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ABSTRACT: Widespread availability of protein sequence-fitness data would revolutionize both our biochemical understanding of 
proteins and our ability to engineer them. Unfortunately, even though thousands of protein variants are generated and evaluated for 
fitness during a typical protein engineering campaign, most are never sequenced, leaving a wealth of potential sequence-fitness 
information untapped. Primarily, this is because sequencing is unnecessary for many protein engineering strategies; the added cost 
and effort of sequencing is thus unjustified. It also results from the fact that, even though many lower cost sequencing strategies have 
been developed, they often require at least some sequencing or computational resources, both of which can be barriers to access. 
Here, we present every variant sequencing (evSeq), a method and collection of tools/standardized components for sequencing a 
variable region within every variant gene produced during a protein engineering campaign at a cost of cents per variant. evSeq was 
designed to democratize low-cost sequencing for protein engineers and, indeed, anyone interested in engineering biological systems. 
Execution of its wet-lab component is simple, requires no sequencing experience to perform, relies only on resources and services 
typically available to biology labs, and slots neatly into existing protein engineering workflows. Analysis of evSeq data is likewise 
made simple by its accompanying software (found at github.com/fhalab/evSeq, documentation at fhalab.github.io/evSeq), which can 
be run on a personal laptop and was designed to be accessible to users with no computational experience. Low-cost and easy to use, 
evSeq makes collection of extensive protein variant sequence-fitness data practical.   

INTRODUCTION 

Engineered proteins are valuable tools across the biological 
and chemical sciences and have revolutionized industries 
ranging from food to fuels, pharmaceuticals, and textiles by 
providing green and efficient protein solutions to challenging 
chemical problems.1 Over the course of a protein engineering 
campaign, hundreds to thousands or more protein variants will 
be constructed and have their fitnesses (level of, e.g., 
thermostability, catalytic activity, substrate binding, etc.) 
evaluated. Notably, sequence information is typically not 
gathered alongside the functional information, even though it 
could provide useful biochemical insight.2–4 This is largely 
because many engineering strategies can be applied without 
sequencing. For example, during a typical directed evolution 
(DE) experiment, often only the best-performing variant or 
variants are sequenced in each round of mutagenesis and 
screening; sequencing every variant is viewed as an 
unnecessary expense. Given the massive amount of functional 
data gathered during a typical DE campaign, however, if 
sequencing were performed for the variants generated during 
these experiments, the resultant large datasets of sequence-
fitness information could be revolutionary for biological, 

biochemical, and biocatalytic research. This is especially true 
for data-driven protein engineering strategies such as machine 
learning (ML), the development of which has benefitted 
tremendously from large sequence-fitness datasets made 
available by strategies like deep mutational scanning (DMS) 
and in databases like ProtaBank.5–16  

Unfortunately, the standard sequencing strategy employed 
during DE—Sanger sequencing—is too expensive for 
sequencing all variants tested during a round of evolution.17 
Sanger sequencing is ubiquitous due to ease of sample 
preparation and ready availability of sequencing providers. 
However, the cost of Sanger sequencing scales linearly with the 
number of samples (Supplemental Figure S1). Thus, while the 
cost of sequencing just the top variants in a round of DE is 
minor, sequencing the hundreds or thousands of variants 
generated over the full engineering endeavor is not. Ideally, any 
new approach to sequencing during a protein engineering 
campaign would be comparable in cost, effort, and accessibility 
to that of sequencing just the top variants by Sanger sequencing. 
Here we present a collection of standardized and accessible 
protocols, components, and software that accomplishes this 
goal. This collection, which we call every variant sequencing 
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(evSeq), democratizes barcode sequencing strategies and 
expands on services made available by multiplexed next-
generation sequencing (NGS) providers to allow amplicon 
sequencing of a region of interest within every variant produced 
during a round of DE at a cost of cents per variant.18,19 Sample 
preparation for evSeq is simple, and the method requires no 
experience with NGS to perform, relies only on resources and 
services typically available to biology labs, and slots neatly into 
existing protein engineering experimental workflows. The 
accompanying software for analysis of evSeq data (found at 
github.com/fhalab/evSeq, documentation at 
fhalab.github.io/evSeq) was designed to be accessible to users 
with no computational experience and can be run on a personal 
laptop.  

In this paper, we detail the underlying strategies, protocol, 
and potential applications of evSeq. We begin by describing the 
strategies employed by evSeq to extend multiplexed NGS for 
sequencing protein variant libraries in a way that reduces both 
cost and effort. We then describe the wet-lab protocol of evSeq 
sample preparation, focusing on how it can be completed 
without disrupting an existing protein engineering workflow. 
Next, we discuss the features of the evSeq software before 
finally presenting two case studies that highlight potential 
applications of evSeq. In particular, we highlight how (1) the 
sequence-fitness data from evSeq can provide valuable 
information about the quality of variant libraries and the 
functional screen as well as how mutations modulate protein 
activity, and how (2) the data generated from evSeq can be used 
to implement ML for protein engineering. We designed evSeq 
for use as a routine procedure in many protein/enzyme assays 
(especially DE and protein engineering experiments leveraging 
mutagenesis strategies that target specific sites or a segment of 
the sequence). This tool brings cost-effective, easy-to-use 
sequencing to all protein engineers, regardless of experience 
with NGS and access to sequencing and computational 
resources. We believe that widespread adoption of evSeq—and 
the resultant datasets generated—will be invaluable for future 
ML-guided protein engineering and will help us better 
understand protein sequence-fitness relationships. 

 
RESULTS AND DISCUSSION 

evSeq uses inline barcoding to expand on commercially 
available multiplexed next-generation sequencing. Unlike 
Sanger sequencing, which outputs a single chromatogram that 
represents the population of DNA in a sequenced sample, NGS 
outputs millions of individual DNA reads that represent a 
random draw from the population of DNA in the sequenced 
sample.18 Confidence in NGS sequencing results is largely 
determined by the sequencing “coverage”, which for the 
purposes of this paper is defined as the number of returned reads 
that map to a specific nucleotide on a reference sequence. 
Higher coverage enables more confident identification of 
mutations relative to a reference sequence as the increased 
redundancy allows distinguishing between true sequence 
mutations and errors that arise during library preparation, 
clustering, or sequencing. 

A single NGS run is roughly three orders of magnitude more 
expensive than a Sanger sequencing run, but because the run 
outputs millions of reads, this cost can be spread over multiple 
samples using a technique known as “multiplexed NGS” 
(Supplemental Figure S1). In multiplexed NGS, each submitted 
sample is tagged with a “molecular barcode”—a unique piece 
of DNA that encodes the sample’s original identity—before all 

samples are sequenced together in the same NGS run.19–25 Post 
sequencing, the barcodes are used to assign individual reads to 
individual samples. For instance, barcodes can be used to 
distinguish reads coming from samples belonging to specific 
plates and wells.26 Importantly, multiplexed NGS can be 
outsourced just like Sanger sequencing (making it accessible to 
all laboratories regardless of sequencing experience), and 
sequencing providers typically charge tens of dollars per 
sample in a multiplexed sequencing run, yielding on the order 
of 104–105 individual sequences per sample (assuming the run 
is performed on an Illumina MiSeq instrument).  

The level of coverage granted by a set number of reads 
depends on the length of the DNA sample being sequenced, the 
length of the NGS read used to sequence it, and whether those 
reads are paired-end. NGS reads are short (300 bp or less on 
Illumina systems), and so reads must be spread across a longer 
sample to sequence it in full. The expected coverage (average 
coverage per nucleotide) obtained for a DNA sample thus 
depends both on its length and the read length used for 
sequencing. For example, with the ~105 reads returned by a 
commercial MiSeq multiplexed sequencing run, a 3 Mb 
genome could be sequenced with 150 bp paired-end reads to an 
expected coverage of ~10x, whereas a 20 kb plasmid could be 
sequenced to an expected coverage of ~1500x. 

Because shorter samples can be sequenced at higher coverage 
for a given number of reads, it can be advantageous to sequence 
only the region of interest of a sample. This is exemplified by 
amplicon sequencing, a strategy in which a researcher 
sequences a PCR product (an amplicon) that targets a specific 
region of interest in the DNA.27 For instance, continuing the 
example from above, with ~105 total 150 bp paired-end reads, 
a 300 bp PCR product could be sequenced to an expected 
coverage of ~100,000x.  

Many mutagenesis methods employed in protein engineering 
(e.g., site-saturation28 and tile-based mutagenesis29 strategies) 
target mutations to a specific position or region in the sequence 
of a protein, and thus the variants produced can be sequenced 
with amplicon sequencing to high coverage.20 Notably, 
however, even though increasing coverage yields more 
confident results, it comes with diminishing returns, and it is 
generally held that coverage in the tens is more than sufficient 
for effective reference-based identification of mutations 
(Supplemental Figure S1).30 Indeed, clinical sequencing of 
human genomes targets 30x coverage or greater to minimize 
false base calls. Given this reference, it is clear that the 
~100,000x coverage that would be returned from a multiplexed 
sequencing run for a 300 bp amplicon is far higher than 
necessary for effective identification of mutations—2,000 
amplicons could be sequenced in the same run and still yield 
clinical-grade coverage.  

evSeq achieves cost-effectiveness by relying on the facts that 
(1) at tens of dollars per sample, the cost of sending a single 
sample to an outsourced multiplexed NGS run is comparable to 
the total cost of Sanger sequencing the top variants in a round 
of DE, (2) amplicon sequencing can be used to identify 
mutations in protein variants from many protein engineering 
library types, and (3) enough reads are returned for a single 
sample in a commercial multiplexed NGS run to sequence 
hundreds of amplicons. Specifically, the evSeq protocol (Figure 
1, Supplemental: evSeq Library Preparation/Data Analysis 
Protocol) works by focusing all reads of a single multiplexed 
NGS sample to specific regions on hundreds of protein variants, 
achieving sequencing depths of 101–103 at the approximate cost 
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and level of accessibility of using Sanger sequencing of just the 
top variants in a round of DE (Supplemental Figure S1).  

The evSeq library preparation protocol begins with PCR 
amplification of the region of interest in each variant (i.e., the 
position/region where mutations were made) and appending 
inline DNA barcodes to the resultant amplicons that encode 
their original plate-well position (Figure 1A).26,31,32 This is a 
one-pot, two-step, plate-based PCR procedure that uses two sets 
of primer pairs. Each primer in the first set of primers (“inner” 
primers) consists of a user-specified 3’ “seed” region that binds 
to the regions flanking the region of interest as well as a 5’ 
predefined universal adapter (Supplemental: Inner Primer 
Design). Each primer in the second set of primers (“outer” 
primers) consists of (1) a 3’ region that matches the adapter of 
the inner primers, (2) a central 7-nucleotide barcode where each 
barcode pair between forward and reverse outer primers is 
unique to a plate-well position, and (3) a 5’ sequence matching 
the Illumina Nextera transposase adapters (Supplemental: 
Outer Primer Design, Supplemental: Barcode Design, 
Supplemental Tables S1–S2). We designed 96 unique forward 
and 96 unique reverse outer primers for evSeq which, because 
both forward and reverse outer primers contain a barcode, can 
be combined to encode up to 962 = 9,216 possible plate-well 
positions (Supplemental: Preparation of evSeq Barcode Primer 
Mixes, Supplemental Tables S3–S10. Note that we also provide 
a pre-filled IDT order form for the outer primers on the GitHub 
associated with this work—see Supplemental: Ordering 
Barcode Primers from IDT for details. While we recommend 
using these pre-tested barcodes, users can also design their own 
to, e.g., further expand the number of available combinations.). 
Importantly, this set of outer primers can be used to sequence 
any target region from any gene with evSeq, and so only needs 
to be ordered once, constituting a one-time initial setup cost in 
the range of a few hundred dollars (the exact cost will vary 
based on oligo provider and any institutional agreements set up 
with said provider). Once outer primers are ordered, only a new 
inner primer pair is needed for each new region of interest to be 
targeted by evSeq.  

Once all barcoded amplicons have been produced, they are 
pooled and sent to a sequencing provider, who will then use the 
transposase adapters installed with the outer primers as a handle 
to perform a third and final PCR to barcode the pool of 
amplicons once again with a pair of sample-specific Illumina 
indices (Figure 1B). At this point each amplicon in the pool has 
one pair of sample-specific Illumina barcodes and one pair of 
plate-well-specific inline evSeq barcodes. This complete evSeq 
library is sequenced as a single sample in a multiplexed NGS 
run along with samples from other users (whether or not they 
are also evSeq samples). Post sequencing, the sequencing 
provider uses the sample-specific barcodes to identify those 
sequences belonging to the evSeq pool and returns them to the 
user (i.e., the provider “demultiplexes” the run, separating 
evSeq sequences from those of other users). The user then uses 
the evSeq software to analyze the returned sequences, assigning 
them to corresponding plate-well positions using the evSeq 
barcodes and identifying the mutations in the variants relative 
to a reference (Figure 1B, 1C). 

evSeq library preparation fits into existing protein 
engineering and sequencing workflows and was designed to 
be resource efficient. A typical procedure for evaluating 
protein variants involves (1) arraying colonies of an organism 
(e.g., Escherichia coli) that harbor a plasmid encoding a protein 
variant into the wells of a (usually 96-well) microplate, (2) 
growing the resulting cultures to stationary phase (colloquially, 

an “overnight culture”), (3) using the overnight culture to 
inoculate a fresh culture that will be used to express the protein 
variants, and (4) evaluating the fitnesses of expressed protein 
variants. The expression stage (step 3) typically involves 
downtime where the experimentalist must wait until the culture 
reaches sufficient density before inducing protein expression 
and then again as expression takes place. evSeq library 
preparation can be performed easily in either of these time 
windows. The evSeq library preparation protocol begins with 
the barcoding PCR described at the end of the previous section; 
this one-pot, two-step, plate-based PCR was designed to be 
compatible with outsourced sequencing workflows, minimize 
preparation time, and minimize laboratory resource usage 
(Supplemental: evSeq Library Preparation/Data Analysis 
Protocol). For instance, use of inline barcodes is a known, 
effective strategy for expanding the number of samples that can 
be multiplexed without having to modify the Illumina indices 
used during multiplexed sequencing.31,32 Because evSeq library 
preparation uses inline barcodes, it grants the outsourced 
sequencing provider maximal flexibility in choice of Illumina 
indices. In other words, evSeq library preparation is decoupled 
from preparation of the Illumina library that will eventually be 
sequenced, allowing the evSeq library to be run just as any other 
sample would be that is submitted to a sequencing provider.  

As mentioned in the previous section, use of a two-step PCR 
reduces the number of primers that must be ordered per new 
sequencing region of interest. Because evSeq relies on 96 
unique forward barcodes and 96 unique reverse barcodes, a 
single-primer PCR would require ordering 192 new barcoding 
primers for each new target region evaluated in each library. In 
a two-primer protocol, however, the inclusion of a universal 
adapter on the inner primers allows the same 192 outer primers 
to be used regardless of target position in the variant—only two 
unique primers (forward and reverse inner) must be purchased 
for each new target region, and only if existing inner primers 
from previously targeted regions are not already compatible. 
Additionally, the evSeq PCR directly uses liquid from the 
overnight culture as a source of template DNA (Figure 1B, 
Supplemental: evSeq Library Preparation/Data Analysis 
Protocol); the template DNA is released from lysed cells during 
the initial heating step of the PCR, avoiding a costly and time-
intensive DNA isolation/purification step and allowing 
researchers to use materials already prepared as part of the 
protein expression workflow.32 

The remaining steps of evSeq library preparation were, like 
the PCR stage, also designed to be resource and time efficient. 
After completion of the PCR, the resulting barcoded amplicons 
are pooled by plate and purified via gel extraction. Pooling prior 
to purification goes against standard practice for multiplexed 
NGS library preparation, which is to purify samples 
individually, quantify their DNA concentration, then combine 
them in equimolar quantities to ensure more equal read 
distribution across samples after sequencing.33 However, 
because individual plates in protein engineering libraries tend 
to contain variants from the same region of the same protein 
scaffold (e.g., as would be typical for variants from a 
comprehensive site-saturation library), it is assumed that the 
variation in PCR reaction yield will be minor within plates and 
that, as a result, the same plate can be pooled prior to 
quantification with only minor effects on read distribution. 
Using this “pooling first” strategy, only as many purifications 
as there are plates must be performed as opposed to as many as 
there are variants, thus enabling faster processing of evSeq 
amplicons while reducing resource usage. As will be shown in 
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later sections, the distribution of reads returned using pooling 
first is perfectly acceptable for confidently identifying variant 
sequences. 

Once all pooled plates have been purified, the concentrations 
of the individual purified pools are measured. The pools are 
then normalized by molarity and combined into a final evSeq 
library, which is in turn submitted as a single sample to a 
sequencing provider. As described in the previous section, the 
provider will perform a final PCR on the evSeq library to add 

sample-specific barcodes before sequencing it as a single 
sample in a multiplexed sequencing run. Outsourcing the 
sequencing stage has two main benefits: First, it allows evSeq 
to be performed by research groups with no prior sequencing 
experience and no direct access to sequencing equipment—
groups need only be familiar with PCR, a ubiquitous 
technology in protein engineering laboratories. Second, to be 
cost effective, multiplexed sequencing should be run with tens 
of samples at least (Supplemental Figure S1). By outsourcing 

Figure 1. Overview of evSeq library preparation and processing. (A) In the first stage of the PCR, a region of interest is amplified with 
primers that include a 3’ site-specific region (gray) with 5’ adapter sequences (dark blue). The second PCR stage adds molecular barcodes 
(rainbow) with primers that bind to the adapter regions and add adapters for downstream NGS processing (light blue). (B) To avoid costly 
DNA isolation steps, evSeq uses liquid cultures of cells harboring mutated DNA (e.g., an “overnight culture” of E. coli) as template during 
the one-pot two-step barcoding PCR described in A. Each plate is pooled individually and gel purified. Purified pools are then adjusted for 
concentration differences and pooled together before being sent to a sequencing provider, who then appends another set of barcodes as well 
as sequence elements necessary for Illumina NGS sequencing. This sample is now pooled with those of other users and a multiplexed 
sequencing run is performed. After sequencing, the sequencing provider uses the barcodes that they attached to separate (“demultiplex”) the 
evSeq reads from reads of other users; the provider returns evSeq reads in .fastq files. (C) The .fastq files returned by the NGS provider are 
inputs to the evSeq software, which uses the evSeq forward/reverse barcode pair to map each read to a specific plate and well based on known 
barcode combinations. The software also processes the mapped reads (see the Supplemental and evSeq documentation for more details) to, 
among other things, assign variant identities to each well and return interactive HTML visualizations. 
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the sequencing stage, groups that do not frequently produce 
evSeq libraries need not wait until enough libraries have 
accumulated to run sequencing—a single outsourced 
submission, for instance, can be run along with those of other 
research groups with a variety of different sequencing needs.  

The final stage of the evSeq workflow is data analysis using 
the evSeq software (github.com/fhalab/evSeq) (Figure 1C). 
Extensive documentation of the software and its capabilities is 
available as a website (fhalab.github.io/evSeq). The software 
was designed to be accessible to users with varying degrees of 
computational experience and can be run through either a 
graphical user interface (GUI), a command line application, or 
in a Python environment (e.g., a Jupyter notebook). Outputs 
from the software range from high-level overviews of data (e.g., 
an interactive “Platemap” graphic that displays sequencing 
coverage and identified mutations in each well of each plate; 
see Figure 1C for an example) to low-level details about the 
population of reads assigned to each well (e.g., in a well 
identified as polyclonal, the percentage of reads mapping to 
each of the identified variants). Functional data can also be 
easily associated with identified variants using the evSeq 
software outputs to produce sequence-fitness datasets, and we 
provide Jupyter notebooks and web pages that walk users 
through the process. 

evSeq facilitates library construction, validation, and 
sequence-fitness pairing. To highlight the utility of evSeq for 
engineering and biochemical experiments, we first examined 
how it could be used to construct high-confidence and 
informative sequence-fitness data. Specifically, we constructed 
and screened eight single-site-saturation libraries of the enzyme 
Tm9D8*—an engineered β-subunit of tryptophan synthase 
from Thermotoga maritima (TmTrpB)—for tryptophan-
forming activity at 30 °C (Figure 2).34 In two of the screened 
libraries, we targeted two positions distant from the active site 
(A118 and S292) that have been seen to play a role in allosteric 
regulation of TmTrpB enzymes; in the other six libraries, we 
targeted active-site residues known to modulate the activity of 
TrpB (E105, L162, I166, F184, S228, and Y301) (Figure 
2A).35–37 As we show below, this type of sequence-fitness data 
can be used to assess the quality of a protein engineering library, 
identify improved variants during a round of directed evolution, 
and give insight into the significance of a given residue in 
catalysis.  

Many factors can introduce bias into a site-saturation 
mutagenesis experiment, such as annealing bias for the native 
nucleotides during the PCR for library construction or 
contamination with the template plasmid during 
transformation. Without sequencing all of the variants, it is 
impossible to know that the library is representative of the 
experimental design. Since evSeq reports exactly which 
variants are contained in a library, researchers can leverage this 
to implement important quality control practices as part of the 
standard protein screening workflow. For instance, of all 153 
possible unique variants in our eight single-site-saturation 
libraries, we observed 149 of them (Figures 2B and C); only 
I166A, S292C, S292D, and S292H could not be assigned with 
confidence, where we define >80% abundance in a well with 
>10 reads as our confidence threshold. Of the variants 
identified, many were found in replicate (Figure 2D) due to 
oversampling during colony picking, which ensures that all 
protein variants have a chance to be found and screened (All 
libraries were constructed with the 22-codon trick38 and 88 
individual colonies were screened for each library, so we 
expected a 98% probability of seeing all variants assuming 

perfect construction of libraries). Conveniently, this 
oversampling also allows us to evaluate the noise in our 
functional screen (Figure 2E) which further improves the 
confidence in the quality of data gathered. 

Given just the fitness data gathered in this experiment, a 
protein engineer would identify 50 wells that are at least 1.2-
fold improved over the parent enzyme Tm9D8*. However, with 
the sequence-fitness pairs constructed via evSeq, we know that 
these 50 wells correspond to only 16 unique variants. 
Depending on how conservative the engineer was as to what 
should be sequenced, a decision to sequence hits with Sanger 
sequencing could result in anywhere from 12 (2-fold 
improvement) to 50 (1.2-fold improvement) wells sent off for 
sequencing for a total cost of $36 to $150 (using an estimate of 
$3 per sequence). It would cost ~$2000 to sequence all eight 
plates via Sanger. Using evSeq, however, we obtained the 
sequences of all 625 wells of variants for only $100, 
corresponding to $0.13 per non-control well. In other words, 
using evSeq, we can produce far more sequence-fitness 
information than sequencing just the top hits using Sanger all 
for a similar cost. Importantly, although the evSeq defaults 
currently allow only eight plates to be sequenced at once, the 
number of variants included in this experiment could likely 
have been increased as the median number of reads per well 
was 86 (mean: 98), which is above what is needed for reliable 
sequencing. Assuming that doubling the number of plates 
would halve the number of reads seen for each well, doubling 
the number of plates sequenced would cause only 14 non-
control well sequences to drop below the confidence threshold.  

The per-variant cost of evSeq may be reduced even further 
using different services and sequencing platforms. For instance, 
in both this section and the next, the reported number of reads 
and ~$100 total cost are from outsourced MiSeq runs, which 
returned hundreds of thousands of total reads per evSeq library. 
We report these numbers because outsourced multiplexed 
MiSeq is a standard service available to all research groups. As 
an alternative to outsourcing, however, our institution provides 
multiplexed sequencing (via the Caltech Millard and Muriel 
Jacobs Genetics and Genomics Laboratory) on an Illumina 
NextSeq platform, returning an average of ~10x more reads 
than the outsourced MiSeq run for a total cost of ~$10. At 10x 
more reads and 10x less the total cost, the per-variant evSeq 
cost could decrease 100-fold to <$0.01. Indeed, we were able 
to re-sequence the TrpB libraries at a per-variant cost of ~$0.01 
with ~2.2 million total reads returned for an average of 
thousands of reads per variant, far higher than what is needed 
for reliable variant calling. It must be noted, however, that 
analysis of the millions of evSeq reads was no longer practical 
on a personal laptop, requiring a desktop workstation instead. 
Computational power beyond a laptop will be needed when 
processing more than hundreds of thousands of reads with the 
existing evSeq software.  

Of final note, aside from providing valuable information for 
protein engineering experiments, evSeq can also facilitate 
investigation into the biochemical relevance of specific 
positions/mutations. Specifically, because all possible variants 
in a site-saturation library can be identified by evSeq, the 
sequence-fitness information generated can be used to explore 
the effects of mutations more fully than, for instance, an alanine 
scanning experiment.39 Using an example from the TrpB data 
gathered here, an alanine scanning experiment would tell a 
biochemist that the mutation to the conserved catalytic residue 
E105A inactivates the enzyme, with no information about the 
effects of other amino acid changes at this position. Using site-
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saturation with evSeq, we instead find that all mutations to 
E105 except for E105D inactivate the enzyme. The fact that 
glutamate and aspartate are the only amino acids containing a 
carboxylic acid suggests that this functional group is critical for 
activity (Figure 2E, with inset). 

evSeq can be used to generate data for machine learning-
assisted protein engineering.  We next wanted to demonstrate 
the utility of evSeq for advancing and applying machine 
learning-assisted protein engineering (MLPE). In MLPE, 
models are trained to learn a function that relates protein 
sequence to protein fitness (i.e., they learn f(sequence) = 
fitness).5,6,9–11 These models are then used for rapid, low-cost in 
silico prediction of protein fitness, avoiding or greatly reducing 
the need for often-costly laboratory screening of variants 
(Figure 3).  

Sequence-fitness data is critical for effective MLPE. Indeed, 
even though strategies exist that can predict protein fitness from 
sequence alone (e.g., those that use evolutionary data to predict 
protein fitness), their effectiveness is improved with the 
inclusion of sequence-fitness information.7,14,15,40 As a result, 
the most effective MLPE workflows require that both sequence 

and fitness data be collected, unlike a DE workflow, which 
requires only fitness data.  

The need to collect sequence data in addition to fitness data 
is an often-overlooked additional cost of MLPE strategies 
compared to standard DE. For instance, we recently developed 
an ML strategy known as machine learning-assisted directed 
evolution (MLDE) for efficient navigation of epistatic 
combinatorial protein variant libraries.41,42 Previously, we used 
MLDE to evolve Rhodothermus marinus nitric oxide 
dioxygenase (RmaNOD) for greater enantioselectivity in a 
carbon–silicon bond-forming reaction.41 Over the course of the 
engineering campaign, we collected six 96-well plates of 
sequence-fitness data for training ML models. In total, 
sequencing the variants in these plates by Sanger sequencing 
cost ~$1700. High additional sequencing costs like these can 
make MLPE methods far less attractive, even if they are more 
effective than traditional DE at finding high-fitness protein 
variants.42 However, given that evSeq enables sequencing all 
variants for a cost similar to standard DE methods, it enables 
use of MLPE without added cost. In essence, evSeq eliminates 
the sequencing burden of MLPE.  

Figure 2. evSeq enables low-cost investigation of library quality and sequence-fitness pairing in site-saturation mutagenesis libraries. (A) 
Eight residues (red) known to modulate the activity of Tm9D8* were independently targeted with site-saturation mutagenesis: A118 and 
S292 (distal residues), E105, L162, I166, F184, S228, and Y301 (active-site residues). An active form of the pyridoxal 5’-phosphate cofactor 
is represented in green, and the substrate indole is shown in light blue. (B) Library quality can be investigated by plotting a heatmap of the 
number of times each variant/mutant was identified at each targeted position ("# in Library") from processed evSeq data. Parent amino acids 
are each marked with an asterisk. (C) Likewise, the effect of mutations and mutational “hotspots” can be identified by plotting a heatmap of 
the average activity measurements for each variant/mutation in each library, normalized to the average parent activity for that library 
("Normalized Rate"), when fitness data is combined with evSeq data. (D) An example plot made possible by evSeq visualization functions 
shows the number of times each amino acid was found in a single TrpB library (position 105), also accounting for known controls and 
unidentified wells. (E) Another example output of the evSeq software shows activity for a single library (position 105), showing biological 
replicates. The inset displays the role of the mutated residue in this library, which is to coordinate the nitrogen of the indole substrate. Note 
that the circles in this plot correspond to individual measurements while the bar plot represents the mean of these measurements. If no circles 
are present for a bar (e.g., E105D), then this is because only a single instance of this mutation was observed. Circles are not shown in this 
case to allow distinguishing between a single replicate and a tight distribution of multiple replicates. 
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To demonstrate the application of evSeq to MLPE, we used 
it to sequence five plates of RmaNOD variants from a four-site 
combinatorial library. Coupled with fitness data, the sequences 
resulting from this run could be used to drive a round of MLDE. 
Notably, sequencing these plates by Sanger sequencing would 
have cost ~$1400; in contrast, sequencing by evSeq using an 
outsourced multiplexed MiSeq run cost ~$100 for a per-variant 
cost of ~$0.21. The median read depth per variant in this run 
was 463 (mean: 506), much higher than is required for accurate 
sequencing, and so more plates—from either the same or a 
different library—could have reasonably been added to this 
evSeq run to decrease the per-variant sequencing cost even 
further (Figure 3B). Of course, as discussed in the previous 
section, in-house sequencing could have cut sequencing costs 
an additional ten-fold.  

The cost of sequencing is most notably a barrier for MLPE 
strategies that focus on developing models for a single protein 
with a well-defined fitness (e.g., MLDE); however, the 
applicability of evSeq to MLPE is not limited solely to cost-
reduction. For instance, ML strategies have been developed 
that, rather than focusing on a specific protein, train models on 
sequence-fitness information across multiple different protein 
scaffolds.16,43 The goal is for these models to learn global 

determinants of protein fitness, then to use the models as 
general-purpose protein fitness predictors. By enabling the 
collection of sequence-fitness pairs across a wider array of 
proteins and fitness definitions, evSeq opens these approaches 
to new and more diverse data sources. Generally speaking, the 
more sequence-fitness data available to train and benchmark 
these strategies, the better we expect them to perform and the 
more rapidly we expect improvements to be developed.16 It is 
no coincidence that large leaps forward in other ML disciplines 
have followed increased availability of large, diverse datasets, 
with the rapid advance in computer vision sparked by ImageNet 
being perhaps the most prominent example.44 Widespread 
adoption of evSeq—and commitment to depositing sequence-
fitness data in resources such as ProtaBank—would provide 
such a dataset for protein engineering.8 This dataset would span 
the range of all engineered proteins and all target fitnesses, 
capture examples of sequences with both higher and lower/zero 
fitness relative to a parent (the latter of which is effectively 
never recorded with current DE sequencing practices), and 
overall enable rapid advancement in MLPE.  

evSeq detects all variability in the sequenced amplicons. 
Although we focused here on demonstrating applications 
involving targeted mutagenesis strategies, evSeq is also 
applicable to other mutagenesis methods as the associated 
software can identify both user-specified and unspecified 
positions of variability (Figure 4A). This feature not only 
informs the user of potential unexpected mutations in the 
sequenced amplicon (Supplemental Table S11), but also allows 
it to work effectively with tile-based mutagenesis strategies and 
other semi-targeted mutagenesis strategies (e.g., error-prone 
PCR of specific regions or small genes). All that is required is 
that the amplicon length and read length be able to capture the 
full region containing mutations. 

It should be noted that evSeq will not detect off-target 
mutations outside of the constructed amplicon as these regions 
are not sequenced, meaning that it is unable to identify other 
mutations in a larger DNA element that may be contributing to 
activity. Due to this fact, for exceedingly unexpected 
mutational effects that are not seen in replicate, we suggest 
sequencing the rest of the DNA element to confirm the presence 
or absence of any off-target mutations. However, this limitation 
is mitigated by the fact that off-target mutations are rare and, 

Figure 4. evSeq detects variability and can be expanded for 
random mutagenesis. (A) evSeq does not require that the user 
specify which position in the amplicon was targeted. Instead, the 
software can identify variable regions by comparing to a reference 
(B) evSeq can be used to sequence entire genes by designing a set 
of inner primer pairs which together capture the entire gene. 
Different evSeq barcodes can then be used for each region, and the 
user can reconstruct the entire sequence.  

Figure 3. evSeq eliminates the sequencing burden of MLPE. Traditional DE only collects sequence information for top variants, essentially 
“throwing away” fitness data from inferior variants and learning nothing about the underlying fitness landscape. If, instead, evSeq is used to 
collect sequence information for all variants, MLPE methods, which require sequence-fitness pairs for supervised model training, can be 
implemented. Sampling from a fitness landscape, an ML model can be trained to predict the fitnesses of missing sequences and reconstruct 
the missing regions of this landscape. 
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importantly, evSeq is agnostic to read length and will work with 
any length of paired-end sequencing.45  

While the current software version is not yet suited for other, 
long-read sequencing technologies (e.g., PacBio or Oxford 
Nanopore), future versions could be updated and validated with 
these data formats and make full gene-length evSeq 
experiments more straightforward and cost effective. Given 
this, evSeq is currently best suited and most cost effective when 
all expected mutations exist in the sequenced amplicon, though 
sequencing of multiple overlapping amplicons can readily 
allow evSeq to be expanded to sequence entire genes of variants 
arrayed in microplates (Figure 4B). Care must be taken in such 
an application, however, to account for the fact that aggressive 
mutation rates could compromise the annealing efficiency of 
inner primers binding in the variable region, as could mutations 
to positions closer to the binding region of the 3’ end of the 
inner primer. Such situations would lead to a higher proportion 
of wells failing sequencing.  

 
CONCLUSION 

Hundreds to thousands of protein variants (or more) are 
constructed and their fitnesses evaluated over the course of a 
standard protein engineering campaign. Without sequencing, 
these fitnesses are next to useless—the time, effort, and 
resources expended to produce them are largely wasted. 
Comparable in cost to existing protocols, accessible to scientists 
with no or minimal sequencing and computational experience, 
and easy to implement with existing technology, evSeq rescues 
these fitness data by making the collection of sequence data for 
every variant a practical and highly useful step of the protein 
engineering pipeline. Given the number of research groups 
working on DE and other protein engineering projects, 
widespread adoption of evSeq would lead to an explosion in the 
availability of sequence-fitness information. By sequencing 
every variant, no laboratory screening effort is wasted, and we 
open the door to advances in both our biochemical 
understanding of proteins and our ability to engineer them with 
data-driven methods.  

 
MATERIALS AND METHODS 
Single-Site-Saturation Library Generation for TrpB. 

Saturation mutagenesis libraries were prepared using a 
modification of the “22-codon trick” described by Kille et al.38 
We first designed primers using the templates given in 
Supplemental Table S12. For the forward primers, each 
sequence of “NNN” in these templates was replaced with 
“NDT”, “VHG”, and “TGG”, resulting in a total of three 
degenerate primers which could then be mixed at a ratio of 
12:9:1, respectively. The reverse primers were used without 
changes.  

We also designed primers that bind within the ampicillin 
resistance (AmpR) gene in pET22b(+) with sequences as given 
in Supplemental Table S13. These primers were designed such 
that, when used in combination with the site-specific primers to 
run a PCR, two medium-length fragments would be created 
with a break in the AmpR gene. For the forward site-saturation 
primers, a PCR was performed using the reverse AmpR primer, 
resulting in a fragment from ~1500–2000 bp long. For the 
reverse site-saturation primers, a PCR was performed using the 
forward AmpR primer, resulting in a fragment ~4500–5000 bp 
long.  

Once PCRs finished, 1 µL of DpnI (NEB R0176S) was added 
to each of the reactions, which were then incubated at 37 °C for 
1 h to digest the unmutated template plasmid. The presence of 
correctly sized fragments was confirmed via gel electrophoresis 
and each fragment was then excised from the gel and purified 
with the Zymoclean Gel DNA Recovery Kit (Zymo Research 
D4002). 

Purified fragments were then assembled following the 
standard Gibson assembly method.46 After 1 h at 50 °C, the 
reaction mixtures were desalted with a DNA Clean & 
Concentrator-5 kit (Zymo Research D4013) and used to 
transform electrocompetent E. cloni® cells (Lucigen 60051-1). 
Libraries were spread onto solid agar selection medium 
consisting of Luria Broth (RPI L24040-5000.0) supplemented 
with 100 µg/mL carbenicillin (LBcarb) and incubated at 37 °C 
until single colonies were observed. Individual colonies were 
then transferred into the wells of 96-well 2-mL deep-well plates 
containing 300 µL of LBcarb to isolate monoclonal enzyme 
variants, with 8 wells being reserved for control conditions, 
giving 4-fold oversampling of the 22-codon library. These 
cultures were grown overnight at 37 °C, 220 rpm, and 80% 
humidity in an Infors Multitron HT until they reached stationary 
phase, at which point 100 µL from each well were mixed with 
an equal volume of 50% glycerol and stored at –80 °C for future 
use. 

For protein expression, 20 µL of the remaining culture were 
used to inoculate 630 µL of Terrific Broth with 100 µg/mL 
carbenicillin (TBcarb). These were then grown at 37 °C, 220 rpm, 
and 80% humidity for 3 hours in an Infors Multitron HT, at 
which point they were placed on ice for 30 minutes. Following 
this, 50 µL of a 14 mM solution of isopropyl-β-d-
thiogalactoside (IPTG; GoldBio #I2481C100) in TBcarb were 
added to each well to induce protein expression at a final 
concentration of 1 mM IPTG. Expression proceeded in the 
same Infors Multitron HT shaker as before at 22 °C, 220 rpm 
for roughly 18 hours. Cells were harvested via centrifugation at 
4500g for 10 minutes, the supernatant was removed, and the 
plates (now containing pelleted, expressed cells) were placed at 
–20 °C until needed. 

Once cells had been harvested, cultures for evSeq were 
prepared. These cultures were started from the 96-well plate 
glycerol stocks prepared prior to moving into the cell 
expression protocol; the cultures were grown overnight 
(~18hrs) in an Infors Multitron HT (220 rpm, 37 °C) to 
saturation in 96-well deep-well plates in 300 µL of LBcarb. 
These cultures were then frozen and stored at –20 °C to be used 
for sequencing with evSeq. 

A GenBank file detailing the plasmid and primers used in this 
section is available on the evSeq GitHub at 
https://github.com/fhalab/evSeq/tree/master/genbank_files/tm
9d8s.gb. 

Sequencing TrpB Libraries with evSeq. Frozen overnight 
cultures (preparation detailed in the previous section) were 
thawed at room temperature. Libraries were then sequenced 
with the process described in Supplemental: evSeq Library 
Preparation/Data Analysis Protocol; the evSeq software was 
run using all default parameters (average_q_cutoff = 25, 
bp_q_cutoff = 30, length_cutoff = 0.9, match_score = 1, 
mismatch_penalty = 0, gap_open_penalty = 3, 
gap_extension_penalty = 1, variable_thresh = 0.2, 
variable_count = 10) with the “return_alignments” flag thrown. 
The inner primers used for library preparation are in 
Supplemental Table S14. The barcode plates (Supplemental 
Tables S3 – S10) were paired to positions as given in 
Supplemental Table S15. 

https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb
https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb
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Measuring the Rate of Tryptophan Formation. Rate of 
tryptophan formation data was collected with the same 
procedure described in Rix et al. for non-heat-treated lysate 
preparation in the section “Indole rate measurements” with a 
few modifications: lysis occurred in 300 μL KPi buffer with 
100 μM pyridoxal 5’-phosphate (PLP) supplemented with 
1 mg/mL lysozyme, 0.02 mg/mL bovine pancreas DNase I, and 
0.1x BugBuster; lysis occurred at 37 °C for 1 h.35 

Four-Site-Saturation Library Generation for RmaNOD. 
Positions S28, M31, Q52, and L56 of a variant of RmaNOD 
(RmaNOD Y32G) were targeted for comprehensive site-
saturation mutagenesis using a variant of the 22-codon trick 
originally described by Kille et al.38 Due to the proximity of 
positions S28 and M31, it was easiest to use the same 
mutagenesis primers to target them; the same was done for 
positions Q52 and L56. Because the 22-codon trick requires 
three degenerate codons per position targeted, nine individual 
primers capturing all combinations (3 codons ^ 2 positions/per 
primer = 9 primers) of the degenerate codons had to be ordered 
for each of the two mutagenic primers. Sequences of these 
primers are given in Supplemental Table S16.  

The primers from Supplemental Table S16 were all ordered 
from IDT at 100 μM. Both a “forward” and a “reverse” primer 
mixture were prepared by combining individual forward and 
reverse primers in proportion to the number of individual 
codons they encoded. A 10 μM forward-reverse primer mixture 
was then prepared by adding 10 μL of both the forward and 
reverse primer mixtures to 80 μL ddH2O. Once the forward-
reverse primer mixture was prepared, it was used in a PCR to 
build a pool of DNA fragments containing the four-site 
combinatorial libraries. Two fragments that captured the 
remainder of the RmaNOD gene and host plasmid (pET22b(+)) 
were also produced by PCR. The primers used for these 
flanking fragments are given in Supplemental Table S17. 

After PCR completed 1 μL DpnI (NEB R0176S) was added 
to each reaction. The reactions were then held at 37 °C in a 
thermalcycler for 1 h. The PCR fragments were then gel-
extracted using a Zymoclean Gel DNA Recovery Kit (D4002). 

Fragments were to eventually be assembled using Gibson 
assembly.46 Because the efficiency of Gibson assembly 
increases with decreasing numbers of fragments, an assembly 
PCR was performed to combine flanking fragment 1 (see 
Supplemental Table S17 for details) and the variant fragment. 
The resultant assembled fragment was then gel-extracted, again 
using a Zymoclean Gel DNA Recovery Kit (D4002). 

To complete construction of the library of variant plasmids, 
a Gibson assembly was performed to combine the assembled 
PCR fragment and flanking fragment 0. After Gibson assembly, 
the Gibson reaction was cleaned using a Monarch PCR & DNA 
Cleanup Kit (NEB CAT T1030L). The cleaned Gibson product 
was next used to transform electrocompetent E. cloni® BL21 
DE3. Transformed cells were spread onto solid agar selection 
medium consisting of Luria Broth (RPI L24040-5000.0) 
supplemented with 100 µg/mL ampicillin (LBamp) and 
incubated at 37 °C until single colonies were observed. 

To build the 96-well plates of RmaNOD variants used to 
demonstrate evSeq, 400 μL LB + 100 μg/mL ampicillin were 
first added to each well of 5x 96-well deepwell plates. Colonies 
from the agar plates grown overnight were then picked into the 
wells of the deepwell plates. The plates were placed in an Infors 
Multitron HT at 240 rpm, 37 °C for ~16 h. To glycerol stock 
the now-stationary-phase culture, 100 μL overnight culture 
were added to 100 μL 50% glycerol before being stored at -80 
°C until its use in evSeq library preparation. 

A GenBank file detailing the plasmid and primers used in this 
section is available on the evSeq GitHub 
(https://github.com/fhalab/evSeq/tree/master/genbank_files/rm
anod_y32g.gb). 

Sequencing RmaNOD Libraries with evSeq. To begin 
preparation of culture for evSeq with the RmaNOD variants, 
cultures in 96-well deep-well plates (with 300 µL of LBcarb) 
were started from the 96-well plate glycerol stocks prepared in 
the previous section. The plates were placed in an Infors 
Multitron HT at 240 rpm; the cultures were grown overnight 
(~18hrs) before being frozen and stored at –20 °C. 

To start the evSeq protocol, frozen overnight cultures were 
thawed in a room temperature water bath. Libraries were then 
sequenced with the process described in Supplemental: evSeq 
Library Preparation/Data Analysis Protocol; the evSeq 
software was run using the same parameters as for the TrpB 
data analysis (see Sequencing TrpB Libraries with evSeq, 
above). The inner primers used for evSeq library preparation 
are given in Supplemental Table S18. The barcode plates 
(Supplemental Tables S3 – S10) were paired to positions as 
given in Supplemental Table S19. 
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