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13 Abstract: Transport of cells in fluid flow plays a critical role in many physiological processes of
12 human body. Recent developments of in vitro techniques have enabled the understanding of cellu-
15 lar dynamics in laboratory conditions. However, it is challenging to obtain precise characteristics
16 of cellular dynamics using experimental method alone, especially under in vivo conditions. This
17 challenge motivates new developments of computational methods to provide complementary
Citation: Akerkouch, L.;Le, TAhy- 15 data that experimental techniques are not able to provide. Since there exists a large disparity in

brid continuum-particle based approach ;5 gpatial and temporal scales in this problem, which requires a large number of cells to be simulated,
for vesicles. Fluids 2021, 1, 0. https:

/ /dx.doi.org/10.3390/fluids1010000

20 it is highly desirable to develop an efficient numerical method for the interaction of cells and
21 fluid flows. In this work, a new Fluid-Structure Interaction formulation is proposed based on
22 the use of hybrid continuum-particle approach, which can resolve local dynamics of cells while
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1. Introduction

Dynamics of biological cells in fluid flows is important in many areas of bio-engineering [1]. Transport of cells in
human body is the main mechanism to sustain life as it provides oxygen, nutrient, and defensive mechanism to fence
off infection. Human cells are comprised of many compartments such as bi-lipid membrane, cytoplasm, nucleus, and
others [2]. However, special cells such as the Red Blood Cell (RBC), White Blood Cell (WBC), platelet, and contain mostly
of a thin membrane and the cytosol fluid [3]. RBC, WBC, and platelet [4] are the main components of human blood.
Therefore, understanding their dynamics could lead to new innovations in many engineering areas such as biomedical
devices [5,6], cancer biology [7,8], or drug delivery [9]. From a mechanical standpoint, these special cells (or capsules) are
deformable bodies, which are immersed in a flowing fluid. Investigating the dynamics of these cells can be useful for
many engineering applications such as detection of malaria infection [10], cell sorting/separation[11], drug delivery [12],
and design of devices for blood fractionation [13]. Modeling the dynamics of these special cells in fluid flow is the focus
of the current work.
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While many aspects of cellular flows can be examined by in — vitro experiment [14] in well-controlled conditions, it
is challenging to replicate all physiological conditions in the laboratory. In the last decade, numerical simulations have
shown their promises [15] in investigating transport of cells in realistic anatomy of vascular systems [2]. The growth of
computing power has enabled the simulation of whole blood, which consists of RBC, WBC, and platelet interacting with
each other [16]. The central challenge here is the multi-way interactions of these capsules with the fluid flow and with
each other. In addition, the complex anatomy of the vascular system is a great challenge for computational methods to
deal with [17] since cells migrate along the bifurcations without a predetermined pattern. Here, numerical methods must
be able to resolve the local dynamics of cells as well as providing sufficient details of large scale flows in the vascular
vessels. This task motivates a variety of approaches as listed below.

In a single cell, molecular dynamics (MD) [18,19] simulation is the method of choice for calculating cellular membrane
dynamics since it can provide a good estimation of lipid bilayer dynamics. However, MD requires a large number of
particles (few millions) to mimic the behavior of the membrane [19-21]. This approach is thus not appropriate for a
large-scale simulation of multiple cells.

Continuum approach such as the Finite Element Method [16,17,22,23] and boundary integral methods [24-26] have
been used to describe dynamics of RBC membrane. These continuum approaches require solving the non-linear systems
of equations to calculate the finite deformation of the cell membrane. Currently, simulations using these methods have
reported dynamics of few hundred of thousand RBCs [16,22,23], which is still far from physiological values in arterial
system.

The need to develop an efficient method for cellular membrane has led to the emergent use of Dissipative Particle
Dynamics (DPD) [27] in cellular flows. Pivkin et al. [20] and Fedosov et al. [21] proposed the state-of-the-art coarse-
grained RBC-model based on the Dissipative Particle Dynamics approach. Following this method, only a few hundred
particles are required to simulate the RBC dynamics. Therefore, the computational cost is reduced significantly. In this
approach, both the fluid plasma and the cellular membrane, and the cytoplasm are simulated with the DPD method. To
date, this coarse-grained DPD modeling has enabled a series of investigation of Red Blood Cell, White Blood Cell, and
platelet in idealized models of vasculatures [15,28]. This DPD method is successful in simulating many behavior of the
cells such as tank-treading and tumbling [29], deforming through a slit [25,30], or moving through stenosis collapse [31],
or micro-fluidic devices [32]. However, the difficulty in resolving the interaction between fluid plasma and cell membrane
remains a great challenge for DPD methods [15] since it is not clear how to assign physical values to DPD models of
the fluid. As a particle-based method, the advantage of the DPD method is the flexibility in modeling complex fluids
as the method satisfies conservation laws and other related constitutive equations [15]. However, there is a number of
disadvantages for the DPD method such as the uncertain mechanism to set the physical values for governing parameters
such as viscosity, density, and others. The DPD method only approximates fluid dynamics in the averaging sense (e.g.,
mean density and mean momentum). Therefore, it is challenging to apply the scaling arguments to the equations of
motion for the DPD method. It is thus important to come up with a new method for simulating the fluid plasma separately
from the RBC cytoskeleton dynamics.

Recognizing the challenges in coupling dynamics of cellular membranes and the fluid plasma, many numerical
methods have been proposed to use different models for fluid plasma and the cell membrane [33] via the use of immersed
boundary method. In this type of coupling, fluid plasma can be described separately from the cell membrane model. For
example, Lattice Boltzmann Immersed Boundary Method has been also been developed [31,34,35]. In this model, the
Lattice Boltzmann Method (LBM) [2], a particle-based method, is used to simulate the fluid plasma while the DPD or
Finite Element model is used for the cell membrane. Other numerical methods for fluids have been proposed as well
such as the Finite Element Method [36] or Finite Difference methods [17]. Particular roadblocks for this type of fluid-cell
interaction coupling are: a) high computational cost to simulate individual cell dynamics; b) incompressibility constraint
of the fluid plasma; and c) enforcing no-slip boundary condition of fluid flow in anatomical geometries of the arterial
vasculature. These difficulties have been addressed separately in recent attempts [17,28,31] for a small domain. However,
these are still major challenges if it is required to evaluate hemodynamics of a significantly large portion of the arterial
tree such as the coronary arteries [22]. It is highly desired to devise a numerical strategy so that these roadblocks are
removed with ease.

In this work, we propose a new approach based on the concept of continuum-particle coupling. The cell membrane
is modeled using the coarse-grained particle approach (DPD) while the fluid plasma is simulated using continuum
approach (sharp-interface immersed boundary method). The coupling of dynamics between the cell membrane and
the fluid plasma is carried out using a Fluid-Structure Interaction (FSI) methodology. Such a combination allows the
constraint of incompressibility of fluid plasma is satisfied while accommodating the FSI simulation of cells in anatomical
geometries.
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Our manuscript is organized as follows. First, we describe the essential components of the immersed boundary
method for incompressible fluids in section 2.1. Second, the DPD methodology to simulate the dynamics of the lipid
bi-layer membrane is explained in section 2.2. Third, the FSI methodology between the membrane and the fluid plasma
is discussed in section 2.3. Finally, several numerical examples are investigated to examine the ability of the proposed
framework for simulating RBC dynamics in different fluid flows in section 3. Discussions on the advantages and
disadvantages of the proposed method will be shown in section 5.

2. Materials and Methods
2.1. Mathematical descriptions of the cell-fluid interaction using the sharp-interface immersed boundary method

The cell (erythrocyte) is considered a body ()5, which is immersed in a fluid )¢ (blood plasma). The surface of
the cell (0Q)s) is represented by a triangulated network [37]. The computational mesh for the fluid domain is therefore
separated into two parts: a) the outer part ()¢ (blood plasma); and b) the inner part (s as shown in Figure 1.

The dynamics of the cell is modeled via a Fluid-Structure Interaction (FSI) procedure since the cell deformation is
under the impacts of the fluid forces and vice versa. Thus the cell and fluid motions are tracked simultaneously. On 9}
the no-slip boundary condition and the continuity of stresses are enforced. For the details of the coupling, the interested
reader is referred to our previous publications [37,38]. Only essential components of the FSI methodology is discussed
here.

The governing equations for the fluid motion in () is the Navier-Stokes equations. The Curvilinear Immersed
Boundary method (CURVIB) [39] is used to solve the govering equation in curvilinear computational mesh. CURVIB uses
the hybrid staggered /non-staggered approach [40] to solve the Navier-Stokes equations. Three-point central differencing
are carried out for all spatial derivatives. Time integration is done via a second-order accurate fractional step method.
The momentum equation are solved with a Jacobian-free solver while Flexible Generalized Minimal Residual (FGMRES)
method with multigrid pre-conditioner is used to solve the Poisson equation to satisfy the discrete continuity equation
to the machine-zero precision. Complex solid boundaries such as the membrane surface 9()s are handled using the
sharp-interface immersed boundary method (IBM) with the velocity reconstruction along the local normal to the body
[41] as shown in Figure 1. In this approach, the presence of a RBC in the fluid domain is substituted by the immersed nodes
where the velocity reconstruction is carried out so that the no-slip boundary condition is satisfied on 9(); (green squares
in Figure 1). The procedure to solve the fluid equations is denoted as the fluid solver F.

The CURVIB method is now implemented in the Virtual Flow Simulator (VFS), which is an open-source code and
can be downloaded at http://safl-cfd-lab.github.io/VFS-Wind /. VFS has been applied for many problems in biological
applications including brain aneurysms ([42—44], heart hemodynamics [45-47], and heart valves [48,49].

2.2. Membrane modeling

The RBC membrane is assumed to consist of a lipid bilayer attached to an inner cytoskeleton, which is a structure
comprised by spectrin proteins and actins in a compact network. The cell’s physical characteristics, such as the viscosity,
the elasticity, and the bending stiffness, are derived fundamentally from these biological components. To mimic the
interconnected structure of the cytoskeleton, the RBC membrane is modeled as a spring-network structure (a triangular
mesh on a 2D surface), as described in the references [20,21]. Here, we follow the Dissipative Particle Dynamics approach
[20,21,50] to simulate the dynamics of this network. The details of the computational methodology are as follows.

2.2.1. Red Blood Cell geometry and network triangulation
The shape of a normal RBC can be described using an analytical function [20]. The average shape of a RBC membrane

[20,21] is given by a set of points with coordinates (x,y, z) in 3D space:

(®+v*)?
D

x2 +y2

1 4(x2 4+ y2)
Dj

2
DO

z = +£Dy ag +aq +ap )

The parameters are chosen as Dy = 7.82um (cell diameter), a9 = 0.00518, a; = 2.0026, and a; = —4.491. The area and
volume of this RBC are equal to 135(um)? and 94(um)3, respectively (see also Table 1).

As the surface d();s is known precisely according to the Equation 1, the triangulation procedure is carried out to
mimic the distribution of the spectrin links on the membrane [20]. Using an open-source code ( distmeshsurface) [51],
the surface 0Q); is triangulated with a predefined number of vertices N,. The robustness of distmeshsurface allows it to
generate a high-quality triangular meshes precisely on a 3D surface using a signed distance function.
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2.2.2. Modeling the RBC membrane using the spectrin-link method

The membrane model is described by a two-dimensional triangulated network on a three-dimensional membrane
surface ()5 as shown in Figure 2a. The network is composed by a collection of points p; with its Cartesian coordinates
{xi,vi,z;} in Figure 2b. Here the index i € 1...Nj indicates the i — th vertex of the surface triangulation. The vertices are
connected in pairs by N; springs (edges between the vertex i and j) forming N; number of triangles.

All the equations presented in this work, describing the DPD model are taking directly from the work done by Pivkin et
al. [20] and Fedosov et al. [21].
The internal forces (f;p41) is related to the Helmholtz’s free energy V as:

vV
fintermzl = _g 2)

Here r is the position vector of the vertices.
The potential energy of the system includes the in-plane, bending, and area/volume constraints :

V({r}) = Vin—plane + Veending + Varea + Voolume 3)

The in-plane free energy term includes the elastic energy stored in the membrane. Here,the nonlinear wormlike-power
(WLC — POW) model [20] is used:

Vin—pllme: Z UWLC(l]’)Jr Z UPOW(Zj) “4)
j€L..N;s kel...N;

The wormlike chain (WLC) attractive potentials (U (! j)) for individual links /; is expressed as:

kgTlyayx 3x% — 2x3
4p 1—x

©)

Uwrc =

where /; is the length of the spring j, x = l% represents the spring deformation. /,;;5x and p are the maximum length of the
links and the persistence length, respectively. kg and T are the Boltzmann’s constant and the temperature, respectively.

The energy potential, Upow [21], which defines a repulsive force in the form of a power function (POW). Upow
depends on the separation distance /; as:

Upow(lj) = (m—klp)l].ml m>0m#1 (6)
where k, is the POW force coefficient and m is the exponent.
The bending energy Viending 18 defined as,
Viending = 3, kp[1 — cos(6; — 6] @)

JETNs

Here k;, and 6 are the bending constant and the spontaneous angle, respectively. 6; is the instantaneous angle
between two adjacent triangles, which share the common edge (link) j as seen in Figure 2c.

The area and volume conservation constraints account for the incompressibility of the lipid bilayer and the inner
cytosol, respectively. They are defined as:

v k(A= AR y ka(Ax — Ao)
area ZA(t)ot kTN, 2A0 (8)
v ko (V = V)2
volume — Téot

Here, Ay and Ay is the instantaneous area of the k'’ triangle (element) and the average area per element. k,, k;, and
ky, are the global area, local area, and volume constraint coefficients, respectively. A and V are the instantaneous total
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area and total volume of the RBC. The A{’ = N;A( and V[ are the specified total area and volume, respectively. The
procedure to evaluate the values of Vg, and Vyop,m is carried out from individual elements as shown in Figure 2.(b)
[52]. In each triangle (element) of the network, three sides are established by linking the respective vertices 1, 2, and 3 as
seen in Figure 2b. The length of the side connecting two vertices i and j (1,2, or 3) can be computed as a;; = p; — p;. Here
p is the vector position of the vertex i or j (i,j = 1,2, or 3). The normal vector of the element { can be derived from the
cross product of ap; and as; as shown in Figure 2(b) and (c). Note that the area and volume of a single triangle element

2402 k ik ko ko ok
can be also calculated from { as Ay = @ = M and V; = ¢ 6t5 . Here tlcC = %fﬂk is the position vector of the
k — th triangle centroid.
Finally, the internal force fj;senq contribution from i — th vertex can be computed from the Equation (2) as:

i _ g i i i i i
finternul - fWLC + fPOW + fbending + fareug + fm’ealoc + fvolume (9)

2.2.3. Membrane viscosity
The RBC membrane is viscoelastic in nature. The membrane viscosity contribution is expressed as an additionally
dissipative force as [52],
D T C
£ = = vij =7 (Vi ei) ey (10)
where 7T and 7€ are dissipative paramaters. Here the relative velocity between two adjacent vertices in the same
link (i and j) is v;; = v; — vj. The position vector of the link is e; ;. The membrane viscosity is a function of both
dissipative paramaters 7T and 7C. Here 7 is responsible of a large portion of the membrane viscosity in comparison

to 7¢. Following the suggestion of Fedosov et al. [52], 7€ is set to be equal to one third of 97. Consequently, these
parameters relate to the physical viscosity of the membrane #;, as:

3 C
M= V37" + 7\/;7

T
c_7T1
=73

So, the dissipative force of the membrane is:

D

¢ 12 4
ij = *13\/§ﬂmvzj* 13\/371;71 (Vij’eij)eij

(11)

2.2.4. Coarse-graining procedure

A full-scale model of a RBC is typically consisted of millions of particles[53], which are required to simulate
accurately protein dynamics. However, it is not feasible to use such a full-scale model in a FSI simulation due to the
computational cost. In this work, we follow the coarse-graining procedure of Pivkin et al. [20] to represent the RBC
membrane by a smaller number of particles (vertices). This procedure does not allow the detailed simulation of separate
proteins but it is versatile enough to capture the overall dynamics of the RBC membrane.

Based on the equilibrium condition, Pivkin et al.[20] proposes a coarse-graining procedure based on the area/volume
constraint for the spring equilibrium (Ip) and maximum (I;,) lengths as follows:

NS -2
Ne—2

NS -2
2

15=1 and [, =1, (12)

where the subscript ¢ and f refer to the coarse-grained and the fine models, respectively.

Note that the role of Iy, I, is critical in determining the response from the WLC model as seen in Equation 5. From
the numerical standpoint, the RBC membrane model is highly sensitive with the value of Iy and /;;.

As the number of vertices reduces, the average angle between the pairs of adjacent triangles increases. The
spontaneous angle 6 is adjusted in the coarse-grained model as [54]:

V3(NL —2) —5n>
V3(NL —2)—3n

FNL

98 :Goﬁ
v

with 95 = arccos( (13)
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Due to the scaling in Equation 12, the value of xy = ,l'% = 75 does not change as the model is coarse-grained. To maintain
the shear and area-compression moduli, the parameters p and k, are adjusted as [21]:

I Of p I (C) m+1

p°=pf ¢ and Kk =ky( 7 (14)
0 I

The system of equations from (12) to (14) is used to calculate the coarse-grained parameters at the corresponding number

of vertices N, as shown in Table 1.

2.2.5. Scaling of model and physical units

One challenge in DPD modeling [28] is the relationship between the modeled quantities and the physical values
since this relationship is not explicit. It is necessary to use a scaling argument to recover this relationship [21,29]. Here,
the superscript M and P corresponds to the model and physical units (SI units), respectively.

The length scale (M) is defined as:

m_ Dy

r - 1
M’
DO

(15)
rM is the model unit of length. To be explicit, D) is the cell diameter in the model unit and D is the physical cell

diameter in meters.
The energy per unit mass(kpT) and the force N scaling values are given by:

2
(k7)™ = X (Dg) (ksT)"

Y™\ pM
g (16)
NM — LP & NP
YM pM
with Y is the membrane Young’s modulus. The timescale 7 is defined as following:
DP 1,]P yM @
= phye )
Dy 11 Y
Here #,, is the membrane viscosity.
2.2.6. Time-integration scheme for the DPD model
The motion of each vertex i can be i € 1....Nj is described by the Newton’s second law of motion:
dv; ; dx;
Mi?; = finternal —+ fzexternal + ff]j ; 7; = ’Ul' (18)

where x;, v; are the position and the velocity of the vertex i, respectively. The mass per vertice M; is defined as the
mass per vertex M; = NML The internal forces f;;t0,1,, is computed from the Equation 9. Using the previous scaling
methodology in section 2.2.5, the total mass of the RBC in the DPD model is set to be M = 7.2 x 10~ '?kg. Since the time
scale is sufficiently small, we use the explicit Euler method to integrate the Equation 18 in time. The timestep At is chosen
to be compatible with the FSI algorithm timestep.

The external forces f,ys¢ry0; result from the fluid motion acting on the membrane. Therefore the traction vector t on
0Q); must be evaluated from the fluid stress tensor orast=oyn. The normal vector of the surface at vertex i is n. The
details of o'¢ evaluation has been explained in our previous work [37] extensively. In our method, the ¢’s is computed
directly from the fluid velocity and pressure field in the vicinity of the membrane. Note that the fluid velocity and
pressure field are the solutions of the Navier Stokes equations in the domain (). In brief, the external forces f,yterq1 is
evaluated as:
tS; (19)

i _
external —

Here S; is the nodal area, which is the assigned area of the vertex i.
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2.3. Fluid Structure Interaction methodology for cellular structures

The cellular structure (&) of section 2.2 is developed to simulate the membrane deformation in fluid flow. A FSI
procedure is developed to link the dynamics of the cellular membrane with the fluid plasma using the immersed boundary
method as described in section 2.1. The details of the FSI procedure has been developed and reported in our previous
works [38]. To facilitate the discussion, we describe only the relevant aspects of our computational methodology as
follows.

The deformable body (RBC-();) is immersed in the fluid plasma ()¢ as shown in Figure 1. The RBC membrane
described in section 2.2 is the interface between ()5 and Q) % Trpc =90 = Qs N QO £ The solid domain Q)5 deforms under
the impacts of the fluid stresses. Our FSI algorithm is to determine the deformation of I'gpc.

Here the fluid plasma (Q)f) is considered as a Newtonian incompressible fluid. The incompressible Navier-Stokes
equations in section 2.1 are used to model the dynamics of the fluid plasma. The deformation of the solid body )
is governed by the DPD model as described in section 2.2. On the one hand, the deformation of the RBC (I'gpc) is
transferred to the flow field via the velocity field (Dirichlet boundary). On the other hand, the fluid stresses and the
associated traction vector (Neumman boundary condition) are transferred from the fluid domain to the solid domain. The
displacement field d of the N, particles (vertices) can be found via a fixed-point iteration [see Reference 55, for example]:

d=3Fo06(d) (20)

Here § is the short-hand notation to describe the governing equations of the fluid domain while & denotes the governing
equations of the solid domain. The operator o represents the load and displacement continuity conditions that are
enforced on the interface I'gpc. Since this non-linear equation is typically stiff, different methods have been proposed to
solve Equation 20 effectively. In the current work, fixed point iteration with relaxation (Aitken’s acceleration) [41] is used
to solve the Equation 20 for a time step # + 1 from a known solution at the time step 7.

3. Results

The dynamics of RBCs is investigated under different conditions: a) dynamic stretching under a pulling force; b)
relaxing in a uniform flow; (c) deforming under shear flow in a confined tube; and d) moving through a curved tube.
These tests will demonstrate the capability of the FSI methodology in modeling the interaction of a RBC with fluid flows.

3.1. Dynamics of RBC under stretching

Mills et al. [14] studied the deformation of a single Red Blood Cell under stretching with optical tweezers. The
RBC is attached to two silica microbeads (d = 4.12pum) in a solution of Phosphate-Buffered Saline and Bovine Serum
Albumin. Cell stretching is carried out by holding one microbead fixed while moving the other one with a force F. For
each stretching test, the axial diameter (D,) and the transverse diameter (D;) are measured with the corresponding value
of F. Here, the axial diameter D, is defined along the direction of stretch. The transverse diameter D; is measured in
the orthogonal direction to the stretch direction. The definitions of D, and D; are shown in Figure 3. The experimental
results of Mills et al. [14] are shown in Figure 4 with the error bounds indicating a significant variations of the D; value.

To validate our RBC model, we perform the simulation of the stretching test of Mills et al. [14] following the
suggestion of Pivkin et al. [20]. In our simulation, the applied force F locates axially from both sides within the contact
area of the microbeads. In our simulation, the magnitude of the force F is incrementally increased from OpN to 200pN in
a step-wise manner (quasi-static) with the number of 16 steps in the total stretching period. The force is kept constant
within each step so that the cell membrane has sufficient time to relax to a constant value. We perform our simulations
with different values of vertices N, = 500,1000,3000, 9000, 27472. The detailed values for each simulation are reported in
Table 1.

Our results in Figure 4 show that the model replicates the RBC membrane dynamics reasonably well. The value
of D, in the proposed model agrees well with experimental data. However, the simulations underpredict the values
of D; across different N,. Nevertheless, the simulated values of D; are still in the upperbound of experimental values.
Examining the shapes of the RBC under different values of F shows that the proposed model provide a consistent RBC
shape across different values of vertices number N,. As the stretching force is increased from 0 to 150p N, the maximum
length (D;) and the minimum length (D) varies in a similar fashion of previous studies, both computations [20,21] and
experiment [14]. Therefore, the robustness of the coarse-graining procedure has been demonstrated successfully. With
only N, = 500 vertices, the RBC membrane deformation shows a consistent behavior even in cases with much higher
values of Ny. Unlike the continuum approaches, the DPD method is known to be insensitive to the mesh refinement
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[20,21]. Therefore, choosing the appropriate value of N, must balance between the computational cost and the required
dynamics to be captured. Therefore, it is sufficient and economical to use the DPD model with N = 500 to represent the
dynamics of RBC membrane as described below.

3.2. RBC deformation in a uniform flow (no shear)

Since the DPD model represents well the RBC dynamics under stretching as seen in section 3.1, it is reasonable
to apply it into the FSI simulation. As the first step, FSI simulations are performed to test the sensitivity of the FSI
methodology under zero shear stresses condition.

The RBC is positioned at the center of a computational domain, which is a rectangular domain of size Ly = L, =
10 ym and L, = 45 um as shown in Figure 6. The computational domain is discretized with a uniform structured mesh
with different grid sizes: a) Grid-1; b) Grid-2; and c) Grid-3 ranging from 50,000 thousand to 1.5 million grid points as
shown in table 2. Since the coarse-grained DPD model (N, = 500) represents well the dynamics of the RBC membrane as
discussed in section 3.1, it is used in this case. redlt is important to note that the spatial resolution of the structured mesh
(Ax) must be able to resolve the RBC thickness. In addition, the spatial resolution of the triangular (unstructured) mesh of
the RBC membrane should match the fluid mesh due to the requirement of the immersed boundary method. An uniform
profile and the fully develop flow conditions are set at the inlet and outlet, respectively. Symmetry boundary conditions
are set on other side planes.

First, the uniform inflow is linearly increased from 0 to a maximum velocity of Uy = 2mm/s at the inlet within
20pus. After that, the uniform flow profile with U is kept constant with time. Using the length scale of the cell diameter
Do = 7.82um and the fluid viscosity of v = 1.1 x 107%m? /s, the maximum Reynolds number of the fluid domain Q) ris
calculated as Re ~ 14.2 x 10~3.In this case, the time scale of the DPD method (particles) is governed by the Equation
17. This time scale is smaller than the one required by the immersed boundary method. Therefore, the DPD time scale
(At = 1 microsecond) is adopted in this work. Since the flow is uniform at very low Reynolds number, it is expected that
the RBC deforms minimally and mostly propagates along the flow direction.

The dynamics of the RBC under the gradually increased load of the incoming flow at different time instances is
shown in Figure 8. Initially, the shape of the RBC is set to be the analytical shape as discussed in section 2.2 att = 0 as
shown in Figure 7(a). However, the RBC starts to relax toward the stress-free condition as shown in Figure 7(b) and (c)
after 400us. As the RBC shape reaches its equilibrium condition, it translate along the flow direction (x).

The results of the grid refinement study are shown in Figure 8. The shape of the simulated RBC is compared across
different sizes of the fluid mesh (see Table 2) on the x symmetry plane at t = 240us. It is shown that the RBC shapes agree
well with each other. Therefore, the proposed numerical method for FSI simulation of RBC is consistent.

3.3. Fluid-Structure Interaction simulation of an immersed RBC in a confined tube

To illustrate the capabilities and robustness of the proposed model under shear flow, we replicate the simulation
procedure proposed by Pivkin et al [20]. The computational domain resembles the Poiseuille flow with the tube diameter
of D = 10um as shown in Figure 9. The RBC is initially placed at the center of the domain. Here we also use the
coarse-grained DPD model with N, = 500 as discussed in Table 1.

A time-varied uniform inflow profile is prescribed at the inlet U(t). The value of U(t) is linearly increased from 0 to
a maximum velocity of Uy = 2mm /s at the inlet within 20us. After that, the uniform flow profile with U(t) = U, is kept
constant with time. Using the length scale of the pipe diameter D = 10um and the fluid viscosity of v = 1.1 x 10~%m?/s,
the bulk Reynolds number of the problem is Re ~ 18.2 x 1073. At the outlet, the Neumman boundary condition is
applied. On the pipe wall, no-slip condition is enforced.

As the pressure gradient develops inside the tube, the RBC starts to deform as shown in Figure 11(a) (top row).
Initially, it has the biconcave shape as discussed in section 2.2. However, its transitions from the initial biconcave shape to
a parachute shape within 1ms. The transition is remarkable given that one side of the RBC membrane is pulled forward
significantly. After this transition, the RBC propagates along the tube axis with minimal changes in its shape. Note
that this phenomenon is widely observed in in-vitro experiments [56] and discussed extensively in literature [17,52].
During this process, the flow field inside the tube resembles closely the parabolic profile, except in the vicinity of the
RBC membrane as illustrated in Figure 11(b) (bottom row). In brief, the FSI methodology accurately predicts the shape
transition of the RBC in Poiseuille flow.

To examine the potential impacts of the triangular mesh resolution, two additional simulations are carried out with
Ny = 1000 and N, = 3000 as shown in Figure 10. Comparing between the case of N, = 500 and N, = 1000 in Figure
10(a) and (b), it is shown that the transition to the parachute shape is delayed in N, = 1000. The membrane seems to
become stiffer with the larger value of N,. However, the differences of the RBC dynamics between the cases N, = 1000
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and N, = 3000 are minimal. The RBC shapes for the refined cases (N, = 1000 and N, = 3000) are nearly identical as
depicted in Figure 10(b) and (c). These results indicate that it is required at least N, = 1000 to reflect the RBC dynamics in
micro-vessels accurately.

3.4. RBC migration in an artery model

To illustrate the capability of the proposed method for flows in micro-vasculature, FSI simulation of a RBC in a
curved tube is carried out as shown in Figure 12. The fluid domain is created as a curved tube of 12um in diameter with
arbitrary curvature. The tube (computational domain) is discretized with a structured grid of size 81 x 81 x 141 with
the approximate spacing 0.2um x 0.17um x 0.54pm in the (i, j, k) directions, respectively. The RBC model (N, = 500) is
initially placed at a distance of 20um from the inlet.

Similar to the previous cases, a time-varied uniform inflow profile is prescribed at the inlet U(¢). The value of U ()
is linearly increased from 0 to a maximum velocity of Uy = 2mm /s at the inlet within 20us. After that, the uniform
flow profile with U(t) = U is kept constant with time. Using the length scale of the pipe diameter D = 12um and the
fluid viscosity of v = 1.1 x 10~®m? /s, the bulk Reynolds number of the problem is Re ~ 21.8 x 10~3. At the outlet, the
Neumman boundary condition is applied. On the tube wall, no-slip condition is enforced. The RBC starts to deform in
the as shown in Figure 13, following the same deformation patterns in the previous case of a straight tube. One side
of the cell is pulled strongly to achieve the parachute shape in almost the same time window of 1 ms. However, the
shape of the RBC is not completely symmetric as one in the straight tube. Here, the tube curvature slightly impacts the
deformation so that the RBC shape depends on the local curvature of the tube. In brief, the DPD model is able to respond
to the local features of the complex flow in micro-channel geometries.

4. Discussions

To our knowledge, the coupling of a continuum approach, such as the Immersed Boundary Method, and the particles
systems of Dissipative Particle Dynamics, has never been carried out before. The novelty of our approach leads to several
numerical advantages: i) satisfying the no-slip boundary condition on the cell surface; ii) ensuring the incompressibility of
the fluid plasma; and iii) being flexible in handling anatomical geometries. The details of such advantages are explained
below.

Due to the sharp-interface nature of the approach, the no-slip boundary condition on the cell surface can be satisfied
easily. The sharp-interface immersed boundary method [40] ensures that the velocity in the closest fluid point (immersed
nodes - see Figure 1) is reconstructed by interpolating between the flow field and the motion of the membrane surface. In
our approach, the Navier-Stokes equations are the governing equations for the fluid plasma. Hence, the incompressibility
constraint is satisfied exactly for the fluid domain, which is not possible if particle-based methods such as LBM or DPD
are used [33]. This incompressibility condition is important since it ensures an accurate estimation of the fluid shear
stresses. Moreover, the use of immersed boundary method simplifies the procedure to incorporate anatomical geometries
of the arteries in our future works. This feature will be useful in simulating blood flow in arterioles and veins. In brief,
our proposed method improves the accuracy of RBC dynamics simulations without increasing the computational cost
significantly.

The state-of-the-art numerical methods for cellular flows are currently limited by the computational expense of
resolving individual RBC dynamics (e.g few hundred of thousands cells) [16,22,23]. Therefore, a computationally
expedient algorithm will enable simulation of cellular dynamics under physiological conditions. The use of DPD for
RBC dynamics has been popularized [20,21] because the lipid bilayer and the cytoskeleton mechanics can be described
easily using a set of particles, which represents the cytoskeletal structure. Our results in section 3.1 show that DPD is
efficient and robust in simulating RBC deformation under a large range of impacting forces. This is remarkable given
that the DPD model is much simpler in comparison to elaborated methods such as the FEM [17,36]. With only N, = 500
particles, our results show that DPD model yields cellular deformation in good agreement with previous computational
and experimental data [14,17,20,21,57]. All simulations were performed with a relatively inexpensive computational cost.
The computational cost of the DPD is negligible in comparison to the fluid flow solver using the immersed boundary
method. Overall, each simulation requires 20 CPUs and 20Gb RAM to run in approximately 24 hours wall clock time.

We follow the original DPD model of Pivkin et al. [20]. In this model, the mass of RBC is set to be 7.2 x 10712 kg
according to the force and length scales proposed by Pivkin et al. [20]. However, the real mass of one RBC varies from
M =272—-121 x 10_15kg [58]. So, there is a significant difference in the modeled and the real mass of the RBC. Our
future work will investigate the dependence of stability condition on the RBC mass.

The immersed boundary method has been used to simulate dynamics of RBC in fluid flow in previous works [17,59]
mostly in the context of diffuse interface. The membrane/fluid interface is typically tracked via a level-set approach
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[17], which ensures the continuity of viscosity distribution [23]. This diffusive interface approach does not allow a sharp
distinction (or jump condition) of fluid properties from the inner and outer parts of the cell. Our approach allows the
further development of a more complex model for RBC [19] since the RBC model is completely independent on the fluid
model. Past works have ignored the dynamics role of cytosol [20]. Our approach can be easily extended to include this
effect by developing a separate model for the cytosol. Furthermore, many other processes have not been considered in
the current model such as the cell-cell interaction [31] and the cell-vascular wall interaction [2]. Our future efforts will
further extend the framework to include such aspects.

In brief, our proposed method has several limitations. First, it is challenging for the DPD method to set the
important physical parameters such as the viscosity and the density of the RBC membrane independently. Second, the
implementation of the immersed boundary method requires the continuous tracking of the RBC surface. In the current
work, there is only one RBC is simulated so the computational cost is negligible. However, a physiological condition
in human arterioles might include millions of RBCs. Therefore, a special algorithm to accommodate such a tracking
should be developed in future. Third, the interaction between RBCs and the arterial wall must be simulated in a realistic
condition. Therefore, a model for the collisions between the cells and the vascular walls should be developed. Our future
work will explore the use of the Morse Potential [30,31] to achieve this end.

5. Conclusions

In this work, we have developed a new coupling approach between the sharp-interface immersed boundary method
and the Dissipative Particle Dynamics to simulate dynamics of cells in fluid flows. This hybrid continuum-particle method
is then applied to simulate transport of Red Blood Cell in a straight and curved tubes. Our results show good agreements
with experimental measurements as well as other computational works. Our results show that the new formulation is
highly efficient in computing the deformation of cells within fluid flow while satisfying the incompressibility constraints
of the fluid locally. This feature is critical for an estimation of fluid shear stresses on the surface of RBC as well as the
vascular walls. Therefore, our proposed approach can be applied for many biomedical applications such as estimating
the fluctuations of RBC membrane [53], thrombus formation, blood clots [30,31]. Our results also suggest that this hybrid
methodology can be extended for a variety of cells in physiological conditions such as the dynamics of white blood cells,
platelets, or cancer cells [35]. Our future works will extend the current framework to be applicable for such situations.
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Ny D(I)VI lo (m) L (m) p (m) bo (deg)
500 | 8.06 | 55614 x 10~7 | 1.2235 x 10~° | 1.9933 x 10~? 6.86
1000 | 8.07 | 3.7992 x 107 | 8.3582 x 107 | 2.9179 x 1079 4.69
3000 | 8.07 | 2.2818 x 107 | 5.0199 x 10~/ | 4.8584 x 107 2.82
9000 | 8.12 | 1.3035 x 1077 | 2.8678 x 107 | 8.5044 x 10~ 1.61
27472 | 826 | 75331 x 1078 | 1.6573 x 10~/ | 1.4716 x 108 0.93

Table 1: DPD parameters for the model of RBC membrane for different number vertices Ny. Déw is the model length scale,
Iy is the equilibrium length of the links, [, is the maximum length of the links, p is the persistence length and 6y is the
spontaneous angle. In these cases, k, = 4900, k; = 100, k, = 5000, AX" = 135 x 10~ 12m?, and V{°' = 94 x 10~ 18m3,
respectively. Other parameters are « = 1, 7, = 6 x 107>Ns/m? and ! = 1.8.

Grid Size Ax x Ay x Az (um) Total grid points
1 31 x 31 x 51 0.44 x 0.42 x 0.9 49,011
2 81 x 81 x 101 0.17 x 0.14 x 0.45 662,661
3 101 x 101 x 151 0.16 x 0.10 x 0.3 1,540,351

Table 2: Grid refinement study for the FSI simulation of a single RBC in uniform flow. The RBC is simulated with the
coarsest DPD model (N, = 500) as seen in Table 1. The domain (=5 : 5, —5: 5, —22.5 : 22.5)um is discretized as a
structured grid with uniform spacing in (x, y, z) directions as shown in Figure 6.
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Figure 1. The representation of the RBC inside the fluid plasma using the immersed boundary method (IBM). The RBC membrane is
the surface of the solid domain (9€)s), which is depicted as a line connected by blue circles. The fluid domain is denoted as Q¢ with

the appropriate boundary conditions 0Q)¢. The green squares represent the immersed nodes, which are the adjacent nodes to the cell
surface d()s. The no-slip boundary condition is enforced on ()
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Figure 2. (a). The triangulated surface of the spectrin network attached to the lipid bilayer membrane. The numbers of vertices and

triangles are denoted as N, and Ny. The number of vertices varies from N, = 500 to N, = 27,344 points (nodes). (b) The definition

of the normal surface vector { and the spontaneous angle 6 between two adjacent elements. A element is defined by three vertices
(p1, p2, p3) of the triangulated network.
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Figure 3. The definitions of the axial diameter (D,) and the traverse direction (D;). The deformation of the RBC is measured by the
quantities D, and D; as shown in Figure 4
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Figure 4. The evolution of the axial and transverse diameters (D, and D;) of the RBC versus stretching force F. The experimental data
from [14] is shown with black line with error bounds. The coarse-graining simulations are shown with lines: red (N, = 500), blue

(Ny = 1000), green (N, = 3000), yellow (Ny = 9000), and magenta (N, = 27472).

N=27472 : (

0 pN 90 pN 180 pN

Figure 5. The deformation of the RBC membrane under stretching force F with different values of Ny: 500 (top row), 9000 (middle
row), and 27472 (bottom row). Three time instants (see Figure 3) are chosen to demonstrate the dynamics: OpN (left column), 90pN
(middle column), and 180pN (right column).
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Figure 6. Computational setup for the Fluid-Structure Interaction simulation of a single RBC in uniform flow. The computational
domain is a structured mesh of size 10um x 10um x 45um. The uniform flow (no shear) is applied at the (x-y) plane of z = —22.5um.

The Neumman boundary condition is applied at the outlet. Symmetry (slip) boundary condition is applied in other sides. The RBC is
initially placed at the center of the computational domain z = 0.

(4) (B) (€)

Figure 7. The relaxation of the RBC under zero-shear condition. The initial shape of the RBC is the analytical shape as discussed in

section 2.2 at t = 0 (A). The RBC relaxes toward the stress-free condition in (B) (t = 200us) and (C) (t = 400yus). The results are taken
from the Grid-1 simulation as indicated in Table 2.
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Figure 8. The impacts of computational mesh size on the simulated results of RBC deformation. The shape of the RBC membrane
is shown in a symmetry plane orthogonal to the x direction at the time instance of 240us. The position of the vertices of the RBC in

Grid-1, Grid-2, and Grid-3 (see Table 2)are shown in blue points, red points, and the solid line, respectively. The shape of the RBC is
nearly identical under different computational grids.
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Figure 9. Computational setup for the Fluid-Structure Interaction simulation between a single RBC in Poiseuille flow. The computa-
tional domain (the tube) is a structured mesh of size 31 x 31 x 51 with the average spacing in the (i, j, k) directions are approximately
0.4um x 0.4um x 0.9um. The curvilinear mesh at the k = 0 plane is shown in blue for an illustration of the computational mesh.
Time-varied uniform flow is prescribed at the inlet at k = 0. The fully developed boundary is applied at the outlet. Wall boundary
(no-slip) condition is applied on the tube wall. The diameter of the tube and its length are D = 10um and L, = 45um, respectively. The
RBC model (N, = 500) is initially placed at the center of the domain.
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Figure 10. The impact of DPD particles N;, on the membrane dynamics during the fluid-structure interaction simulation. Three values
of N, are examined: a) N, = 500; b) N, = 1000, and c¢) N, = 3000. The computational setup is shown and discussed in Figure 9, the
fluid domain is chosen as Grid-1 ( see also Table 2). In all cases, the simulated RBC is compared across different N, at the time instant

t = 0.7ms. The RBC is transitioning to the parachute shape. The RBC shape is nearly identical between N, = 1000 and N, = 3000
cases.
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t=0.2 ms t=1ms t=1.6 ms

Figure 11. The transition of the RBC shape from the biconcave shape into the parachute shape in Poiseuille flow in Figure 9. The shape
of the RBC at f = 0.2,1.0 and 1.6 milliseconds are shown in (a). The corresponding flow field are visualized using velocity contour and
in-plane streamlines on one symmetry plane.
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Figure 12. The computational setup for the Fluid-Structure Interaction simulation between a single RBC and the flow in a curved tube,
which is a model of human arteriole. a structured grid of size 81 x 81 x 141 with the approximate spacing 0.2um x 0.17um x 0.54um in
the (i, ], k) directions, respectively. The RBC model (N, = 500) is initially placed at a distance of 20um from the inlet

t =0.6 ms t=1.1 ms

Figure 13. The deformation of the RBC from the biconcave shape into the parachute shape in a curved tube. The shape of the RBC ins
show at t = 0.6 and 1.1 milliseconds. The tube boundary is shown in the shadow.



