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In Ginkgo biloba provide new
Insights into the evolution
and development of the seed

Cecilia Zumajo-Cardona?, Damon P. Little?, Dennis Stevenson'? & Barbara A. Ambrose?**

Although the seed is a key morphological innovation, its origin remains unknown and molecular data
outside angiosperms is still limited. Ginkgo biloba, with a unique place in plant evolution, being one
of the first extant gymnosperms where seeds evolved, can testify to the evolution and development
of the seed. Initially, to better understand the development of the ovules in Ginkgo biloba ovules, we
performed spatio-temporal expression analyses in seeds at early developing stages, of six candidate
gene homologues known in angiosperms: WUSCHEL, AINTEGUMENTA, BELL1, KANADI, UNICORN,
and C3HDZip. Surprisingly, the expression patterns of most these ovule homologues indicate that
they are not wholly conserved between angiosperms and Ginkgo biloba. Consistent with previous
studies on early diverging seedless plant lineages, ferns, lycophytes, and bryophytes, many of these
candidate genes are mainly expressed in mega- and micro-sporangia. Through in-depth comparative
transcriptome analyses of Ginkgo biloba developing ovules, pollen cones, and megagametophytes we
have been able to identify novel genes, likely involved in ovule development. Finally, our expression
analyses support the synangial or neo-synangial hypotheses for the origin of the seed, where the
sporangium developmental network was likely co-opted and restricted during integument evolution.

The seed, critical for the successful evolution and diversification of plants, is the salient synapomorphy of seed
plants, but its origin and relationships amongst extant seed plant lineages remains unclear. The seed develops
from an ovule that is composed of a megasporangium, conserved in land plants, covered by the integument(s),
the defining step in seed evolution'. Historically, the evolution of the integuments, and therefore of the seed, is a
subject that has aroused great interest from scientists, which has led to various proposals, including three major
hypotheses that remain valid and which all have supporting paleontological and morphological evidence. (1)
The “de novo” hypothesis, that states that the integument covering the sporangia appeared as a new structure®”’.
(2) The “telome” hypothesis, supported by the fusion of integumentary lobes in the Palaeozoic ovules, suggesting
that integuments are the result of the fusion of vegetative structures, telomes, around the sporangium4’5. (3) The
“synangial” hypothesis, that proposes that integuments are the result of sterilization of sporangia around the
only sporangium that remains functional®®. Later, following evidence of the vascular traces of the Palaeozoic
ovules, the synangial hypothesis was modified”, evidence that led to the ‘neo-synangial” hypothesis. Recent
studies on anatomical development of ovules in Cycadales and the fossil record of Genomosperma kidstonii'®!!,
as well as molecular studies from Arabidopsis thaliana (Arabidopsis'*) and Gnetum gnemon (Gnetum'?) support
the neo-synangial hypothesis.

The molecular mechanisms underlying seed development are widely known in angiosperms but for gymno-
sperms, data are rather scarce. Comparative molecular analyses of integument development between angiosperms
and Ginkgo biloba (Ginkgo), provide essential data to better understand the origin and evolution of the seed.
Known as a living fossil, the gymnosperm Ginkge has remained morphologically unchanged since it evolved
nearly 300 mya'* and constitutes one of the first extant plant lineages where seeds evolved'®.

In Arabidopsis thaliana, three transcription factors are known to play an essential role in the initiation of the
integuments by different mechanisms, AINTEGUMENTA (ANT), WUSCHEL (WUS) and BELLI (BEL1)"'8.
WUS in Arabidopsis, is required for the proper establishment of the chalaza promoting formation of the integu-
ments. In fact, wus mutants do not develop integuments while overexpression of WUS results in supernumer-
ary integuments”””. Moreover, the expression of WUS in Arabidopsis is restricted to the nucellus activating a
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downstream signal derived from the nucellus, inducing organ initiation in the adjacent chalaza cells; WUS forms
a short-range signaling module repeatedly during plant development'®. WUS in Arabidopsis also regulates cell
differentiation in anther development, and it is expressed in the pollen'. WUS function in the maintenance of
stem cells appears to be conserved in core eudicots but not in monocots where it is essential in axillary meristem
initiation?®-24,

In angiosperms, ANT homologues act in the development of the two integuments, as well as in the control
of leaf size?>?¢, The ant mutant in Arabidopsis, has smaller leaves, fewer floral organs, lacks integuments and
megasporogenesis is blocked!** %, These pleiotropic roles of ANT in plant development are the result of its
control over cell proliferation'®. In angiosperm ovules, BELI homologues are restricted to the integument, and
this pattern is conserved across angiosperms**3!. In Arabidopsis, this function, seems to be due to the interaction
of BELI with the carpel identity dimer AGAMOUS-SEPATALLATA3 and to the repression of WUS towards the
nucellus?. Another suggested genetic interaction, possibly related to BEL1 function in integument formation,
is the repression of SPOROCYTELESS/NOZZLE (SPL/NZZ), a master regulator of nucellus-forming pathways
upregulating PIN-FORMED 1 (PIN1) and WUS!73,

Once integument development has started, multiple transcription factors come into play for the patterning of
the integuments including Class III HD-Zips (C3HDZ or C3HD-Zip), KANADIs (KANs), and UNICORN (UCN).
There are five Arabidopsis Class III HD-Zip genes: AtHB8, CORONA/AtHB15 (CNA), PHABULOSA (PHB),
PHAVOLUTA (PHV), and REVOLUTA (REV)*%; that are well known for their role in establishing the adaxial
side of the leaf*>. CNA, PHB, PHV and REV have been reported to be involved in the proper establishment of
planar polarity of the integument, where they are expressed adaxially; and CNA, PHB and PHV are restricted
to the inner integument!73¢-3%,

In Arabidopsis, KANs are responsible for specifying the abaxial identity of leaves and integument. KANI and
KAN2, play a role in abaxial identity of the outer integument**#3. ABERRANT TESTA SHAPE (ATS) also known
as KANADI 4 (KAN4), specifies the abaxial identity of the inner integument**. As for integument polarity, their
function seems to be conserved across angiosperms as the same patterns are observed in the early diverging
angiosperm, Amborella trichopoda™. In Arabidopsis, UCN is involved in the planar identity of the outer integu-
ment by controlling cell growth and repressing KAN4™.

Phylogenetic analyses in land plants show that each of these genes has undergone multiple independent
duplication events? " In gymnosperms, these genes have been studied in Gnetum species, GgWUS, is expressed
in the nucellus, similarly to angiosperms (Nardmann et al.*®). ANT, GneANT, is expressed in the integument
as well as in the nucellus; Melbell, BEL1 homolog in Gretum is restricted to the nucellus'®. Interestingly, the
KAN and UCN homologs are mainly restricted to the apical portion of the Gnetum integument!'®. Our results
of spatiotemporal expression analyses for WUS, ANT, BEL1, KANs, Class III HD-Zips, and UCN homologues
in Ginkgo show that changes in their expression patterns in seed plants, may be linked to major developmental
differences. The transcriptome analyses we performed to identify differentially expressed genes, revealed puta-
tive candidate genes for Ginkgo integument development. One of these candidate genes is FANTASTIC FOUR
(FAF), a plant-specific gene family, characterized in Arabidopsis for its role in meristem development and its
interaction with WUS®L. In Ginkgo, expression of FAF is restricted to the integument, suggesting a role in Ginkgo
ovule development. Moreover, the results from the expression analyses provide molecular evidence supporting
the hypotheses that the ovule evolved from sterilization and fusion of sporangia®®.

Results

Expression analyses of WUSCHEL homologues in Ginkgo: GbWUS. 'The development of the
Ginkgo ovule has been divided into 11 stages (stage=S; Fig. $1)*2. When the integument overtops the nucellus
(S5), GbWUS is strongly expressed in the nucellus and in a layer of cells known as the abscission zone of the
ovule, that is between the ovule base and the collar, a region from which the ovule will detach from the plant
when the seed is fully mature (Fig. 1a). Its expression is also detected in the integument, which already covers
the nucellus (Fig. 1a). During S6, before the ovule is fertilized, GbWUS is strongly expressed in the nucellus
and the base (proximal region) of the integument (known as pachychalazal region) as well as in the abscission
zone (Fig. 1b). At pre-pollination S7, GbWUS expression is maintained in the proximal region of the nucellus,
and the integument (in the pachychalaza region). No GbWUS expression is detected in the apical region of the
integument, which forms the micropyle (Fig. 1c). These expression patterns are maintained as the ovule matures
to S8. However, no expression is detected in the collar (Fig. 1d). Later on, in $11, GWUS expression is detected
in the inner side of the integument corresponding to the endotesta, nucellus, jacket cells and in the proximal
region of the ovule in the abscission zone (Fig. le,f). GBWUS is also expressed in nearly mature pollen grains
and the tapetum (Fig. 1g) and also in the young but well-developed leaves (Fig. 1h). No signal was detected with
a GbWUS sense probe (Fig. 1i-1).

Expression analyses of ANT Ginkgo homologues: GibiANT. GibiANT expression was consistent
throughout ovule development. In $4 and S5 of ovule development, the expression of GibiANT is limited to
the region which will become the abscission zone of the ovule (Fig. Im,n). It is also found at the distal end of
the integument, which will form the micropyle (Fig. 1n). When the development of the megaspore mother cell
begins, at S6, GibiANT is expressed in the chalazal region, and particularly in the abscission zone towards the
region close to the collar (Fig. 1o). In S7, once the nucellus and the megaspore mother cell are well formed, the
expression of GibiANT is also detected in the jacket cells and in the pollen chamber (Fig. 1p). Later, in 5§10, Gibi-
ANT expression is maintained in the abscission zone laterally, close to the collar (Fig. 1q). GibiANT is expressed
in the tapetum of the pollen cone and in the nearly mature pollen grains (Fig. 1r). Furthermore, GibiANT has
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Figure 1. Expression of GibiWwUS and GibiANT using in situ hybridization. (a-h) GibiWUS expression patterns. (a)
Ovule in stage 5 (S5). (b) Ovule in stage 6 (S6). (c) Ovule in stage 7 (S7), pollination stage. (d) Ovule in stage 8 (S8). (e)
Ovule in stage 11 (S11). (f) Close-up of the abscission zone of the same ovule at stage 11 (S11). (g) Expression in the
pollen cone. (h) Cross section of a leaf. (i-1) GbWUS sense probe. (m-t) GibiANT expression patterns. (m) Ovule in
stage 4 (S4). (n) Ovule in stage 5 (85). (0) Ovule in stage 6 (56). (p) Ovule in stage 7 (S7). (g) Ovule in stage 10 (510).
(r) Microsporangium. (s) Petiole of the leaf. (t) Cross section of the leaf. (u-x) GRANT sense prone. The corresponding
stage (S) is shown at the bottom left of each picture. Black arrows pointing to the abscission zone; black arrowheads
pointing to the megaspore mother cell; co collar, en endothelium, int integument, nu nucellus, po pollen, fa tapetum.

Scales: 50 um (a,e-n,q,r); 75 pm (b,k,Ls,t); 100 um (c,d).
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been found widely expressed in the vegetative tissue, in the petiole of the leaf, the young leaves and the vascular
bundles (Fig. 1s,t). No signal was detected with a GibiANT sense probe (Fig. lu-x).

Expression analyses of BELL1 Ginkgo homologues: GibiBEL1 and GibiBEL1-2. Expression analy-
ses of the two BELL1 homologues, GibiBEL1 and GibiBEL1-2, in developing ovules show restricted expression
patterns for each copy. At S1 and S2, GibiBEL1 is expressed at the base of the ovule (Fig. 2a,b). At S5, GibiBEL1
is expressed in the abscission zone (Fig. 2¢). At S7, when the ovule is competent for fertilization, GibiBELI is
detected in the pollen chamber (Fig. 2¢) and at S8, in the megaspore mother cell and jacket cells once they have
formed (Fig. 2d,e). At S10, GibiBELI is strongly expressed in the abscission zone, and detected in the nucellus
and endotesta cells of the integument (Fig. 2f). No GibiBELI expression was found in the young developing
pollen cone or in the blade of the young leaf (Fig. 2g,h). No signal was detected with a GibiBELI sense probes
(Fig. 2i-1).

Unlike GibiBEL1, GibiBELI-2 is expressed in the nucellus from the early stages of ovule development (54;
Fig. 2m) with this expression restricted to the megaspore mother cell, once it develops (87-8; Fig. 2n,0). Gibi-
BEL1-2 is also expressed in the jacket cells (S10, Fig. 2p) and in the abscission zone (Fig. 2q,r). No expression
was detected in the pollen cones or the leaves (Fig. 2s.t).

Expression analyses of Ginkgo homologues GibiKAN, GibiUCN, GibiUCN2 and GbC3HDZs. Ini-
tially, in S2, GibiKAN is expressed throughout the ovule primordia and the funiculus (Fig. 3a). Later, at S3,
GibiKAN is expressed in the region that will become the nucellus (Fig. 3b) and it is maintained as the nucellus
develops, 5 (Fig. 3¢). At this stage GibiKAN is also expressed in the apical region of the integument (Fig. 3c¢).
In S7 and 8, GibiKAN is also expressed in the integument when the integument begins to close the micropyle
(Fig. 3d,e). These expression patterns in the integument and nucellus are maintained, and additional expres-
sion is detected in the jacket cells at S10 (Fig. 3f). GibiKAN is also expressed in microspores and pollen grains
(Fig. 3g). In vegetative tissues, GibiKAN is highly expressed throughout leaf development and its expression does
not appear polar (Fig. 3h). Sense probes show no expression (Fig. 510).

The two UNICORN homologues, GibiUCN and GibiUCN2, show low levels of expression throughout ovule
development (Fig. 3i-t). As the integument becomes distinct from the nucellus, GibiUCN is specifically expressed
in the apical region of the integument forming the micropyle (Fig. 3j). Both paralogues are strongly expressed in
the tapetum and in the nearly mature pollen grains (Fig. 30-u). We did not detect expression of either homologue
in the blade of young leaves (Fig. 3n,v). Sense probes show no expression (Fig. $10).

From the five paralogues identified for the C3HDZip genes in Ginkgo, GbC3HDZ1 to 5% we were able to
assess the expression of four paralogs GPC3HDZ1 to 4 (Fig. 4, Supplementary Fig. S11). At S2, GbC3HDZ1 is
expressed in the ovule primordia (Fig. 5a); and in $4 and S6, in the young developing nucellus (Fig. 4b,c) specifi-
cally in the region where the megaspore will develop (Fig. 4c). GbC3HDZ1 is expressed in the adaxial side of the
integument, in the region that delimits the integument and nucellus (Fig. 4c). This expression is maintained in
the adaxial side of the integument and in the jacket cells, S9 (Fig. 4d). At S10, in the fleshy integument, we did
not detect expression of GhC3HDZ]1 (Fig. 4¢), but it is expressed in the tapetum of the microsporangium and in
the nearly mature pollen grains (Fig. 4f). GbC3HDZ]1 is detected in the leaf and petiole vasculature and appears
adaxial in young developing leaves (Fig. 4g). GPC3HDZ]1 is not detected in the blade of well-developed leaves
(Fig. 4h). GBC3HDZ1 sense probes show no expression (Fig. S10).

In ovules at S4, no expression of GPC3HDZ2 was detected (Fig. 4i) but in S8, as soon as the megaspore
and the jacket cells start to develop, expression is detected (Fig. 4j). This expression is maintained as the ovule
matures, S9 (Fig. 4k). Later, at S$10 after pollination, GbC3DZ2 is found expressed in the jacket cells (Fig. 4l,m)
and throughout the fleshy seed coat (Fig. 4n). GhC3DZ2 expression is detected in the tapetum and the nearly
mature pollen grains (Fig. 40) and in young developing leaves (Fig. 4p) becoming restricted to the vascular
bundles and the adaxial side of the well-developed leaves (Fig. 4q).

GbC3HDZ3 is expressed similarly to GbC3HDZ]1 in the young developing nucellus (Fig. 4r), the jacket cells,
the tissue that will form the megaspore, the adaxial side of the integument in the region in close contact with
the nucellus (Fig. 4t—v), in the tapetum and pollen grains (Fig. 4x), and throughout the vegetative tissue includ-
ing vascular bundles (Fig. 4y,z). GhC3HDZ4 is expressed at $11 in well-developed ovules in the inner region of
the integument, the endotesta (Fig. S11a-e) and the pollen grains (Fig. S11f). No expression of GbC3HDZ4 is
detected in the leaf (Fig. S11g).

Transcriptome assembly. A de novo reference transcriptome of Ginkgo was generated from RNAs iso-
lated from young ovule (S4), integument, megagametophyte, collar (dissected from ovules in $9), pollen cone
and leaf. Using Trinity software 86,050 transcripts were obtained, with an average GC content of 41.52% and
a maximum assembled contig length of 18,726 bases. To improve the quality of the assembly, the contigs were
mapped to the initial assembly with ABySS. This gives a final total of 53,970 transcripts (Table 1). Based on read
coverage, the E9ON50 statistic was ~ 1.8 Kb (Fig. $6), the reference transcriptome contained 86.9% of the con-
served Embryophyte genes using BUSCO annotation (Fig. S7).

Samples were compared with a Principal Component Analysis (PCA), which shows that the integument and
the megagametophyte are the most dissimilar samples in the data set in terms of gene expression (Fig. S8a). A
hierarchical cluster analysis was performed to better understand the similarities within samples. The resulting
dendrogram shows that the integument is the most distinct sample with longer branch distance (Y-axis) but
it is more similar to the megagametophyte (Fig. $9). Collar, leaf, pollen cone, and young ovules form another
cluster (Fig. S9).
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Figure 2. Expression of BELI homologues using in situ hybridization. (a—h) Expression patterns of GibiBELI.
(a) Ovule in stage 1 (S1). (b) Ovule in stage 2 (S2). () Ovule in stage 5 (S5). (d) Ovule in stage 7 (S7). (e) Ovule
in stage 8 (S8). (f) Stage 10 (510), close-up of the abscission zone. (g) Pollen cone. (h) Cross section of the leaf.
(i-1) GibiBELI sense probe as control. (m-t) Expression patterns of GibiBELI-2. (m) Ovule in stage 4 (S4). (n)
Ovule in stage 7 (87). (o) Close-up of the nucellus of an ovule in stage 8 (S8). (p) Close-up of the nucellus of an
ovule at stage 10 (510). (q,r) Abscission zone of the ovule in stage 10 (510). (s) Microsporangia. (t) Cross section
of a leaf. The corresponding ovule stage (S) is shown at the bottom left of each picture. Black arrows pointing

to the abscission zone; black arrowheads pointing to the megaspore mother cell; co collar, en endothelium, int
integument, nu nucellus, po pollen, ta tapetum. Scales: 50 pm (¢,d,i,j,l,5,t); 75 pm (e,k,n,0); 100 pm (f=h,p-s).
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«Figure 3. Expression patterns of GibiKAN, GibiUCN and GibiUCN?2 using in situ hybridization. (a-h) GibiKAN
expression patterns. (a) Ovule in stage 2 (S2). (b) Ovule in stage 3 (83). (c) Ovule in stage 5 (S5). (d) Ovule
in stage 7 (S7). (e) ovule in stage 8 (S8). (f) Ovule in stage 10 (510). (g) Pollen cone. (h) Cross section of the
leaf. (i-0) GibiUCN expression patterns. (i) Ovule in stage 4 (S4). (j) Ovule in stage 5 (S5). (k) Ovule in stage
6 (S6). (1) Integument of an ovule in stage 10 (S10). (m) Megagametophyte of an ovule in stage 10 (510). (n)
Cross section of a leaf. (o) Microsporangium. (p-v) GibiUCN2 expression patterns. (p) Ovule in stage 4 (S4).
(q) Ovule in stage 5 (S5). (r) Ovule in stage 6 (S6). (s,t) Ovule in stage 10 (§10). (u) Microsporangium. (v)
Cross section of the leaf. The corresponding ovule stage (S) is shown at the bottom left of each picture. co collar,
en endothelium, int integument, nu nucellus, po pollen, fa tapetum. Scales: 50 um (a,b,f,i,1-n,p,s-v); 75 pm
(c-€,q,r); 100 pm (g,j,k,0).

Differentially expressed genes in the integument of Ginkgo. To identify genes that are differentially
expressed (DE) in the integument of Ginkgo, transcriptome analyses were performed in different plant tissues
(i.e., young ovules, integument, megagametophyte, collar, pollen cone, and leaf; Fig. 5a, Table S1). Differentially
expressed genes in the integument were filtered by statistical significance (FDR p <0.05) and a comparison of all
tissues against integument was performed. We found that most of the DE genes, that belong to the ovule genetic
network seem to be similarly upregulated in all tissues except for GibiANT (Fig. 5b). Subsequently, to focus on
genes with a larger change (log2FC< -2 and > 2), we added a Fold Change threshold which detected 2137 DE
genes (Fig. 5¢). None of the genes in the ovule regulatory network passed this filter.

Transcription factors differentially expressed in integument. We focused our transcriptome analy-
ses on transcription factors (TF) which are known to control transcription levels and act as major developmental
switches. 134 DE genes were detected as TF and the differential expression of each of these TF within tissues was
also compared (Fig. 5d). Of these TFs, compared to other tissues, 21 are found to be largely upregulated in the
integument (Table S2) and there are 97 down regulated transcription factors (Table $3). By comparing the results
of the samples of young ovules (Fig. $10) and integument, we detected genes that are expressed throughout
integument development (from early stages of the ovule to the mature integument) suggesting that there are 13
throughout integument development (Fig. 5e, Table 54).

Differentially expressed FANTASTIC FOUR homologues. Among the 21 transcription factors
upregulated in the integument, the FANTASTIC FOUR (FAF) gene family stood out as they are known to repress
WUSCHEL genes in Arabidopsis*®. To understand the relationships among these transcripts, a detailed phylo-
genetic analysis of this family of transcription factors was performed. We were able to identify one sequence as
a FAF homologue, referred herein as GibiFAF (Fig. 6a). We identified a duplication event occurred before the
diversification of angiosperms giving rise to clades FAF1/2 and FAF3/4. In addition, two Brassicaceae-specific
duplication events were detected in each clade, resulting in the clades FAF1, FAF2, FAF3 and FAF4 respectively
(Fig. 6a). With expression studies in Ginkgo, we found that GibiFAF expression is restricted to the integument
throughout $4 to S9 of ovule development (Fig. 6b,c). GibiFAF does not appear to be expressed in the pollen
cones or leaves (Fig. 6d,e).

Discussion

Unlike angiosperms, in Ginkgo, we found that the expression patterns of the WUS homologue is not only in the
nucellus but also in the integument, pollen cone, and leaf (Fig. la-h). In gymnosperms, the Gnetum homologue
(GgWUS/WOX5), exhibits expression patterns like those of monocots, in lateral organ primordia, as well as in
the nucellus®. In the fern Ceratopteris richardii, CrWOXB a WUS-RELATED homeobox promotes cell divisions
in the gametophytic generation and organ development in the sporophytic generation®. In land plants, all mem-
bers of WOX gene lineage are mainly known for their function in meristem identitym’zz'54. However, GbWUS
expression is found in the basal region of the integuments. In Ginkgo ovules, the expression patterns we detected
could be associated with the meristematic activity of the pachychalaza region of the ovule (Fig. 1a-f). Shifts in
the expression patterns of this gene lineage in seed plants may be linked to major morphological differences or
to changes in the cis-regulatory regions, as the protein sequence seems highly conserved in seed plants™.

We did not find GibiANT expression in young developing integuments. However, the expression pattern
of ANT varies in ovules of different gymnosperms lineages. In gymnosperms Pinus thumbergii, and Gnetum
parvifolium, expression analyses in young developing ovules show expression in the nucellus and integument”.
In Gretum gnemon and Ginkgo (Fig. 1m-t), expression is detected only in the micropyle at a pre-pollination
stage (Fig. 1n)". ANT in the fern Ceratopteris richardii, CerANT, is expressed in the sperm, in the archegonial
neck canal just before fertilization (gametophyte structure), and in the fertilized egg, (i.e., the zygote), and in
the fiddlehead (sporophyte)™. The expression detected in the pollen grains, suggests that ANT homologues were
retained in gymnosperms as key factors in the development of the mega and the microspores, gametophyte devel-
opment, similar to what is found in ferns (Fig. 1i,n). Overall, the ancestral function of ANT seems to be in cell
division as it is present in active cell division regions and in young developing tissue throughout land plants*”**.

In Ginkgo, we found GibiBELI and GibiBELI-2 expressed in megaspore and pollen grains (Fig. 2) similar
to expression of the only Gnetum gnemon homologue, Melbell, detected in the nucellus!®. Loss of function of
PpBELLI in Physcomitrella patens moss generates bigger egg cells unable to form embryos, suggesting that BELL1
has been key in facilitating the diversification of land plants (embryophytes™). This suggests that BEL func-
tion in the proper formation of the spores, may be conserved in mosses and gymnosperms (Fig. 2)*’. Notably,
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Figure 4. Expression patterns of three C3HDZs homologues. (a-h) Expression patterns of GbC3HDZ-1. (a) Ovule in stage 2

(52). (b) Ovule in stage 4 (54). (c) Ovule in stage 6 (S6). (d) Ovule in stage 9 (59). (e) Integument of an ovule in stage 10 (S10). (f)
Microsporangium, showing expression in the pollen grains and tapetum. (g) Cross section of a short shoot with leaf primordia in the
center. (h) Cross section of a well-developed leaf. (i-q) Expression patterns GhC3HDZ-2. (i) Ovules in stage 4 (S4). (j) Ovule in stage 8
(88). (k) Ovule in stage 9 (S9). (1,m) Ovule in stage 10 (510). (o) Microsporangia. (p) Cross section of a short shoot with leaf primordia
in the center. (q) Cross section of a well-developed leaf. (r-z) Expression patterns GhC3HDZ-3. (r) Ovule in stage 3 (S3). (s) Ovule

in stage 5 (85). (t) Ovule in stage 6 (S6). (u) Ovule in stage 8 (58). (v) Ovule in stage 9 (59). (x) Microsporangia. (y) Cross section of

a short shoot with leaf primordia in the center. (z) Cross section of a leaf. Black arrowheads pointing to the megaspore mother cell;

co collar, en endothelium, int integument, le leaf, nu nucellus, po pollen, ta tapetum, vs vasculature. Scales: 50 pm (a,b,i,j,r-t); 75 um
(c,e-gk,p,u,vy); 100 um (d,h,1-0,q,%,z).
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Figure 5. Transcriptome results focused on integument development. (a) Ginkgo samples that were sequenced
separately to perform the differential expression analyses. Red square indicates the integument. (b) Heatmap of
the genes from the integument developmental network differentially expressed in the integument. (¢) Cluster
map throughout all the tissues compared to the integument, 2137 Differentially Expressed (DE) genes with

a fold expression change between -2 and 2 and good transcriptional support (TPM = 0.95). Each column

of the cluster map indicated the twofold changes of each sample with respect to the integument. (d) 134 DE
transcription factors differentially expressed in the integument compared to all the other samples. Two clusters
were identified that largely consisted of up-regulated (blue clusters, n=21) and down-regulated genes (yellow,
n=97). (e) Comparison of the DE genes between the young ovule sample and the integument. (f) Comparison
of the DE genes between the megagametophyte and the integument. Blue, upregulated genes and yellow,
downregulated genes (b-d).
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Parameter Number

Ginkgo reference transcriptome

Total trinity transcripts 86,050
Total trinity ‘genes’ 46,636
%GC 41.52
Longest contig (bp) 18,726
shortest contig 201
Number of contigs >200 bp 86,050
Number of contigs>1 Kb 46,316
Number of contigs>5 kb 2488
Number of contigs>10 Kb 117

Number of predict ORFs (transdecoder) 67,040
Stats after re-assembly with AbySS

Total transcripts after re-assembly AbySS | 53,970

Contigs longer than 200 36,979
Contigs longer than 1 kb 14,685
Contigs longer than 5 kb 364
Contigs longer than 10 kb 17

Number of predict ORFs (transdecoder) 36,979

Table 1. Statistics for Ginkgo reference transcriptome. The initial assembly was improved with a re-assembly
method using AbySS.

BELI in Ginkgo and Gnetum gnemon have distinct expression patterns in the nucellus (Figs. 2b—d, 7)'%. These
results allow us to infer that the function of BELI homologues in the development of the egg cell is probably
conserved in early land plants: bryophytes and gymnosperms (Fig. 2)°". However, this function does not seem
to be conserved in angiosperms, suggesting major changes in the functional evolution of the BELLI gene line-
age have occurred, following a duplication event before the diversification of angiospermsm. Interestingly, there
are complementary expression patterns of GibiBEL1 in the distal region and GibiWUS in the proximal region
of the nucellus at S8 (Figs. 1d, 2e).

We did not find any polar (abaxial) expression of GibiKAN in Ginkgo ovules in particular (Fig. 3a-h). KAN
genes are expressed in the micropylar region of the integument in gymnosperms, suggesting differences in the
proximal-distal development of these ovules compared to angiosperms (Fig. 3a—h)"3. In the lycophyte Selaginella
moellendorffii, three KAN specific homologues are expressed throughout sporangium development®. The expres-
sion patterns in the megaspore are conserved between 8. moellendorffii and gymnosperms. KAN genes are gener-
ally known for their function in establishing abaxial organ polarity in land plants*4°-*2. This function is likely
conserved in ferns® and in monocot homologues®#2. This allow us to hypothesize that the ancestral function
of KAN genes is in the development of the sporangium and that this function is conserved in lycophytes and
gymnosperms.

It seems that the abaxial-adaxial polarity function is not conserved in the integument of gymnosperms as
UCN homologues are expressed only in the nucellus and apical portion of the integument. Intriguingly, both
UCN and KAN homologues in Gretum gnemon and in Ginkgo, are expressed in the tips of the integuments which
suggesting: (1) the interaction between UCN and KAN may be conserved in this region; (2) their function in
gymnosperms may be more in establishing the proximal-distal axis; and (3) this indicates major developmental
differences between gymnosperm and angiosperms ovules (Fig. 3i—u)!>%.

Interestingly, GWC3HDZ1 and 3 are also expressed in the adaxial side of the integument, likely involved in the
separation of the nucellus and integument in the pachychalazal region (Fig. 4, Supplementary Fig. S9). Notably,
GbC3HDZ1 and 3 expression is not only adaxial in the integument but also at the base of the ovule. In Ginkgo,
previous studies revealed expression in the leaf primordia® (Fig. 4g,p,y). C3HD-Zip homologues are expressed
in the sporangia of the lycophyte Selaginella moellendorffii and the fern Psilotum nudum®. In vascular plants
C3HD-Zips are involved in vasculature development, also observed here in the stalk*’. However, the ovules of
Ginkgo are not vascularized (Fig. 4, Supplmentary Fig. $9). The data available so far suggests that sporangia
development could be the ancestral function of this gene lineage®.

The main sources of diversity and changes underlying evolution are alterations in the expression of genes
encoding transcriptional regulators®!. We focused on differentially expressed (DE) genes annotated as transcrip-
tion factors (Fig. 5¢,d, Tables S3, 84, Fig. $8)°°.

We have identified a gene upregulated in the integument transcriptome related to the FANTASTIC FOUR
(FAF; Fig. 6a), a plant-specific gene family with four paralogues in Arabidopsis: FAFI to 4! (Table S2). FAF1 and 2
proteins, are known for their ability to regulate the size of the shoot apical meristem and expression in the embryo
(Fig. $12)°; this function in the meristem is linked to its ability to repress WUS*!, Our Maximum Likelihood
analysis shows that there are three duplication events. One before the diversification of all angiosperms giving rise
to two clades: FAF1/2 and FAF3/4 corresponding to a whole genome duplication (WGD) event £®. In addition,
there is a Brassicaceae-specific duplication event in each of these clades that corresponds to the a and p WGD
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Figure 6. FANTASTIC FOUR gene family evolution and expression in Ginkgo. (a) Maximum Likelihood (ML)
analysis for FAF homologues across seed plants. Yellow stars indicate the three large scale duplication events
detected. One before the diversification of angiosperms giving rise to the clades FAF1/2 and FAF3/4. And each
clade has undergone one more duplication specific to Brassicaceae. (b—e) In situ hybridization for GibiFAF. (d)
Pollen cone. (e) Leaf. e endothelium, i integument, [ leaf, n nucellus, p, pollen. Scales: 75 pm (a,b); 100 um (d,e).
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Figure 7. Schematic representation of the expression patterns of integument development genes, in three
different species. (a) Arabidopsis thaliana (WUS by Grobeta-Hardt'®; BELLI by Robinson-Beers et al.**; ANT by
Elliot et al.'; KAN by Leon-Kloosterziel et al.*; Eshed et al.*’; UCN by Enuguttii et al.*). (b) Gnetum gnemon
previously published (WUS by Nardmannn et al. 2009; Melbel1, GneANT, GnmoKANs and GnmoUCNs by
Zumajo-Cardona and Ambrose'?). (c) Ginkgo results presented here. (d) Illustration of telome theory, synangial
hypothesis and neo-synangial hypothesis for the origin of the seed. Notably, the telome theory indicates the

evolution of integuments from sterile structures while both the synangial and neo-synangial hypotheses indicate
the evolution of integuments from fertile (sporangia) structures.
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events specific to Brassicales®®. Gymnosperms are pre-duplication homologues (Fig. 6a). Our expression analyses
in Ginkgo indicate that GibiFAF is expressed at higher levels in the integument (Fig. 6b,¢) and neither in the pollen
cone nor in the leaf (Fig. 6d,e) corroborating the analysis of DE genes (Fig. 6d). It is not yet clear whether FAF
directly represses WUS in Arabidopsis as their expression overlaps, but, GibiFAF and GibiWUS expression only
overlap in the integument of Ginkgo (Figs. 1, 6) suggesting that, GibiFAF is likely a novel regulator of integument
development in Ginkgo. To determine if this function is conserved in other species, further studies are needed.

Beyond understanding morphological and developmental patterns of Ginkgo ovule, our results also provides
molecular evidence on the origin of the seed.

(1) Expression patterns do not appear to be wholly conserved between angiosperms and gymnosperms (Fig. 7),
but the main function of the gene(s) may be conserved. The expanded expression of GWWUS, at base of
the ovule and in the basal portion of the integument, indicates that this region has persistent meristematic
function. GbWUS expression, additionally, provides molecular support for the interpretation of Ginkgo
integument as pachychalazal, where the chalaza domain extends upward from base of the ovule. The expres-
sion of GbC3HDZ]1 in the adaxial basal region of the integument, indicates that its role in repressing the
meristematic activity of GbWUS'2 may have occurred early during the evolution of the seed.

(2) GibiFAF expression indicates that it is a novel gene involved in pachychalazal and integument develop-
ment. In Arabidopsis, FAF homologs are expressed in the shoot apical meristem and interact with WUS>%
Therefore, GibiFAF and GbWUS in the integument supports this tissue as an expanded meristematic region.
Further analyses in Arabidopsis are needed to determine the role, if any, of FAF homologues in Arabidopsis
seed development.

(3) A distinct apical-basal expression pattern is present in gymnosperms. In Ginkgo and Gnetum, BELI (Gibi-
BEL1, GibiBELI-2, Melbell) is restricted to the chalaza, while WUS and C3HDZ1 are in the basal part of
the integument; ANT is expressed transiently in the basal portion of integument; and KAN and UCN are
restricted to the apical portion of the integuments, unlike what is observed in angiosperms.

(4) Heterochrony may have played a key role in ovule developmental processes (Table S5)°”. BELI and KAN
expression in Ginkgo and Gnetum ovules, are expressed comparably in the nucellus at the sporogenous stage
(Fig. 7, Table S5), however, in Gretum, it occurs prior to pollination, whereas in Ginkgo it occurs during
pollination

(5) Molecular analyses available in land plants show that integument genes are expressed during sporangia
development (in lycophytes, ferns, Ginkgo and Gnetum) suggesting that the integument developmental
network was co-opted from a sporangia development network.

(6) The outcomes of these studies, together with recent molecular studies, provide additional molecular evi-
dence supporting the synagial/neo-synangial hypotheses, by showing the expression patterns of integu-
ment genes in both micro- megasporangium and in the apical region of the integument of Gunetum and
Ginkgo'*". Indeed, the data available to date, suggests, that the sporangia development genes were co-opted
for the development of the integument and that the integuments have evolved according to the synangial/
neo-synangial hypothesis.

It is enticing to speculate that apical-basal expression patterns reflect the integumentary lobes envisioned
in the neo-synangial hypothesis. With WUS in the base of the integument and the nucellus, it is not clear what
mechanism accounts for the sterile integument. Recent reports suggest this could be due to BEL1 repression of
SPL/NZZ", Future studies of SPL/NZZ homologues in gymnosperms could provide further molecular support
for the synangial/neo-synangial origin of the seed.

Methods

Expression analyses by in situ hybridization. The WUSCHEL homologue was previously identified
with phylogenetic analysis* (GenBank accession number: FM882128). Other homologues were identified with
a BLAST amino acid search using Arabidopsis sequences as query (Table $6). Ginkgo sequences were identified
from the OneKP database (Table S6; https://db.cngb.org/onekp). A BLAST search was performed in the genome
as well, but no hits were retrieved (PLAZA database: https://bioinformatics.psb.ugent.be/plaza/versions/gymno-
plaza/). The relationships of these sequences were previously shown with maximum likelihood analyses'**.
There are five homologues of Class [l HD-Zip (C3HDZ) genes in Ginkgo, which have been previously reported®.
However, the synthesis of the probe for one of the paralogues, GhC3HDZ5 was not effective; thus, we will present
results for GhC3HDZ] to 4.

Plant material was collected from the NYBG grounds (Accession number: 1353/97) and immediately fixed
in FAA (FAA; 3.7% formaldehyde: 5% glacial acetic acid: 50% ethanol). Our characterization of the expression
patterns begins around $4 of ovule development for most of these genes (i.e., GbWUS, GibiANT, GibiBEL1-2,
GibiUCN, GibiUCN2, and GbC3HDZ2 and 3). This is because collection of ovules at early stages is highly variable
as they are covered by the bracts of the short shoots. Only GibiBEL1, GibiKAN and GPC3HDZI were assessed
starting at S2. After a 4-h incubation in FAA, samples were dehydrated in a standard ethanol series, then trans-
ferred to fresh Paraplast. The samples were sectioned on a Microm HM3555 rotary microtome. DNA templates
for RNA probe synthesis were obtained by PCR amplification of 280-480 bp fragments. To ensure specificity,
the probe templates were designed outside of conserved domains (Fig. S2, Table S7). Sense probes were used
as negative controls. The fragments were cleaned using QIAquick PCR purification Kit (Qiagen, Valencia, CA,
USA). Digoxigenin labeled RNA probes were prepared using T7 polymerase (Roche, Switzerland), murine RNAse
inhibitor (New England Biolabs, Ipswich, MA, USA) and RNA labeling mix (Roche, Switzerland) according to
the protocol of each manufacturer. The RNA in situ hybridization was performed according to Ambrose et al.%.
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Sections were digitally photographed using a Zeiss Axioplan microscope equipped with a Nikon DXM1200C
camera.

Collection of plant material for RNAseq and extraction of total RNA from Ginkgo. A total of
six different samples of Ginkgo were collected in liquid nitrogen from the NYBG grounds (Accession number:
1353/97), then processed for sequencing with three biological replicates each; thus, young ovules (ovules at
$4), collar, integument, megagametophyte (from ovules at $9), pollen cone and leaf were dissected (total of 18
samples sequenced). The tissues were ground with liquid nitrogen; total RNA from these samples was extracted
using QIAGEN RNeasy Kit (QUIAGEN) with a modification using extraction buffer consisting of 2% Polyvinly-
polypyrrolidone (PVP, 111.14 g/mol), and 4% B-mecarptoethanol (BME; Wang et al., 2005).

lllumina sequencing and de novo transcriptome assembly. Quality of RNA samples was assessed
using Qubit” 2.0 (ThermoFisher Scientific) and Agilent Technologies 2100 Bioanalyzer. Only samples with RNA
Integrity Number (RIN) = 8 were used to prepare sequencing libraries. RNA-Seq libraries were prepared using
NEBNext Poly(A) mRNA Magnetic Isolation Module Library Prep Kit (New England Biolabs) and the resulting
libraries were paired-end (PE) sequenced (2x150 bp) using an Illumina HiSeq2000. The average sequencing
depth for each sample was ~ 40 million reads (Fig. S3).

Raw data quality was assessed using FastQC (v 0.11.5; Andrews, 2010). Sequence adapters and low-quality
reads (Phred score < 5) were removed using Trimmomatic (v 0.36) with all default parameters®. Transcripts
were assembled using AbySS (v 2.0.2)” and the Trinity (v 2.8.4) software pipeline” for comparison (Fig. $4).
Because of better statistics, we continued to work with the Trinity assemblies (Fig. $5). An initial reference tran-
scriptome was assembled de novo from all RNA samples and all contigs = 200 nucleotides length. The quality
of the transcriptome assembly was assessed based on the calculated E9ON50 contig length (E9ON50 ~ 1.8 Kb;
Fig. S6). The initial reference transcriptome was annotated using DIAMOND (v 0.9.13)7%. To identify possible
contaminants, Ginkgo contigs were searched against bacterial and fungal databases mainly associated with soil
and plants, sequence databases compiled from UniProt (www.uniport.org). Sequences with an identity = 50%
were removed from the reference transcriptome (N =2656). This initial transcriptome was re-assembled to
improve the assembly stats using AbySS™, the quality of the transcriptome was assessed with contig length and
BUSCO annotation (Fig. $7)7, the resulting assembly was used for the following steps. Long open reading frames
(ORF) were predicted using TransDecoder (v 3.0.0)”". For gene annotation, the contigs of Ginkgo were searched
in several databases of sequence coding land plant proteins (Amborella trichopoda: AMTR1.0_13333, Arabidopsis
thaliana: TAIR10_3702, Capsicum annuum: ASM51225v2, Ginkgo biloba: NCBI:txid3311, Gnetum montanum:
NCBI:txid3381, Oryza sativa: IRGSP-1.0, Picea abies: NCBI:txid3329, Selaginella moellendorfii: v1.0_88036, Vitis
vinifera: 12X_29760; available through Ensembl and Plaza for gymnosperms; Table 1).

To interpret the overall structure of these samples in terms of the gene expression, a Principal Component
Analysis (PCA) was performed using the normalized TPM values, as it allows to better interpret the variation of
high-dimensional interrelated dataset (with high number of variables) and to detect major differences between
samples. PCA was performed using the Python packages: sklearn, seaborn, and bioinfokit (v 2.0.2) Thus, to better
understand the similarities within samples a dendrogram was obtained by performing a hierarchical clustering
of the samples using a ‘complete linkage’ method (Fig. $8). Dendrogram was obtained using the SciPy package
on Python (v 1.5.0).

Transcriptome abundance (RSEM) and expression level (EBSeq) analyses. These analyses were
carried out following the pipeline previously proposed™. Sequence reads from the different plant tissues were
aligned to the reference transcriptome using Bowtie2 (v 2.4.2)” and RSEM (RNA-Seq by Expectation Maximiza-
tion; v 1.3.0) was used to obtain estimates of transcripts abundance for all transcripts75. The resulting expression
levels are calculated in terms of Transcripts Per Million (TPM). Transcripts were considered to be differentially
expressed between integuments and the other tissues, when TPM was>0.95 for at least a single tissue and the
fold change (log2FC) was < — 2 and =2 with an FDR p<0.05 (Fold Discovery Rate). To identify the correspond-
ing Gene Ontology (GO) terms, the differentially expressed genes were further analyzed with Blast2GO (v 5.2.5;
Fig. $9). Data analyses and results were plotted using Matplotlib v 3.4.2 and Seaborn v 0.8.1 Python libraries
(Fig. $4).

Identification of Ginkgo homologues and maximum likelihood analyses for gene lineages of interest.

One of the genes found in the transcriptome analyses to be putatively involved in integument development
in Ginkgo is similar to the Arabidopsis gene FANTASTIC FOUR 3 (FAF3; AT5G19260). To reconstruct the evolu-
tion of the FANTASTIC FOUR gene family, we used the four Arabidopsis paralogues (AT4G02810, AT1G03170,
AT5G19260, AT3G06020) as a query to perform an amino acid BLAST search in seed plants, using the Phy-
tozome and OneKP databases. A total of 88 sequences were compiled and aligned using the online version of
MAFFT (v 7). Three Selaginella sequences were used as outgroups to root the tree (LGDQ_scaffold_2012011;
JKAA_scaffold 2181098; ZFGK_scaffold 2040141).

Phylogenetic analyses using the nucleotide sequences were performed with RaxML-HPC2 BlackBox™. The
newly isolated sequence was deposited in GenBank (accession OK255713).

Data availability
The data underlying this article are available in the GenBank Nucleotide Database with accessions provided in
the methods and supplemental material. Additional data underlying this article is available upon request to the
corresponding author.
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