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ABSTRACT: Widespread availability of protein sequence-fitness data would revolutionize both our biochemical understanding of
proteins and our ability to engineer them. Unfortunately, even though thousands of protein variants are generated and evaluated for
fitness during a typical protein engineering campaign, most are never sequenced, leaving a wealth of potential sequence-fitness
information untapped. Primarily, this is because sequencing is unnecessary for many protein engineering strategies; the added cost
and effort of sequencing is thus unjustified. It also results from the fact that, even though many lower cost sequencing strategies have
been developed, they often require at least some sequencing or computational resources, both of which can be barriers to access.
Here, we present every variant sequencing (evSeq), a method and collection of tools/standardized components for sequencing a
variable region within every variant gene produced during a protein engineering campaign at a cost of cents per variant. evSeq was
designed to democratize low-cost sequencing for protein engineers and, indeed, anyone interested in engineering biological systems.
Execution of its wet-lab component is simple, requires no sequencing experience to perform, relies only on resources and services
typically available to biology labs, and slots neatly into existing protein engineering workflows. Analysis of evSeq data is likewise
made simple by its accompanying software (found at github.com/fthalab/evSeq, documentation at thalab.github.io/evSeq), which can
be run on a personal laptop and was designed to be accessible to users with no computational experience. Low-cost and easy to use,
evSeq makes collection of extensive protein variant sequence-fitness data practical.

INTRODUCTION

Engineered proteins are valuable tools across the biological
and chemical sciences and have revolutionized industries
ranging from food to fuels, pharmaceuticals, and textiles by
providing green and efficient protein solutions to challenging
chemical problems.! Over the course of a protein engineering
campaign, hundreds to thousands or more protein variants will
be constructed and have their fitnesses (level of, e.g.,
thermostability, catalytic activity, substrate binding, etc.)
evaluated. Notably, sequence information is typically not
gathered alongside the functional information, even though it
could provide useful biochemical insight.>* This is largely
because many engineering strategies can be applied without
sequencing. For example, during a typical directed evolution
(DE) experiment, often only the best-performing variant or
variants are sequenced in each round of mutagenesis and
screening; sequencing every variant is viewed as an
unnecessary expense. Given the massive amount of functional
data gathered during a typical DE campaign, however, if
sequencing were performed for the variants generated during
these experiments, the resultant large datasets of sequence-
fitness information could be revolutionary for biological,

biochemical, and biocatalytic research. This is especially true
for data-driven protein engineering strategies such as machine
learning (ML), the development of which has benefitted
tremendously from large sequence-fitness datasets made
available by strategies like deep mutational scanning (DMS)
and in databases like ProtaBank.>'

Unfortunately, the standard sequencing strategy employed
during DE—Sanger sequencing—is too expensive for
sequencing all variants tested during a round of evolution.'”
Sanger sequencing is ubiquitous due to ease of sample
preparation and ready availability of sequencing providers.
However, the cost of Sanger sequencing scales linearly with the
number of samples (Supplemental Figure S1). Thus, while the
cost of sequencing just the top variants in a round of DE is
minor, sequencing the hundreds or thousands of variants
generated over the full engineering endeavor is not. Ideally, any
new approach to sequencing during a protein engineering
campaign would be comparable in cost, effort, and accessibility
to that of sequencing just the top variants by Sanger sequencing.
Here we present a collection of standardized and accessible
protocols, components, and software that accomplishes this
goal. This collection, which we call every variant sequencing
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(evSeq), democratizes barcode sequencing strategies and
expands on services made available by multiplexed next-
generation sequencing (NGS) providers to allow amplicon
sequencing of a region of interest within every variant produced
during a round of DE at a cost of cents per variant.'®!? Sample
preparation for evSeq is simple, and the method requires no
experience with NGS to perform, relies only on resources and
services typically available to biology labs, and slots neatly into
existing protein engineering experimental workflows. The
accompanying software for analysis of evSeq data (found at
github.com/fhalab/evSeq, documentation at
fhalab.github.io/evSeq) was designed to be accessible to users
with no computational experience and can be run on a personal
laptop.

In this paper, we detail the underlying strategies, protocol,
and potential applications of evSeq. We begin by describing the
strategies employed by evSeq to extend multiplexed NGS for
sequencing protein variant libraries in a way that reduces both
cost and effort. We then describe the wet-lab protocol of evSeq
sample preparation, focusing on how it can be completed
without disrupting an existing protein engineering workflow.
Next, we discuss the features of the evSeq software before
finally presenting two case studies that highlight potential
applications of evSeq. In particular, we highlight how (1) the
sequence-fitness data from evSeq can provide valuable
information about the quality of variant libraries and the
functional screen as well as how mutations modulate protein
activity, and how (2) the data generated from evSeq can be used
to implement ML for protein engineering. We designed evSeq
for use as a routine procedure in many protein/enzyme assays
(especially DE and protein engineering experiments leveraging
mutagenesis strategies that target specific sites or a segment of
the sequence). This tool brings cost-effective, easy-to-use
sequencing to all protein engineers, regardless of experience
with NGS and access to sequencing and computational
resources. We believe that widespread adoption of evSeq—and
the resultant datasets generated—will be invaluable for future
ML-guided protein engineering and will help us better
understand protein sequence-fitness relationships.

RESULTS AND DISCUSSION

evSeq uses inline barcoding to expand on commercially
available multiplexed next-generation sequencing. Unlike
Sanger sequencing, which outputs a single chromatogram that
represents the population of DNA in a sequenced sample, NGS
outputs millions of individual DNA reads that represent a
random draw from the population of DNA in the sequenced
sample.'® Confidence in NGS sequencing results is largely
determined by the sequencing ‘“coverage”, which for the
purposes of this paper is defined as the number of returned reads
that map to a specific nucleotide on a reference sequence.
Higher coverage enables more confident identification of
mutations relative to a reference sequence as the increased
redundancy allows distinguishing between true sequence
mutations and errors that arise during library preparation,
clustering, or sequencing.

A single NGS run is roughly three orders of magnitude more
expensive than a Sanger sequencing run, but because the run
outputs millions of reads, this cost can be spread over multiple
samples using a technique known as “multiplexed NGS”
(Supplemental Figure S1). In multiplexed NGS, each submitted
sample is tagged with a “molecular barcode”—a unique piece
of DNA that encodes the sample’s original identity—before all

samples are sequenced together in the same NGS run.!*"* Post
sequencing, the barcodes are used to assign individual reads to
individual samples. For instance, barcodes can be used to
distinguish reads coming from samples belonging to specific
plates and wells.?® Importantly, multiplexed NGS can be
outsourced just like Sanger sequencing (making it accessible to
all laboratories regardless of sequencing experience), and
sequencing providers typically charge tens of dollars per
sample in a multiplexed sequencing run, yielding on the order
of 10*-10° individual sequences per sample (assuming the run
is performed on an Illumina MiSeq instrument).

The level of coverage granted by a set number of reads
depends on the length of the DNA sample being sequenced, the
length of the NGS read used to sequence it, and whether those
reads are paired-end. NGS reads are short (300 bp or less on
Illumina systems), and so reads must be spread across a longer
sample to sequence it in full. The expected coverage (average
coverage per nucleotide) obtained for a DNA sample thus
depends both on its length and the read length used for
sequencing. For example, with the ~10° reads returned by a
commercial MiSeq multiplexed sequencing run, a 3 Mb
genome could be sequenced with 150 bp paired-end reads to an
expected coverage of ~10x, whereas a 20 kb plasmid could be
sequenced to an expected coverage of ~1500x.

Because shorter samples can be sequenced at higher coverage
for a given number of reads, it can be advantageous to sequence
only the region of interest of a sample. This is exemplified by
amplicon sequencing, a strategy in which a researcher
sequences a PCR product (an amplicon) that targets a specific
region of interest in the DNA.?’ For instance, continuing the
example from above, with ~10° total 150 bp paired-end reads,
a 300 bp PCR product could be sequenced to an expected
coverage of ~100,000x.

Many mutagenesis methods employed in protein engineering
(e.g., site-saturation®® and tile-based mutagenesis® strategies)
target mutations to a specific position or region in the sequence
of a protein, and thus the variants produced can be sequenced
with amplicon sequencing to high coverage.”’ Notably,
however, even though increasing coverage yields more
confident results, it comes with diminishing returns, and it is
generally held that coverage in the tens is more than sufficient
for effective reference-based identification of mutations
(Supplemental Figure S1).3° Indeed, clinical sequencing of
human genomes targets 30x coverage or greater to minimize
false base calls. Given this reference, it is clear that the
~100,000x coverage that would be returned from a multiplexed
sequencing run for a 300 bp amplicon is far higher than
necessary for effective identification of mutations—2,000
amplicons could be sequenced in the same run and still yield
clinical-grade coverage.

evSeq achieves cost-effectiveness by relying on the facts that
(1) at tens of dollars per sample, the cost of sending a single
sample to an outsourced multiplexed NGS run is comparable to
the total cost of Sanger sequencing the top variants in a round
of DE, (2) amplicon sequencing can be used to identify
mutations in protein variants from many protein engineering
library types, and (3) enough reads are returned for a single
sample in a commercial multiplexed NGS run to sequence
hundreds of amplicons. Specifically, the evSeq protocol (Figure
1, Supplemental: evSeq Library Preparation/Data Analysis
Protocol) works by focusing all reads of a single multiplexed
NGS sample to specific regions on hundreds of protein variants,
achieving sequencing depths of 10'-10° at the approximate cost
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and level of accessibility of using Sanger sequencing of just the
top variants in a round of DE (Supplemental Figure S1).

The evSeq library preparation protocol begins with PCR
amplification of the region of interest in each variant (i.e., the
position/region where mutations were made) and appending
inline DNA barcodes to the resultant amplicons that encode
their original plate-well position (Figure 1A).23132 This is a
one-pot, two-step, plate-based PCR procedure that uses two sets
of primer pairs. Each primer in the first set of primers (“inner”
primers) consists of a user-specified 3 “seed” region that binds
to the regions flanking the region of interest as well as a 5’
predefined universal adapter (Supplemental: Inner Primer
Design). Each primer in the second set of primers (“outer”
primers) consists of (1) a 3’ region that matches the adapter of
the inner primers, (2) a central 7-nucleotide barcode where each
barcode pair between forward and reverse outer primers is
unique to a plate-well position, and (3) a 5’ sequence matching
the Illumina Nextera transposase adapters (Supplemental:
Outer Primer Design, Supplemental: Barcode Design,
Supplemental Tables S1-S2). We designed 96 unique forward
and 96 unique reverse outer primers for evSeq which, because
both forward and reverse outer primers contain a barcode, can
be combined to encode up to 96> = 9,216 possible plate-well
positions (Supplemental: Preparation of evSeq Barcode Primer
Mixes, Supplemental Tables S3—S10. Note that we also provide
a pre-filled IDT order form for the outer primers on the GitHub
associated with this work—see Supplemental: Ordering
Barcode Primers from IDT for details. While we recommend
using these pre-tested barcodes, users can also design their own
to, e.g., further expand the number of available combinations.).
Importantly, this set of outer primers can be used to sequence
any target region from any gene with evSeq, and so only needs
to be ordered once, constituting a one-time initial setup cost in
the range of a few hundred dollars (the exact cost will vary
based on oligo provider and any institutional agreements set up
with said provider). Once outer primers are ordered, only a new
inner primer pair is needed for each new region of interest to be
targeted by evSeq.

Once all barcoded amplicons have been produced, they are
pooled and sent to a sequencing provider, who will then use the
transposase adapters installed with the outer primers as a handle
to perform a third and final PCR to barcode the pool of
amplicons once again with a pair of sample-specific [llumina
indices (Figure 1B). At this point each amplicon in the pool has
one pair of sample-specific Illumina barcodes and one pair of
plate-well-specific inline evSeq barcodes. This complete evSeq
library is sequenced as a single sample in a multiplexed NGS
run along with samples from other users (whether or not they
are also evSeq samples). Post sequencing, the sequencing
provider uses the sample-specific barcodes to identify those
sequences belonging to the evSeq pool and returns them to the
user (i.e., the provider “demultiplexes” the run, separating
evSeq sequences from those of other users). The user then uses
the evSeq software to analyze the returned sequences, assigning
them to corresponding plate-well positions using the evSeq
barcodes and identifying the mutations in the variants relative
to a reference (Figure 1B, 1C).

evSeq library preparation fits into existing protein
engineering and sequencing workflows and was designed to
be resource efficient. A typical procedure for evaluating
protein variants involves (1) arraying colonies of an organism
(e.g., Escherichia coli) that harbor a plasmid encoding a protein
variant into the wells of a (usually 96-well) microplate, (2)
growing the resulting cultures to stationary phase (colloquially,

an “overnight culture”), (3) using the overnight culture to
inoculate a fresh culture that will be used to express the protein
variants, and (4) evaluating the fitnesses of expressed protein
variants. The expression stage (step 3) typically involves
downtime where the experimentalist must wait until the culture
reaches sufficient density before inducing protein expression
and then again as expression takes place. evSeq library
preparation can be performed easily in either of these time
windows. The evSeq library preparation protocol begins with
the barcoding PCR described at the end of the previous section;
this one-pot, two-step, plate-based PCR was designed to be
compatible with outsourced sequencing workflows, minimize
preparation time, and minimize laboratory resource usage
(Supplemental: evSeq Library Preparation/Data Analysis
Protocol). For instance, use of inline barcodes is a known,
effective strategy for expanding the number of samples that can
be multiplexed without having to modify the Illumina indices
used during multiplexed sequencing.’!** Because evSeq library
preparation uses inline barcodes, it grants the outsourced
sequencing provider maximal flexibility in choice of Illumina
indices. In other words, evSeq library preparation is decoupled
from preparation of the Illumina library that will eventually be
sequenced, allowing the evSeq library to be run just as any other
sample would be that is submitted to a sequencing provider.

As mentioned in the previous section, use of a two-step PCR
reduces the number of primers that must be ordered per new
sequencing region of interest. Because evSeq relies on 96
unique forward barcodes and 96 unique reverse barcodes, a
single-primer PCR would require ordering 192 new barcoding
primers for each new target region evaluated in each library. In
a two-primer protocol, however, the inclusion of a universal
adapter on the inner primers allows the same 192 outer primers
to be used regardless of target position in the variant—only two
unique primers (forward and reverse inner) must be purchased
for each new target region, and only if existing inner primers
from previously targeted regions are not already compatible.
Additionally, the evSeq PCR directly uses liquid from the
overnight culture as a source of template DNA (Figure 1B,
Supplemental: evSeq Library Preparation/Data Analysis
Protocol); the template DNA is released from lysed cells during
the initial heating step of the PCR, avoiding a costly and time-
intensive DNA isolation/purification step and allowing
researchers to use materials already prepared as part of the
protein expression workflow.3?

The remaining steps of evSeq library preparation were, like
the PCR stage, also designed to be resource and time efficient.
After completion of the PCR, the resulting barcoded amplicons
are pooled by plate and purified via gel extraction. Pooling prior
to purification goes against standard practice for multiplexed
NGS library preparation, which is to purify samples
individually, quantify their DNA concentration, then combine
them in equimolar quantities to ensure more equal read
distribution across samples after sequencing.®* However,
because individual plates in protein engineering libraries tend
to contain variants from the same region of the same protein
scaffold (e.g., as would be typical for variants from a
comprehensive site-saturation library), it is assumed that the
variation in PCR reaction yield will be minor within plates and
that, as a result, the same plate can be pooled prior to
quantification with only minor effects on read distribution.
Using this “pooling first” strategy, only as many purifications
as there are plates must be performed as opposed to as many as
there are variants, thus enabling faster processing of evSeq
amplicons while reducing resource usage. As will be shown in
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later sections, the distribution of reads returned using pooling sample-specific barcodes before sequencing it as a single

first is perfectly acceptable for confidently identifying variant sample in a multiplexed sequencing run. Outsourcing the
sequences. sequencing stage has two main benefits: First, it allows evSeq

Once all pooled plates have been purified, the concentrations to be .performed by rgsearch groups with no prior seguencing
of the individual purified pools are measured. The pools are experience and no direct access to sequencing equipment—
then normalized by molarity and combined into a final evSeq groups need only be familiar with PCR, a ubiquitous
library, which is in turn submitted as a single sample to a technology in protein engineering !aboratorles. Seconq, to be
sequencing provider. As described in the previous section, the cost effective, multiplexed sequencing should be run with tens
provider will perform a final PCR on the evSeq library to add of samples at least (Supplemental Figure S1). By outsourcing
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Figure 1. Overview of evSeq library preparation and processing. (A) In the first stage of the PCR, a region of interest is amplified with
primers that include a 3’ site-specific region (gray) with 5’ adapter sequences (dark blue). The second PCR stage adds molecular barcodes
(rainbow) with primers that bind to the adapter regions and add adapters for downstream NGS processing (light blue). (B) To avoid costly
DNA isolation steps, evSeq uses liquid cultures of cells harboring mutated DNA (e.g., an “overnight culture” of E. coli) as template during
the one-pot two-step barcoding PCR described in A. Each plate is pooled individually and gel purified. Purified pools are then adjusted for
concentration differences and pooled together before being sent to a sequencing provider, who then appends another set of barcodes as well
as sequence elements necessary for Illumina NGS sequencing. This sample is now pooled with those of other users and a multiplexed
sequencing run is performed. After sequencing, the sequencing provider uses the barcodes that they attached to separate (“demultiplex”) the
evSeq reads from reads of other users; the provider returns evSeq reads in .fastq files. (C) The .fastq files returned by the NGS provider are
inputs to the evSeq software, which uses the evSeq forward/reverse barcode pair to map each read to a specific plate and well based on known
barcode combinations. The software also processes the mapped reads (see the Supplemental and evSeq documentation for more details) to,
among other things, assign variant identities to each well and return interactive HTML visualizations.
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the sequencing stage, groups that do not frequently produce
evSeq libraries need not wait until enough libraries have
accumulated to run sequencing—a single outsourced
submission, for instance, can be run along with those of other
research groups with a variety of different sequencing needs.

The final stage of the evSeq workflow is data analysis using
the evSeq software (github.com/fhalab/evSeq) (Figure 1C).
Extensive documentation of the software and its capabilities is
available as a website (fhalab.github.io/evSeq). The software
was designed to be accessible to users with varying degrees of
computational experience and can be run through either a
graphical user interface (GUI), a command line application, or
in a Python environment (e.g., a Jupyter notebook). Outputs
from the software range from high-level overviews of data (e.g.,
an interactive “Platemap” graphic that displays sequencing
coverage and identified mutations in each well of each plate;
see Figure 1C for an example) to low-level details about the
population of reads assigned to each well (e.g., in a well
identified as polyclonal, the percentage of reads mapping to
each of the identified variants). Functional data can also be
easily associated with identified variants using the evSeq
software outputs to produce sequence-fitness datasets, and we
provide Jupyter notebooks and web pages that walk users
through the process.

evSeq facilitates library construction, validation, and
sequence-fitness pairing. To highlight the utility of evSeq for
engineering and biochemical experiments, we first examined
how it could be used to construct high-confidence and
informative sequence-fitness data. Specifically, we constructed
and screened eight single-site-saturation libraries of the enzyme
Tm9D8*—an engineered B-subunit of tryptophan synthase
from Thermotoga maritima (TmTrpB)—for tryptophan-
forming activity at 30 °C (Figure 2).>* In two of the screened
libraries, we targeted two positions distant from the active site
(A118 and S292) that have been seen to play a role in allosteric
regulation of TmTrpB enzymes; in the other six libraries, we
targeted active-site residues known to modulate the activity of
TrpB (E105, L162, 1166, F184, S228, and Y301) (Figure
2A).377 As we show below, this type of sequence-fitness data
can be used to assess the quality of a protein engineering library,
identify improved variants during a round of directed evolution,
and give insight into the significance of a given residue in
catalysis.

Many factors can introduce bias into a site-saturation
mutagenesis experiment, such as annealing bias for the native
nucleotides during the PCR for library construction or
contamination  with the template plasmid during
transformation. Without sequencing all of the variants, it is
impossible to know that the library is representative of the
experimental design. Since evSeq reports exactly which
variants are contained in a library, researchers can leverage this
to implement important quality control practices as part of the
standard protein screening workflow. For instance, of all 153
possible unique variants in our eight single-site-saturation
libraries, we observed 149 of them (Figures 2B and C); only
1166A, S292C, S292D, and S292H could not be assigned with
confidence, where we define >80% abundance in a well with
>10 reads as our confidence threshold. Of the variants
identified, many were found in replicate (Figure 2D) due to
oversampling during colony picking, which ensures that all
protein variants have a chance to be found and screened (All
libraries were constructed with the 22-codon trick®® and 88
individual colonies were screened for each library, so we
expected a 98% probability of seeing all variants assuming

perfect construction of libraries). Conveniently, this
oversampling also allows us to evaluate the noise in our
functional screen (Figure 2E) which further improves the
confidence in the quality of data gathered.

Given just the fitness data gathered in this experiment, a
protein engineer would identify 50 wells that are at least 1.2-
fold improved over the parent enzyme Tm9D8%*. However, with
the sequence-fitness pairs constructed via evSeq, we know that
these 50 wells correspond to only 16 unique variants.
Depending on how conservative the engineer was as to what
should be sequenced, a decision to sequence hits with Sanger
sequencing could result in anywhere from 12 (2-fold
improvement) to 50 (1.2-fold improvement) wells sent off for
sequencing for a total cost of $36 to $150 (using an estimate of
$3 per sequence). It would cost ~$2000 to sequence all eight
plates via Sanger. Using evSeq, however, we obtained the
sequences of all 625 wells of variants for only $100,
corresponding to $0.13 per non-control well. In other words,
using evSeq, we can produce far more sequence-fitness
information than sequencing just the top hits using Sanger all
for a similar cost. Importantly, although the evSeq defaults
currently allow only eight plates to be sequenced at once, the
number of variants included in this experiment could likely
have been increased as the median number of reads per well
was 86 (mean: 98), which is above what is needed for reliable
sequencing. Assuming that doubling the number of plates
would halve the number of reads seen for each well, doubling
the number of plates sequenced would cause only 14 non-
control well sequences to drop below the confidence threshold.

The per-variant cost of evSeq may be reduced even further
using different services and sequencing platforms. For instance,
in both this section and the next, the reported number of reads
and ~$100 total cost are from outsourced MiSeq runs, which
returned hundreds of thousands of total reads per evSeq library.
We report these numbers because outsourced multiplexed
MiSeq is a standard service available to all research groups. As
an alternative to outsourcing, however, our institution provides
multiplexed sequencing (via the Caltech Millard and Muriel
Jacobs Genetics and Genomics Laboratory) on an Illumina
NextSeq platform, returning an average of ~10x more reads
than the outsourced MiSeq run for a total cost of ~$10. At 10x
more reads and 10x less the total cost, the per-variant evSeq
cost could decrease 100-fold to <$0.01. Indeed, we were able
to re-sequence the TrpB libraries at a per-variant cost of ~$0.01
with ~2.2 million total reads returned for an average of
thousands of reads per variant, far higher than what is needed
for reliable variant calling. It must be noted, however, that
analysis of the millions of evSeq reads was no longer practical
on a personal laptop, requiring a desktop workstation instead.
Computational power beyond a laptop will be needed when
processing more than hundreds of thousands of reads with the
existing evSeq software.

Of final note, aside from providing valuable information for
protein engineering experiments, evSeq can also facilitate
investigation into the biochemical relevance of specific
positions/mutations. Specifically, because all possible variants
in a site-saturation library can be identified by evSeq, the
sequence-fitness information generated can be used to explore
the effects of mutations more fully than, for instance, an alanine
scanning experiment.* Using an example from the TrpB data
gathered here, an alanine scanning experiment would tell a
biochemist that the mutation to the conserved catalytic residue
E105A inactivates the enzyme, with no information about the
effects of other amino acid changes at this position. Using site-
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Figure 2. evSeq enables low-cost investigation of library quality and sequence-fitness pairing in site-saturation mutagenesis libraries. (A)
Eight residues (red) known to modulate the activity of Tm9D8* were independently targeted with site-saturation mutagenesis: A118 and
S292 (distal residues), E105, L162, 1166, F184, S228, and Y301 (active-site residues). An active form of the pyridoxal 5’-phosphate cofactor
is represented in green, and the substrate indole is shown in light blue. (B) Library quality can be investigated by plotting a heatmap of the
number of times each variant/mutant was identified at each targeted position ("# in Library") from processed evSeq data. Parent amino acids
are each marked with an asterisk. (C) Likewise, the effect of mutations and mutational “hotspots” can be identified by plotting a heatmap ot
the average activity measurements for each variant/mutation in each library, normalized to the average parent activity for that library
("Normalized Rate"), when fitness data is combined with evSeq data. (D) An example plot made possible by evSeq visualization functions
shows the number of times each amino acid was found in a single TrpB library (position 105), also accounting for known controls and
unidentified wells. (E) Another example output of the evSeq software shows activity for a single library (position 105), showing biological
replicates. The inset displays the role of the mutated residue in this library, which is to coordinate the nitrogen of the indole substrate. Note
that the circles in this plot correspond to individual measurements while the bar plot represents the mean of these measurements. If no circles
are present for a bar (e.g., E105D), then this is because only a single instance of this mutation was observed. Circles are not shown in this
case to allow distinguishing between a single replicate and a tight distribution of multiple replicates.

saturation with evSeq, we instead find that all mutations to
E105 except for E105D inactivate the enzyme. The fact that
glutamate and aspartate are the only amino acids containing a
carboxylic acid suggests that this functional group is critical for
activity (Figure 2E, with inset).

evSeq can be used to generate data for machine learning-
assisted protein engineering. We next wanted to demonstrate
the utility of evSeq for advancing and applying machine
learning-assisted protein engineering (MLPE). In MLPE,
models are trained to learn a function that relates protein
sequence to protein fitness (i.e., they learn f(sequence) =
fitness).>*"!! These models are then used for rapid, low-cost in
silico prediction of protein fitness, avoiding or greatly reducing
the need for often-costly laboratory screening of variants
(Figure 3).

Sequence-fitness data is critical for effective MLPE. Indeed,
even though strategies exist that can predict protein fitness from
sequence alone (e.g., those that use evolutionary data to predict
protein fitness), their effectiveness is improved with the
inclusion of sequence-fitness information.”!*13% As a result,
the most effective MLPE workflows require that both sequence

and fitness data be collected, unlike a DE workflow, which
requires only fitness data.

The need to collect sequence data in addition to fitness data
is an often-overlooked additional cost of MLPE strategies
compared to standard DE. For instance, we recently developed
an ML strategy known as machine learning-assisted directed
evolution (MLDE) for efficient navigation of epistatic
combinatorial protein variant libraries.*'**> Previously, we used
MLDE to evolve Rhodothermus marinus nitric oxide
dioxygenase (RmaNOD) for greater enantioselectivity in a
carbon-silicon bond-forming reaction.*! Over the course of the
engineering campaign, we collected six 96-well plates of
sequence-fitness data for training ML models. In total,
sequencing the variants in these plates by Sanger sequencing
cost ~$1700. High additional sequencing costs like these can
make MLPE methods far less attractive, even if they are more
effective than traditional DE at finding high-fitness protein
variants.* However, given that evSeq enables sequencing all
variants for a cost similar to standard DE methods, it enables
use of MLPE without added cost. In essence, evSeq eliminates
the sequencing burden of MLPE.
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Figure 3. evSeq eliminates the sequencing burden of MLPE. Traditional DE only collects sequence information for top variants, essentially
“throwing away” fitness data from inferior variants and learning nothing about the underlying fitness landscape. If, instead, evSeq is used to
collect sequence information for all variants, MLPE methods, which require sequence-fitness pairs for supervised model training, can be
implemented. Sampling from a fitness landscape, an ML model can be trained to predict the fitnesses of missing sequences and reconstruct

the missing regions of this landscape.

To demonstrate the application of evSeq to MLPE, we used
it to sequence five plates of RmaNOD variants from a four-site
combinatorial library. Coupled with fitness data, the sequences
resulting from this run could be used to drive a round of MLDE.
Notably, sequencing these plates by Sanger sequencing would
have cost ~$1400; in contrast, sequencing by evSeq using an
outsourced multiplexed MiSeq run cost ~$100 for a per-variant
cost of ~$0.21. The median read depth per variant in this run
was 463 (mean: 506), much higher than is required for accurate
sequencing, and so more plates—from either the same or a
different library—could have reasonably been added to this
evSeq run to decrease the per-variant sequencing cost even
further (Figure 3B). Of course, as discussed in the previous
section, in-house sequencing could have cut sequencing costs
an additional ten-fold.

The cost of sequencing is most notably a barrier for MLPE
strategies that focus on developing models for a single protein
with a well-defined fitness (e.g., MLDE); however, the
applicability of evSeq to MLPE is not limited solely to cost-
reduction. For instance, ML strategies have been developed
that, rather than focusing on a specific protein, train models on
sequence-fitness information across multiple different protein
scaffolds.'®* The goal is for these models to learn global
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Figure 4. evSeq detects variability and can be expanded for
random mutagenesis. (A) evSeq does not require that the user
specify which position in the amplicon was targeted. Instead, the
software can identify variable regions by comparing to a reference
(B) evSeq can be used to sequence entire genes by designing a set
of inner primer pairs which together capture the entire gene.
Different evSeq barcodes can then be used for each region, and the
user can reconstruct the entire sequence.

determinants of protein fitness, then to use the models as
general-purpose protein fitness predictors. By enabling the
collection of sequence-fitness pairs across a wider array of
proteins and fitness definitions, evSeq opens these approaches
to new and more diverse data sources. Generally speaking, the
more sequence-fitness data available to train and benchmark
these strategies, the better we expect them to perform and the
more rapidly we expect improvements to be developed.!® It is
no coincidence that large leaps forward in other ML disciplines
have followed increased availability of large, diverse datasets,
with the rapid advance in computer vision sparked by ImageNet
being perhaps the most prominent example.** Widespread
adoption of evSeq—and commitment to depositing sequence-
fitness data in resources such as ProtaBank—would provide
such a dataset for protein engineering.® This dataset would span
the range of all engineered proteins and all target fitnesses,
capture examples of sequences with both higher and lower/zero
fitness relative to a parent (the latter of which is effectively
never recorded with current DE sequencing practices), and
overall enable rapid advancement in MLPE.

evSeq detects all variability in the sequenced amplicons.
Although we focused here on demonstrating applications
involving targeted mutagenesis strategies, evSeq is also
applicable to other mutagenesis methods as the associated
software can identify both user-specified and unspecified
positions of variability (Figure 4A). This feature not only
informs the user of potential unexpected mutations in the
sequenced amplicon (Supplemental Table S11), but also allows
it to work effectively with tile-based mutagenesis strategies and
other semi-targeted mutagenesis strategies (e.g., error-prone
PCR of specific regions or small genes). All that is required is
that the amplicon length and read length be able to capture the
full region containing mutations.

It should be noted that evSeq will not detect off-target
mutations outside of the constructed amplicon as these regions
are not sequenced, meaning that it is unable to identify other
mutations in a larger DNA element that may be contributing to
activity. Due to this fact, for exceedingly unexpected
mutational effects that are not seen in replicate, we suggest
sequencing the rest of the DNA element to confirm the presence
or absence of any off-target mutations. However, this limitation
is mitigated by the fact that off-target mutations are rare and,
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importantly, evSeq is agnostic to read length and will work with
any length of paired-end sequencing.*’

While the current software version is not yet suited for other,
long-read sequencing technologies (e.g., PacBio or Oxford
Nanopore), future versions could be updated and validated with
these data formats and make full gene-length evSeq
experiments more straightforward and cost effective. Given
this, evSeq is currently best suited and most cost effective when
all expected mutations exist in the sequenced amplicon, though
sequencing of multiple overlapping amplicons can readily
allow evSeq to be expanded to sequence entire genes of variants
arrayed in microplates (Figure 4B). Care must be taken in such
an application, however, to account for the fact that aggressive
mutation rates could compromise the annealing efficiency of
inner primers binding in the variable region, as could mutations
to positions closer to the binding region of the 3’ end of the
inner primer. Such situations would lead to a higher proportion
of wells failing sequencing.

CONCLUSION

Hundreds to thousands of protein variants (or more) are
constructed and their fitnesses evaluated over the course of a
standard protein engineering campaign. Without sequencing,
these fitnesses are next to usecless—the time, effort, and
resources expended to produce them are largely wasted.
Comparable in cost to existing protocols, accessible to scientists
with no or minimal sequencing and computational experience,
and easy to implement with existing technology, evSeq rescues
these fitness data by making the collection of sequence data for
every variant a practical and highly useful step of the protein
engineering pipeline. Given the number of research groups
working on DE and other protein engineering projects,
widespread adoption of evSeq would lead to an explosion in the
availability of sequence-fitness information. By sequencing
every variant, no laboratory screening effort is wasted, and we
open the door to advances in both our biochemical
understanding of proteins and our ability to engineer them with
data-driven methods.

MATERIALS AND METHODS

Single-Site-Saturation Library Generation for TrpB.
Saturation mutagenesis libraries were prepared using a
modification of the “22-codon trick” described by Kille et al.*®
We first designed primers using the templates given in
Supplemental Table S12. For the forward primers, each
sequence of “NNN” in these templates was replaced with
“NDT”, “VHG”, and “TGG”, resulting in a total of three
degenerate primers which could then be mixed at a ratio of
12:9:1, respectively. The reverse primers were used without
changes.

We also designed primers that bind within the ampicillin
resistance (AmpR) gene in pET22b(+) with sequences as given
in Supplemental Table S13. These primers were designed such
that, when used in combination with the site-specific primers to
run a PCR, two medium-length fragments would be created
with a break in the AmpR gene. For the forward site-saturation
primers, a PCR was performed using the reverse AmpR primer,
resulting in a fragment from ~1500-2000 bp long. For the
reverse site-saturation primers, a PCR was performed using the
forward AmpR primer, resulting in a fragment ~4500-5000 bp
long.

Once PCRs finished, 1 pL of Dpnl (NEB R0176S) was added
to each of the reactions, which were then incubated at 37 °C for
1 h to digest the unmutated template plasmid. The presence of
correctly sized fragments was confirmed via gel electrophoresis
and each fragment was then excised from the gel and purified
with the Zymoclean Gel DNA Recovery Kit (Zymo Research
D4002).

Purified fragments were then assembled following the
standard Gibson assembly method.*® After 1 h at 50 °C, the
reaction mixtures were desalted with a DNA Clean &
Concentrator-5 kit (Zymo Research D4013) and used to
transform electrocompetent E. cloni® cells (Lucigen 60051-1).
Libraries were spread onto solid agar selection medium
consisting of Luria Broth (RPI L24040-5000.0) supplemented
with 100 pg/mL carbenicillin (LBcub) and incubated at 37 °C
until single colonies were observed. Individual colonies were
then transferred into the wells of 96-well 2-mL deep-well plates
containing 300 pL of LB to isolate monoclonal enzyme
variants, with 8 wells being reserved for control conditions,
giving 4-fold oversampling of the 22-codon library. These
cultures were grown overnight at 37 °C, 220 rpm, and 80%
humidity in an Infors Multitron HT until they reached stationary
phase, at which point 100 pL from each well were mixed with
an equal volume of 50% glycerol and stored at —80 °C for future
use.

For protein expression, 20 uL of the remaining culture were
used to inoculate 630 pL of Terrific Broth with 100 pg/mL
carbenicillin (TBcar). These were then grown at 37 °C, 220 rpm,
and 80% humidity for 3 hours in an Infors Multitron HT, at
which point they were placed on ice for 30 minutes. Following
this, 50 pL of a 14 mM solution of isopropyl-p-d-
thiogalactoside (IPTG; GoldBio #12481C100) in TBca», were
added to each well to induce protein expression at a final
concentration of 1 mM IPTG. Expression proceeded in the
same Infors Multitron HT shaker as before at 22 °C, 220 rpm
for roughly 18 hours. Cells were harvested via centrifugation at
4500g for 10 minutes, the supernatant was removed, and the
plates (now containing pelleted, expressed cells) were placed at
—20 °C until needed.

Once cells had been harvested, cultures for evSeq were
prepared. These cultures were started from the 96-well plate
glycerol stocks prepared prior to moving into the cell
expression protocol; the cultures were grown overnight
(~18hrs) in an Infors Multitron HT (220 rpm, 37 °C) to
saturation in 96-well deep-well plates in 300 puL of LBcuw.
These cultures were then frozen and stored at —20 °C to be used
for sequencing with evSeq.

A GenBank file detailing the plasmid and primers used in this
section is available on the evSeq GitHub at
https://github.com/fhalab/evSeqg/tree/master/genbank_files/tm
9d8s.gb.

Sequencing TrpB Libraries with evSeq. Frozen overnight
cultures (preparation detailed in the previous section) were
thawed at room temperature. Libraries were then sequenced
with the process described in Supplemental: evSeq Library
Preparation/Data Analysis Protocol; the evSeq software was
run using all default parameters (average q cutoff = 25,
bp_q cutoff = 30, length cutoff = 0.9, match score = 1,
mismatch_penalty = 0, gap open penalty = 3,
gap_extension_penalty = 1, variable thresh = 0.2,
variable_count = 10) with the “return_alignments” flag thrown.
The inner primers used for library preparation are in
Supplemental Table S14. The barcode plates (Supplemental
Tables S3 — S10) were paired to positions as given in
Supplemental Table S15.
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Measuring the Rate of Tryptophan Formation. Rate of
tryptophan formation data was collected with the same
procedure described in Rix et al. for non-heat-treated lysate
preparation in the section “Indole rate measurements” with a
few modifications: lysis occurred in 300 uL KPi buffer with
100 uM  pyridoxal 5’-phosphate (PLP) supplemented with
1 mg/mL lysozyme, 0.02 mg/mL bovine pancreas DNase I, and
0.1x BugBuster; lysis occurred at 37 °C for 1 h.¥

Four-Site-Saturation Library Generation for RmaNOD.
Positions S28, M31, Q52, and L56 of a variant of RmaNOD
(RmaNOD Y32G) were targeted for comprehensive site-
saturation mutagenesis using a variant of the 22-codon trick
originally described by Kille et al.’® Due to the proximity of
positions S28 and M31, it was easiest to use the same
mutagenesis primers to target them; the same was done for
positions Q52 and L56. Because the 22-codon trick requires
three degenerate codons per position targeted, nine individual
primers capturing all combinations (3 codons ” 2 positions/per
primer = 9 primers) of the degenerate codons had to be ordered
for each of the two mutagenic primers. Sequences of these
primers are given in Supplemental Table S16.

The primers from Supplemental Table S16 were all ordered
from IDT at 100 uM. Both a “forward” and a “reverse” primer
mixture were prepared by combining individual forward and
reverse primers in proportion to the number of individual
codons they encoded. A 10 uM forward-reverse primer mixture
was then prepared by adding 10 pL of both the forward and
reverse primer mixtures to 80 pL ddH,O. Once the forward-
reverse primer mixture was prepared, it was used in a PCR to
build a pool of DNA fragments containing the four-site
combinatorial libraries. Two fragments that captured the
remainder of the RmaNOD gene and host plasmid (pET22b(+))
were also produced by PCR. The primers used for these
flanking fragments are given in Supplemental Table S17.

After PCR completed 1 pL. Dpnl (NEB R0176S) was added
to each reaction. The reactions were then held at 37 °C in a
thermalcycler for 1 h. The PCR fragments were then gel-
extracted using a Zymoclean Gel DNA Recovery Kit (D4002).

Fragments were to eventually be assembled using Gibson
assembly.** Because the efficiency of Gibson assembly
increases with decreasing numbers of fragments, an assembly
PCR was performed to combine flanking fragment 1 (see
Supplemental Table S17 for details) and the variant fragment.
The resultant assembled fragment was then gel-extracted, again
using a Zymoclean Gel DNA Recovery Kit (D4002).

To complete construction of the library of variant plasmids,
a Gibson assembly was performed to combine the assembled
PCR fragment and flanking fragment 0. After Gibson assembly,
the Gibson reaction was cleaned using a Monarch PCR & DNA
Cleanup Kit (NEB CAT T1030L). The cleaned Gibson product
was next used to transform electrocompetent E. cloni® BL21
DE3. Transformed cells were spread onto solid agar selection
medium consisting of Luria Broth (RPI L24040-5000.0)
supplemented with 100 pg/mL ampicillin (LBamp) and
incubated at 37 °C until single colonies were observed.

To build the 96-well plates of RmaNOD variants used to
demonstrate evSeq, 400 pL LB + 100 pg/mL ampicillin were
first added to each well of 5x 96-well deepwell plates. Colonies
from the agar plates grown overnight were then picked into the
wells of the deepwell plates. The plates were placed in an Infors
Multitron HT at 240 rpm, 37 °C for ~16 h. To glycerol stock
the now-stationary-phase culture, 100 puL overnight culture
were added to 100 pL 50% glycerol before being stored at -80
°C until its use in evSeq library preparation.

A GenBank file detailing the plasmid and primers used in this
section is  available on the evSeq  GitHub
(https://github.com/fhalab/evSeq/tree/master/genbank files/rm
anod_y32g.gb).

Sequencing RmaNOD Libraries with evSeq. To begin
preparation of culture for evSeq with the RmaNOD variants,
cultures in 96-well deep-well plates (with 300 puL of LBcaw)
were started from the 96-well plate glycerol stocks prepared in
the previous section. The plates were placed in an Infors
Multitron HT at 240 rpm; the cultures were grown overnight
(~18hrs) before being frozen and stored at —20 °C.

To start the evSeq protocol, frozen overnight cultures were
thawed in a room temperature water bath. Libraries were then
sequenced with the process described in Supplemental: evSeq
Library Preparation/Data Analysis Protocol; the evSeq
software was run using the same parameters as for the TrpB
data analysis (see Sequencing TrpB Libraries with evSeq,
above). The inner primers used for evSeq library preparation
are given in Supplemental Table S18. The barcode plates
(Supplemental Tables S3 — S10) were paired to positions as
given in Supplemental Table S19.
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