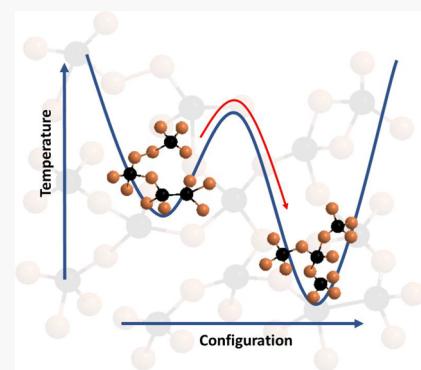


Aging-Induced Structural Evolution of a GeSe_2 Glass Network: The Role of Homopolar Bonds

Bing Yuan, Hao Chen, and Sabyasachi Sen*

Cite This: *J. Phys. Chem. B* 2022, 126, 946–952


Read Online

ACCESS |

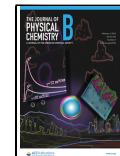
Metrics & More

Article Recommendations

ABSTRACT: The structural evolution of GeSe_2 glass during aging is studied using Raman spectroscopy and density relaxation measurements. The Raman spectra indicate volume- and entropy-driven changes in the relative concentrations of the corner-sharing (CS) and edge-sharing (ES) GeSe_4 tetrahedra and in the degree of chemical order of the tetrahedral network during aging at 65 °C below the nominal glass transition temperature. The attendant structural changes involve a progressive increase in the CS:ES ratio and in the chemical order that can be expressed in the form of a reaction $\text{Ge}-\text{Ge} + \text{Se}-\text{Se} \rightarrow 2 \text{Ge}-\text{Se}$, which shifts to the right, with lowering of fictive temperature. The isothermal relaxation of both the structure and density during aging displays rather similar stretched exponential kinetics with a stretching exponent $\beta \sim 0.54$ and an average relaxation time of ~ 13.5 h. *In situ* high-temperature Raman spectroscopic measurements indicate that structural relaxation does not affect the anharmonicity of the vibrational potential wells in the energy landscape of GeSe_2 glass.

1. INTRODUCTION

Chalcogenide glasses display unique optical properties in the infrared region, which make them attractive candidates for various applications in photonics, telecommunication, and remote sensing.^{1–4} Therefore, the structure of these glasses, especially those in the Ge–As–Se system, was studied in detail in the past using a wide variety of spectroscopic and diffraction techniques to establish the structure–property relationships as a function of composition.^{5–11} However, the glassy state not being in thermodynamic equilibrium, the atomic structure, and hence the properties of a glass may also depend on its thermal history and consequently on the resulting fictive temperature T_f . A knowledge of this dependence is therefore key in optimizing the processing conditions of glasses to obtain the desired properties. Furthermore, fundamental understanding of temperature-induced structural changes in a glass-forming liquid or of such changes during annealing of the derived glass below its glass transition temperature T_g , i.e., aging, can shed light on the nature of the configurational entropy S_{conf} of the liquid and its temperature dependence. It may be noted that $S_{\text{conf}}(T)$ has been related in a number of theoretical models to the temperature-dependent evolution of the relaxation timescale associated with the transport properties of glass-forming liquids in the transition range.^{12,13}


Previous studies of temperature dependence of the atomic structure of oxide glasses and glass-forming liquids have demonstrated that the bond scission-renewal dynamics between the network-forming cations (e.g., Si, P, and B) and oxygen are primarily responsible for the reconfiguration and relaxation of the structural network in response to any change

in temperature or in T_f .^{14,15} However, the structural mechanisms of relaxation remain less clear for chalcogenide glasses and liquids, even for those in the archetypal Ge–Se and As–Se systems. A recent ⁷⁷Se dynamical nuclear magnetic resonance spectroscopic study of supercooled $\text{As}_{10}\text{Se}_{90}$ liquid¹⁶ has demonstrated the coexistence of a slow process of chemical exchange between the various Se environments via bond scission/renewal and a fast process of Se chain segmental motion, and both processes were found to be coupled to viscous flow and shear relaxation near T_g . On the other hand, spectroscopic studies on $\text{As}_{30}\text{Se}_{70}$ glass have indicated that prolonged (20 years) aging at ambient temperature results in a net conversion of two As–Se–Se–As linkages into one As–Se–As and another As–Se–Se–Se–As linkage.¹⁷ In the case of the Ge–Se system, previous Raman spectroscopic studies have shown that the most prominent aging-induced T_f -dependent structural change in glasses with excess Se (70–90% Se) involves the conversion of the edge-shared GeSe_4 tetrahedra into corner-shared tetrahedra.^{18,19} The timescale of this conversion process was shown to be consistent with that of enthalpy relaxation and to be an important source of S_{conf} in supercooled $\text{Ge}_{20}\text{Se}_{80}$ liquid near the glass transition range.

Received: October 9, 2021

Revised: December 31, 2021

Published: January 21, 2022

Similarly, T_f -dependent tetrahedral speciation was reported in a recent Raman spectroscopic study to be responsible for the structural relaxation of $\text{Si}_{25}\text{Se}_{75}$ glass during aging at 40 K below T_g .²⁰ This tetrahedral speciation was shown to involve a conversion of two doubly edge-shared $\text{SiSe}_{4/2}$ tetrahedra (E^2) into a singly edge-shared (E^1) and another corner-shared (E^0) tetrahedra upon lowering of T_f with aging, which can be expressed as $2E^2 \rightarrow E^0 + E^1$.

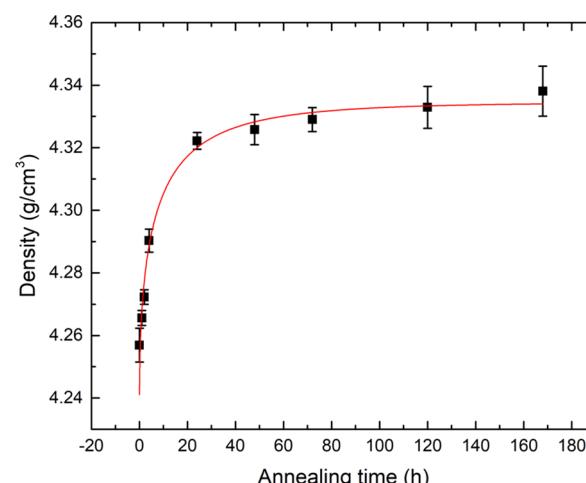
Besides the heteropolar Ge–Se bonds associated with the corner- and edge-shared GeSe_4 tetrahedra, the Ge–Se glasses with Ge contents close to the stoichiometric GeSe_2 composition also contain a significant fraction of homopolar Ge–Ge bonds, indicating a violation of chemical order in glasses with $\leq 33.33\%$ Ge.^{18,21} Such violation of chemical order is likely entropically stabilized in these glasses and possibly more so in their parent liquids. However, to the best of our knowledge, the role of these homopolar bonds in the structural relaxation of these glasses during aging has never been investigated in the past. Here, we report the results of a Raman spectroscopic study of structural relaxation in the three-dimensionally connected tetrahedral network structure of nominally stoichiometric GeSe_2 glass consisting of corner- and edge-sharing GeSe_4 species (denoted as CS and ES, respectively, in the subsequent discussion for the sake of brevity) as well as ethane-like $\text{Se}_3\text{—Ge—Ge—Se}_3$ units as a function of T_f . Furthermore, the structural relaxation of this glass is compared with the corresponding relaxation of its density and thus of the atomic packing.

A second objective of this study is the investigation of the nature of the anharmonic properties of the vibrational excitations in the potential energy landscape (PEL) of GeSe_2 glass and whether structural relaxation during aging exerts any influence on this anharmonicity. In the PEL theory, the metabasins in the energy landscape represent the “inherent states”, i.e., the stable atomic configurations in the liquid/glass.²² The viscous flow and primary (α) structural relaxation involve thermally activated jumps between these metabasins, while secondary (β) relaxation processes are attributed to localized structural rearrangements represented by smaller sub-basins inside the metabasins. On the other hand, vibrations are extremely localized high-frequency excitations that reside deep within these metabasins or sub-basins. It is generally assumed that these excitations remain essentially unchanged as the supercooled liquid/glass sinks into metabasins with progressively lower energy on cooling (for $T > T_g$) or on aging (for $T < T_g$), though the validity of this assumption remains to be confirmed in network glasses and liquids. In the present study, we have utilized *in situ* high-temperature Raman spectroscopy to investigate the effect of aging on the anharmonicity of the vibrational potential wells in the PEL of GeSe_2 glass.

2. EXPERIMENTAL DETAILS

2.1. Sample Synthesis. The GeSe_2 glass was synthesized in a 5 g batch by mixing the constituent elements Ge and Se with $\geq 99.995\%$ purity (metals basis) in an evacuated (10^{-6} Torr) and flame-sealed fused silica ampoule. The mixture was first heated to 930 °C over 20 h followed by 15 h of rocking to ensure homogeneity of the melt. The ampoule was subsequently quenched in ice water. Several pieces of the as-quenched GeSe_2 glass with individual sample sizes of approximately 1.0 g were subsequently sealed in separate evacuated fused silica ampoules and were annealed at 345 °C

($T_g = 410$ °C) for durations ranging from 1 h to 1 week followed by quenching in air to study the relaxation kinetics during aging.


2.2. Density Measurements. The densities of as-quenched and annealed/aged GeSe_2 samples were measured using a Micromeritics Accupyc II gas expansion pycnometer under a helium environment of 6 N purity. Each measurement was carried out on ~ 1.0 g of the sample loaded into a 1 cm³ cup. Density values reported in this study are averages of 10 consecutive measurements at room temperature.

2.3. Raman Spectroscopy. A Bruker RFS 100/s Fourier-transform (FT) Raman spectrometer equipped with a Nd:YAG laser operating at 1064 nm was used to collect the unpolarized Raman spectra of the as-quenched and annealed GeSe_2 glass samples at ambient temperature in backscattering geometry. A power level of 30 mW was used, and the experimental resolution was configured to 3 cm⁻¹. A total of 128 scans were collected and averaged to obtain each Raman spectrum.

Variable temperature Raman spectra were collected using the same spectrometer and laser along with a confocal microscope (Olympus BX51M) attachment. As-quenched and annealed GeSe_2 glass samples of dimensions $\sim 1 \times 1$ mm and thicknesses of ~ 100 μm were heated on a commercial hot stage (THMS600, Linkam Scientific Instruments Ltd.). Temperature control was achieved through the use of a TMS94 temperature programmer connected to the stage. The temperature of the stage was calibrated using known phase transitions in crystalline standards.²³ Laser light was focused on the sample using a long working distance objective (Olympus LMPlanFL, magnification of 20 \times , numerical aperture of 0.4, and working distance of 12 mm). Spectra were collected at 50 °C intervals between 20 and 300 °C. The samples were equilibrated at each temperature for several minutes before data collection. A power level of 400 mW was used, and 512 scans were collected and averaged (~ 30 min) at each temperature to obtain the Raman spectrum.

3. RESULTS AND DISCUSSION

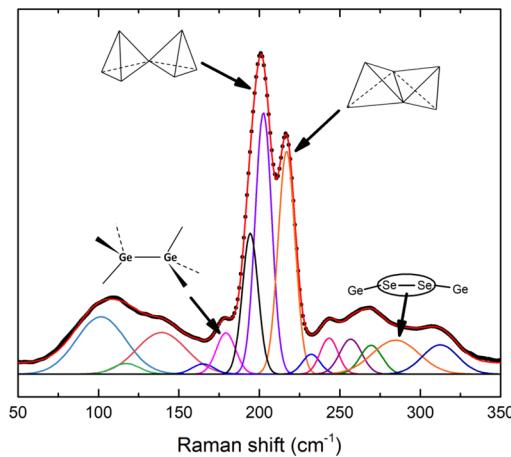

The temporal evolution of density ρ of the GeSe_2 glass upon aging is shown in Figure 1. As expected, with decreasing T_f , the density increases monotonically with time t and tends to approach equilibrium at long times. The time dependence $\rho(t)$

Figure 1. Temporal evolution of the density of GeSe_2 glass during aging at 345 °C.

can be fitted to a stretched exponential function $\rho(t) = A + B \exp\left(-\frac{t}{\tau}\right)^\beta$, where A and B are constants, τ is a relaxation timescale, and $0 \leq \beta \leq 1$ is the stretching exponent (Figure 1). The parameter β is related to the width of the distribution of relaxation timescales in a system such that a lower value of β corresponds to a larger width of the distribution.²⁴ The corresponding average relaxation time $\langle \tau \rangle$ can be obtained from the relation²⁴ $\langle \tau \rangle = \left(\frac{\tau}{\beta}\right) \Gamma\left(\frac{1}{\beta}\right)$, where Γ is the gamma function. Such a fit of the stretched exponential function to the data in Figure 1 yields $\beta = 0.54$ and $\langle \tau \rangle = 13.3$ h (Figure 1).

A representative Raman spectrum of the as-quenched GeSe_2 glass sample collected at room temperature is shown in Figure 2. A detailed analysis of this Raman spectrum in terms of the

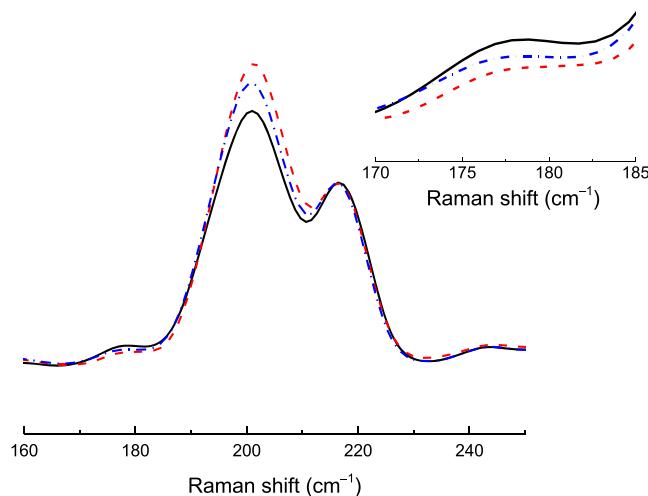
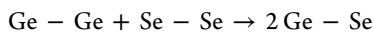


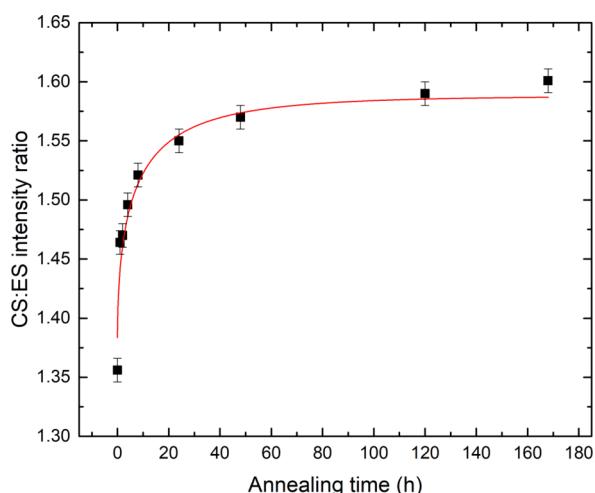
Figure 2. Experimental (black circles) and simulated (red solid line) unpolarized Raman spectra of as-quenched GeSe_2 glass. Individual simulation components as proposed by Holomb et al.²⁵ based on DFT calculations are shown as solid lines, vertically offset for clarity. Vibrational bands corresponding to CS, ES, $\text{Se}_3\text{—Ge—Ge—Se}_3$, and Ge—Se—Se—Ge units are shown with arrows.

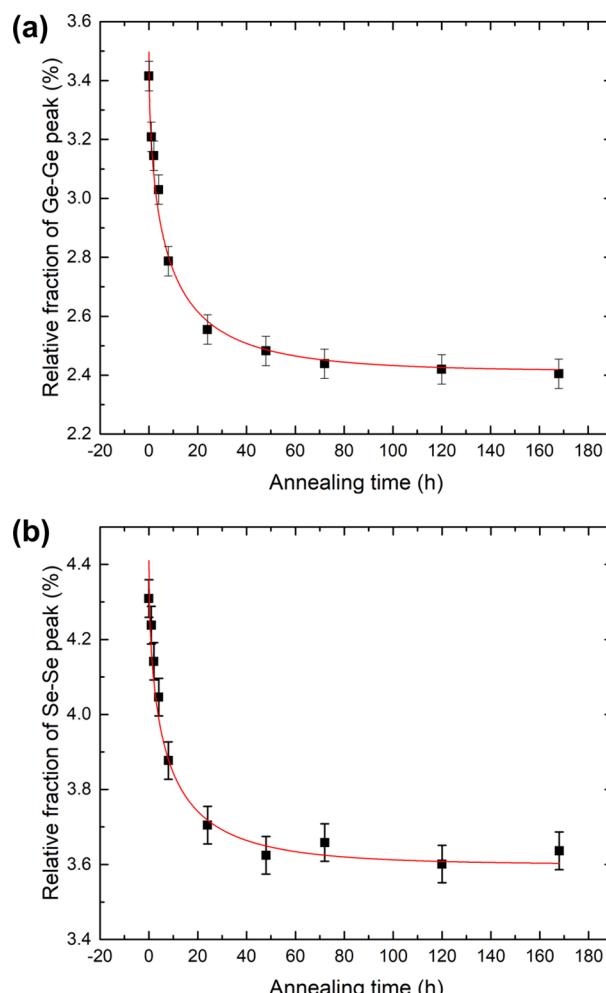
structural assignments of the constituent vibrational bands can be found in a recent density functional theory (DFT)-based study of Ge—Se clusters by Holomb et al.²⁵ Here, we follow their analysis and show a representative simulation of the Raman spectrum in Figure 2 using these bands. The spectrum displays three main regions: (a) a broad, low-intensity band between 50 and 170 cm^{-1} with main peaks at ~ 100 and 140 cm^{-1} corresponding to inter-tetrahedral bending modes; (b) prominent bands centered at ~ 180 , 200 , and 215 cm^{-1} corresponding, respectively, to Ge—Ge stretching in $\text{Se}_3\text{—Ge—Ge—Se}_3$ ethane-like units and symmetric Ge—Se stretching of CS and ES units; and (c) a broad band spanning from 220 to 320 cm^{-1} . This broad band in the high-frequency region contains strongly overlapping signals from several symmetric and asymmetric stretching modes of $\text{GeSe}_{4/2}$ tetrahedra in four- and six-membered Ge—Se rings that includes a relatively sharp peak at $\sim 248 \text{ cm}^{-1}$, and a broad peak centered at $\sim 285 \text{ cm}^{-1}$, which corresponds to the stretching of Se—Se bonds shared between two $\text{GeSe}_{4/2}$ tetrahedra, i.e., in Ge—Se—Se—Ge linkages (Figure 2). It is important to note here that the Se—Se stretching mode in Se-excess glasses containing $—\text{Se—Se—Se—}$ linkages is located near 250 cm^{-1} , and its frequency is influenced by the inter-chain interaction in these glasses.^{18,25}


On the other hand, experimental studies of Se confined in zeolites as well as DFT calculations indicate that this vibrational mode in isolated Se chains is located near 260 cm^{-1} .^{25,26} However, previous ^{77}Se nuclear magnetic resonance spectroscopic studies have shown that the Se—Se homopolar bonds in the GeSe_2 glass are expected to exist as Ge—Se—Se—Ge linkages between two neighboring $\text{GeSe}_{4/2}$ tetrahedra.^{10,27} The DFT calculations of Holomb et al.²⁵ have indicated that, compared to long Se chains, the stretching frequencies of these homopolar Se—Se bonds in Ge—Se—Se—Ge moieties are located at a significantly higher frequency of $\sim 285 \text{ cm}^{-1}$.

The Raman spectra of the as-quenched sample and of samples annealed at $345 \text{ }^\circ\text{C}$ for 4 h and for 1 week, all normalized with respect to the intensity of the 215 cm^{-1} band, are shown in Figure 3 in the frequency region corresponding to

Figure 3. Expanded view of Raman spectra normalized to the intensity of the 215 cm^{-1} band, in the frequency region between 160 and 250 cm^{-1} , of as-quenched (solid line), 4 h annealed (dot-dashed line), and 1 week -annealed (dashed line) GeSe_2 glasses. The inset shows a magnified view of the evolution of Ge—Ge homopolar bond stretching mode in $\text{Se}_3\text{—Ge—Ge—Se}_3$ units.


the stretching modes of the Ge—Ge bonds, CS and ES units. A simple visual inspection reveals that the intensities and therefore the relative concentrations of the CS units increase and of the ethane-like units with Ge—Ge homopolar bonds decrease with respect to those of the ES units on annealing and thus on lowering of the T_f . As mentioned above, such an increase in the CS:ES band intensity ratio upon aging below but near T_g was also observed for GeSe_4 glass in a previous study.¹⁸ This result indicates conversion of the ES tetrahedra into CS tetrahedra in the glass/supercooled liquid upon the lowering of T_f and is consistent with a concomitant increase in the packing density of tetrahedra as the specific volume of the ES units is larger than that of the CS units in the structure of Ge—Se glasses.¹⁸ More interestingly, however, the spectra shown in Figure 3 provide the first clear evidence of a lowering of the concentration of homopolar Ge—Ge bonds in the glass structure and a corresponding increase in the heteropolar Ge—Se bonds as evidenced in the increase in the sum of CS and ES band intensities, upon lowering of T_f . Since the structure of these glasses is expected to follow the 8-N coordination rule, this result also implies a concomitant lowering of the Se—Se homopolar bonds in the structure. These structural changes can be represented via the schematic reaction:


This reaction moves to the right with lowering of T_f during aging of the glass and presumably with lowering of temperature in the supercooled liquid state. It may be noted that the chemical order also increases in the same direction, as would be expected with lowering of temperature and a concomitant lowering of configurational entropy. To the best of our knowledge, this is the first direct observation of the involvement of homopolar \leftrightarrow heteropolar bond conversion in the structural relaxation of chalcogenide glasses. As noted above, the DFT calculations of Holomb et al.²⁵ on Ge_nSe_m nanoclusters indicated that the band corresponding to Se–Se stretching vibrations in $\text{Ge} - \text{Se} - \text{Se} - \text{Ge}$ linkages in the GeSe_2 glass would be expected near $\sim 285 \text{ cm}^{-1}$.²⁵ Unfortunately, this band cannot be directly distinguished in the Raman spectra due to broadening and severe overlap with the Ge–Se stretching bands in the Raman spectra. Therefore, the time-dependent evolution of this band during aging could only be obtained from full simulation of the Raman spectra, as exemplified in Figure 2.

It may be noted that the abovementioned structural reaction implies a change in the Ge–Se vs Ge–Ge peak areas in a relative ratio of 2:1, which appears to be significantly lower than that displayed by the Raman spectra in Figure 3. This apparent discrepancy can be ascribed to the relatively small Raman scattering cross section of the Ge–Ge stretching mode at 180 cm^{-1} compared to those of the Ge–Se modes at 200 and 215 cm^{-1} as the fractional area under the 180 cm^{-1} band is considerably smaller than what would be expected if nearly 25% of the Ge atoms in this glass participates in Ge–Ge homopolar bonding as indicated by previous diffraction measurements.²¹

The aging-induced temporal evolution of the CS:ES intensity ratio and that of the relative areas under the 180 and 285 cm^{-1} bands corresponding, respectively, to the $\text{Se}_3 - \text{Ge} - \text{Ge} - \text{Se}_3$ ethane-like units and Se–Se bonds in $\text{Ge} - \text{Se} - \text{Se} - \text{Ge}$ linkages in this glass are shown in Figures 4 and 5, respectively. All spectral quantities display stretched relaxation kinetics with $\beta = 0.54$ and $\langle \tau \rangle = 13.5 \text{ h}$ for the increase in the CS:ES ratio and $\beta = 0.54$ and $\langle \tau \rangle = 13.8 \text{ h}$ for the lowering of the relative concentrations of the $\text{Se}_3 - \text{Ge} - \text{Ge} - \text{Se}_3$ units and the $\text{Ge} - \text{Se} - \text{Se} - \text{Ge}$ linkages (Figures 4 and 5, respectively).

Figure 4. Temporal evolution of the CS (200 cm^{-1}):ES (215 cm^{-1}) band intensity ratio during aging at $345 \text{ }^\circ\text{C}$.

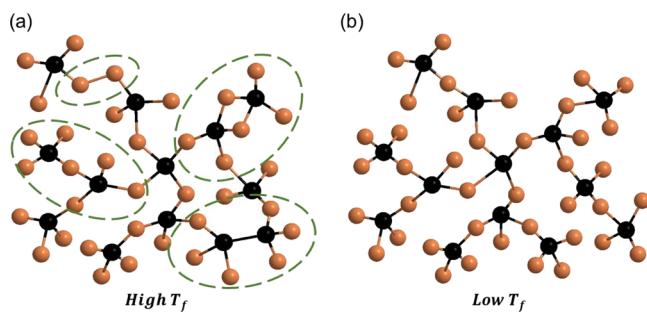
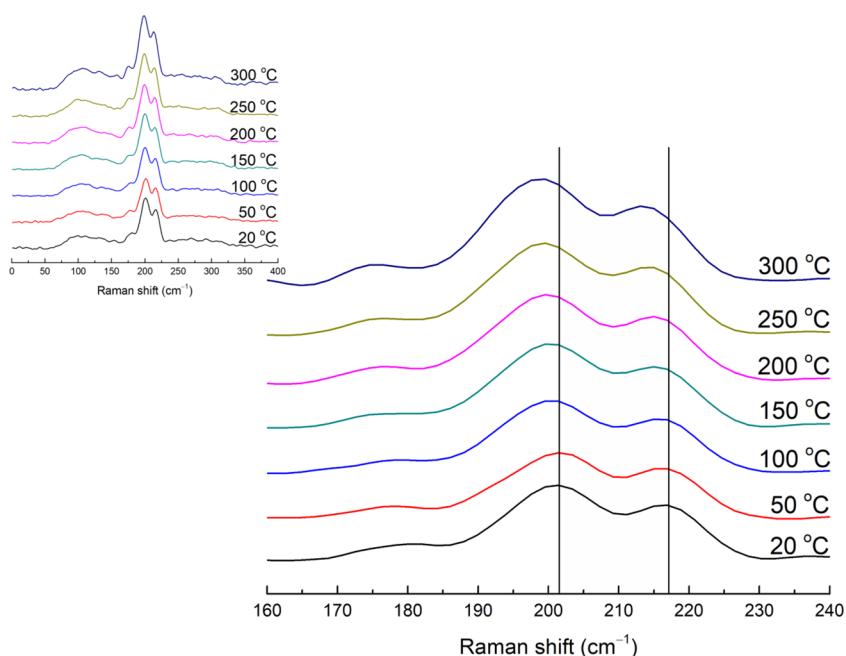


Figure 5. Temporal evolution of the fractional area under a (a) 180 cm^{-1} band corresponding to $\text{Se}_3 - \text{Ge} - \text{Ge} - \text{Se}_3$ units and (b) 285 cm^{-1} band corresponding to $\text{Ge} - \text{Se} - \text{Se} - \text{Ge}$ linkages during aging at $345 \text{ }^\circ\text{C}$.

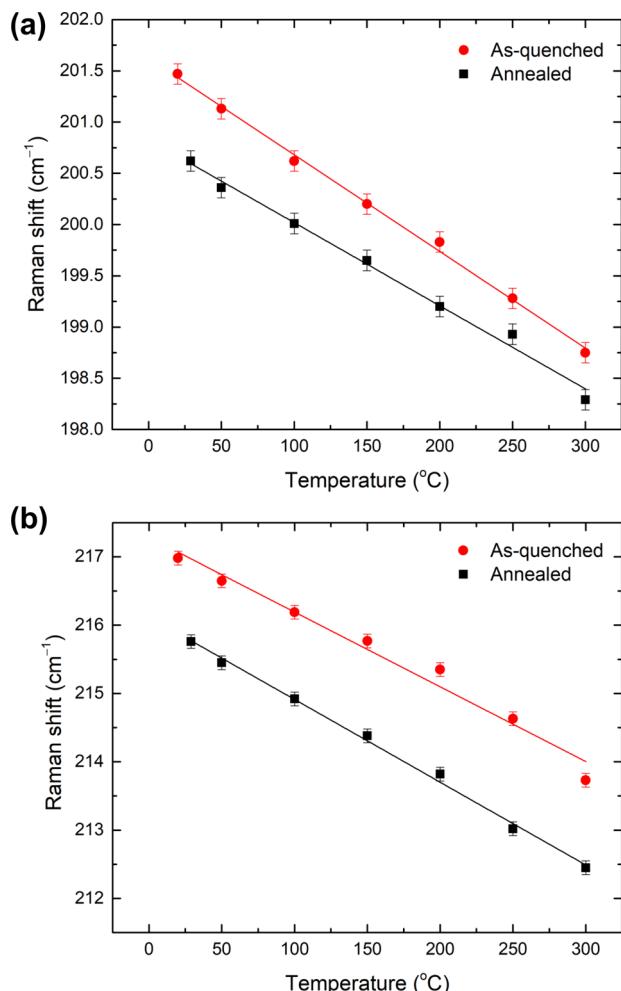
The remarkable similarity in their relaxation timescales and stretching exponents with that of density relaxation ($\beta = 0.54$ and $\langle \tau \rangle = 13.3 \text{ h}$) indicates a close mechanistic relationship and corroborates the validity of the proposed structural reaction. This aging-induced structural evolution of the GeSe_2 network is shown schematically in Figure 6.

The temperature dependence of the Raman spectra of the as-quenched glass in the range of 20 – $300 \text{ }^\circ\text{C}$ is shown in Figure 7. It is clear that the peak frequencies of the strongest bands at ~ 200 and 215 cm^{-1} , corresponding to the CS and ES units, respectively, progressively shift to lower values, i.e., they display mode frequency softening with increasing temperature. A similar mode softening behavior is also observed for the annealed sample, and all mode softening are found to be fully reversible upon cooling. It must be noted that, in this temperature range, which is nearly 100 – $380 \text{ }^\circ\text{C}$ below T_g , no significant structural relaxation of the glass is likely within the timescale of these experiments. Therefore, the temperature-dependent mode softening behavior can be ascribed entirely to the anharmonicity of the vibrational potential wells that are contained within the metabasins that correspond to the as-quenched and annealed glass structures.

The temperature-induced mode frequency softening rates for the CS and ES bands are compared in Figure 8 for the as-


Figure 6. Schematic representation of the GeSe₂ glass network at high T_f (left) and low T_f (right). Ge and Se atoms are shown as black and brown spheres. The various structural moieties in the chemically disordered high T_f network with high configurational entropy, including ES and CS tetrahedra as well as Se–Se and Ge–Ge homopolar bonds, are marked by dashed ovals.

quenched and the 1 week-annealed samples. These rates are found to be $-0.0085 \pm 0.0005 \text{ cm}^{-1} \text{ K}^{-1}$ for the CS band and $-0.0115 \pm 0.0005 \text{ cm}^{-1} \text{ K}^{-1}$ for the ES band, which do not change significantly upon aging, within the limits of experimental error (Figure 8). The temperature dependence of the vibrational mode frequencies $\left(\frac{\partial\nu}{\partial T}\right)_p$ of a material has two contributions²⁸ such that $\left(\frac{\partial\nu}{\partial T}\right)_p = \left(\frac{\partial\nu}{\partial T}\right)_v - \frac{\alpha}{\beta} \left(\frac{\partial\nu}{\partial P}\right)_T$. Here, α and β are the volume thermal expansion coefficient and compressibility, respectively. The first term on the right-hand side of this equation is the pure temperature effect that represents the explicit anharmonicity related to the phonon–phonon coupling, which is determined by the thermal population of the vibrational levels. On the other hand, the second term corresponds to the implicit quasiharmonic effect related to the thermal volume expansion. A previous high-pressure Raman spectroscopic study of Ge–Se glasses²⁹ has


reported the measurement of the parameter $\frac{1}{\nu} \left(\frac{\partial\nu}{\partial P}\right)_T \approx 0.004 \text{ GPa}^{-1}$ for the GeSe₂ glass in the frequency region of $\sim 200 \text{ cm}^{-1}$. Using this parameter, the bulk modulus $1/\beta \sim 14 \text{ GPa}$,³⁰ and the volume thermal expansion coefficient $\alpha = 45 \times 10^{-6} \text{ K}^{-1}$,³¹ the implicit anharmonic term $\frac{\alpha}{\beta} \left(\frac{\partial\nu}{\partial P}\right)_T$ for the GeSe₂ glass can be estimated to be $\sim 0.0005 \text{ cm}^{-1} \text{ K}^{-1}$. This value is more than an order of magnitude smaller than the observed range of absolute values (0.0085 – $0.0115 \text{ cm}^{-1} \text{ K}^{-1}$) for the CS and ES bands, implying that the anharmonicity of the vibrational potentials in these glasses is dominated by the explicit phonon coupling term. It is important to note that the as-quenched and annealed samples do not show any significant difference in the mode softening rates, indicating that the glass structures in the as-quenched and annealed samples occupy metabasins characterized by rather similar explicit anharmonicities of the vibrational excitations within them.

4. CONCLUSIONS

In conclusion, the analysis of the Raman spectra of GeSe₂ glasses demonstrates an increase in the CS:ES ratio and a lowering of the Ge–Ge homopolar bond concentration, which give rise to a concomitant increase in chemical order via the reaction $\text{Ge–Ge} + \text{Se–Se} \rightarrow 2 \text{ Ge–Se}$ with lowering of T_f during aging at $\sim 65^\circ\text{C}$ below T_g . This structural evolution upon aging is shown to be responsible for density relaxation in this glass, and the corresponding kinetics in all cases can be described by the KWW-type stretched exponential function with $\beta = 0.54$ and $\langle\tau\rangle \sim 13.5 \text{ h}$. In addition, the temperature-dependent evolution of the Raman spectra of these glasses at temperatures significantly below T_g provides evidence that the explicit phonon coupling controls the anharmonicity of the vibrational potentials in these glasses. This anharmonicity is shown to be not influenced by the aging-induced structural relaxation.

Figure 7. Expanded view in the frequency region between 160 and 240 cm^{-1} of the Raman spectra of as-quenched GeSe₂ glass collected at different temperatures displaying mode frequency softening with increasing temperature. Vertical lines are guides to the eye. The inset shows the full spectral range.

Figure 8. Temperature dependence of the Raman shift for peak positions of (a) CS and (b) ES bands in the Raman spectra of as-quenched and 1 week-annealed GeSe_2 glasses.

■ AUTHOR INFORMATION

Corresponding Author

Sabyasachi Sen – Department of Materials Science & Engineering, University of California at Davis, Davis, California 95616, United States; orcid.org/0000-0002-4504-3632; Email: sbsen@ucdavis.edu

Authors

Bing Yuan – Department of Materials Science & Engineering, University of California at Davis, Davis, California 95616, United States

Hao Chen – Department of Materials Science & Engineering, University of California at Davis, Davis, California 95616, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.jpcb.1c08836>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This study is supported by the National Science Foundation grant NSF-DMR 1855176. S.S. acknowledges support from the Blacutt-Underwood Professorship at UC Davis.

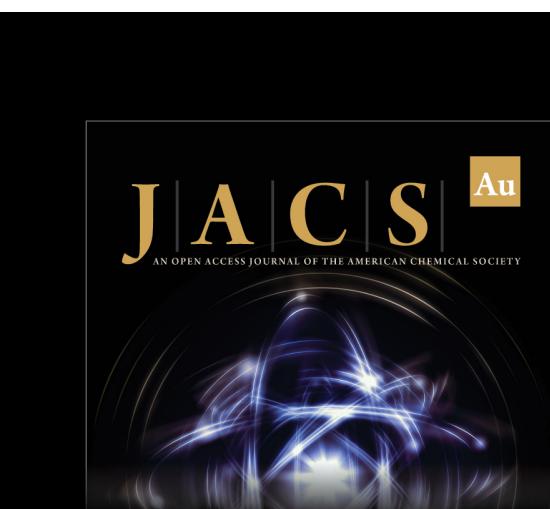
■ REFERENCES

- 1) Harbold, J. M.; Ilday, F. Ö.; Wise, F. W.; Sanghera, J. S.; Nguyen, V. Q.; Shaw, L. B.; Aggarwal, I. D. Highly Nonlinear As–S–Se Glasses for All-Optical Switching. *Opt. Lett.* **2002**, *27*, 119–121.
- 2) Kasap, S. O.; Koughia, K.; Munzar, M.; Tonchev, D.; Saitou, D.; Aoki, T. Recent Photoluminescence Research on Chalcogenide Glasses for Photonics Applications. *J. Non-Cryst. Solids* **2007**, *353*, 1364–1371.
- 3) Bureau, B.; Zhang, X. H.; Smektala, F.; Adam, J. L.; Troles, J.; Ma, H. L.; Boussard-Plédel, C.; Lucas, J.; Lucas, P.; Le Coq, D.; Riley, M.; et al. Recent Advances in Chalcogenide Glasses. *J. Non-Cryst. Solids* **2004**, *345*–346, 276–283.
- 4) Zakery, A.; Elliott, S. R. Optical Properties and Applications of Chalcogenide Glasses: A Review. *J. Non-Cryst. Solids* **2003**, *330*, 1–12.
- 5) Greaves, G. N.; Sen, S. Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. *Adv. Phys.* **2007**, *56*, 1–166.
- 6) Sugai, S. Stochastic Random Network Model in Ge and Si Chalcogenide Glasses. *Phys. Rev. B* **1987**, *35*, 1345–1361.
- 7) Zhou, W.; Paesler, M.; Sayers, D. E. Structure of Germanium-Selenium Glasses: An x-Ray-Absorption Fine-Structure Study. *Phys. Rev. B* **1991**, *43*, 2315–2321.
- 8) Salmon, P. S. Structure of Liquids and Glasses in the Ge–Se Binary System. *J. Non-Cryst. Solids* **2007**, *353*, 2959–2974.
- 9) Kaseman, D. C.; Hung, I.; Gan, Z.; Aitken, B.; Currie, S.; Sen, S. Structural and Topological Control on Physical Properties of Arsenic Selenide Glasses. *J. Phys. Chem. B* **2014**, *118*, 2284–2293.
- 10) Kaseman, D. C.; Hung, I.; Gan, Z.; Sen, S. Observation of a Continuous Random Network Structure in $\text{Ge}_x\text{Se}_{100-x}$ Glasses: Results from High-Resolution ^{77}Se MAPPASS/CPMG NMR Spectroscopy. *J. Phys. Chem. B* **2013**, *117*, 949–954.
- 11) Mastelaro, V.; Dexpert, H.; Benazeth, S.; Ollitrault-Fichet, R. $\text{As}_x\text{Se}_{1-x}$ ($0.20 \leq x \leq 0.57$): EXAFS Study of the Glass Region. *J. Solid State Chem.* **1992**, *96*, 301–310.
- 12) Adam, G.; Gibbs, J. H. On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids. *J. Chem. Phys.* **1965**, *43*, 139–146.
- 13) Cavagna, A. Supercooled Liquids for Pedestrians. *Phys. Rep.* **2009**, *476*, 51–124.
- 14) Sen, S. Progress in Nuclear Magnetic Resonance Spectroscopy Dynamics in Inorganic Glass-Forming Liquids by NMR Spectroscopy. *Prog. Nucl. Magn. Reson. Spectrosc.* **2020**, *116*, 155–176.
- 15) Greaves, G. N.; Sen, S. Advances in Physics Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. *Adv. Phys.* **2007**, *56*, 1–166.
- 16) Zhu, W.; Hung, I.; Gan, Z.; Aitken, B.; Sen, S. Dynamical Processes Related to Viscous Flow in a Supercooled Arsenic Selenide Glass-Forming Liquid: Results from High-Temperature ^{77}Se NMR Spectroscopy. *J. Non-Cryst. Solids* **2019**, *526*, 119698.
- 17) Shpotyuk, O.; Golovchak, R.; Kozdras, A. *Physical Ageing of Chalcogenide Glasses*; Woodhead Publishing Limited, 2014.
- 18) Edwards, T. G.; Sen, S. Structure and Relaxation in Germanium Selenide Glasses and Supercooled Liquids: A Raman Spectroscopic Study. *J. Phys. Chem. B* **2011**, *115*, 4307–4314.
- 19) King, E. A.; Sen, S.; Takeda, W.; Boussard-Pledel, C.; Bureau, B.; Guin, J.; Lucas, P. Extended Aging of Ge–Se Glasses below the Glass Transition Temperature. *J. Chem. Phys.* **2021**, *154*, 164502.
- 20) Marple, M. A. T.; Yong, V.; Sen, S. Fragility and Aging Behavior of $\text{Si}_x\text{Se}_{1-x}$ Glasses and Liquids. *J. Chem. Phys.* **2019**, *150*, No. 044506.
- 21) Petri, I.; Salmon, P. S.; Fischer, H. E. Defects in a Disordered World: The Structure of Glassy GeSe_2 . *Phys. Rev. Lett.* **2000**, *84*, 2413–2416.
- 22) Stillinger, F. H. *Energy Landscapes, Inherent Structures, and Condensed-Matter Phenomena*; Princeton University Press, 2015.
- 23) Gjersing, E. L.; Sen, S.; Aitken, B. G. Vibrational Entropy near Glass Transition in a Chalcogenide Glass and Supercooled Liquid. *J. Non-Cryst. Solids* **2009**, *355*, 748–752.
- 24) Doss, K.; Wilkinson, C. J.; Yang, Y.; Lee, K.; Huang, L.; Mauro, J. C. Maxwell Relaxation Time for Nonexponential α -Relaxation

Phenomena in Glassy Systems. *J. Am. Ceram. Soc.* **2020**, *103*, 3590–3599.

(25) Holomb, R.; Mitsa, V.; Akalin, E.; Akyuz, S.; Sichka, M. Ab Initio and Raman Study of Medium Range Ordering in GeSe_2 Glass. *J. Non-Cryst. Solids* **2013**, *373*–374, 51–56.

(26) Poborchii, V. V.; Kolobov, A. V.; Caro, J.; Zhuravlev, V. V.; Tanaka, K. Dynamics of Single Selenium Chains Confined in One-Dimensional Nanochannels of AlPO_4 - 5: Temperature Dependencies of the First- and Second-Order Raman Spectra. *Phys. Rev. Lett.* **1999**, *82*, 1955–1958.


(27) Kaseman, D. C.; Oliveira, K. M.; Palazzo, T.; Sen, S. Selenium Chain Length Distribution in $\text{Ge}_x\text{Se}_{100-x}$ Glasses: Insights from ^{77}Se NMR Spectroscopy and Quantum Chemical Calculations. *J. Phys. Chem. B* **2016**, *120*, 4513–4521.

(28) Chattopadhyay, T.; Carbone, C.; Jayaraman, A.; Schnering, H. G. v. Effect of Temperature and Pressure on the Raman Spectrum of As_4S_3 . *J. Phys. Chem. Solids* **1982**, *43*, 277–284.

(29) Wang, F.; Mamedov, S.; Boolchand, P.; Goodman, B.; Chandrasekhar, M. Pressure Raman Effects and Internal Stress in Network Glasses. *Phys. Rev. B* **2005**, *71*, 174201.

(30) Yang, G.; Bureau, B.; Rouxel, T.; Gueguen, Y.; Gulbitten, O.; Roiland, C.; Soignard, E.; Yarger, J. L.; Troles, J.; Sangleboeuf, J. C.; Lucas, P. Correlation between Structure and Physical Properties of Chalcogenide Glasses in the $\text{As}_x\text{Se}_{1-x}$ System. *Phys. Rev. B* **2010**, *82*, 195206.

(31) Senapati, U.; Varshneya, A. K. Configurational Arrangements in Chalcogenide Glasses: A New Perspective on Phillips' Constraint Theory. *J. Non-Cryst. Solids* **1995**, *185*, 289–296.

J|A|C|S Au
AN OPEN ACCESS JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Editor-in-Chief
Prof. Christopher W. Jones
Georgia Institute of Technology, USA

Open for Submissions

pubs.acs.org/jacsau ACS Publications
Most Trusted. Most Cited. Most Read.