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Abstract—Current Hi-C analysis approaches focus on uniquely
mapped reads and little research has been carried out to include
multi-mapping reads, which leads to a lack of biological signals
from DNA repetitive regions. We propose a heuristic strategy
to assign multi-mapping reads to loci according to the distance
to their closest restriction enzyme cutting sites. We demonstrate
that the heuristic strategy can rescue multi-mapping reads thus
enhance the quality of Hi-C data. Compared with mHi-C, it
not only improves replicate reproducibility in the same cell
type, but also maintains the difference between replicates of
different cell types. Moreover, the strategy identifies much more
common statistically significant chromatin interactions between
Hi-C experiments of different restriction enzymes and has a
huge advantage on computing resources. Therefore, the heuristic
strategy can be used to enhance Hi-C data by utilizing multi-
mapping reads.

Index Terms—heuristic strategy, Hi-C, multi-mapping reads

I. INTRODUCTION

Three-dimensional genome organization plays important
roles in many biological processes, which include long-range
gene regulation [1], DNA replication and repair [2], [3]. The
alteration of three-dimensional genome architecture leads to
human diseases, such as cancer [4], [5]. As the develop-
ment of chromosome conformation capture-based technolo-
gies, high-throughput chromosome conformation capture (Hi-
C) [6] emerges as a popular method to detect genome-wide
chromatin interactions. In Hi-C experiments, crosslinked DNA
is fragmented with restriction enzymes. Then DNA fragments
are ligated, selected, sheared and finally sequenced as paired-
end reads. After these paired-end reads are processed by Hi-
C analysis pipelines, chromatin contact maps are generated
for downstream analysis and exploration. Recent studies have
discovered some multi-scale spatial genomic structures, which
include A/B compartment [6], topologically associating do-
mains (TADs) [7], chromatin loops [8] and frequently inter-
acting regions (FIREs) [9].

Owing to the sequencing cost, few studies generate high-
resolution data sets. To enable high-resolution structure dis-
covery on low-resolution data sets, some computational meth-
ods are proposed to enhance Hi-C data with machine learning
algorithms. HiCPlus [10] and HiCNN [11] both use deep
convolutional neural networks. HicGAN [12] and DeepHiC
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[13] infers high-resolution Hi-C data with generative adver-
sarial networks. However, all of these methods depend on
one high-resolution data set as their training sets and ignore
heterogeneity among cell types.

Though machine learning algorithms are popular, they are
not the only method to enhance Hi-C data. In fact, for each Hi-
C data set, a large number of reads are discarded at the very be-
ginning. Because most Hi-C pipelines only consider uniquely
mapped reads (unique reads) and ignore multi-mapping reads,
which are mapped to multiple genomic loci. To the best of our
knowledge, there is only one study, mHiC [14], accounting
for multi-mapping reads. mHi-C assigns multi-mapping reads
according to the interacting patterns learned from unique
reads, therefore the multi-mapping read assignment depends
on unique reads. Here we propose a heuristic strategy which
doesn’t depend on unique reads to utilize multi-mapping reads.
The heuristic strategy not only enhances Hi-C data, but also
enables exploration of new interacting patterns.

Our contributions may be stated as follows:
• We propose a heuristic strategy to utilize multi-mapping

reads for Hi-C data processing.
• We demonstrate that using our proposed strategy on

Hi-C data sets can enhance Hi-C data in quantity and
reproducibility and recover more common statistically
significant chromatin interactions between experiments of
different restriction enzymes.

The rest of paper is organized as follows. The second section
delineates the heuristic strategy to use multi-mapping reads.
The third section introduces two human cell lines and two
Arabidopsis data sets as our test data. The fourth section
evaluates the heuristic strategy by comparing it with mHi-
C and a method that only considers unique reads. The last
one concludes that the heuristic strategy complements multi-
mapping reads in Hi-C analysis.

II. METHOD

We propose a heuristic strategy to utilize multi-mapping
reads in Hi-C experiments to strengthen chromatin interaction
data. As shown in Figure 1A, for Hi-C read ends, there are
three possible outcomes, unaligned, unique and multi-mapping
reads. Compared with unaligned reads, multi-mapping reads



are reads with high quality alignment scores, but their align-
ment loci cannot be uniquely determined. To avoid the abuse of
utilizing multi-mapping reads, we only rescue multi-mapping
reads with less than a specific number of alignments. For
example, mHi-C by default utilizes multi-mapping reads with
less than 100 alignments. In order to assign a multi-mapping
read to a unique locus among its alignments, we hypothesize
that the locus closer to restriction enzyme cutting sites has a
higher probability to be the origin as shown in Figure 1B. The
hypothesis is based on the Hi-C processing of unique reads.
In Hi-C processing pipelines, the closest restriction enzyme
cutting sites are picked to filter unique reads. Second according
to our empirical experience, an object’s breakage because
of outside forces is most likely to happen at the object’s
periphery with defects. In Hi-C experiments at the shearing
step, shearing may happen preferentially close to the restriction
enzyme cutting sites, which can be viewed as defects as
these sites are cut by restriction enzymes before. Therefore,
we select the loci for multi-mapping reads according to the
distance to the closest restriction enzyme cutting sites. What
is more important, as our multi-mapping read assignment is
carried out at the sequence alignment step, there is no impact
on following Hi-C data processing and the same filtering
criteria (such as distance to restriction enzyme cutting sites)
can be applied to unique and multi-mapping reads to remove
invalid chromatin interactions.

III. DATA

To demonstrate that the heuristic strategy can rescue multi-
mapping reads in Hi-C experiments, thus increasing detected
chromatin interactions and expanding the breadth of genome
coverage, we test the strategy on Hi-C experiments of two
cell lines from a study [7] on revealing topological domains
in mammalian genomes and Hi-C experiments of Arabidopsis
thaliana seedling tissues from two studies [15], [16] with
different restriction enzymes. The first cell line is human
embryonic stem cell (hESC) and the second cell line is
derived from human fetal lung (IMR90). For each cell line,
Hi-C experiments were conducted independently with two
biological replicates (r1 and r2) using HindIII as the restriction
enzyme to cut crosslinked DNA into fragments. Thereafter,
DNA fragments in close proximity were ligated in a diluted
environment and the resulting ligation products were soni-
cated, filtered and finally sequenced by paired-end sequencing.
Therefore, two paired read files were generated for each
replicate, e.g. hESC r1 1 and hESC r1 2. For Arabidopsis
thaliana seedling tissues, the first study [15] carried out the
Hi-C experiments using HindIII with two biological replicates
(r1 and r2), which are named HindIII r1 and HindIII r2. The
second study [16] carried out the Hi-C experiments using
DpnII with three biological replicates (r1, r2 and r3), which
are named DpnII r1, DpnII r2 and DpnII r3.

Fig. 1. Hi-C read alignment outcomes and the heuristic strategy for multi-
mapping reads. A: three types of reads, unaligned, unique and multi-mapping
reads, B: a multi-mapping read is assigned to a locus closest to restriction
enzyme cutting sites.

IV. RESULTS

A. Sequence alignment statistics necessitate utilizing multi-
mapping reads

We adopt Hi-C processing pipelines consisting of a se-
quence of processing functions/commands, for example, Hiclib
[17], to process paired reads of hESC and IMR90’s replicates.
Because it is convenient to incorporate the heuristic strategy
into these pipelines and understanding the inner complex
logic of a holistic tool is not this study’s research focus.
As Hi-C processing pipelines ignore multi-mapping reads at
the sequence alignment step, we need to carry out our own
sequence alignment to keep multi-mapping reads. A sequence
alignment tool, for example, Bowtie 1 [18], is applied to align
two ends of Hi-C reads independently with its default settings
and the statistics of sequence alignment for each replicate are
listed in Table I. For each replicate, multi-mapping reads are
more than unaligned reads at both ends. This means there are
more multi-mapping reads than unaligned reads to be rescued.
This phenomenon can be explained by the fact that these reads
are short reads which are more likely to be aligned to multiple
loci than nowhere. In addition, prevalent short-read sequencing
in Hi-C experiments necessitates the need of utilizing multi-
mapping reads to enhance chromatin interaction data.



TABLE I
HESC AND IMR90 PAIRED-END SEQUENCE ALIGNMENT STATISTICS.TWO ENDS OF HI-C PAIRED-END READS ARE MAPPED INDEPENDENTLY BECAUSE

DISTANCE CONSTRAINT OF PAIRED-END READS DOESN’T APPLY TO HI-C READS.

replicate hESC r1 hESC r2 IMR90 r1 IMR90 r2
#reads 237,662,270 496,522,946 397,194,480 259,123,992

unique reads(%) 69.77 68.74 72.31 70.96 71.65 69.04 70.44 70.26
unaligned reads(%) 11.99 13.16 9.79 11.45 10.82 13.87 11.74 11.70

multi-mapping reads(%) 18.24 18.10 17.9 17.59 17.53 17.09 17.82 18.04

B. The heuristic strategy increases detected chromatin inter-
actions

To demonstrate that the heuristic strategy can strengthen
chromatin interaction data, we test the strategy on each repli-
cate with hiclib and mHi-C respectively. hiclib only considers
unique reads and incorporating our strategy takes both unique
and multi-mapping reads into count. mHi-C leverages multi-
mapping reads in a sequence of commands and it is convenient
to replace its multi-mapping read assignment method with our
strategy. The numbers of detected chromatin interactions for
each replicate are shown in Table II. Compared with unique
reads, the heuristic strategy increases millions of chromatin
interactions because it also accounts for multi-mapping reads.
Compared with mHi-C, the heuristic strategy gains chromatin
interactions marginally because they both leverage unique and
multi-mapping reads.

C. The heuristic strategy enhances the reproducibility of chro-
matin interaction data

Replicate reproducibility is an important measurement used
to assess the quality of chromatin interaction data. We cal-
culate the reproducibility scores among hESC and IMR90’s
replicates by chromosome (from chromosome 1 to chromo-
some 22) with HiCRep [19]. As shown in Figure 2, for each
configuration [mHi-C (unique), mHi-C and mHi-C+], there are
two types of replicate reproducibility scores. The first type
(at the top) represents the average of replicate reproducibility
scores in the same cell line (hESC r1 VS hESC r2 and
IMR90 r1 VS IMR90 r2). The second type (at the bottom)
represents the difference between the average of replicate
reproducibility scores in the same cell line and the average
of replicate reproducibility scores between different cell lines
(hESC r1 VS IMR90 r1, hESC r1 VS IMR90 r2, hESC r2
VS IMR90 r1 and hESC r2 VS IMR90 r2). For the first type
of replicate reproducibility scores, mHi-C and mHi-C+ are
better than mHi-C(unique). This means compared with the
configuration only utilizing unique reads, configurations utiliz-
ing both unique and multi-mapping reads improve the repro-
ducibility between replicates in the same cell line. In addition,
mHiC’s multi-mapping read assignment method (mHi-C) is
slightly better than our strategy (mHi-C+) on improving the
reproducibility between replicates in the same cell line. But for
the second type of replicate reproducibility scores, our strategy
performs better than mHi-C. Among the 22 chromosomes, our
strategy has noticeably larger differences on 7 chromosomes,
while mHi-C’s multi-mapping read assignment method has

2 noticeably larger differences on 2 chromosomes. What is
more important, our strategy achieves similar performance
with the method only utilizing unique reads. Taking these
two types of replicate reproducibility scores into consideration,
we conclude that our strategy not only improves the replicate
reproducibility in the same cell line, but also maintains the
difference between different cell lines.

D. The heuristic strategy improves statistically significant
chromatin interactions

Enhanced chromatin interaction data enable downstream
analysis and exploration for new discoveries. Therefore, we
apply Fit-Hi-C [20] to normalized chromatin interactions to
identify statistically significant chromatin interactions with
respect to a false discovery rate of 0.05. In Table III, both
configurations utilizing unique and multi-mapping reads report
more statistically significant chromatin interactions than the
configuration utilizing only unique reads. In addition, mHi-
C’s multi-mapping read assignment method seems identifying
more statistically significant chromatin interactions than our
strategy. It can be explained if we further examine detected
chromatin interactions and keep only unique chromatin in-
teractions. As shown in Table IV, incorporating our strategy
gains much more unique chromatin interactions because mHi-
C assigns multi-mapping reads according to the interacting
patterns in the unique reads. Therefore, interacting patterns in
the unique reads would be enriched to be statistically signifi-
cant. The heuristic strategy doesn’t assign multi-mapping reads
according to unique reads and consequently it can explore
more interacting patterns. However, these dispersed interacting
patterns may become less statistically significant.

To further investigate two approaches utilizing multi-
mapping reads on identifying statistically significant chro-
matin interactions, we apply them on Hi-C experiments of
Arabidopsis thaliana seedling tissues from two studies [15],
[16] with different restriction enzymes, HindIII and DpnII.
Fit-Hi-C is used to identify statistically significant chromatin
interactions with respect to a false discovery rate of 0.05
for each replicate respectively. Pairwise comparison is carried
out between replicates of different restriction enzymes and
the common statistically significant chromatin interactions are
counted as shown in Table V. Our strategy identifies much
more common statistically significant chromatin interactions
than mHi-C (>32%) because when assigning multi-mapping
reads, our strategy does not depend on unique reads and
therefore improving the identification of common statistically
significant chromatin interactions.



TABLE II
HESC AND IMR90 CHROMATIN INTERACTIONS WITH HICLIB AND MHI-C UNDER DIFFERENT CONFIGURATIONS. hiclib+ represents incorporating hiclib

with the heuristic strategy. mHi-C(unique) represents limiting mHi-C to unique reads. mHi-C+ represents replacing mHi-C’s multi-mapping read assignment
method with the heuristic strategy.

method hiclib hiclib+ mHi-C(unique) mHi-C mHi-C+
hESC r1 16,156,824 21,528,337 17,043,308 20,325,529 20,819,070
hESC r2 117,150,577 139,527,552 105,617,771 124,622,391 124,955,453

IMR90 r1 81,524,268 97,985,497 83,161,703 97,444,579 98,380,530
IMR90 r2 89,322,274 104,647,014 83,381,123 96,099,798 98,325,832

Fig. 2. Replicate reproducibility scores for human chromosome 1-22. HiCRep is used to calculate reproducibility scores among hESC and IMR90’s replicates.
For each configuration [mHi-C(unique), mHi-C and mHi-C+], there are two types of replicate reproducibility scores. The first type (at the top) represents the
average of replicate reproducibility scores in the same cell line. The second type (at the bottom) represents the difference between the average of replicate
reproducibility scores in the same cell line and the average of replicate reproducibility scores between different cell lines.

TABLE III
STATISTICALLY SIGNIFICANT CHROMATIN INTERACTIONS IDENTIFIED BY

FIT-HI-C. mHi-C(unique) represents limiting mHi-C to unique reads.
mHi-C+ represents replacing mHi-C’s multi-mapping read assignment

method with the heuristic strategy.

method mHi-C(unique) mHi-C mHi-C+
hESC r1 4,206 8,412 7,226
hESC r2 34,630 54,642 53,236

IMR90 r1 49,500 78,574 69,476
IMR90 r2 55,124 85,160 74,396

E. The heuristic strategy has a huge advantage on computing
resources

Computing resources are essential to bioinformatics re-
search, especially for researchers and students with a limited
budget. We compare the running time and memory usage on

TABLE IV
HESC AND IMR90’S UNIQUE CHROMATIN INTERACTIONS WITH MHI-C
UNDER DIFFERENT CONFIGURATIONS. mHi-C(unique) represents limiting

mHi-C to unique reads. mHi-C+ represents replacing mHi-C’s
multi-mapping read assignment method with the heuristic strategy.

method mHi-C(unique) mHi-C mHi-C+
hESC r1 11,589,365 12,696,565 14,656,936
hESC r2 48,065,862 51,792,951 61,564,215

IMR90 r1 54,974,139 58,975,514 66,763,164
IMR90 r2 63,548,605 67,705,423 76,033,914

the same computing resource. As some commands (such as
sequence alignment) in the pipeline are shared under different
configurations, we only summarize the computing resources
pertaining to the multi-mapping read assignment in Figure 3.
mHi-C’s multi-mapping read assignment method takes at least



TABLE V
COMMON STATISTICALLY SIGNIFICANT CHROMATIN INTERACTIONS ON

ARABIDOPSIS THALIANA HI-C EXPERIMENT. HindIII and DpnII were used
on Arabidopsis thaliana seedling tissues. Pairwise comparision between

replicates of different restriction enzymes is carried out.

mHiC VS mHiC+ DpnII r1 DpnII r2 DpnII r3
HindIII r1 1561, 2064 2079, 2838 2067, 2877
HindIII r2 2020, 3250 2817, 4083 2757, 4084

five-fold running time and ten-fold RAM than our strategy.
When two configurations are applied to high resolution Hi-C
data sets, the difference on computing resources becomes more
glaring. Therefore, the heuristic strategy has a huge advantage
on computing resources than mHi-C’s multi-mapping read
assignment method.

Fig. 3. Comparison of computing resources (runnting time in minutes and
RAM in gigabytes) with mHi-C under different configurations.

V. CONCLUSION

In this paper, we introduce a heuristic strategy to include
multi-mapping reads into Hi-C analysis by assigning these
reads according to the distance to their closest restriction
enzyme cutting sites. Through the evaluation of Hi-C human
data, we display that there are more multi-mapping reads
than unaligned reads to be rescued. Compared with methods
only considering unique reads, the strategy improves the
quantity and reproducibility of Hi-C data, which enables new
discoveries of statistically significant chromatin interactions.
Compared with mHi-C, the strategy maintains the difference
between replicates of different cell lines, reports more com-
mon statistically significant chromatin interactions (>32%)
between experiments with different restriction enzymes and
shows a huge advantage on computing resources (at least 5-
fold in running time and 10-fold in RAM). Therefore, our
strategy is an important complement to incorporating Hi-C
multi-mapping reads.

Due to most Hi-C reads used in this paper are short reads
(36 base pairs), we didn’t rescue unaligned reads. For longer
sequence reads, more efforts can be extended to study whether
Hi-C data can be further enhanced by rescuing both unaligned
reads with recursive mapping and multi-mapping reads with
our proposed strategy. We also plan to combine our proposed
strategy and machine learning algorithms to achieve high-
resolution and high coverage Hi-C data.
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