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Abstract. For a graph G, let f(G) denote the size of the maximum cut in G. The problem5
of estimating f(G) as a function of the number of vertices and edges of G has a long history and6
was extensively studied in the last fifty years. In this paper we propose an approach, based on7
semidefinite programming (SDP), to prove lower bounds on f(G). We use this approach to find large8
cuts in graphs with few triangles and in Kr-free graphs.9
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1. Introduction. The celebrated Max-Cut problem asks for the largest bipartite12

subgraph of a graph G, i.e., for a partition of the vertex set of G into disjoint sets V113

and V2 so that the number of edges of G crossing V1 and V2 is maximal. This problem14

has been the subject of extensive research, both from a largely algorithmic perspective15

in computer science and from an extremal perspective in combinatorics. Throughout,16

let G denote a graph with n vertices and m edges with maximal cut of size f(G). The17

extremal version of Max-Cut problem asks to give bounds on f(G) solely as a function18

of m and n. This question was first raised more than fifty years ago by Erdős [10] and19

has attracted a lot of attention since then (see, e.g., [8, 11, 12, 1, 19, 5, 3, 20, 7, 21, 16]20

and their references).21

It is well known that every graph G with m edges has a cut of size at least m/2.22

To see this, consider a random partition of vertices of the vertices G into two parts23

V1, V2 and estimate the expected number of edges between V1 and V2. On the other24

hand, already in 1960’s Erdős [10] observed that the constant 1/2 cannot be improved25

even if we consider very restricted families of graphs, e.g., graphs that contain no short26

cycles. Therefore the main question, which has been studied by many researchers, is27

to estimate the error term f(G)−m/2, which we call surplus, for various families of28

graphs G.29

The elementary bound f(G) ≥ m/2 was improved by Edwards [8, 9] who showed30

that every graph with m edges has a cut of size at least m
2 +

√
8m+1−1

8 . This result31

is easily seen to be tight in case G is a complete graph on an odd number of vertices,32
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that is, whenever m =
(
k
2

)
for some odd integer k. Estimates on the second error33

term for other values of m can be found in [4] and [5].34

Although the
√
m error term is tight in general, it was observed by Erdős and35

Lovász [11] that for triangle-free graph it can be improved to at least m2/3+o(1). This36

naturally yields a motivating question: what is the best surplus which can always be37

achieved if we assume that our family of graphs is H-free, i.e., no graph contains a38

fixed graph H as a subgraph. It is not difficult to show (see, e.g. [2]) that for every39

fixed graph H there is some ε = ε(H) > 0 such that f(G) ≥ m
2 + Ω(m1/2+ε) for all40

H-free graphs with m edges. However, the problem of estimating the error term more41

precisely is not easy, even for relatively simple graphs H. It is plausible to conjecture42

(see [3]) that for every fixed graph H there is a constant cH such that every H-free43

graph G with m edges has a cut with surplus at least Θ(mcH ), i.e., there is both a44

lower bound and an infinite sequence of example showing that exponent cH can not45

be improved. This conjecture is very difficult. Even in the case when H is a triangle,46

determining the correct error term took almost twenty years. Following the works47

of [11, 18, 19], Alon [1] proved that every m-edge triangle free graph has a cut with48

surplus of order m4/5 and that this is tight up to constant factors. There are several49

other forbidden graphs H for which we know quite accurately the error term for the50

extremal Max-Cut problem in H-free graphs. For example, it was proved in [3], that51

if H = Cr for r = 4, 6, 10 then cH = r+1
r+2 . The answer is also known in the case when52

H is a complete bipartite graph K2,s or K3,s (see [3] for details).53

New approach to Max-Cut using semidefinite programming.. Many extremal re-54

sults for the Max-Cut problem rely on quite elaborate probabilistic arguments. A well55

known example of such an argument is a proof by Shearer [19] that if G is a triangle-56

free graph with n vertices and m edges, and if d1, d2, . . . , dn are the degrees of its57

vertices, then f(G) ≥ m
2 +O(

∑n
i=1

√
di). The proof is quite intricate and is based on58

first choosing a random cut and then randomly redistributing some of the vertices,59

depending on how many their neighbors are on the same side as the chosen vertex60

in the initial cut. Shearer’s arguments were further extended, with more technically61

involved proofs, in [3] to show that the same lower bound remains valid for graphs G62

with relatively sparse neighborhoods (i.e., graphs which locally have few triangles).63

In this article we propose a different approach to give lower bounds on the64

Max-Cut of sparse H-free graphs using approximation by semidefinite programming65

(SDP). This approach is intuitive and computationally simple. The main idea was66

inspired by the celebrated approximation algorithm of Goemans and Williamson [15]67

of the Max-Cut: given a graph G with m edges, we first construct an explicit solution68

for the standard Max-Cut SDP relaxation of G which has value at least ( 1
2 +W )m for69

some positive surplus W . We then apply a Goemans-Williamson randomized round-70

ing, based on the sign of the scalar product with random unit vector, to extract a cut71

in G whose surplus is within constant factor of W . Using this approach we prove the72

following result.73

Theorem 1.1. Let G = (V,E) be a graph with n vertices and m edges. For every74

i ∈ [n], let Vi be any subset of neighbours of vertex i and εi ≤ 1√
|Vi|

. Then,75

f(G) ≥ m

2
+

n∑
i=1

εi|Vi|
2π

−
∑

(i,j)∈E

εiεj |Vi ∩ Vj |
2

.(1.1)76

77

This results implies Shearer’s bound [19]. To see this, set Vi to the neighbors of i and78

εi = 1√
di

for all i. Then, if G is triangle-free graph, then |Vi ∩ Vj | = 0 for every pair79
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of adjacent vertices i, j.80

The fact that we apply Goemans-Williamson SDP rounding in this setting is per-81

haps surprising for a few reasons. In general, our result obtains a surplus of Ω(W )82

from an SDP solution with surplus W , which is not possible in general. The best cut83

that can be guaranteed from any kind of rounding of a Max-Cut SDP solution with84

value ( 1
2 +W )m is ( 1

2 +Ω( W
logW ))m (see [17]). Furthermore, this is achieved using the85

RPR2 rounding algorithm, not the Geomans-Williamson rounding algorithm. Nev-86

ertheless, we show that our explicit Max-Cut solution has additional properties that87

circumvents these issues and permits a better analysis.88

New lower bound for Max-Cut of triangle sparse graphs. Using Theorem 1.1, we89

give a new result on the Max-Cut of triangle sparse graphs that is more convenient90

to use than previous similar results. A graph G is d-degenerate if there exists an91

ordering of the vertices 1, . . . , n such that vertex i has at most d neighbors j < i.92

Equivalently, a graph is d-degenerate if every induced subgraph has a vertex of degree93

at most d. Degeneracy is a broader notion of graph sparseness than maximum degree:94

all maximum degree d graphs are d-degenerate, but the star graph is 1-degenerate95

while having maximum degree n−1. Theorem 1.1 gives the following useful corollary96

on the Max-Cut of d-degenerate graphs.97

Corollary 1.2. Let ε ≤ 1√
d

. Let G be a d-degenerate graph with m edges and t98

triangles. Then99

f(G) ≥ m

2
+
εm

2π
− ε2t

2
.(1.2)100

101

As all max-degree-d graphs are d-degenerate, (1.2) holds in particular for max-degree-102

d graphs. To see the corollary, let 1, . . . , n be an ordering of the vertices such that103

any i has at most d neighbors j < i, and let Vi be this set of neighbors. Let εi = ε for104

all i. In this way,
∑
i |Vi| counts every edge exactly once and

∑
(i,j)∈E |Vi∩Vj | counts105

every triangle exactly once, and the result follows. This shows that graphs with few106

triangles have cuts with surplus similar to triangle-free graphs.107

This result is new and more convenient to use than existing results in this vein,108

because it relies only on the global count of the number of triangles, rather than a109

local triangle sparseness property assumed by prior results. For example, it was shown110

that (using Lemma 3.3 of [3]) a d-degenerate graph with a local triangle-sparseness111

property, namely that every large induced subgraph with a common neighbor is sparse,112

has Max-Cut at least m
2 + Ω( m√

d
). However, we can achieve the same result with113

only the guarantee that the global number of triangles is small. In particular, when114

there are at most O(m
√
d) triangles, which is always the case with the local triangle-115

sparseness assumption above, setting ε = Θ( 1√
d
) in Corollary 1.2 gives that the Max-116

Cut is again at least m
2 + Ω( m√

d
).117

Corollary: Lower bounds for Max-Cut of H-free degenerate graphs.. We illustrate118

usefulness of the above results by giving the following lower bound on the Max-Cut119

of Kr-free graphs.120

Theorem 1.3. Let r ≥ 3. There exists a constant c = c(r) > 0 such that, for all121

Kr-free d-degenerate graphs G with m edges,122

f(G) ≥
(

1

2
+

c

d1−1/(2r−4)

)
m.(1.3)123

124

Lower bounds such as Theorem 1.3 giving a surplus of the form c · mdα are more fine-125

grained than those that depend only on the number of edges. Accordingly, they are126
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useful for obtaining lower bounds the Max-Cut independent of the degeneracy: many127

tight Max-Cut lower bounds in H-free graphs of the form m
2 +cmα first establish that128

f(G) ≥ m
2 + c · m√

d
for all H-free graphs, and their results follow by case-working on129

the degeneracy. [3]130

We note that Theorem 1.3 is stronger than the result in [21], which says that131

Kr-free graphs have surplus at least Ω̃(m(r−1)/(2r−3)). Theorem 1.3 is stronger than132

[21, Theorem 1.2] both in that it is more fine grained, depending on the degeneracy d,133

and that when one plugs in d ≤ 2
√
m, we get a stronger bound of Ω(m(2r−3)/(4r−8)).134

In the case of r = 4 one can use our arguments together with Alon’s result on135

Max-Cut in triangle-free graphs to improve Theorem 1.3 further to m/2 + cm/d2/3.136

While Theorem 1.3 gives nontrivial bounds for Kr-free graphs, we believe that a137

stronger statement is true and propose the following conjecture.138

Conjecture 1.4. For any graph H, there exists a constant c = c(H) > 0 such139

that, for all H-free d-degenerate graphs with m ≥ 1 edges,140

f(G) ≥
(

1

2
+

c√
d

)
m.(1.4)141

142

Our Theorem 1.1 implies this conjecture for various graphs H, e.g., K2,s,K3,s, Cr143

and for any graph H which contains a vertex whose deletion makes it acyclic. This was144

already observed in [3] using the weaker, locally triangle-sparse form of Corollary 1.2145

described earlier.146

Conjecture 1.4 provides a natural route to proving a closely related conjecture147

proposed by Alon, Bollobás, Krivelevich, and Sudakov [2].148

Conjecture 1.5 ([2]). For any graph H, there exists constants ε = ε(H) > 0149

and c = c(H) > 0 such that, for all H-free graphs with m ≥ 1 edges,150

f(G) ≥ m

2
+ cm3/4+ε.(1.5)151

152

Since every graph with m edges is obviously
√

2m-degenerate, the Conjecture 1.4153

implies immediately a weaker form of Conjecture 1.5 with surplus of order m3/4. With154

some extra technical work we can show that it actually implies the full conjecture,155

achieving a surplus of m3/4+ε for any graph H (for brevity, we omit the proof, which156

can be found in [6]). For many graphs H for which Conjecture 1.5 is known, (1.4) was157

implicitly established for H-free graphs [3], making Conjecture 1.4 a plausible stepping158

stone to Conjecture 1.5. As further evidence of the plausibility of Conjecture 1.4, we159

show that Conjecture 1.5 implies a weaker form of Conjecture 1.4, namely that any160

H-free graph has Max-Cut m
2 + cm · d−5/7. Using similar techniques, we can obtain161

nontrivial, unconditional results on the Max-Cut of d-degenerate H-free graphs for162

particular graphs H.163

Conjecture 1.4, if true, gives a surplus of Ω( m√
d
) that is optimal up to a mul-164

tiplicative constant factor for every fixed graph H which contains a cycle. To see165

this, consider an Erdős-Rényi random graph G(n, p) with p = n−1+δ. Using stan-166

dard Chernoff-type estimates, one can easily show that with high probability that167

this graph is O(np)-degenerate and its Max-Cut has size at most 1
4

(
n
2

)
p+ O(n

√
np).168

Moreover, if δ = δ(H) > 0 is small enough, then with high probability G(n, p) contains169

only very few copies of H which can be destroyed by deleting few vertices, without170

changing the degeneracy and surplus of the Max-Cut.171
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2. Lower bounds for Max-Cut using SDP. In this section we give a lower172

bound for f(G) in graphs with few triangles, showing Theorem 1.1. To prove this173

result, we make heavy use of the SDP relaxation of the Max-Cut problem, formulated174

below for a graph G = (V,E):175

maximize
∑

(i,j)∈E

1

2
(1− 〈v(i), v(j)〉)176

subject to ‖v(i)‖2 = 1 ∀i ∈ V.(2.1)177178

We leverage the classical Goemans-Williamson [15] rounding algorithm which that179

gives an integral solution from a vector solution to the Max-Cut SDP.180

Proof of Theorem 1.1. For i ∈ [n], define ṽ(i) ∈ Rn by181

ṽ
(i)
j =

 1 i = j
−εi j ∈ Vi
0 otherwise.

.(2.2)182

183

Then 1 ≤ ‖ṽ(i)‖2 ≤ 1 + ε2i |Vi| ≤ 2 for all i. For i ∈ [n], let v(i)
def
= ṽ(i)

‖ṽ(i)‖ ∈ Rn. For184

each edge (i, j) with j ∈ Vi, we have185

v
(i)
i v

(j)
i =

1

‖ṽ(i)‖
· −εj
‖ṽ(j)‖

≤ −εj
2
.(2.3)186

187

For k ∈ Vi∩Vj , we have v
(i)
k v

(j)
k ≤ εiεj . For k 6∈ {i, j}∪ (Vi∩Vj), we have v

(i)
k v

(j)
k = 0188

as v
(i)
k = 0 or v

(j)
k = 0. Thus, for all edges (i, j),189

〈v(i), v(j)〉 ≤ −εi
2
1Vi(j)−

εj
2
1Vj (i) + |Vi ∩ Vj |εiεj .(2.4)190

191

Here, 1S(i) is 1 if i ∈ S and 0 otherwise. Vectors v(1), . . . , v(n) form a vector192

solution to the SDP (2.1). We now round this solution using the Goemans-Williamson193

[15] rounding algorithm. Let w denote a uniformly random unit vector, A = {i ∈ [n] :194

〈v(i), w〉 ≥ 0}, and B = [n] \A. Note that the angle between vectors v(i), v(j) is equal195

to cos−1(〈v(i), v(j)〉), so the probability an edge (i, j) is cut is196

Pr[(i, j) cut] =
cos−1(〈v(i), v(j)〉)

π
197

=
1

2
− sin−1(〈v(i), v(j)〉)

π
198

≥ 1

2
− 1

π
sin−1

(
|Vi ∩ Vj |εiεj −

εi
2
1Vi(j)−

εj
2
1Vj (i)

)
199

≥ 1

2
− 1

π
·
(π

2
· |Vi ∩ Vj |εiεj −

εi
2
1Vi(j)−

εj
2
1Vj (i)

)
200

=
1

2
+
εi
2π

1Vi(j) +
εj
2π

1Vj (i)−
|Vi ∩ Vj |εiεj

2
.201

202

In the last inequality, we used that, for a, b ∈ [0, 1], we have sin−1(a − b) ≤ π
2 a − b.203

This is true as sin−1(x) ≤ π
2x when x is positive and sin−1(x) ≤ x when x is negative.204
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Thus, the expected size of the cut given by A tB is, by linearity of expectation,205 ∑
(i,j)∈E

Pr[(i, j) cut] ≥
∑

(i,j)∈E
i<j

(
1

2
+
εi
2π

1Vi(j) +
εj
2π

1Vj (i)−
|Vi ∩ Vj |εiεj

2

)
206

=
m

2
+

n∑
i=1

|Vi|εi
2π

−
∑

(i,j)∈E

|Vi ∩ Vj |εiεj
2

.(2.5)207

208

In the proof of Theorem 1.3 we use the following consequence of Corollary 1.2.209

Corollary 2.1. There exists an absolute constant c > 0 such that the following210

holds. For all d ≥ 1 and ε ≤ 1√
d

, if a d-degenerate graph G = (V,E) has m edges and211

at most m
8ε triangles then212

f(G) ≥
(

1

2
+ cε

)
·m.(2.6)213

214

3. Decomposition of degenerate graphs. In a graph G = (V,E), let n(G)215

and m(G) denote the number of vertices and edges, respectively. For a vertex subset216

V ′ ⊂ V , let G[V ′] denote the subgraph induced by V ′. We show that d-degenerate217

graphs with few triangles have small subsets of neighborhoods with many edges.218

Lemma 3.1 (). Let d ≥ 1 and ε > 0, and let G = (V,E) be a d-degenerate graph219

with at least m(G)
ε triangles. Then there exists a subset V ′ of at most d vertices with220

a common neighbor in G such that the induced subgraph G[V ′] has at least |V
′|
ε edges.221

Proof. Since G is d-degenerate, we fix an ordering 1, . . . , n of the vertices such222

that d<(i) ≤ d for all i ∈ [n], where d<(i) denotes the number of neighbors j < i of i.223

Then, if t<(i) denotes the number of triangles {i, j, k} of G where j, k < i, we have224

∑
i

t<(i) = t(G) ≥ m(G)

ε
=

n∑
i=1

d<(i)

ε
.(3.1)225

226

Hence, there must exist some i such that t<(i) ≥ d<(i)
ε . Let V ′ denote the neighbors227

of i with index less than i. By definition, the vertices of V ′ have common neighbor228

i. Additionally, G[V ′] has at least d<(i)
ε edges and d<(i) ≤ d vertices, proving the229

lemma.230

We use this lemma to partition the vertices of any d-degenerate graph in a useful231

way.232

Lemma 3.2. Let ε > 0. Let G = (V,E) be a d-degenerate graph on n vertices233

with m edges. Then there exists a partition V1, . . . , Vk+1 of the vertex set V with the234

following properties.235

1. For i = 1, . . . , k, the vertex subset Vi has at most d vertices and has a common236

neighbor, and the induced subgraph G[Vi] has at least |Vi|ε edges.237

2. The induced subgraph G[Vk+1] has at most m(G[Vk+1])
ε triangles.238

Proof. We construct the partition iteratively. Let V ∗0 = V . For i ≥ 1, we partition239

the vertex subset V ∗i−1 into Vi t V ∗i as follows. If G[V ∗i−1] has at least
m(G[V ∗i−1])

ε240

triangles, then by applying Lemma 3.1 to the induced subgraph G[V ∗i−1], there exists241

a vertex subset Vi with a common neighbor in V ∗i−1 such that |Vi| ≤ d and the induced242
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subgraph G[Vi] has at most |Vi|ε edges. In this case, let V ∗i
def
= V ∗i−1 \ Vi. Let k denote243

the maximum index such that V ∗k is defined, and let Vk+1
def
= V ∗k . By construction,244

V1, . . . , Vk satisfy the desired conditions. By definition of k, the induced subgraph245

G[V ∗k ] has at most
m(G[V ∗k ])

ε triangles, so for Vk+1 = V ∗k , we obtain the desired result.246

3.1. Large Max-Cut from decompositions. For a d-degenerate graph G =247

(V,E), in a partition V1, . . . , Vk+1 of V given by Lemma 3.2, the induced subgraph248

G[Vk+1] has few triangles, and thus, by Corollary 1.2, has a cut with good surplus.249

This allows us to obtain the following technical result regarding the Max-Cut of H-free250

d-degenerate graphs.251

Lemma 3.3. There exists an absolute constant c > 0 such that the following holds.252

Let 0 < ε < 1√
d

. For any H-free d-degenerate graph G = (V,E), one of the following253

holds:254

• We have255

f(G) ≥
(

1

2
+ cε

)
m.(3.2)256

257

• There exist graphs G1, . . . , Gk such that five conditions hold: (i) graphs Gi are258

H ′-free for all i and all graphs H ′ obtained by deleting one vertex from H, (ii)259

n(Gi) ≤ d for all i, (iii) m(Gi) ≥ n(Gi)
8ε for all i, (iv) n(G1)+· · ·+n(Gk) ≥ m

6d ,260

and (v)261

f(G) ≥ m(G)

2
+

k∑
i=1

(
f(Gi)−

m(Gi)

2

)
.(3.3)262

263

Proof. Let c1 < 1 be the parameter given by Corollary 2.1. Let c = c1
6 . Let264

G = (V,E) be a d-degenerate H-free graph. Applying Lemma 3.2 with parameter 8ε,265

we can find a partition V1, . . . , Vk+1 of the vertex set V with the following properties.266

1. For i = 1, . . . , k, the vertex subset Vi has at most d vertices and has a common267

neighbor, and the induced subgraph G[Vi] at least |Vi|8ε edges.268

2. The subgraph G[Vk+1] has at most m(G[Vk+1])
8ε triangles.269

For i = 1, . . . , k + 1, let Gi
def
= G[Vi] and let mi

def
= m(Gi). For i = 1, . . . , k, since G270

is H-free and each Vi is a subset of some vertex neighborhood in G, the graphs Gi271

are H ′-free for all H ′ obtained by deleting one vertex from H. For i = 1, . . . , k, fix272

a maximal cut of Gi with associated vertex partition Vi = Ai t Bi. By the second273

property above, the graph Gk+1 has at most mk+1

8ε triangles. Applying Corollary 2.1274

with parameter ε, we can find a cut of Gk+1 of size at least ( 1
2 + c1ε)mk+1 with275

associated vertex partition Vk+1 = Ak+1 tBk+1.276

We now construct a cut of G by randomly combining the cuts obtained above for277

each Gi. Independently, for each i = 1, . . . , k + 1, we add either Ai or Bi to vertex278

set A, each with probability 1
2 . Setting B = V \A, gives a cut of G. As V1, . . . , Vk+1279

partition V , each of the m− (m1 + · · ·+mk+1) edges that is not in one of the induced280

graphs G1, . . . , Gk+1 has exactly one endpoint in each of A,B with probability 1/2.281

This allows us to compute the expected size of the cut (a lower bound on f(G) as282
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there is some instantiation of this random process that achieves this expected size).283

f(G) ≥ 1

2
(m− (m1 + · · ·+mk+1)) +

(
1

2
+ c1ε

)
·mk+1 +

k∑
i=1

f(Gi)284

=
m

2
+ c1εmk+1 +

k∑
i=1

(
f(Gi)−

mi

2

)
.(3.4)285

286

We bound (3.4) based on the distribution of edges in G in 3 cases:287

• mk+1 ≥ m
6 . Since f(Gi) ≥ mi

2 for all i = 1, . . . , k, (3.2) holds:288

f(G) ≥ m

2
+ c1εmk+1 ≥

(
1

2
+ cε

)
·m.289

290

• The number of edges between V1 ∪ · · · ∪ Vk and Vk+1 is at least 2m
3 . Then,291

the cut given by vertex partition V = A′ t B′ with A′ = V1 ∪ · · · ∪ Vk and292

B′ = Vk+1 has at least 2m
3 edges, in which case f(G) ≥ 2m

3 > ( 1
2 + c1ε

6 ) ·m,293

so (3.2) holds.294

• G′ = G[V1 ∪ · · · ∪ Vk] has at least m
6 edges. We show (3.3) holds. By con-295

struction, for i = 1, . . . , k, the graph Gi is H ′-free for all graphs H ′ obtained296

by deleting one vertex from H, has at most d vertices, and has at least mi
8ε297

edges. Since G is d-degenerate, G′ is as well, so298

m

6
≤ m(G′) ≤ d · n(G′) = d ·

k∑
i=1

n(Gi).(3.5)299

300

Hence n(G1) + · · ·+ n(Gk) ≥ m
6d . Lastly, by (3.4), we have301

f(G) ≥ m

2
+

k∑
i=1

(
f(Gi)−

mi

2

)
.302

303

This covers all possible cases, and in each case we showed either (3.2) or (3.3) holds.304

Remark 3.4. In Corollary 2.1 we can take c = 1
11 , and in Lemma 3.3 we can take305

c = 1
66 .306

Lemma 3.3 allows us to convert Max-Cut lower bounds on H ′-free graphs to307

Max-Cut lower bounds on H-free d-degenerate graphs.308

Lemma 3.5. Let H be a graph. Suppose that there exist constants a = a(H) ∈309

[ 12 , 1] and c′ = c′(H) > 0 such that for all graphs G with m′ ≥ 1 edges that are H ′-free310

for all graphs H ′ obtained by removing one vertex of H, we have f(G) ≥ m′

2 +c′ ·(m′)a.311

Then there exists a constant c = c(H) > 0 such that for all H-free d-degenerate graphs312

G with m ≥ 1 edges,313

f(G) ≥
(

1

2
+ cd−

2−a
1+a

)
·m.314

315

Proof. Let c2 be the parameter in Lemma 3.3. We may assume without loss of316

generality that c′ ≤ 1. Let G be a d-degenerate H-free graph. Let ε
def
= c′d−

2−a
1+a <317

d−1/2 and c
def
= min(c′c2,

c′

48 ).318
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Applying Lemma 3.3 with parameter ε, either (3.2) or (3.3) holds. If (3.2) holds,
then, as desired,

f(G) ≥
(

1

2
+ c2ε

)
m ≥

(
1

2
+ cd−

2−a
1+a

)
m.

Else (3.3) holds. Let G1, . . . , Gk be the induced subgraphs satisfying the properties319

in Lemma 3.3, so that G1, . . . , Gk are H ′-free for all graphs H ′ obtained by removing320

a vertex from H, and321

f(G) ≥ m

2
+

k∑
i=1

(
f(Gi)−

m(Gi)

2

)
322

≥ m

2
+

k∑
i=1

c′ ·m(Gi)
a.323

324

For all i, we have325

c′ ·m(Gi)
a

(∗)
≥ c′ε

8ε1+a
· n(Gi)

a
(∗∗)
≥ εd

8(c′)a
· n(Gi)

(+)

≥ εd

8
· n(Gi),326

327

where (∗) follows since m(Gi) ≥ n(Gi)
8ε , (∗∗) follows since n(Gi)

a−1 ≥ da−1 and328

ε1+a = (c′)1+ada−2, and (+) follows since c′ ≤ 1. Hence, as n(G1)+ · · ·+n(Gk) ≥ m
6d ,329

we have330

f(G) ≥ m

2
+ εd

k∑
i=1

n(Gi)

8
≥ m

2
+
εm

48
≥
(

1

2
+ cd−

2−a
1+a

)
·m,331

332

as desired.333

Remark 3.6. If Conjecture 1.5 is true, then applying Lemma 3.5 with an arbitrary334

H and a = 3/4 yields that f(G) ≥ m
2 + cm · d−5/7 for all d-degenerate H-free graphs.335

Remark 3.7. By repeatedly applying Lemma 3.5 with results from [3], we obtain336

nontrivial surplus lower bounds for d-degenerate H-free graphs, given in the following337

table. Here, forest+1 means that H is some forbidden subgraph such that one vertex338

can be removed from H to give a forest, and forest+2 means that two vertices can be339

removed to give a forest. As an example, for all s > 0 there exists c = c(s) such that340

any d-degenerate K4,s-free graph G always satisfies f(G) ≥ m
2 + cd−2/3m.341

H H ′ H ′-free surplus [3] a 2−a
1+a d-deg. H-free surplus

forest+1 forest c′m 1 1
2 cd−1/2m

forest+2 forest+1 c′m4/5 4
5

2
3 cd−2/3m

Wr (r odd) Cr−1 c′mr/(r+1) r
r+1

r+2
2r+1 cd−(r+2)/(2r+1)m

K4,s K3,s c′m4/5 4
5

2
3 cd−2/3m.

342

4. Max-Cut in Kr-free graphs. In this section we specialize Lemmas 3.3343

and 3.5 to the case H = Kr to prove Theorem 1.3. Let χ(G) denote the chro-344

matic number of a graph G, the minimum number of colors needed to properly color345

the vertices of the graph so that no two adjacent vertices receive the same color. We346

first obtain a nontrivial upper bound on the chromatic number of a Kr-free graph G,347

giving an lower bound (Lemma 4.4) on the Max-Cut of Kr-free graphs. This lower348

bound was implicit in [2], but we provide a proof for completeness. The lower bound349

on the Max-Cut of general Kr-free graphs enables us to apply Lemma 3.3 to give a350
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lower bound on the Max-Cut of d-degenerate Kr-free graphs per Theorem 1.3. The351

following well known lemma gives a lower bound on the Max-Cut using the chromatic352

number.353

Lemma 4.1. (see e.g. Lemma 2.1 of [2]) Given a graph G = (V,E) with m edges354

and chromatic number χ(G) ≤ t, we have f(G) ≥ ( 1
2 + 1

2t )m.355

Proof. Since χ(G) ≤ t, we can decompose V into independent subsets V =356

V1, . . . , Vt. Partition the subsets randomly into two parts containing b t2c and d t2e sub-357

sets Vi, respectively, to obtain a cut. The probability any edge is cut is bt/2c·dt/2e
(t2)

≥358

t+1
2t , so the result follows from linearity of expectation.359

Lemma 4.2. Let r ≥ 3 and G = (V,E) be a Kr-free graph on n vertices. Then,

χ(G) ≤ 4n(r−2)/(r−1).

Proof. We proceed by induction on n. For n ≤ 4r−1, the statement is trivial360

as the chromatic number is always at most the number of vertices. Now assume361

G = (V,E) has n > 4r−1 vertices and that χ(G) ≤ 4n
(r−2)/(r−1)
0 for all Kr-free graphs362

on n0 ≤ n − 1 vertices. The off-diagonal Ramsey number R(r, s) satisfies R(r, s) ≤363 (
r+s−2
s−1

)
≤ sr−1 [14]. Hence, G has an independent set I of size s = bn1/(r−1)c. The364

induced subgraph G[V \ I] is Kr-free and has fewer than n vertices, so its chromatic365

number is at most 4(n− s)(r−2)/(r−1). Hence, G has chromatic number at most366

1 + 4(n− s)(r−2)/(r−1) = 1 + 4n(r−2)/(r−1)
(

1− s

n

)(r−2)/(r−1)
367

(∗)
≤ 1 + 4n(r−2)/(r−1) − 4n(r−2)/(r−1) · s

3n

(∗∗)
< 4n(r−2)/(r−1)(4.1)368

369

In (∗), we used that r−2
r−1 ≥

1
2 , that s

n ≤
1
4 , and that (1 − x)a ≤ 1 − x

3 for a ≥ 1
2 and370

x ≤ 1
4 . In (∗∗), we used that s ≥ 4 and hence 3s

4 < n1/(r−1). This completes the371

induction, completing the proof.372

Remark 4.3. The upper bound on the off-diagonal Ramsey number R(r, k1/(r−1))373

has an extra logarithmic factor which suggests that the upper bound on χ(G) of374

Lemma 4.2 can be improved by a logarithmic factor with a more careful analysis.375

Lemma 4.4. If G is a Kr-free graph with at most n vertices and m edges, then376

f(G) ≥
(

1

2
+

1

8n(r−2)/(r−1)

)
m.377

378

Proof. This follows immediately via Lemma 4.1 and Lemma 4.2.379

The above bounds allow us to prove Theorem 1.3.380

Proof of Theorem 1.3. Let G be a d-degenerate Kr-free graph and ε = d−1+
1

2r−4 .381

Let c2 be the parameter given by Lemma 3.3. Let c = min(c2,
1

388 ).382

Applying Lemma 3.3 with parameter ε, one of two properties hold. If (3.2) holds,383

then384

f(G) ≥
(

1

2
+ c2ε

)
m ≥

(
1

2
+ cd−1+

1
2r−4

)
m(4.2)385

386
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as desired. If (3.3) holds, there exist graphs G1, . . . , Gk that are Kr−1-free with at387

most d vertices such that Gi has at least n(Gi)
8ε edges, n(G1) + · · ·+ n(Gk) ≥ m

6d , and388

f(G) ≥ m

2
+

k∑
i=1

(
f(Gi)−

m(Gi)

2

)
.389

390

For all i, we have391

f(Gi)−
m(Gi)

2
≥ m(Gi)

8n(Gi)(r−3)/(r−2)
392

≥ n(Gi)

64εn(Gi)(r−3)/(r−2)
≥ n(Gi)

64εd(r−3)/(r−2)
=

εdn(Gi)

64
.393

394

In the first inequality, we used Lemma 4.4. In the second inequality, we used that395

m(Gi) ≥ n(Gi)
8ε . In the third inequality, we used that n(Gi) ≤ d. Hence, as d(n(G1) +396

· · ·+ n(Gk)) ≥ m
6 , we have as desired that397

f(G) ≥ m

2
+

k∑
i=1

εdn(Gi)

64
≥ m

2
+
εm

388
≥
(

1

2
+ cd−1+

1
2r−4

)
·m.(4.3)398

399

Remark 4.5. As we already mentioned in the introduction, we can improve the400

result of Theorem 1.3 in the case that r = 4 using Lemma 3.5. By Remark 3.7, as401

H = K4 falls under the case forest+2, for an absolute c > 0, we have f(G) ≥ cmd−2/3402

for d-degenerate K4-free graphs G.403

5. Concluding Remarks. In this paper we presented an approach, based on404

semidefinite programming (SDP), to prove lower bounds on Max-Cut and used it to405

find large cuts in graphs with few triangles and in Kr-free graphs. A closely related406

problem of interest is bounding the Max-t-Cut of a graph, i.e. the largest t-colorable407

(t-partite) subgraph of a given graph. Our results imply good lower bounds for this408

problem as well. Indeed, by taking a cut for a graph G with m edges and surplus W ,409

one can produce a t-cut for G of size t−1
t m + Ω(W ) as follows. Let A,B be the two410

parts of the original cut. If t = 2s is even, simply split randomly both A,B into s411

parts. If t = 2s+ 1 is odd, then put every vertex of A randomly in the parts 1, . . . , s412

with probability 2/(2s+1) and in the part 2s+1 with probability 1/(2s+1). Similarly,413

put every vertex of B randomly in the parts s+ 1, . . . , 2s with probability 2/(2s+ 1)414

and in the part 2s + 1 with probability 1/(2s + 1). An easy computation (which we415

omit here) shows that the expected size of the resulting t-cut is t−1
t m+ Ω(W ).416

The main open question left by our work is Conjecture 1.4. Proving this conjecture417

will require some major new ideas. Even showing that any d-degenerate H-free graph418

with m edges has a cut with surplus at least m/d1−δ for some fixed δ (independent419

of H) is out of reach of current techniques.420
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