid depth. Our laboratory
experiments and numerical model allow for small but finite values of β̂, while the quasi-
geostrophic approximation is the limit of infinitely small β̂. The domain is −1 < x < 1,
−1 < y < 1, with north corresponding to positive y and east corresponding to positive x.
The kinematic conditions for solving the elliptic equation are ψ = 0 along all boundaries,
except at the eastern boundary x = 1 where inflow/outflow is prescribed ψ = ΨB(y),
with ΨB varying between 0 and 1. The dynamical conditions are no-slip: v = 0 at the
western x = −1, eastern x = 1 boundaries and along the ridge, and no-stress ω = 0 at the
southern y = −1 and northern y = 1 boundaries. The “no-slip” is a natural condition of
vanishing velocity at a solid boundary. The northern and southern boundaries correspond
to the fluid gyre boundaries in the ocean where vorticity and stress are vanishing. In our
numerical method, we were restricted by the ridge to be oriented either north–south or
diagonally in such a way that the boundary passes through rectangular grid nodes. The
values of vorticity at the solid boundaries were calculated assuming the antisymmetry
of the tangential velocity component as it was extended outside the fluid domain, which
reduces to the formula by Thom [27] for a straight wall. The vorticity values were different

on the different sides of the ridge. The arising parameters λI =
√

U0
βL2 , λS = k0

βL with

k0 = f (hE/H0) and λM =
(

ν
βL3

) 1
3 are the nondimensional inertial, Stommel, and Munk

boundary layer thicknesses as in the standard theory. Where U0 = Q/(HL) is the Sverdrup
interior velocity scale, L is the basin length scale, ν is the kinematic viscosity, and Q is
the volume flux. With the viscosity of water ν = 0.01 cm2/s, for the cases considered
here λM = 0.0183252, λS = 0.0124034, and λI is varied (typically, λI = 0.0392232 for
Q = 50 cm3/s). The corresponding dimensional values (obtained by multiplication by L)
were LM = 0.92 cm, LS = 0.62 cm, and LI = 1.96 cm, respectively.

The numerical problem is solved using standard finite differences on a rectangular
grid dividing the domain into Nx × Ny cells. The parameters λS and λM represent the
dissipative effects, while λI characterizes the nonlinearity, the strength of the flow. For small
boundary layer Reynolds numbers R = (λI/λM)3, simple explicit iterations with treating
the nonlinear terms as perturbations work well, but for the moderate R the iterations fail
to converge [14]. In this case, Newton’s method has be to employed for finding steady
solutions. We consider a state vector X = (ω, ψ) consisting of values at all grid nodes
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including the boundaries, the size of this vector is M = (Nx + 1) ∗ (Ny + 1) ∗ 2. In a
symbolic form, the set of Equations (1) is represented by F(X) = 0. Substituting an initial
guess X0 into Equations (1) results in the vector of residuals F(X0) at each grid node
of the same size M. In order to find the next iteration X1 that brings residual closer to
vanishing F(X) = 0, we need to calculate the Jacobian matrix JF[X0] (of size M×M which
depends on X0) of all first-order partial derivatives of F with respect to X and then solve
the linear system

JF[X0](X1 − X0) = −F(X0) (2)

The iterations then continue until the residual (standard deviation and pointwise error)
vanishes to the machine accuracy, O(10−11). It usually took about seven or fewer iteration
steps to reach such convergence. The elements of the Jacobian matrix can be calculated
analytically by considering the variational problem corresponding to Equations (1).

J(δψ, q) + J(ψ, δq) + λS
1
h

δω− λ3
M∇2δω = 0

−∇(1
h
∇δψ)− δω = 0, (3)

where δq = λ2
I δω/h. The variations of the boundary conditions are trivial. It should be

noted that the elements of the Jacobian matrix do not have to be calculated exactly. As long
as the iterations converge and the residual F(X) vanishes, we get an exact solution to the
original problem (1). However, in this idealized problem, we do perform exact analytic
calculation of the matrix elements. Finite difference approximations result in a sparse
banded type of JF, and the grids of size up to 1000× 1000 can be solved on a computer
with 24 GiB of operational memory.
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Figure 3. Top view of the numerical/tank setup. Constant depth contours are indicated by dashed
lines. The transport, Q, drives the interior circulation.

3. Results
3.1. Angled Gap

We begin by considering the effect of the gap configuration angle. As noted above,
the Gulf of Mexico Loop Current encounters an approximately 120◦ gap angle. Here, we
will consider the more extreme configuration of a 90◦ angle between the ridges forming a
gap. This is mainly due to ease of computation. For a 90◦ configuration, the ridge walls
align diagonally with the computational nodes, which facilitates the boundary condition
specifications. We note that the existence of hysteresis for a 90◦ angled gap certainly
guarantees the existence of lower gap angle geometries. The resulting hysteresis trace for a
Lg = 5 cm gap halfwidth at 90◦ gap angle configuration is shown in Figure 4 in the top two
rows.
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Starting with lower flow rates and increasing towards higher values (upper panels
from left to right in Figure 4A–C), we see the flow is initially in a gap-penetrating flow
state with modified β-plumes extending from either gap edge towards the west, roughly
following the geostrophic contours [28–32]. As the flow rate increases, the northern β-plume
bends further to the south, as the inertia induces the flow to cross isobaths. Eventually, at
approximately Q = 59 cm3/s, the penetrating state abruptly transitions to a gap-leaping
flow state. The system continues to evolve along the gap-leaping solution branch as the flow
rate is decreased (the second row of panels from right to left in Figure 4D–F). Eventually,
at approximately Q = 33 cm3/s, the gap leaping flow state abruptly transitions to a gap-
penetrating flow state and the hysteresis loop has been fully traced. In presenting the flow
patterns we refer to dimensional values of Q relevant for laboratory experiments. The
nondimensional boundary-layer Reynolds number R ∝ Q3/2 is also shown in figure panels.
The advection dominates the viscous effects when R > 1.

The configuration with 180◦ gap configuration angle (essentially a straight ridge) also
exhibits multiple states and hysteresis, but the range is smaller between Q = 18–21 cm3/s.
The extreme gap-penetrating flow at Q = 21 cm3/s and gap-leaping flow pattern at
Q = 18 cm3/s are shown in Figure 4 (third row, two left panels: G, H).

An opposite configuration, when the angle between ridges is 270◦, is illustrated in
Figure 4 (third row, last two panels). For a weak flow Q = 10 cm3/s the β-plume penetrates
into the gap. However, as the flow rate increases the pattern soon smoothly changes into a
gap leaping state Q = 13 cm3/s, and remains such for higher Q. No hysteresis is observed
in this smooth transition.

In the 90◦ angle configuration the upstream current points into the gap, which pro-
motes the penetrating flow pattern: the current only needs to turn 45◦ in order to enter the
gap and become a zonal current in the β-plume region. In the 180◦ case the upstream cur-
rent needs to make a sharper turn of 90◦ in order to enter the gap; therefore, the conditions
are less favorable for penetration and the range of hysteresis is smaller. Furthermore, in the
270◦ angle configuration, the upstream boundary current has to turn 315◦ in order to enter
the gap; therefore, the penetrating flow pattern is not favorable and is easily switched to a
gap-leaping pattern as the inertia is increased.
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Figure 4. Hysteresis trace for various angled gap configurations of western boundary current, gap
halfwidth Lg = 5 cm. Shown are the transport functions with contour interval 0.1. Two upper rows
are for 90◦ configuration: from left to right, the top row (panels A–C) shows the transport function
for gap-penetrating states for increasing transport, Q; from right to left, the second row (panels
D–F) shows the transport function in leaping states for decreasing transport. Note the presence of
multiple steady flow states between Q = 33− 59 cm3/s (panels B–E). The third lowest row shows
(first two panels: G,H) 180◦ configuration (straight ridge) Q = 21 cm3/s gap-penetrating and Q = 18
cm3/s gap-penetrating state, with multiple states possible between Q = 18–21 cm3/s. The last two
panels in the third row (I,J) illustrate smooth (without hysteresis) flow pattern transition for 270◦ gap
configuration as the flow rate varies.

3.2. Offset Gap

Similar to the process described above, a series of hysteresis trace studies were per-
formed for a gap that is formed by two meridional ridges that have not only the meridional
separation (halfwidth of Lg = 6 cm) but also have a zonal offset, Lz, which was varied.

In each case, again, lower flow rates result in penetrating flow states which abruptly
transition to leaping flow states as the strength of the western boundary current is increased.
Once the system has transitioned to the leaping solution branch, it remains in the leaping
states as the strength of the western boundary current is decreased until an abrupt transition
back to the penetrating solution branch. The critical flow states can be seen in Figure 5 for
a Lz = −6 cm negative offset (left panels: A, D); zero-gap offset (middle panels: B, E); a
Lz = 6 cm positive-gap offset (right panels: C, F). The trend for critical transition states can
be seen in Figure 6 with the width of the hysteresis range increasing for positive gap offset
and decreasing with negative gap offset. The positive offset corresponds to a configuration
that is more favorable for the upstream boundary current to enter the gap if it continued
straight forward.
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Figure 5. Shown are the critical flow states (transport function) for: (left panels: A,D) −6 cm gap
offset; (middle panels: B,E) zero gap offset; (right panels: C,F) 6 cm gap offset. Contour interval is 0.1.
Upper panels show increasing flow rates, while lower panels show decreasing flow rates.
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Figure 6. Critical transition transport values as a function of gap offset. Downward triangles indicate
the penetrating to leaping transition. Upward triangles indicate the leaping to penetrating transition.
Left Panel: Dimensional transport with black curves representing quadratic fits. Right panel: LI/LI0

with black curves representing linear fits.

4. Discussion

For the meridional, north–south oriented, ridges without an offset, the mechanism
producing the multiple states is intuitively clear: on one hand, the beta-effect (via a potential
vorticity gradient across the gap) promotes the boundary current to drift westward and
to penetrate through the gap; on the other hand, the meridional advection promotes the
current to jump across. Balancing meridional advection and zonal advection against the
β-effect lead to two different scaling: Q ' L3

g and Q ' Lg (see details in [10]). Hence,
two different sets of critical parameter values at which transitions between penetrating
and leaping states occur. This is essentially the root cause of hysteresis in such systems.
Furthermore, a cusp bifurcation occurs in the parameter space where the two branches
coalesce. The cusp is an invariant feature. If instead of varying the gap width as in [10],
we vary another parameter that promotes the current penetration (in the present case it
is the configuration angle or gap offset), we will recover a similar behavior: the range of
hysteresis will vary and disappear when the penetration is sufficiently obstructed. In the
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angled and offset ridges cases, the upstream boundary current may be directed inside the
gap thus promoting the intrusion (gap penetration). So the question is, if we increase the
inertia (or transport of the boundary current), will it always promote intrusion?

Our previous results (cited above), which are consistent with the findings presented
in Figures 4 and 5, have shown that as the width scale of the boundary current, which is
a combination of LM, LS, and dominantly LI , exceeds the gap halfwidth, Lg, the current
ultimately switches to the gap-leaping regime. This apparent contradiction is most easily
explained by considering the offset gap results (Figure 5). Increasing the gap offset, Lz,
with the jet pointing inside the gap (positive offset) will delay this transition compared
to the zero offset case, but not prohibit a leaping state. Once the boundary current length
scale exceeds the gap halfwidth, a transition occurs. Essentially, as the inertia of the current
increases, the boundary layer length scale grows to a point where the current will not be
able to squeeze through the gap, and a leaping state will result.

Note the quadratic trend of the leaping to penetrating transitions (Figure 6 upward
facing triangles, quadratic trend given by solid curve). The transition condition for a
straight gap (Lz = 0) scales as the boundary layer length scale becoming comparable to Lg.
In the case of offset gaps, it is not just the gap halfwidth but also the gap offset must also
be accounted. The boundary layers considered are primarily inertial with LI ∝

√
Q. Thus,

relative to the straight gap case, we would expect to see a quadratic dependence of critical
boundary current transport as a function of Lz. This is emphasized by the right panel
which shows a near-linear dependence of LI/LI0, where LI0 is the inertial length scale
at transition for Lz = 0. Interestingly, the trend for the penetrating to leaping transition
behaves similarly.

This also emphasizes the importance of the parameter LI/Lg to the penetrating to
leaping transition. Or more completely, the ratio of the boundary layer length scale to the
gap halfwidth, which is a combination of the Stommel, Munk, and inertial length scale.
For typical Gulf of Mexico parameters, the inertial length scale is about 60 km, the Munk
length scale is about 30 km, and the Stommel length scale is smaller yet. Thus, typical
boundary current length scales would be on the order of 90–100 km. It is also observed that
the effective gap halfwidth, between Yucatan and the west Florida shelf, is approximately
150 km. As expected, this puts the Gulf of Mexico Loop Current into a boundary length
scale to gap halfwidth ratio parameter regime of around 0.6–0.7, which is consistent with
our numerical parameter space. Further, recent results from consideration of realistic Gulf
of Mexico topography [20], suggest the Gulf typically operates in an R = 5–15 parameter
space, also in agreement with our findings.

The results presented in this manuscript are intended to break the stigma that hystere-
sis in gap-leaping western boundary current systems only occurs for special geometries
(straight gaps with zero offset). Indeed, we have explicitly shown that both angled and
offset gap geometries exhibit multiple states and hysteresis. The key insight emphasized in
this work is that the more the upstream current is directed into the gap due to geometrical
configuration (angled or offset gaps), the more distinct the penetrating and leaping flow
patterns are, and the bigger the range of hysteresis in the system is. It should also be noted
that the methods utilized in this manuscript have recently been applied to the full-scale
Gulf of Mexico [20]. It was found that a barotropic approximation to the upper-layer
circulation in the Gulf of Mexico (at full-scale, with a realistic oceanic parameter regime,
and for realistic topography similar to Figure 2) displays hysteresis and multiple steady
states. Which, given the above results, should be expected.
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