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LOWER BOUNDS FOR MAX-CUT IN H-FREE GRAPHS VIA
SEMIDEFINITE PROGRAMMING*

CHARLES CARLSONT, ALEXANDRA KOLLA%, RAY LI, NITYA MANIY, BENNY
SUDAKOVI, AND LUCA TREVISAN#

Abstract. For a graph G, let f(G) denote the size of the maximum cut in G. The problem
of estimating f(G) as a function of the number of vertices and edges of G has a long history and
was extensively studied in the last fifty years. In this paper we propose an approach, based on
semidefinite programming (SDP), to prove lower bounds on f(G). We use this approach to find large
cuts in graphs with few triangles and in K,-free graphs.
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1. Introduction. The celebrated Max-Cut problem asks for the largest bipartite
subgraph of a graph G, i.e., for a partition of the vertex set of GG into disjoint sets V;
and V5 so that the number of edges of GG crossing V; and V5 is maximal. This problem
has been the subject of extensive research, both from a largely algorithmic perspective
in computer science and from an extremal perspective in combinatorics. Throughout,
let G denote a graph with n vertices and m edges with maximal cut of size f(G). The
extremal version of Max-Cut problem asks to give bounds on f(G) solely as a function
of m and n. This question was first raised more than fifty years ago by Erdds [10] and
has attracted a lot of attention since then (see, e.g., [8, 11, 12, 1, 19, 5, 3, 20, 7, 21, 16]
and their references).

It is well known that every graph G with m edges has a cut of size at least m/2.
To see this, consider a random partition of vertices of the vertices G into two parts
V1, Vs and estimate the expected number of edges between Vi and V5. On the other
hand, already in 1960’s Erdds [10] observed that the constant 1/2 cannot be improved
even if we consider very restricted families of graphs, e.g., graphs that contain no short
cycles. Therefore the main question, which has been studied by many researchers, is
to estimate the error term f(G) — m/2, which we call surplus, for various families of
graphs G.

The elementary bound f(G) > m/2 was improved by Edwards [8, 9] who showed

that every graph with m edges has a cut of size at least 3 + 7”;7";'1_1. This result

is easily seen to be tight in case G is a complete graph on an odd number of vertices,
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2 C. CARLSON, A. KOLLA, R. LI, N. MANI, B. SUDAKOV, AND L. TREVISAN
that is, whenever m = (%) for some odd integer k. Estimates on the second error
term for other values of m can be found in [4] and [5].

Although the /m error term is tight in general, it was observed by Erdés and
Lovész [11] that for triangle-free graph it can be improved to at least m?2/3+te(1)  This
naturally yields a motivating question: what is the best surplus which can always be
achieved if we assume that our family of graphs is H-free, i.e., no graph contains a
fixed graph H as a subgraph. It is not difficult to show (see, e.g. [2]) that for every
fixed graph H there is some € = e(H) > 0 such that f(G) > 2 + Q(m!/?*€) for all
H-free graphs with m edges. However, the problem of estimating the error term more
precisely is not easy, even for relatively simple graphs H. It is plausible to conjecture
(see [3]) that for every fixed graph H there is a constant ¢y such that every H-free
graph G with m edges has a cut with surplus at least ©@(m®H), i.e., there is both a
lower bound and an infinite sequence of example showing that exponent ¢y can not
be improved. This conjecture is very difficult. Even in the case when H is a triangle,
determining the correct error term took almost twenty years. Following the works
of [11, 18, 19], Alon [1] proved that every m-edge triangle free graph has a cut with
surplus of order m*/® and that this is tight up to constant factors. There are several
other forbidden graphs H for which we know quite accurately the error term for the
extremal Max-Cut problem in H-free graphs. For example, it was proved in [3], that
if H = C, for r =4,6,10 then cg = :E The answer is also known in the case when
H is a complete bipartite graph Kz s or K3 s (see [3] for details).

New approach to Maz-Cut using semidefinite programming.. Many extremal re-
sults for the Max-Cut problem rely on quite elaborate probabilistic arguments. A well
known example of such an argument is a proof by Shearer [19] that if G is a triangle-
free graph with n vertices and m edges, and if dy,ds,...,d, are the degrees of its
vertices, then f(G) > 2 + O(X_;_, V/d;). The proof is quite intricate and is based on
first choosing a random cut and then randomly redistributing some of the vertices,
depending on how many their neighbors are on the same side as the chosen vertex
in the initial cut. Shearer’s arguments were further extended, with more technically
involved proofs, in [3] to show that the same lower bound remains valid for graphs G
with relatively sparse neighborhoods (i.e., graphs which locally have few triangles).

In this article we propose a different approach to give lower bounds on the
Max-Cut of sparse H-free graphs using approximation by semidefinite programming
(SDP). This approach is intuitive and computationally simple. The main idea was
inspired by the celebrated approximation algorithm of Goemans and Williamson [15]
of the Max-Cut: given a graph G with m edges, we first construct an explicit solution
for the standard Max-Cut SDP relaxation of G which has value at least (3 +W)m for
some positive surplus W. We then apply a Goemans-Williamson randomized round-
ing, based on the sign of the scalar product with random unit vector, to extract a cut
in G whose surplus is within constant factor of W. Using this approach we prove the
following result.

THEOREM 1.1. Let G = (V, E) be a graph with n vertices and m edges. For every
i € [n], let V; be any subset of neighbours of vertezx i and &; < ﬁ Then,

(1.1) f(G)2%+Z%_ ) gig[Vin Vi

, ~ 2
i=1 (i,5)€E

This results implies Shearer’s bound [19]. To see this, set V; to the neighbors of ¢ and
g = \/% for all 4. Then, if G is triangle-free graph, then |V; N V;| = 0 for every pair
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LOWER BOUNDS FOR MAX-CUT IN H-FREE GRAPHS VIA SDP 3

of adjacent vertices , j.

The fact that we apply Goemans-Williamson SDP rounding in this setting is per-
haps surprising for a few reasons. In general, our result obtains a surplus of Q(W)
from an SDP solution with surplus W, which is not possible in general. The best cut
that can be guaranteed from any kind of rounding of a Max-Cut SDP solution with
value (3 +W)m is (3 +Q( 1OZ»VW ))m (see [17]). Furthermore, this is achieved using the
RPR? rounding algorithm, not the Geomans-Williamson rounding algorithm. Nev-
ertheless, we show that our explicit Max-Cut solution has additional properties that
circumvents these issues and permits a better analysis.

New lower bound for Maz-Cut of triangle sparse graphs. Using Theorem 1.1, we
give a new result on the Max-Cut of triangle sparse graphs that is more convenient
to use than previous similar results. A graph G is d-degenerate if there exists an
ordering of the vertices 1,...,n such that vertex ¢ has at most d neighbors j < i.
Equivalently, a graph is d-degenerate if every induced subgraph has a vertex of degree
at most d. Degeneracy is a broader notion of graph sparseness than maximum degree:
all maximum degree d graphs are d-degenerate, but the star graph is 1-degenerate
while having maximum degree n — 1. Theorem 1.1 gives the following useful corollary
on the Max-Cut of d-degenerate graphs.

COROLLARY 1.2. Let e < %. Let G be a d-degenerate graph with m edges and t

triangles. Then

(1.2) Gz 5+5- -5

As all max-degree-d graphs are d-degenerate, (1.2) holds in particular for max-degree-
d graphs. To see the corollary, let 1,...,n be an ordering of the vertices such that
any ¢ has at most d neighbors j < ¢, and let V; be this set of neighbors. Let ¢; = ¢ for
all i. In this way, 3, [Vi| counts every edge exactly once and }_; ;o [Vi N Vj| counts
every triangle exactly once, and the result follows. This shows that graphs with few
triangles have cuts with surplus similar to triangle-free graphs.

This result is new and more convenient to use than existing results in this vein,
because it relies only on the global count of the number of triangles, rather than a
local triangle sparseness property assumed by prior results. For example, it was shown
that (using Lemma 3.3 of [3]) a d-degenerate graph with a local triangle-sparseness
property, namely that every large induced subgraph with a common neighbor is sparse,
has Max-Cut at least 3 + Q(ﬂd) However, we can achieve the same result with
only the guarantee that the global number of triangles is small. In particular, when
there are at most O(m\/Zi) triangles, which is always the case with the local triangle-
sparseness assumption above, setting ¢ = @(ﬁ) in Corollary 1.2 gives that the Max-
Cut is again at least 3 + Q(%)

Corollary: Lower bounds for Maz-Cut of H-free degenerate graphs.. We illustrate
usefulness of the above results by giving the following lower bound on the Max-Cut
of K,-free graphs.

THEOREM 1.3. Let r > 3. There exists a constant ¢ = ¢(r) > 0 such that, for all
K,.-free d-degenerate graphs G with m edges,

1
(1.3) f(G) = (2 + Clll/CM) m.

Lower bounds such as Theorem 1.3 giving a surplus of the form c¢- 7% are more fine-
grained than those that depend only on the number of edges. Accordingly, they are
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4 C. CARLSON, A. KOLLA, R. LI, N. MANI, B. SUDAKOV, AND L. TREVISAN

useful for obtaining lower bounds the Max-Cut independent of the degeneracy: many
tight Max-Cut lower bounds in H-free graphs of the form 5 +cm® first establish that
f(G)> F +c- % for all H-free graphs, and their results follow by case-working on

the degeneracy. [3]

We note that Theorem 1.3 is stronger than the result in [21], which says that
K ,-free graphs have surplus at least Q(m("~1/(27=3)) Theorem 1.3 is stronger than
[21, Theorem 1.2] both in that it is more fine grained, depending on the degeneracy d,
and that when one plugs in d < 24/m, we get a stronger bound of Q(m(2T*3)/(4”*8)).

In the case of r = 4 one can use our arguments together with Alon’s result on
Max-Cut in triangle-free graphs to improve Theorem 1.3 further to m/2 + cm/d*/3.
While Theorem 1.3 gives nontrivial bounds for K,-free graphs, we believe that a
stronger statement is true and propose the following conjecture.

CONJECTURE 1.4. For any graph H, there exists a constant ¢ = ¢(H) > 0 such
that, for all H-free d-degenerate graphs with m > 1 edges,

(1.4) 1(@) = (; n ﬁ) m.

Our Theorem 1.1 implies this conjecture for various graphs H, e.g., Ko 5, K3 5, Cy
and for any graph H which contains a vertex whose deletion makes it acyclic. This was
already observed in [3] using the weaker, locally triangle-sparse form of Corollary 1.2
described earlier.

Conjecture 1.4 provides a natural route to proving a closely related conjecture
proposed by Alon, Bollobés, Krivelevich, and Sudakov [2].

CONJECTURE 1.5 ([2]). For any graph H, there exists constants € = e(H) > 0
and ¢ = ¢(H) > 0 such that, for all H-free graphs with m > 1 edges,

+ cm3/4+a_

(1.5) EOERS
Since every graph with m edges is obviously v/2m-degenerate, the Conjecture 1.4
implies immediately a weaker form of Conjecture 1.5 with surplus of order m3/4. With
some extra technical work we can show that it actually implies the full conjecture,
achieving a surplus of m3/4*¢ for any graph H (for brevity, we omit the proof, which
can be found in [6]). For many graphs H for which Conjecture 1.5 is known, (1.4) was
implicitly established for H-free graphs [3], making Conjecture 1.4 a plausible stepping
stone to Conjecture 1.5. As further evidence of the plausibility of Conjecture 1.4, we
show that Conjecture 1.5 implies a weaker form of Conjecture 1.4, namely that any
H-free graph has Max-Cut 5 + cm - d=5/7. Using similar techniques, we can obtain
nontrivial, unconditional results on the Max-Cut of d-degenerate H-free graphs for
particular graphs H.

Conjecture 1.4, if true, gives a surplus of Q(%) that is optimal up to a mul-
tiplicative constant factor for every fixed graph H which contains a cycle. To see
this, consider an Erdés-Rényi random graph G(n,p) with p = n='T9. Using stan-
dard Chernoff-type estimates, one can easily show that with high probability that
this graph is O(np)-degenerate and its Max-Cut has size at most 1 (5)p + O(n\/np).
Moreover, if 6 = 6(H) > 0 is small enough, then with high probability G(n, p) contains
only very few copies of H which can be destroyed by deleting few vertices, without
changing the degeneracy and surplus of the Max-Cut.

This manuscript is for review purposes only.
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2. Lower bounds for Max-Cut using SDP. In this section we give a lower
bound for f(G) in graphs with few triangles, showing Theorem 1.1. To prove this
result, we make heavy use of the SDP relaxation of the Max-Cut problem, formulated
below for a graph G = (V, E):

1 . .
maximize Z 5(1 — (@, DY)
(i,5)€E
(2.1) subject to |v®|2 =1Vie V.

We leverage the classical Goemans-Williamson [15] rounding algorithm which that
gives an integral solution from a vector solution to the Max-Cut SDP.

Proof of Theorem 1.1. For i € [n], define o) € R" by

. 1 =7
(2.2) o = { —e jeV
0 otherwise.

Then 1 < [ |2 < 1+ 2|Vi| < 2 for all i. For i € [n], let () =
each edge (i,7) with j € V;, we have

@), () 1 € %
2.3 cu = — - < —
23 ST RN O S 2

For k € V;NVj, we have v,(:)v,(j) < egie;. For k & {1,7}U(V;NV;), we have v,(:)v](j) =0
as v,(;) =0or v,(fj) = 0. Thus, for all edges (i, j),

i i €i . &y .
(2.4) W, 00) < =Ty, (5) — D1y, () + Vi NV e
Here, 1g(i) is 1 if i € S and 0 otherwise. Vectors v, ... v(™ form a vector

solution to the SDP (2.1). We now round this solution using the Goemans-Williamson
[15] rounding algorithm. Let w denote a uniformly random unit vector, A = {i € [n] :
(v w) > 0}, and B = [n]\ A. Note that the angle between vectors v, v(7) is equal
to cos~H((v™,v())), so the probability an edge (i,7) is cut is

PI'[(?,’.]) Cut] = COS?1(<'U(Z.)’IU(J.)>)

T
B 1 sinfl(@(i),v(j)»
= 3 -

1 1 . Ei . €5 .
> 5~ —sin (|ViﬂVj|€¢€j—E]l%(])_?]lvj(z))
1 1 /n & N & j
> §f;.(E.vaj\eiejfglw(J)*gle(lﬁ

1 € . £ . |VﬂV|EE
=~ 45y, 1y, (i) — ———5.
5 T o () + 551y, () 5

In the last inequality, we used that, for a,b € [0,1], we have sin~'(a — b) < za—b.
This is true as sin™'(z) < Zz when x is positive and sin™'(z) < = when x is negative.
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Thus, the expected size of the cut given by A U B is, by linearity of expectation,

- 1 & €j Vi N Vjleig,
Z Pr((i, j) cut] > Rl 7 ‘*‘2*]1 v, (1) — 5
(1,5)€EE (i,5) eE
i<j
m  x— |Vile: Vi N Vjleig,
2. = — [ S, - 4 I
(25) DIl Dl :
i=1 (i,j)€E

In the proof of Theorem 1.3 we use the following consequence of Corollary 1.2.

COROLLARY 2.1. There exz'sts an absolute constant ¢ > 0 such that the following
holds. For alld > 1 and € < \/g’ if a d-degenerate graph G = (V, E) has m edges and

at most g triangles then

(2.6) (@) > (; 4 ce) ‘.

3. Decomposition of degenerate graphs. In a graph G = (V, E), let n(G)
and m(G) denote the number of vertices and edges, respectively. For a vertex subset
V' C V, let G[V'] denote the subgraph induced by V’'. We show that d-degenerate
graphs with few triangles have small subsets of neighborhoods with many edges.

LEMMA 3.1 (). Letd>1 ande >0, and let G = (V, E) be a d-degenerate graph

with at least m(G) triangles. Then there exists a subset V' of at most d vertices with
a common nezghbor in G such that the induced subgraph G[V'] has at least V-1 edges
Proof. Since G is d-degenerate, we fix an ordering 1,...,n of the vertices such

that d< (i) < d for all i € [n], where d« (i) denotes the number of neighbors j < i of i.
Then, if ¢ (i) denotes the number of triangles {, j, k} of G where j, k < i, we have

31) > teli) = HG) = _y %l
‘ i=1

Hence, there must exist some ¢ such that t (i) > d<(z) . Let V’ denote the neighbors
of i with index less than ¢. By definition, the vertlces of V’ have common neighbor
i. Additionally, G[V’] has at least d<—(z) edges and d. (i) < d vertices, proving the
lemma. ]

We use this lemma to partition the vertices of any d-degenerate graph in a useful
way.

LEMMA 3.2. Let ¢ > 0. Let G = (V, E) be a d-degenerate graph on n vertices
with m edges. Then there exists a partition Vi,..., Vi1 of the vertex set V with the
following properties.

1. Fori=1,...,k, the vertex subset V; has at most d Uertices and has a common
neighbor, and the induced subgraph G[V;] has at least Vil - edges
m(G[Vk+1]

2. The induced subgraph G[Vj,+1] has at most ) triangles.

Proof. We construct the partition iteratively. Let V" = V. For ¢ > 1, we partition

the vertex subset V;*, into V; U V* as follows. If G[V*,] has at least m@liziD
triangles, then by applying Lemma 3.1 to the induced subgraph G[V;* ], there exists
a vertex subset V; with a common neighbor in V;* ; such that |V;| < d and the induced
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subgraph G[V;] has at most % edges. In this case, let V* 2 VX 1\ Vi. Let k denote

the maximum index such that V;* is defined, and let Vi1 def Vi¥. By construction,
Vi,..., V) satisfy the desired conditions. By definition of k, the induced subgraph
G[V{] has at most w triangles, so for V11 = V¥, we obtain the desired result.0

3.1. Large Max-Cut from decompositions. For a d-degenerate graph G =
(V,E), in a partition Vq,..., Vi1 of V given by Lemma 3.2, the induced subgraph
G[Vi+1] has few triangles, and thus, by Corollary 1.2, has a cut with good surplus.
This allows us to obtain the following technical result regarding the Max-Cut of H-free
d-degenerate graphs.

LEMMA 3.3. There exists an absolute constant ¢ > 0 such that the following holds.
Let 0 < e < %. For any H-free d-degenerate graph G = (V, E), one of the following
holds:
o We have

(3.2) £(G) > (; + cs) m.

o There exist graphs Gy, ..., Gy such that five conditions hold: (i) graphs G; are
H'-free for alli and all graphs H' obtained by deleting one vertex from H, (ii)
n(Gi) < d for alli, (iii) m(Gi) = “Z2 for alli, (iv) n(Gr)+---+n(Gy) = &,

and (v)
m@) |\ m(Gi)
3.3 G)>—~= G — —2 ).
(33 62 M 3 (160 - M)
Proof. Let ¢; < 1 be the parameter given by Corollary 2.1. Let ¢ = . Let
G = (V, E) be a d-degenerate H-free graph. Applying Lemma 3.2 with parameter 8¢,
we can find a partition Vi,..., Vi1 of the vertex set V' with the following properties.
1. Fori=1,...,k, the vertex subset V; has at most d vertices and has a common
Wil

neighbor, and the induced subgraph G[V;] at least ‘g5 edges.

2. The subgraph G[Vj4+1] has at most % triangles.

Fori=1,...,k+1, let G; def G[V;] and let m; def m(G;). For i =1,...,k, since G

is H-free and each V; is a subset of some vertex neighborhood in G, the graphs G;
are H'-free for all H' obtained by deleting one vertex from H. For ¢ = 1,...,k, fix
a maximal cut of G; with associated vertex partition V; = A; U B;. By the second
property above, the graph Gy41 has at most ™ triangles. Applying Corollary 2.1
with parameter e, we can find a cut of Gi41 of size at least (% + c18)mpaq with
associated vertex partition V41 = Agy1 U Brq.

We now construct a cut of G by randomly combining the cuts obtained above for
each G;. Independently, for each i = 1,...,k + 1, we add either A; or B; to vertex
set A, each with probability % Setting B =V \ A, gives a cut of G. As Vi,..., Vi1
partition V', each of the m — (mj +- - - +my41) edges that is not in one of the induced
graphs Gy, ..., Gr11 has exactly one endpoint in each of A, B with probability 1/2.
This allows us to compute the expected size of the cut (a lower bound on f(G) as
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there is some instantiation of this random process that achieves this expected size).

k
HG) > %(m —(my - +meg1)) + @ + 61€> “Mipgr + ;f(Gi)
k
(3.4) = % + crempgn + ; (f(Gi) - %) :

We bound (3.4) based on the distribution of edges in G in 3 cases:

e mpy1 > . Since f(G;) > 5 foralli=1,...,k, (3.2) holds:

(@) =

m 1

5 +crempy1 > (2 + cs) -m.

e The number of edges between V3 U --- U Vy and Vi1 is at least 277” Then,
the cut given by vertex partition V = A’ U B’ with A’ =V, U--- UV} and
B’ = Vj41 has at least 2" edges, in which case f(G) > 2 > (5 + <€) - m,
so (3.2) holds.

e G' = G[V1U--- UV, has at least % edges. We show (3.3) holds. By con-
struction, for ¢ = 1,...,k, the graph G; is H'-free for all graphs H' obtained
by deleting one vertex from H, has at most d vertices, and has at least g~
edges. Since G is d-degenerate, G’ is as well, so

(3.5) <m(G) <d-n(G)=d- Y n(G).

=1

Hence n(G1) + -+ - + n(Gg) > 2. Lastly, by (3.4), we have

H@) =5+ i (e -5).

This covers all possible cases, and in each case we showed either (3.2) or (3.3) holds.O

L and in Lemma 3.3 we can take

Remark 3.4. In Corollary 2.1 we can take ¢ = {7,

1

%.

Lemma 3.3 allows us to convert Max-Cut lower bounds on H’-free graphs to
Max-Cut lower bounds on H-free d-degenerate graphs.

C =

LEMMA 3.5. Let H be a graph. Suppose that there exist constants a = a(H) €
[1,1] and ¢ = ¢'(H) > 0 such that for all graphs G with m/ > 1 edges that are H'-free
for all graphs H' obtained by removing one vertex of H, we have f(G) > "%—i—c“(m')‘ﬁ
Then there exists a constant ¢ = ¢(H) > 0 such that for all H-free d-degenerate graphs
G with m > 1 edges,

1 —a
F(G) > (2 + cd—ia> m.
Proof. Let ¢y be the parameter in Lemma 3.3. We may assume without loss of

generality that ¢ < 1. Let G be a d-degenerate H-free graph. Let def g <
d/2 and ¢ & min(c’ca, %).
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Applying Lemma 3.3 with parameter ¢, either (3.2) or (3.3) holds. If (3.2) holds,
then, as desired,

f(G) > (; +02€) m > (; + cd_m> m.

Else (3.3) holds. Let Gy,...,Gy be the induced subgraphs satisfying the properties
in Lemma 3.3, so that G1,..., Gy are H'-free for all graphs H' obtained by removing
a vertex from H, and

Y

f@ = +§fj (G- ™50)

k
m ’ a
> 5+i_glc'm(Gi).

For all i, we have

QR (%) ()
a ce g ed g ed

d-m(Gy)* > Seite -n(G;)? 5(@)e n(G;) > 3

where (x) follows since m(G;) > ”(SC?), (x%) follows since n(G;)*~! > d*~! and

gtte = (¢)1*ed*=2 and (4) follows since ¢’ < 1. Hence, as n(G1)+---+n(Gi) > &,
we have
k
m n(G;) m  em 1 _2-a
> — > — - > — TFa | .
f(G) = 2+€d; g 2 2+48 > (2+cd +> m,
as desired. |

Remark 3.6. If Conjecture 1.5 is true, then applying Lemma 3.5 with an arbitrary
H and a = 3/4 yields that f(G) > 2 +cm-d=°/7 for all d-degenerate H-free graphs.

Remark 3.7. By repeatedly applying Lemma 3.5 with results from [3], we obtain
nontrivial surplus lower bounds for d-degenerate H-free graphs, given in the following
table. Here, forest4+1 means that H is some forbidden subgraph such that one vertex
can be removed from H to give a forest, and forest+2 means that two vertices can be
removed to give a forest. As an example, for all s > 0 there exists ¢ = ¢(s) such that
any d-degenerate Ky ,-free graph G always satisfies f(G) > F + cd=2/3m.

H ‘ H ‘ H'-free surplus [3] ‘ a ‘ fjrg ‘ d-deg. H-free surplus
forest+1 forest cm 1 1 cd=Y?m
forest+2 forest-+1 c'm#/5 % % cd=2/3m

W, (r odd) Cr1 /mr/ D) o 22121 ed=(r+2)/@r+l)my,
K4,s K3,s C/m4/5 % % cd_2/3m.

4. Max-Cut in K,-free graphs. In this section we specialize Lemmas 3.3
and 3.5 to the case H = K, to prove Theorem 1.3. Let x(G) denote the chro-
matic number of a graph G, the minimum number of colors needed to properly color
the vertices of the graph so that no two adjacent vertices receive the same color. We
first obtain a nontrivial upper bound on the chromatic number of a K,-free graph G,
giving an lower bound (Lemma 4.4) on the Max-Cut of K,-free graphs. This lower
bound was implicit in [2], but we provide a proof for completeness. The lower bound
on the Max-Cut of general K,-free graphs enables us to apply Lemma 3.3 to give a
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lower bound on the Max-Cut of d-degenerate K,-free graphs per Theorem 1.3. The
following well known lemma gives a lower bound on the Max-Cut using the chromatic
number.

LEMMA 4.1. (see e.q. Lemma 2.1 of [2]) Given a graph G = (V, E) with m edges

and chromatic number x(G) < t, we have f(G) > (3 + 5)m.

Proof. Since x(G) < t, we can decompose V into independent subsets V =
Vi,...,V;. Partition the subsets randomly into two parts containing | 5] and [£] sub-

sets V;, respectively, to obtain a cut. The probability any edge is cut is w >

2
Ll 50 the result follows from linearity of expectation. ]

2t
LEMMA 4.2. Let r >3 and G = (V, E) be a K,-free graph on n vertices. Then,
x(G) < 4n(r=2)/(r=1)

Proof. We proceed by induction on n. For n < 477!, the statement is trivial
as the chromatic number is always at most the number of vertices. Now assume
G = (V,E) has n > 47! vertices and that x(G) < 4n(()r_2)/(r_1) for all K,-free graphs
on ng < n — 1 vertices. The off-diagonal Ramsey number R(r, s) satisfies R(r, s) <
(T;rf;z) < s"~! [14]. Hence, G has an independent set I of size s = [n'/("=1)]. The
induced subgraph G[V \ I] is K,-free and has fewer than n vertices, so its chromatic
number is at most 4(n — s)("=2/("=1)_ Hence, G' has chromatic number at most

1 +4(n_ S)(T._Q)/(,,._l) -1 —"—4’[1(7'_2)/(7‘_1) (1 B f)(T—Q)/(T‘—l)

n

(4.1) O a2/ g r-n/-) SO oy
- 3n

In (*), we used that ::f > %, that £ < i, and that (1 —z)* <1— ¢ fora > % and

S

n
z < i. In (xx), we used that s > 4 and hence % < nY/(=1_ This completes the
induction, completing the proof. 0

Remark 4.3. The upper bound on the off-diagonal Ramsey number R(r, /{:1/(’"_1))
has an extra logarithmic factor which suggests that the upper bound on x(G) of
Lemma 4.2 can be improved by a logarithmic factor with a more careful analysis.

LEMMA 4.4. If G is a K,.-free graph with at most n vertices and m edges, then

1 1
1@ = (2 + 8n(r2)/(r1)) -

Proof. This follows immediately via Lemma 4.1 and Lemma 4.2. 0

The above bounds allow us to prove Theorem 1.3.

Proof of Theorem 1.3. Let G be a d-degenerate K,-free graph and € = d-1teea
Let co be the parameter given by Lemma 3.3. Let ¢ = min(cq, ﬁ).

Applying Lemma 3.3 with parameter ¢, one of two properties hold. If (3.2) holds,
then

(4.2) f(G) > (; + 025> m > (; + cd_l+2r14) m
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as desired. If (3.3) holds, there exist graphs Gl, ..., Gy that are K,_;-free with at
most d vertices such that G; has at least ( edges n(G1) +---+n(Gr) > &5, and

G = 2 +§; (f(Gi) - m(fi)) |

For all i, we have

f(Gi) — 5 = Sn(Ga)T—2)D)
n(G) n(G;)  edn(Gy)
64en(G,)(r=3)/(r=2) = §4ed(r-3)/(r=2) 64

In the first inequality, we used Lemma 4.4. In the second inequality, we used that
m(Gi) > "(GE") In the third inequality, we used that n(G;) < d. Hence, as d(n(G1) +
-+ n(Gk)) > 2, we have as desired that

k
m m. - Em 1 a1
. — > — — > — — . .
(4.3) [(G) = 9 EZ > +388 > <2+Cd E 4) m d

Remark 4.5. As we already mentioned in the introduction, we can improve the
result of Theorem 1.3 in the case that r = 4 using Lemma 3.5. By Remark 3.7, as
H = K, falls under the case forest42, for an absolute ¢ > 0, we have f(G) > cmd=2/3
for d-degenerate K,-free graphs G.

5. Concluding Remarks. In this paper we presented an approach, based on
semidefinite programming (SDP), to prove lower bounds on Max-Cut and used it to
find large cuts in graphs with few triangles and in K,-free graphs. A closely related
problem of interest is bounding the Max-t-Cut of a graph, i.e. the largest ¢-colorable
(t-partite) subgraph of a given graph. Our results imply good lower bounds for this
problem as well. Indeed, by taking a cut for a graph G with m edges and surplus W,
one can produce a t-cut for G of size %m + Q(W) as follows. Let A, B be the two
parts of the original cut. If ¢ = 2s is even, simply split randomly both A, B into s
parts. If t = 2s + 1 is odd, then put every vertex of A randomly in the parts 1,...,s
with probability 2/(2s+1) and in the part 2s+1 with probability 1/(2s+1). Similarly,
put every vertex of B randomly in the parts s+ 1,...,2s with probability 2/(2s + 1)
and in the part 2s + 1 with probability 1/(2s 4+ 1). An easy computation (which we
omit here) shows that the expected size of the resulting t-cut is =2m + Q(W).

The main open question left by our work is Conjecture 1.4. Provmg this conjecture
will require some major new ideas. Even showing that any d-degenerate H-free graph
with m edges has a cut with surplus at least m/d'~° for some fixed § (independent
of H) is out of reach of current techniques.
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