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Abstract

Photosynthetic organisms possess a variety of mechanisms to achieve balance
between absorbed light (source) and the capacity to metabolically utilize or dissipate
this energy (sink). While regulatory processes that detect changes in metabolic
status/balance are relatively well-studied in plants, analogous pathways remain poorly
characterized in photosynthetic microbes. Herein, we explored systemic changes that
result from alterations in carbon availability in the model cyanobacterium
Synechococcus elongatus PCC 7942 by taking advantage of an engineered strain
where influx/efflux of a central carbon metabolite, sucrose, can be regulated
experimentally. We observed that induction of a high-flux sucrose export pathway
leads to depletion of internal carbon storage pools (glycogen) and concurrent
increases in estimates of photosynthetic activity. Further, a proteome-wide analysis
and fluorescence reporter-based analysis revealed that upregulated factors following
the activation of the metabolic sink are concentrated on ribulose-1,5-bisphosphate
carboxylase-oxygenase (Rubisco) and auxiliary modules involved in Rubisco
maturation. Carboxysome number and Rubisco activity also increased following
engagement of sucrose secretion. Conversely, reversing the flux of sucrose by feeding
exogenous sucrose through the heterologous transporter resulted in increased
glycogen pools, decreased Rubisco abundance, and carboxysome reorganization.
Our data suggest that Rubisco activity and organization are key variables connected

to regulatory pathways involved in metabolic balancing in cyanobacteria.

Keywords: Rubisco, proteomics, carbon concentration mechanism, source-sink,

carboxysome, cyanobacteria

Introduction

Photosynthetic organisms require regulatory mechanisms to overcome dynamic
fluctuation in solar illumination, with an ultimate goal of aligning light energy inputs
(“source”; i.e., absorbed photonic energy not dissipated by photoprotective
mechanisms) with an equivalent capacity to utilize this energy using anabolic
metabolism (“sinks”) (Bailey and Grossman, 2008; White et al., 2016; Walker et al.,
2020). Adaptive responses that poise light harvesting antennae to a given light
quantity/quality are relatively well-described in cyanobacteria (Grossman et al., 2003;
Muramatsu and Hihara, 2012; Montgomery, 2014; Ho et al., 2017). A substantial body
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of research on cyanobacterial photoprotective processes that dissipate or redistribute
excess light excitation is also available (Allahverdiyeva et al., 2013; Mullineaux, 2014;
Roach and Krieger-Liszkay, 2014; Kirilovsky and Kerfeld, 2016; Calzadilla and
Kirilovsky, 2020; Bhatti et al., 2021). In plants, additional signalling pathways are used
to achieve source/sink balance, including signalling networks that monitor key
metabolite pools (e.g., sucrose, trehalose-6-phosphate), to poise the expression of
photosynthetic machinery, including photosystems, light harvesting antennae, and
ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) (Mccormick et al., 2009;
Adams et al., 2013; Lemoine et al., 2013; Sakr et al., 2018; Roth et al., 2019b; Santos-
Merino et al., 2021). In contrast to plants, cyanobacteria lack homologs for these
signalling functions, making it uncertain how they sense the integrated metabolic
demands required for cell homeostasis/growth and coordinate upstream

photosynthetic machinery to meet those energetic needs.

A key bottleneck between the light reactions of photosynthesis and downstream
central carbon metabolism is Rubisco: a hexadecameric protein complex of large
(RbcL) and small (RbcS) subunits that catalyzes the carbon fixation step of the Calvin-
Benson-Bassham (CBB) cycle and is notorious for its low catalytic activity and poor
substrate specificity (Spreitzer and Salvucci, 2002; Tcherkez et al., 2006). To
overcome Rubisco’s enzymatic limitations, cyanobacteria depend upon carbon
concentrating mechanisms (CCMs). The cyanobacterial CCM is distinguished by
unique features including the carboxysome, a subcellular compartment that greatly
enhances the local concentration of CO2 near Rubisco (Yeates et al., 2008; Borden
and Savage, 2021). Structurally, the carboxysome is a protein microcompartment with
an outer coat consisting of various protein shell forms (hexamer, pentamer and trimer),
while the inside of the compartment is packed with a paracrystalline-like array of
Rubisco organized by the carbon concentrating mechanism protein M (CcmM)
(Cameron et al., 2013; Wang et al., 2019). Plasma membrane-localized bicarbonate
transporters actively pump inorganic carbon into the cytosol, which is thought to diffuse
through selective carboxysome shell pores, whereupon it is converted into CO2 by
encapsulated carbonic anhydrase (CA). The end result is a concentration of CO:2
around Rubisco up to ~1,000-fold higher than ambient levels (Badger and Price,
2003).
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The cyanobacterial CCM is dynamically regulated in response to environmental
changes (Raven and Beardall, 2014), a feature that appears to be important for
cyanobacterial adaptation to a wide range of ecosystems. Environmental cues (light,
CO2 and temperature) impact bicarbonate transporter gene expression, Rubisco
content, and carboxysome composition/morphology (Logothetis et al., 2004;
Mackenzie et al., 2004; Sun et al., 2016; Jahn et al., 2018; Rillema et al., 2021). The
size and number of carboxysomes are observed to change in response to light quality
and quantity (Rohnke et al., 2018; Sun et al., 2019). These changes in carboxysome
structure are predicted to impact the relative capacity of the compartment to
concentrate COz2 under different contexts (Mangan and Brenner, 2014). An emerging
theory suggests that cyanobacteria regulate the carboxysome to modulate Rubisco
activity and optimize cell growth and carbon fixation to environmental conditions. Yet,
how CCM regulation is integrated with metabolism and/or changing metabolic

demands (e.g., total metabolic flux/load) remains relatively unexplored.

In plants, signalling pathways act to control the activity of Rubisco in response to the
downstream metabolic status and to achieve source/sink balance. One well-
conserved example involves Hexokinase family members that sense key metabolite
pools of carbohydrates. For example, Arabidopsis (Arabidopsis thaliana) hexokinase
1 (HXK1) translocates into the nucleus following binding of glucose and forms a
complex that suppresses expression of photosynthesis genes including the Rubisco
small subunit, chlorophyll a/b binding proteins of the light harvesting complex I, and
CA (Cho et al., 2006). HXK1 has recently been shown to have conserved roles in the
regulation of carbon balance in the microalga Chromochloris zofingiensis, and is
implicated in a rapid change in the transcriptome of nearly a third of the total genome
when cells are fed exogenous sugars, including many genes involved in
photosynthesis, chlorophyll a (Chl a) biosynthesis, and Rubisco maturation (Roth et
al., 2019a).

Recent studies in cyanobacteria support the hypothesis that activation of heterologous
metabolic pathways (e.g., engineered bioproduction circuits) can redistribute cellular
resources in a manner that requires energetic re-balancing, including that of upstream
photosynthetic processes. For example, we have previously shown a notable increase
in the relative flux through the photosynthetic electron transport chain (PET),

enhanced CO:z fixation rates, and reduced acceptor-side limitations on the activity of
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PSl in the hours following activation of a sucrose-secretion pathway via the expression
of proteins sucrose phosphate synthase (SPS) and sucrose permease (CscB) in
Synechococcus elongatus PCC 7942 (S. elongatus) (Ducat et al., 2012; Abramson et
al.,, 2016; Santos-Merino et al., 2021). We observed that the upregulation of
photosynthetic flux is proportional to the amount of cellular resources that are
redirected to the heterologous pathway (Abramson et al., 2016; Santos-Merino et al.,
2021); i.e., when up to ~80% of photosynthetically fixed carbon is rerouted to the
secreted sucrose bioproduct. More widely, a number of other cyanobacterial species
and strains engineered to export other carbon metabolites have been shown to
experience similar photosynthetic enhancements when heterologous metabolism is
engaged, including isobuteraldehyde (Li et al., 2014), 2,3-butanediol (Oliver et al.,
2013), and ethylene (Ungerer et al., 2012).

Here, we used modified strains of S. elongatus that are capable of sucrose export or
import as an approach to experimentally control cyanobacterial sink energy balance.
One such sucrose-exporting strain (S. elongatus overexpressing both CscB and SPS;
hereafter “CscB/SPS”) has been well-characterized for the photosynthetic changes
induced by the expression of their heterologous carbon pathway (Ducat et al., 2012;
Abramson et al., 2016; Santos-Merino et al., 2021), but longer-term adaptive
responses have not been documented. We undertook a systems-level analysis of
proteomic changes that accompany engagement of the sucrose ‘sink’, finding that the
most significant hits were concentrated around Rubisco and Rubisco-associated
factors. Further analysis using live cell imaging and biochemistry shows that
carboxysome and Rubisco abundance is dynamically regulated in response to
expression of this heterologous sink. Changes observed in sucrose-feeding
experiments, whereby exogenous sugars are imported through CscB expression, also

support a model linking carboxysome number and organization to metabolic status.
Results

System level proteomic response to the sucrose export

We sought to gain deeper insight into the adaptive cellular response that results from
engagement of a strong heterologous carbon sink. We first validated that the
previously described CscB/SPS strain (Abramson et al., 2016; Abramson et al., 2018;

Santos-Merino et al., 2021) was capable of sucrose export under our experimental
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setup (Fig. 1B) and exhibited the previously-described changes in photosynthetic
parameters upon activation of this heterologous sink via IPTG addition (Supplemental
Fig. S1). We also monitored the internal glycogen content in CscB/SPS 24-48 h
following IPTG induction, observing a decline in glycogen stores by >75% on a per-
cell basis (Fig. 1C). At later time points, glycogen content partially recovers relative to
non-secreting controls (~30% decrease at 120 h). In other contexts, such as diurnal
cycles, glycogen content positively corresponds with cellular carbon abundance
(Diamond et al., 2015), suggesting the decrease in glycogen content linked to sucrose
export may be a function of increased carbon flux towards the heterologous sucrose
export pathway. However, it should be noted that the rate of sucrose efflux is
approximately 2 orders of magnitude larger than could be accounted for mobilization

of glycogen stores alone (Fig. 1B, C).

To expand our analysis of the systemic changes following activation of a heterologous
metabolic pathway, we chose an unbiased proteomic approach of CscB/SPS at time
intervals 24, 48, 72, and 96 h following induction of sucrose export. We unambiguously
identified 913 proteins across all sample conditions and timepoints (Fig. 2A),
corresponding to a coverage of 34% of total proteins encoded in the genome of S.
elongatus (913/2,657). Enrichment analysis using KEGG-assigned gene ontology
terms allowed calculation of the percentage enrichment of identified proteins across
17 functional categories relative to the total gene products encoded in the genome
(Fig. 2B). Across annotated functional categories, >50% proteins within each
functional group were identified (Fig. 2B). Reduced coverage of lower abundance
and/or poorly characterized proteins was observed (240/913 proteins in our

proteomics dataset).

Proteomic analysis identified a relatively small set of changes in protein abundance
that were consistent across all time points following sucrose export (Fig. 2D). CscB
and SPS were identified as significantly upregulated in the proteomic analysis, which
is expected because they are components specifically induced to trigger sucrose
export (Supplemental Table S1). Among the significantly upregulated endogenous
proteins (8), the Rubisco enzyme subunits RbcL and RbcS were among the most
statistically significant changes (Fig. 2C). Further, factors involved in the maturation of
Rubisco were also over-represented among the upregulated proteins following

sucrose export. This included chaperonins directly associated with the correct folding
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and assembly of Rubisco into higher order complexes, such as GroEL and its co-factor
GroES which contribute to folding of RbcL and assembly of RbcL dimers (Hayer-Hartl
et al., 2016). Another upregulated chaperone was high-temperature protein G (HtpG)
(Synpcc7942_1813), a member of the heat-shock protein (Hsp90A) family which play
roles in thermal or oxidative stress response in Synechococcus (Hossain and
Nakamoto, 2003; Kobayashi et al., 2017). Three additional proteins that were identified
as significantly upregulated were; iron-deficiency-induced protein A (IdiA), a factor
associated with protection of photosystem Il (PSIl) under various stress conditions
(Yousef et al.,, 2003); Synpcc7942_ 0369, a conserved but poorly characterized
putative oxidoreductase, and; nitrite reductase B (NirB), a protein involved in nitrate

assimilation and carbon/nitrogen balance (Ohashi et al., 2011) (Fig. 2C).

The seven proteins that were significantly downregulated following engagement of the
sucrose export pathway were not as clearly concentrated around a common molecular
function (Supplemental Table S1). Three of the downregulated targets were subunits
related to ribosomal activities (Synpcc7942 2020, Synpcc7942 2352, and
Synpcc7942 2204) (Hood et al., 2016). Two proteins in the antibiotic resistance
protein B (AbrB)-like family (Synpcc7942 1969 and Synpcc7942_2255) were
downregulated, these have been characterized to act as transcription factors involved
in carbon/nitrogen balancing in Synechocystis PCC 6803 (Lieman-Hurwitz et al., 2009;
Yamauchi et al., 2011; Orf et al., 2016; Rachedi et al., 2020). To better visualize the
overall changes in the proteome, we mapped identified proteins with conserved and
well-established molecular functions onto a proteomap (Supplemental Fig. S2), which
can provide a crude approximation of the relative protein abundance of each factor as
a function of the summation of identified peptides for each protein (Liebermeister et
al., 2014). In addition to the increase in Rubisco subunits, the proteomap highlights a
subtle decrease in the abundance of multiple proteins involved in ribosomal

functioning and PET chain components (Supplemental Fig. S2).
Rubisco is upregulated and reorganized following sucrose export

To independently confirm the proteomic analysis, we evaluated total Rubisco enzyme
activity in cell extracts from sucrose exporting cells relative to controls. A significant
increase in total Rubisco activity was observed at all time intervals when normalized
to Chl a content, peaking at ~50% increased activity at 48 h post-induction (Fig. 3A).

Quantitative Western blots also indicated an increase in Rubisco levels following
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induction of the sucrose secretion pathway (Fig. 3B), this increases similar in
magnitude to the enhanced activity of the in vitro enzyme assay. Increased Rubisco
activity is consistent with prior reports that have shown that total carbon fixation rates
and total biomass accumulation (i.e., cell biomass plus secreted carbon biomass)
increase on a per cell basis when the sucrose secretion pathway is induced (Ducat et
al., 2012; Abramson et al., 2016; Santos-Merino et al., 2021).

While we have previously reported enhancements in photosynthetic performance
within the hours following induction of the heterologous sucrose sink (Supplemental
Fig. S1) (Ducat et al., 2012; Abramson et al., 2016; Santos-Merino et al., 2021), we
do not find comparable evidence for significant alterations in the abundance of the
light harvesting machinery. Consistent with our proteomics dataset (Fig. 2C and
Supplemental Fig. S2), quantitative Western blotting for subunits of key components
of the photosynthetic electron transport chain does not show substantial changes in
representative subunits of PSI (PsaC) and PSII (PsbA) (Fig. 3C).

Effect of exogenous sucrose on photosynthetic activity and glycogen content

One possible interpretation of the physiological changes observed following induction
of the sucrose export pathway is that they may be partially related (directly or indirectly)
to the depletion of internal pools of carbon and/or energy equivalents. Pathways
involved in carbon/energy sensing in plants were classically identified by
manipulations that increased or decreased flux of carbon (e.g., sucrose) to specific
tissues (Rolland et al., 2006; Lemoine et al., 2013). In order to determine if artificial
increases in carbohydrate availability would impact similar cellular features, we
examined the effect of supplying exogenous sucrose on cell physiology (Fig. 1A). We
first analyzed the impact of sucrose feeding on Chl a and glycogen content by varying
the concentration of sucrose (0-200 mM) with or without inducing expression of the
sucrose transporter (CscB). Glycogen content increased by 2-3-fold in cells where
external sucrose was supplied and CscB was induced to facilitate sucrose uptake in
S. elongatus (Fig. 4A). In the absence of exogenous sucrose (i.e., 0 mM sucrose),
inducing expression of CscB did not change glycogen pools. A small, but significant
increase in glycogen content was observed at higher exogenous sucrose
concentrations (150-200 mM), possibly indicating alternative uptake pathways or
indirect effects of the increased osmotic pressure (Page-Sharp et al., 1998; Suzuki et
al., 2010).
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Cellular Chl a content was inversely related to uptake of exogenous carbohydrates, as
treatment with 50-200 mM sucrose caused chlorosis only in strains with induced CscB
(Fig. 4B, C). As a rise in the total photosynthetic activity (e.g., as measured by
evolution of O2 and assimilation of COz2) and apparent quantum efficiency of PSII are
well-characterized aspects that follow secretion of sucrose (Ducat et al., 2012;
Abramson et al., 2016; Santos-Merino et al., 2021) and other carbon products (Oliver
et al., 2013), we evaluated the impact of sucrose feeding on photosynthetic
parameters. Chl a fluorescence-based measurements are routinely used in plants and
algae to estimate photosynthetic performance, while cyanobacterial differences (e.g.,
phycobilin absorbance/fluorescence) require such approaches to be interpreted
differently (Campbell et al., 1998; Ogawa et al., 2017). Estimates of PSII activity can
be derived as a function of the variable fluorescence in the light (F'v), which is
determined by subtracting the basal fluorescence when the PSII pool is oxidized (F’o)
from the maximal fluorescence (F'm) when the PSII pool is closed (e.g., under a
saturating pulse). Parameters such as the quantum efficiency of PSII (®u: [F'm — Fs/F'v]
see Materials and Methods) and PSIlI openness (qp: [(F'm — Fs)/(F'm — F’0)). We
observed significantly reduced values in the apparent @i and ge under conditions of
sucrose uptake across most measured actinic light intensities (Fig. 4D-F). The
reduction in apparent ®i and gp was observed regardless of the wavelength of light
used to excite the cyanobacterial samples, including conditions that minimized the

contribution of phycobilin fluorescence (Supplemental Fig. S3).

In tandem with the apparent decrease in Chl a fluorescence-based metrics of
photosynthetic performance, we independently observed downregulation of
components involved in the PET and in the light-harvesting phycobilins. Quantitative
Western blot analysis indicated a ~2-fold decrease in the abundance of a core PSII
subunit, PsbA, in the presence of 100 mM sucrose when CscB was expressed (Fig.
4E). A central PSI subunit, PsaC, also appeared to be reduced in abundance (Fig. 4E;
bottom), albeit to a lesser extent than PsbA. Taken together, these results strongly
support the interpretation that there is a decrease in total photosystem abundance in
sucrose-importing cells (Figs. 4D-F, Supplemental Fig. S3). Phycobilisomes are a
major component of light harvesting antennae composed of two phycobiliproteins,
allophycocyanin and phycocyanin. The spectral features of these proteins were

reduced by ~72% and 70% in sucrose fed cells, respectively (Supplemental Fig. S4).
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Carboxysomes are reorganized in response to sucrose export and uptake

In cyanobacteria, the bulk of Rubisco is housed within the lumen of the carboxysome.
Since we observed changes in Rubisco activity/abundance following sucrose export
and import, we examined if the cyanobacterial carboxysome was also altered in
response to these interventions. To visualize changes in carboxysome organization,
we expressed an exogenous copy of the small subunit of Rubisco fused to the
fluorescent reporter mNeonGreen (RbcS-mNG) under the control of the native Prers
promoter. Similar constructs have been employed by our group and others to examine
carboxysome dynamics in vivo (Savage et al., 2010; Cameron et al., 2013; Chen et
al., 2013; Hill et al., 2020). As expected, the RbcS-mNG reporter was concentrated to
carboxysomal foci that were arranged along the central axis along the length of the
cell when expressed in the mutant background of our strains containing the exogenous
cscB and/or sps genes (Fig. 5A and Supplemental Fig. S5). Carboxysomes were most
frequently arranged in a linear or hexagonal packing that maximizes the distance

between neighboring microcompartments (Maccready et al., 2018).

When sucrose export was induced through the heterologous expression of CscB and
SPS, we observed changes in carboxysome number and in the intensity of foci (Fig.
5B, C, Supplemental Fig. S5). The intensity of RbcS-mNG puncta was noticeably
brighter within 24 h of induction of sucrose export, and this difference was maintained
for multiple days relative to uninduced controls (Fig. 5B, C). The number of
carboxysomes contained within each cell was also increased in the hours following
induction of sucrose export (Fig. 5B, C). Since a slight cell elongation and narrowing
of cell width was also evident in sucrose-secreting cells (Fig. 5A, Supplemental Fig.
S6), we quantified carboxysome density, observing a slight, but significant increase in
carboxysome number relative to cell length in sucrose-exporting cells (Fig. 5D). The
ratio of cytosolic RbcS-mNG to carboxysome RbcS-mNG remained constant
(Supplemental Fig. S7). Taken together, this is in agreement with our prior evidence
for increased Rubisco content in sucrose-secreting cells (Figs. 2, 3), and suggests that
the additional Rubisco remains packaged within carboxysomes, resulting in increased

carboxysome number and/or quantity of Rubisco per carboxysome.

When strains containing both the rbcS-mNG and cscB constructs were fed with
exogenous sucrose, we observed changes in carboxysome organization that were tied

to sucrose uptake (Fig. 6), as well as subtle changes in cell width (Supplemental Fig.
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S8). The number and density of carboxysomes declined in sucrose-importing strains
(100 mM sucrose +IPTG; Fig. 6A and Supplemental Figs. S9, S10) and there was a
change in carboxysome organization (Fig. 6A). We observed increased clustering of
carboxysome puncta in many cells with the capacity to import exogenous sucrose (Fig.
6A (+IPTG); red arrowheads, Supplemental Fig. S9). We also observed an increase
in the heterogeneity of puncta size/intensity within each cell, some of this may be
attributable to clustering of carboxysomes, but in other cases puncta that appeared to
be single carboxysomes at the resolution limits of light microscopy also exhibited
notably brighter RbcS-mNG fluorescence relative to puncta within the same cell (Fig.
6A, C; blue arrowheads). Direct assessment of Rubisco protein abundance and
activity levels under sucrose feeding conditions in the mutant background, a strain
containing CscB (but lacking the RbcS-mNG reporter), indicated a ~25% reduction in
Rubisco content on a total protein basis (Fig. 6E) and a ~60% decline in Rubisco

activity on a per-cell basis (Fig. 6B).

Discussion

Our results suggest that cyanobacteria exhibit numerous changes in photosynthetic
components following an engagement of a heterologous sucrose export (sink)
pathway, and that these changes are concentrated around Rubisco. We observed
changes in the abundance, activity, and organization of Rubisco within carboxysomes
after inducing sucrose export, and that many of these effects are reversed when
exogenous sucrose is supplied to induce a state of carbon overabundance. Taken
together, our evidence suggests that the cyanobacterial CCM - Rubisco and
carboxysome organization especially - may respond to internal metabolic signals and

source/sink dynamics.

Proteomic changes enhance carbon fixation capacity following engagement of

a heterologous carbon sink

We found that a relatively small subset of proteins is significantly altered in response
to the activation of our engineered sucrose export pathway. Aside from the expected
strong increase in the proteins required for sucrose production (CscB and SPS), 4 of
the remaining 8 significantly upregulated proteins were subunits of Rubisco (RbcL,
RbcS) or molecular chaperones with established functions in Rubisco’s maturation

process (GroES, GroEL; Fig. 2C). We validated the proteomic results in Rubisco
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abundance by Western blot (Fig. 3B) and Rubisco activity assays (Fig. 3A), indicating
that adjusted Rubisco levels are a primary target of regulation following engagement
of the heterologous sink. Therefore, the increase in total CO; fixation and biomass
accumulation rates that have been reported following sucrose export (Ducat et al.,
2012; Santos-Merino et al., 2021) likely stems both from increased Rubisco catalytic
activity and improved efficiency of light reactions of photosynthesis (Abramson et al.,
2016; Santos-Merino et al., 2021). Long-term changes in the abundance of other
components of photosynthetic machinery (e.g., photosystems, light harvesting
complexes, subunits of the PET) following sucrose export are relatively subtle or

insignificant by both proteomics approaches and targeted assays (Figs. 2, 3).

We also report alterations in the organization of carboxysomes following sucrose
export, as observed by imaging of live cells bearing a fluorescent Rubisco reporter
(Fig. 5). Despite the observed increase in carboxysome number/density in sucrose-
secreting cells (Fig. 5C, D), we did not detect significant upregulation of other
carboxysome components in our proteomic analysis (Fig. 2C). A simple explanation is
that the average size of carboxysomes may be increased in response to sucrose
export and that changes in carboxysome surface area (and associated shell/structural
proteins) are relatively minor in comparison to the expanded luminal volume and/or
change in Rubisco content. Increased carboxysome size would be consistent with the
increased carboxysome foci fluorescence intensity we observe in sucrose-secreting
cells (RbcS-mNG reporter; Fig. 5B, C). However, we cannot quantify carboxysome
size changes due to resolution limits of light microscopy, and other possible
interpretations include: i) shell proteins and other carboxysome structural components
increase, but sensitivity limits of proteomics approaches prevent detection (Long et
al., 2005; Faulkner et al., 2017); ii) there is no increase in protein level of carboxysome
components because they are in excess supply in the cytosol of S. elongatus under
our growth conditions; iii) carboxysome size remains constant but Rubisco is more
densely packaged, or; iv) the RbcS-mNG reporter may not behave identically to native

RbcS with regard to luminal packaging.

One hypothesis regarding the physiological changes we observe following
engagement of the sucrose secretion pathway is that they are representative of a
regulatory response to the altered energy/carbon balance that occurs when a

substantial proportion of cellular resources are redirected towards non-native
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processes (Santos-Merino et al., 2019). We and others reported a pronounced
decrease in glycogen content in sucrose-secreting cyanobacteria, possibly attributable
to the redirection of carbon pools (e.g., glucose, fructose) away from endogenous
sinks and to the engineered pathway (Fig. 1C) (Qiao et al., 2018; Lin et al., 2020).
Indirect evidence for this interpretation has also been provided in the form of studies
showing that glycogen synthesis is in competition with bioproduct synthesis: reducing
the capacity to store cellular carbon as glycogen can improve bioproduction from a
number of engineered pathways (Ducat et al., 2012; Davies et al., 2014; Wang et al.,
2020). Conversely, heterologous metabolism can mitigate impairments in growth and
photosynthesis observed in cyanobacterial strains with restricted flux towards
endogenous sinks (Li et al., 2014; Abramson et al., 2016; Xiong et al., 2017; Cano et
al., 2018; Diaz-Troya et al., 2020; Santos-Merino et al., 2021).

Rubisco activity and cellular organization is impacted following carbohydrate

feeding experiments

If redirection of internal carbon pools away from endogenous metabolism and towards
secreted bioproducts results in changes sensed by regulatory machinery in
cyanobacteria, it would be expected that interventions that artificially increase internal
carbon resources might also result in phenotypic changes in these cellular features.
Although S. elongatus is regarded as a strict photoautotroph, it can grow photo-
mixotrophically when heterologous transporters are expressed (McEwen et al., 2016),
a property we used to artificially increase intracellular carbon availability by importing
sucrose through the heterologous transporter, CscB. Increased glycogen content and
measurements of Chl a fluorescence dynamics are consistent with increased cellular
carbon resources and an over-reduced PET (Figs. 4A, D, F, Supplemental Fig. S3).
Sucrose feeding experiments also result in a rapid downregulation of many
components of the photosynthetic machinery, including light harvesting
phycobilisomes, photosystems, and Rubisco (Figs. 4 and 6). Carboxysome number is
decreased, and their spatial positioning is disrupted in sucrose-feeding experiments
(compare Figs. 5 and 6). One possibility is that metabolic changes that accompany
the influx of exogenous carbon impact (directly or indirectly) the activity of
maintenance of carboxysome distribution AB proteins (McdA/McdB) involved in
microcompartment positioning along the cyanobacterial nucleoid (Maccready et al.,

2018). An alternative speculative hypothesis is that exogenous carbohydrate uptake
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leads to changes in the integrity and/or dynamic association of carboxysome shell
proteins on the bacterial microcompartment, as we have recently observed similar
phenotypes when we visualize carboxysomes in real-time following destabilization of
components of carboxysome shell proteins (specifically, CcmO or CcmL) (Sakkos et
al., 2021). Distinguishing between these possibilities will require further research with
more directed approaches to interrogate carboxysome dynamics and shell integrity.
Regardless, our observations raise the possibility that carboxysome properties may
be tied to internal metabolic states as well as external environmental conditions (e.g.,
light, CO2, temperature) as previously reported (Woodger et al., 2003; Sun et al., 2016;
Rohnke et al., 2018; Sun et al., 2019; Rillema et al., 2021).

Possible implications for source/sink regulatory machinery in cyanobacteria

Rubisco is one of the primary regulatory targets for source/sink regulatory systems in
plants (Nielsen et al., 1998; Cho et al., 2006; Granot et al., 2013; Koper et al., 2021).
In addition to the previously mentioned mechanistic connection between HXK1 and
Rubisco expression, multiple studies in plants have associated intracellular
carbohydrate availability with the expression of Rubisco and other components of the
photosynthetic machinery. For example, interventions that decrease sink capacity
relative to source energy (e.g., exogenous feeding of sugars) lead to decreased
Rubisco abundance across many crop plants (Moore et al., 1998; Nielsen et al., 1998;
Kasai, 2008; Lobo et al., 2015). Our results suggest that this relationship between
Rubisco abundance and source/sink dynamics is maintained in cyanobacteria,
although the specific mechanisms for monitoring energetic balance that have been
elucidated in plants (e.g., HXK1, SNF-related serine/threonine-protein kinase [SnRK],
and Target of Rapamycin [TOR]) do not appear to be conserved. This apparent
functional conservation may result from the relatively high burden Rubisco synthesis
places on photosynthetic organisms (i.e., energetically and in nitrogen requirements).
Stated differently, minimizing the cellular burden of Rubisco synthesis in a given
environment may be of similar importance to organismal fitness as acquiring sufficient

carbon fixation capacity to meet metabolic demands.

A deeper understanding of the mechanisms that regulate source/sink balance in
cyanobacteria is likely to have biotechnological implications given the potential for
cyanobacteria as a “carbon neutral” production chassis to combat anthropogenic
climate change (Sabine et al., 2004; Zhang et al., 2017; DeLisi et al., 2020). Future
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research is required to determine mechanisms of cyanobacterial source/sink sensing
so that they can be leveraged to maximize COz2 fixation and photosynthetic efficiency

in cyanobacteria.

Materials and Methods
Growth medium and culture condition

Cultures of Synechococcus elongatus PCC 7942 mutant strains were grown in BG-11
(Sigma-Aldrich) medium  buffered with 1g L' 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), pH 8.3 adjusted with potassium hydroxide.
For routine cultivation of cultures, Infors-Multitron incubators with 250 umol photons
m=2 s compact fluorescent (GRO-LUX®) lighting supplemented with 2% (v/v) CO2
were used at 30°C with orbital shaking at 130 rpm. Cultures were maintained with a
daily back-dilution to OD7s0 ~0.3 unless otherwise noted. The sucrose exporting
(CscB/SPS) and importing (CscB) mutants were used as previously described
(Abramson et al., 2016). Strains bearing heterologous genes under P promoters (i.e.,
cscB and/or sps) were induced with 1 mM Isopropyl R-D-1-thiogalactopyranoside
(IPTG) as indicated. The carboxysome fluorescence reporter Rubisco small subunit
(RbcS-mNG) expression construct was driven by native promoter (Pcs) and
genomically inserted into Neutral Site (NS1) (Clerico et al., 2007). All mutant selections
were carried out with BG11 plates with appropriate antibiotic supplementation;
Spectinomycin (100 yg mL") and Chloramphenicol (25 ug mL"). Axenic liquid cultures
were maintained through supplementation of the same antibiotics, although antibiotics

were removed at least 3 days prior to the experiments described.
Total Protein extraction and LC-MS/MS analysis

For protein extraction, 50 mL of culture was centrifuged (6,000 xg, 15 min, 4°C),
supernatants were discarded, and pellets were transferred to 50 mL tubes. All steps
of protein extraction were performed at 4°C. The pellets were resuspended in 10 mL
of a protein extraction buffer (50 mM Tris-HCI, pH 7.6, 10 mM MgClz2, 0.1% (v/v)
TritonX-100, 1X of Halt protease inhibitor cocktail, Thermo, USA). Cell disruption was
performed by French press (AMINCO®) at 1100 psi. After homogenization, the
samples were centrifuged (17,000 xg, 10 min, 4°C) using round bottom tubes to
remove cell debris. The supernatant was transferred to a 50mL conical tube, and 4

volumes 100% acetone was added, whereupon samples were stored overnight at -
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20°C for complete protein precipitation. The samples were re-suspended in
resuspension buffer (10 mM Tris-HCI, 5% (v/v) SDS, 1% (v/v) B-mercaptoethanol, pH~
8.0) and further used for proteomics measurements using LC-MS/MS (for details see
Supplemental Method S1).

Raw LC-MS/MS data was further processed for protein identification and differential
expression analysis through Scaffold software (version 4.11.1, Proteome Software
Inc., Portland, OR). For protein identification, 1% false discovery rate (FDR) and
minimum 2 unique peptides were specified as cut-offs to filter data for protein
identification and analysis. A significance level of P<0.05 (Mann-Whitney Test) and
Benjamin-Hochberg correction were applied in Scaffold for differential analysis.
Enrichment analysis was performed with KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways assigned functional categories using STRING v11 database
(https://string-db.org). Proteomaps were developed through modification and
customization of the online tool (https://www.proteomaps.net/) following user

documentation and literature available (Liebermeister et al., 2014).
Fluorescence microscopy and image analysis

For microscopy images, 1 mL of cells were pelleted by centrifugation at 5,000g for 5
min and the pellet was resuspended in 100uL of BG-11. A 3 uL aliquot was transferred
to a 3% (w/v) agarose pad. The cells were allowed to equilibrate for ~5min before the
pad was placed onto a #1.5 glass coverslip for imaging. Fluorescence images were
taken with a Zeiss Axio Observer D1 microscope (63x1.3NA) with an Axiocam 503
(mono-chrome) camera using light from X-Cite® 120Q (Lumen Dynamics). For
fluorescent mNG signals, we used filter set 46 (000000-1196-681): excitation BP
500/20, emission BP 535/30 and beamsplitter FT515. Images were further processed
for pixel-based data analysis using Microbed (v5.12d) an image analysis plugin for
Imaged (Abramoff et al., 2005; Schindelin et al., 2012). Microbed, as previously
reported and described (Ducret et al., 2016), was used to measure carboxysome foci
fluorescence and number based on RbcS-mNG reporter fluorescence. The main
attributes for defining cell are as follows (Fit shaped; rod shaped; Length: 1.5-10;
Width: 0.3-1.5; Area: 1-max) and smoothed maxima foci determination (Tolerance:
100; z-score:10; Intensity: 0-max). This automated image analysis assisted in

removing experimenter bias relative to manual image analysis, however, not all
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carboxysomes were identified in some instances (e.g., due to low puncta fluorescence

or focal plane artifacts).
Rubisco activity assay

Rubisco activity was assayed in vitro spectrophotometrically by following the coupled
conversion of reduced Nicotinamide adenine dinucleotide (NADH) to oxidized NAD*
(Ruuska et al., 1999). For protein extraction, 10 mL of culture was centrifuged (6,000
xg, 15 min, 4°C) and supernatant was discarded. The pellets were resuspended in
500uL of a protein extraction buffer (50 mM N-(2-Hydroxyethyl) piperazine-N'-(3-
propanesulfonic acid (EPPS), pH 8.1, 1 mM Ethylenediaminetetraacetic acid (EDTA),
10 mM Dithiothreitol (DTT), 0.1% (v/v) TritonX-100 and 1X of Halt protease inhibitor
cocktail, Thermo, USA) and transferred to 1.5mL tubes. The cell disruption was
performed by sonication (Fisher scientific) using 20 cycles (30 s on: 10 s off) and
amplitude 45% at 4°C. After protein extraction, the solution was centrifuged (6200 xg,
10 min, 4°C) to remove cell debris. To fully activate Rubisco, cell-free extracts were
incubated at room temperature for 20 min in the presence of 15 mM NaHCOs and 15
mM MgCl2. Following activation, 40 uL of the lysate was mixed in a cuvette with 960uL
of an assay buffer containing 100 mM HEPES, pH 8.1, 20 mM MgClz2, 1 mM EDTA, 1
mM ATP, 20 mM NaHCOs, 0.2 mM NADH, 30 mM ribulose- 1,5-bisphosphate and a
coupling enzyme cocktail containing 20 units (U) glyceraldehyde-3-phosphate
dehydrogenase, 22.5 U 3-phosphoglyceric phosphokinase, 12.5 U creatine
phosphokinase, 250 U CA and 56 U triose-phosphate isomerase. The reaction was
initiated by adding sample, and the rate of NADH oxidation was monitored at 340nm
for 10 min using a UV spectrometer (Agilent). Activity was calculated from the
molecular extinction coefficient of NADH. To avoid potential Rubisco inhibitors often
found in commercial preparations, RUBP was synthesized and purified in-house and
confirmed to have minimal “fall-over” kinetics on purified Rubisco samples (Kane et
al., 1994; Kane et al., 1998).

Biochemical assay for sucrose and glycogen content

Cyanobacterial culture aliquots (2 mL) were pelleted in a centrifuge at 6,200 xg. Pellets
were processed for the glycogen assay and the supernatant was sampled for sucrose
assays. The glycogen assay was performed following the protocol of Nakajima et al.

(Nakajima et al., 2017) with modifications. Briefly, pellets were resuspended in 200 pL
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of 30% (w/v) KOH and incubated in a 95°C in water bath for 2 h. After incubation, 600
uL absolute ethanol was added and further incubated at —20°C overnight. The next
day, the suspension was centrifuged, and the pellet was dried in an oven. Dried pellets
were resuspended in ddH20 and analysed with a commercially available Glycogen
assay kit (EnzyChrom™, USA). Sucrose quantification from culture supernatants was
determined using the Sucrose/ d-Glucose Assay Kit (Megazyme: K-SUCGL) following

the manufacturer’s instructions.
Pigment analysis

Chlorophyll a was extracted from cell pellets by incubation in 100% methanol for 30
min at 4°C. Chl a was measured spectrophotometrically following the protocols of
Porra et al. (Porra et al., 1989). Briefly, the pigment suspension was centrifuged, and
the supernatant was used for absorption at 665nm. Chl a content was determined
using an UV/Visible Spectrophotometer (Genesis 20, Thermo, USA). For absorption
spectrum and phycobiliprotein content analysis, cells were lysed by glass beads and
solubilized phycobilins were recovered in phosphate buffer (PBS) following the

protocol of Zavrel et al. (Zavrel et al., 2018).
Fluorescence measurements of photosynthetic parameters

Estimates of photosynthetic performance in cyanobacteria using Chl a fluorescence
are not as straightforward as in eukaryotic members of the green lineage, although
insights can still be gleaned if appropriate controls and precautions are observed
(Campbell et al., 1998; Ogawa et al., 2017). Fluorescence of photosynthetic
parameters were measured on a customized fluorimeter/spectrophotometer (Hall et
al., 2013) modified for liquid samples. A cuvette with sample was illuminated with a
pulsed measuring beam [A = 590 or 505 nm peak emission light-emitting diode (LED),
Luxeon Z Color Line] and then illuminated at three different intensities of
photosynthetically active radiation (PAR), 100, 275 and 500 ymol photons m2s™" (A
= 460 nm peak emission, Luxeon Rebel Royal-Blue LED). To acclimate the sample
and minimize the impact of successive saturating pulses. the cuvette was illuminated
at the relevant actinic light for 3 min and 2 min, before the first saturating pulse, and
between each pulse, respectively. Cyanobacterial samples containing 2.5 ug mL~" Chl
a were pelleted, then resuspended in fresh medium sparged with 2% (v/v) COz in air

and dark-adapted for 3 min before fluorescence measurements. The relative yields of
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Chl a fluorescence were measured under steady-state illumination (Fs), and 1.5 s
saturating pulses were delivered by the LED (~5,000 umol photons m=2 s~') (F'm) and
after exposure to ~2 s of darkness with far-red illumination (F'0). Chl a fluorescence
was used to calculate apparent values of the quantum yield of PSIl (®u), and the
coefficient of photochemical quenching (qgp) using equations (1) and (2), respectively
(Campbell et al., 1998; Maxwell and Johnson, 2000).

Fm — F
dIl = u (D
F'm
FFm — Fs
P = Fm = F0 @
Where, F'm = the value of maximal fluorescence in the light-adapted state, Fs = the
steady-state fluorescence in the light-adapted state, and F'o = the minimal

fluorescence in the light-adapted state
Western blot analysis

For Western blotting, cells were lysed in extraction buffer (50 mM Tris-HCI, pH 7.6, 10
mM MgClz, 0.1% (v/v) TritonX-100), fortified with 1X protease inhibitor (Halt protease
inhibitor cocktail, Thermo, USA). Extracted protein samples were quantified by using
Pierce™ BCA Protein Assay Kit (Thermo). 30 pg of total protein extracts were
electrophoretically separated on 10% (w/v) SDS-polyacrylamide gels and transferred
to a polyvinylidene difluoride (PVDF) membrane preactivated with absolute methanol
using Trans-Blot Turbo Transfer System (Bio-Rad). After blocking with 5% (w/v)
powdered skim milk in 1X phosphate buffer solution plus 0.1% (v/v) Tween-20 (PBST),
blots were probed with primary antibodies when included, anti-RbcL (PhytoAB;
PHY5236A, a dilution of 1:2,000), PsbA (Agrisera; AS05084, a dilution of 1:5,000) and
PsaC (Agrisera; AS10939, a dilution of 1:5,000) overnight at 4'C. Secondary antibody
a-rabbit HRP conjugate (Invitrogen, G21234, a dilution of 1:20,000) was incubated
with blots for 1 h at room temperature, and antigen-antibody complexes were
visualized via a chemiluminescence detection system (Super signal, Thermo scientific,
USA). The Precision plus protein dual-color standard (Bio-Rad) was used as reference

molecular weight markers.

Statistical analysis
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Statistical analysis and plots were generated using Microsoft Excel, R and python. All
experiments were performed with at least three biological replicates and technical
replicates for same-day experiments as indicated. Exact replicates and/or n values are
described in detail in the accompanying figure legends. Statistical tests and indications
of statistical significance are also elaborated in figure legends and the main text. Data
was shown as mean = standard deviation (SD). Statistical analysis was performed
using one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison
test, or Student’s test and Mann-Whitney test with Benjamini-Hochberg correction,

when appropriate. Differences were considered statistically significant at P < 0.05.
Data availability

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner
repository with the dataset identifier PXD027430 and 10.6019/PXD027430. Proteins
were searched against the UniProt protein database UP000002717_Synehcococcus
elongatus PCC 7942. Rubisco protein structure was downloaded from PDBe-KB and
modified for figure display (Fig. 1A). The data that support the findings of this study

are available from the corresponding author on request.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data libraries
under accession numbers_. Sucrose permease (cscB) and Sucrose phosphatase
synthase (sps) genes were from E. coli W genomic DNA (ATCC 9637; ECW_m2594)
and Synechocystis sp. PCC 6803 (sll0045,SPS-6803), respectively and used as
previously described (Ducat et al., 2012; Abramson et al., 2016).

Supplemental Data

Supplemental Figure S1. Photosynthetic activity enhanced in sucrose-exporting
CscB/SPS mutant of S. elongatus.

Supplemental Figure S2. Visualization of cellular protein abundance using
proteomaps.

Supplemental Figure S3. Chlorophyll a fluorescence traces in response to
exogenous sucrose supplementation.

Supplemental Figure S4. Pigment profile in sucrose feeding condition.
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Supplemental Figure S5. Extended fields of RbcS-mNG in CscB/SPS mutant cells.
Supplemental Figure S6. Comparison of cell size and carboxysome position in
sucrose export condition.

Supplemental Figure S7. Comparison of relative fluorescence in sucrose exporting
cells.

Supplemental figure S8. Comparison of cell size and carboxysome position in
sucrose feeding experiment.

Supplemental figure S9. Extended fields of RbcS-mNG in CscB mutant cells.
Supplemental figure S$10. Relationship between carboxysome number and cell
length in sucrose import condition.

Supplemental Table S1. List of proteins up- and down-regulated in sucrose export
condition along with overexpressed proteins.

Supplemental methods. Liquid chromatography - mass spectrometry (LC-MS)

based protein analysis.
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Figure Legends

Figure 1. Connection of heterologous sucrose pathway with endogenous
metabolism in S. elongatus

A. Schematic representation of cyanobacterial source/sink relationships. Endogenous
metabolic sinks include metabolism leading to formation of glycogen, sucrose, and
other cell biomass are depicted on the right. Cell inputs include light captured for
photosynthesis as well as artificially supplied sucrose imported through heterologous
transporters. Overexpressed genes for sucrose synthesis (sucrose phosphate
synthase: SPS) and transport (sucrose permease: CscB) are shown in red.
Quantification of exported sucrose (B) and internal glycogen stores (C) for strains
induced to express SPS and CscB are shown in time series, with uninduced
controls. Error bars represent the standard deviation of three independent biological
replicates from the average in a representative time series.

Figure 2. System level proteomic response to sucrose export.

A. Venn diagram summarizing the number of unambiguously identified proteins from
untargeted proteomic analysis of three biological replicates. B. Representation of
proteins from proteomic analysis within established annotated functional groups, with
the number and percentage of identified proteins from the indicated categories relative
to the total number of proteins with that designation in S. elongatus 7942, as assigned
by KEGG pathway using the STRING database resource. C. Volcano plot indicating
changing protein abundance in induced strains integrated across time points 24, 48,
72 and 96 h relative to controls. The non-axial vertical dashed-line shows +0.3 logzfold
protein change and non-axial horizontal dashed-line shows Mann-Whitney test P<0.05
with Benjamini-Hochberg correction cuttoffs. Differential protein analysis cut-offs were
-1.3 > down-regulation and +1.3 < upregulation. Proteins represented by blue data
points indicate significantly up-regulated proteins, while red points are downregulated.
Proteins are identified with the abbreviated number XXXX’ instead of the full genomic
locus name (i.e., Synpcc7942 XXXX; Supplemental Table S1). D. Heatmap of
significantly up- and downregulated proteins for each sample in the proteomic time-
series.

Figure 3. Rubisco is upregulated and reorganized following sucrose export.

A. Rubisco activity was measured from CscB/SPS lysates at 24 h intervals following
induction of sucrose export (+IPTG) in comparison to uninduced controls (-IPTG). The
activity measured for each sample was normalized to the Chl a content of the same
sample. Western blots of (B) RbcL (C) PsbA, or PsaC levels were examined 72 h post-
induction (+IPTG) and normalized against uninduced controls (-IPTG). Error bars
indicate the standard deviation of three independent biological replicates. Asterisk
indicates statistical significance (Student’s t- test, P<0.05) against controls.

Figure 4. Impact of sucrose uptake on photosynthetic activity and glycogen
content.
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External sucrose was supplemented in growth medium at indicated levels and CscB
mutant lines were induced to allow uptake through sucrose permease expression. A.
Effect of external sucrose uptake on glycogen content. Measurements of glycogen
content were observed under induced (+IPTG) and uninduced (Control; -IPTG)
conditions at 24 h time intervals with the indicated levels of externally-supplied
sucrose. B. Visual bleaching of CscB strains at 24 h following sucrose uptake. C. Chl
a content of cultures incubated with external sucrose at 24 h. Photosynthetic
parameters such as the apparent PSIl quantum yield (®n) (D) and estimated fraction
of open PSII reaction centers (qp) (F) were analysed using a custom Chl
a fluorescence-based spectrometer at actinic light intensities of 100, 275 and
500 umol photons m?s'. E. Western blots of total cellular protein with antibodies
targeting PsbA and PsaC from samples in induced and uninduced conditions
supplemented with external sucrose. Error bars indicate standard deviation of =3
biological replicates and asterisk *** shows significant level with P<0.05 by Student’s t-
test (E) and by one-way ANOVA followed by Tukey’s multiple comparison test (D and
F).

Figure 5. Carboxysomes are reorganized in response to sucrose export.

S. elongatus lines bearing a RbcS-mNG reporter were used to visualize carboxysome
organization following induction of the sucrose export pathway. A. Representative
images of CscB/SPS strains 72 h after sucrose export induction (+IPTG) or control
treatment (-IPTG). Violin plots represent the distribution of carboxysome puncta
fluorescence intensity (B) and number per cell (C) in induced (+IPTG) cells compared
to uninduced controls (-IPTG). D. Density plot of carboxysome number as a function
of the containing cell length in both uninduced (-IPTG) and induced (+IPTG)
conditions. Probability density is indicated and a linear best-fit trendline is displayed.
For visual comparison, a blue dotted trendline of the uninduced sample is overlaid on
the induced condition and the grey horizontal dotted line is drawn to facilitate ease of
comparison between control and induced populations. Error bars represent standard
deviation (xSD). Each mutant strain has n>4,000 cells. Scale bars = 1 ym.

Figure 6. Carboxysomes are reorganized in response to sucrose import.

A. Carboxysome reporter (RbcS-mNG) expressed in the CscB strain was visualized
following 24 h of incubation in 100 mM external sucrose with the sucrose transporter
induced (+IPTG) or without (-IPTG). B. Rubisco activity in strains as above was
measured after 24 h of incubation with the indicated external sucrose level. The activity
measured for each sample was measured as a function of cell number. Violin and box
plots depicting the difference in the distribution of carboxysome puncta intensity (C)
and carboxysome number (D) for sucrose importing (+IPTG) strains relative to
uninduced. Western blot analysis and relative signal density of Rubisco large subunit
(RbcL) abundance in induced and uninduced conditions E. Each bar represents the
mean of three independent biological replicates (+SD). Asterisk ™’ shows significant
level with P<0.05 by Student’s t-test. Each analyzed strain has n>4,000 cells. AU,
Arbitrary units. Scale bars = 1 um.
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