

1 **Rubisco Regulation in Response to Altered Carbon Status in the**
2 ***Cyanobacterium Synechococcus elongatus PCC 7942***

3 Amit K. Singh¹, María Santos-Merino¹, Jonathan K. Sakkos¹, Berkley J. Walker^{1,3},
4 Daniel C Ducat^{1,2*}

5

6 ¹MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI

7 ²Department of Biochemistry & Molecular Biology, Michigan State University, East
8 Lansing, MI

9 ³Department of Plant Biology, Michigan State University, East Lansing, MI

10 * Corresponding author: ducatdan@msu.edu; +1 (517) 432-5118

11

12 The author responsible for distribution of materials integral to the findings presented
13 in this article in accordance with the policy described in the Instructions for Authors
14 (<https://academic.oup.com/plphys/pages/General-Instructions>) is_Daniel C. Ducat
15 (ducatdan@msu.edu).

16

17 **Author contributions**

18 A.K.S., B.J.W and D.C.D conceived the project. A.K.S., M.S.M and J.K.S performed
19 biological experiments. All authors contributed to data analysis and interpretation.
20 A.K.S. and D.C.D. wrote the article with input and feedback from all authors.

21

22

23 **Short Title:** Rubisco regulation in sink-altered cyanobacteria

24

25 **One sentence summary:** Rubisco activity, abundance, and cellular location are
26 dynamically altered in response to artificial depletion or feeding of sucrose in the model
27 cyanobacterium *Synechococcus elongatus* PCC 7942.

28

29

30

31

32 **Abstract**

33 Photosynthetic organisms possess a variety of mechanisms to achieve balance
34 between absorbed light (source) and the capacity to metabolically utilize or dissipate
35 this energy (sink). While regulatory processes that detect changes in metabolic
36 status/balance are relatively well-studied in plants, analogous pathways remain poorly
37 characterized in photosynthetic microbes. Herein, we explored systemic changes that
38 result from alterations in carbon availability in the model cyanobacterium
39 *Synechococcus elongatus* PCC 7942 by taking advantage of an engineered strain
40 where influx/efflux of a central carbon metabolite, sucrose, can be regulated
41 experimentally. We observed that induction of a high-flux sucrose export pathway
42 leads to depletion of internal carbon storage pools (glycogen) and concurrent
43 increases in estimates of photosynthetic activity. Further, a proteome-wide analysis
44 and fluorescence reporter-based analysis revealed that upregulated factors following
45 the activation of the metabolic sink are concentrated on ribulose-1,5-bisphosphate
46 carboxylase-oxygenase (Rubisco) and auxiliary modules involved in Rubisco
47 maturation. Carboxysome number and Rubisco activity also increased following
48 engagement of sucrose secretion. Conversely, reversing the flux of sucrose by feeding
49 exogenous sucrose through the heterologous transporter resulted in increased
50 glycogen pools, decreased Rubisco abundance, and carboxysome reorganization.
51 Our data suggest that Rubisco activity and organization are key variables connected
52 to regulatory pathways involved in metabolic balancing in cyanobacteria.

53 **Keywords:** Rubisco, proteomics, carbon concentration mechanism, source-sink,
54 carboxysome, cyanobacteria

55 **Introduction**

56 Photosynthetic organisms require regulatory mechanisms to overcome dynamic
57 fluctuation in solar illumination, with an ultimate goal of aligning light energy inputs
58 (“source”; *i.e.*, absorbed photonic energy not dissipated by photoprotective
59 mechanisms) with an equivalent capacity to utilize this energy using anabolic
60 metabolism (“sinks”) (Bailey and Grossman, 2008; White et al., 2016; Walker et al.,
61 2020). Adaptive responses that poise light harvesting antennae to a given light
62 quantity/quality are relatively well-described in cyanobacteria (Grossman et al., 2003;
63 Muramatsu and Hihara, 2012; Montgomery, 2014; Ho et al., 2017). A substantial body

64 of research on cyanobacterial photoprotective processes that dissipate or redistribute
65 excess light excitation is also available (Allahverdiyeva et al., 2013; Mullineaux, 2014;
66 Roach and Krieger-Liszkay, 2014; Kirilovsky and Kerfeld, 2016; Calzadilla and
67 Kirilovsky, 2020; Bhatti et al., 2021). In plants, additional signalling pathways are used
68 to achieve source/sink balance, including signalling networks that monitor key
69 metabolite pools (e.g., sucrose, trehalose-6-phosphate), to poise the expression of
70 photosynthetic machinery, including photosystems, light harvesting antennae, and
71 ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) (McCormick et al., 2009;
72 Adams et al., 2013; Lemoine et al., 2013; Sakr et al., 2018; Roth et al., 2019b; Santos-
73 Merino et al., 2021). In contrast to plants, cyanobacteria lack homologs for these
74 signalling functions, making it uncertain how they sense the integrated metabolic
75 demands required for cell homeostasis/growth and coordinate upstream
76 photosynthetic machinery to meet those energetic needs.

77 A key bottleneck between the light reactions of photosynthesis and downstream
78 central carbon metabolism is Rubisco: a hexadecameric protein complex of large
79 (RbcL) and small (RbcS) subunits that catalyzes the carbon fixation step of the Calvin-
80 Benson-Bassham (CBB) cycle and is notorious for its low catalytic activity and poor
81 substrate specificity (Spreitzer and Salvucci, 2002; Tcherkez et al., 2006). To
82 overcome Rubisco's enzymatic limitations, cyanobacteria depend upon carbon
83 concentrating mechanisms (CCMs). The cyanobacterial CCM is distinguished by
84 unique features including the carboxysome, a subcellular compartment that greatly
85 enhances the local concentration of CO₂ near Rubisco (Yeates et al., 2008; Borden
86 and Savage, 2021). Structurally, the carboxysome is a protein microcompartment with
87 an outer coat consisting of various protein shell forms (hexamer, pentamer and trimer),
88 while the inside of the compartment is packed with a paracrystalline-like array of
89 Rubisco organized by the carbon concentrating mechanism protein M (CcmM)
90 (Cameron et al., 2013; Wang et al., 2019). Plasma membrane-localized bicarbonate
91 transporters actively pump inorganic carbon into the cytosol, which is thought to diffuse
92 through selective carboxysome shell pores, whereupon it is converted into CO₂ by
93 encapsulated carbonic anhydrase (CA). The end result is a concentration of CO₂
94 around Rubisco up to ~1,000-fold higher than ambient levels (Badger and Price,
95 2003).

96 The cyanobacterial CCM is dynamically regulated in response to environmental
97 changes (Raven and Beardall, 2014), a feature that appears to be important for
98 cyanobacterial adaptation to a wide range of ecosystems. Environmental cues (light,
99 CO₂ and temperature) impact bicarbonate transporter gene expression, Rubisco
100 content, and carboxysome composition/morphology (Logothetis et al., 2004;
101 Mackenzie et al., 2004; Sun et al., 2016; Jahn et al., 2018; Rillema et al., 2021). The
102 size and number of carboxysomes are observed to change in response to light quality
103 and quantity (Rohnke et al., 2018; Sun et al., 2019). These changes in carboxysome
104 structure are predicted to impact the relative capacity of the compartment to
105 concentrate CO₂ under different contexts (Mangan and Brenner, 2014). An emerging
106 theory suggests that cyanobacteria regulate the carboxysome to modulate Rubisco
107 activity and optimize cell growth and carbon fixation to environmental conditions. Yet,
108 how CCM regulation is integrated with metabolism and/or changing metabolic
109 demands (e.g., total metabolic flux/load) remains relatively unexplored.

110 In plants, signalling pathways act to control the activity of Rubisco in response to the
111 downstream metabolic status and to achieve source/sink balance. One well-
112 conserved example involves Hexokinase family members that sense key metabolite
113 pools of carbohydrates. For example, *Arabidopsis* (*Arabidopsis thaliana*) hexokinase
114 1 (HXK1) translocates into the nucleus following binding of glucose and forms a
115 complex that suppresses expression of photosynthesis genes including the Rubisco
116 small subunit, chlorophyll a/b binding proteins of the light harvesting complex II, and
117 CA (Cho et al., 2006). HXK1 has recently been shown to have conserved roles in the
118 regulation of carbon balance in the microalga *Chromochloris zofingiensis*, and is
119 implicated in a rapid change in the transcriptome of nearly a third of the total genome
120 when cells are fed exogenous sugars, including many genes involved in
121 photosynthesis, chlorophyll a (Chl a) biosynthesis, and Rubisco maturation (Roth et
122 al., 2019a).

123 Recent studies in cyanobacteria support the hypothesis that activation of heterologous
124 metabolic pathways (e.g., engineered bioproduction circuits) can redistribute cellular
125 resources in a manner that requires energetic re-balancing, including that of upstream
126 photosynthetic processes. For example, we have previously shown a notable increase
127 in the relative flux through the photosynthetic electron transport chain (PET),
128 enhanced CO₂ fixation rates, and reduced acceptor-side limitations on the activity of

129 PSI in the hours following activation of a sucrose-secretion pathway via the expression
130 of proteins sucrose phosphate synthase (SPS) and sucrose permease (CscB) in
131 *Synechococcus elongatus* PCC 7942 (*S. elongatus*) (Ducat et al., 2012; Abramson et
132 al., 2016; Santos-Merino et al., 2021). We observed that the upregulation of
133 photosynthetic flux is proportional to the amount of cellular resources that are
134 redirected to the heterologous pathway (Abramson et al., 2016; Santos-Merino et al.,
135 2021); *i.e.*, when up to ~80% of photosynthetically fixed carbon is rerouted to the
136 secreted sucrose bioproduct. More widely, a number of other cyanobacterial species
137 and strains engineered to export other carbon metabolites have been shown to
138 experience similar photosynthetic enhancements when heterologous metabolism is
139 engaged, including isobuteraldehyde (Li et al., 2014), 2,3-butanediol (Oliver et al.,
140 2013), and ethylene (Ungerer et al., 2012).

141 Here, we used modified strains of *S. elongatus* that are capable of sucrose export or
142 import as an approach to experimentally control cyanobacterial sink energy balance.
143 One such sucrose-exporting strain (*S. elongatus* overexpressing both CscB and SPS;
144 hereafter “CscB/SPS”) has been well-characterized for the photosynthetic changes
145 induced by the expression of their heterologous carbon pathway (Ducat et al., 2012;
146 Abramson et al., 2016; Santos-Merino et al., 2021), but longer-term adaptive
147 responses have not been documented. We undertook a systems-level analysis of
148 proteomic changes that accompany engagement of the sucrose ‘sink’, finding that the
149 most significant hits were concentrated around Rubisco and Rubisco-associated
150 factors. Further analysis using live cell imaging and biochemistry shows that
151 carboxysome and Rubisco abundance is dynamically regulated in response to
152 expression of this heterologous sink. Changes observed in sucrose-feeding
153 experiments, whereby exogenous sugars are imported through CscB expression, also
154 support a model linking carboxysome number and organization to metabolic status.

155 **Results**

156 **System level proteomic response to the sucrose export**

157 We sought to gain deeper insight into the adaptive cellular response that results from
158 engagement of a strong heterologous carbon sink. We first validated that the
159 previously described CscB/SPS strain (Abramson et al., 2016; Abramson et al., 2018;
160 Santos-Merino et al., 2021) was capable of sucrose export under our experimental

161 setup (Fig. 1B) and exhibited the previously-described changes in photosynthetic
162 parameters upon activation of this heterologous sink via IPTG addition (Supplemental
163 Fig. S1). We also monitored the internal glycogen content in CscB/SPS 24-48 h
164 following IPTG induction, observing a decline in glycogen stores by >75% on a per-
165 cell basis (Fig. 1C). At later time points, glycogen content partially recovers relative to
166 non-secreting controls (~30% decrease at 120 h). In other contexts, such as diurnal
167 cycles, glycogen content positively corresponds with cellular carbon abundance
168 (Diamond et al., 2015), suggesting the decrease in glycogen content linked to sucrose
169 export may be a function of increased carbon flux towards the heterologous sucrose
170 export pathway. However, it should be noted that the rate of sucrose efflux is
171 approximately 2 orders of magnitude larger than could be accounted for mobilization
172 of glycogen stores alone (Fig. 1B, C).

173 To expand our analysis of the systemic changes following activation of a heterologous
174 metabolic pathway, we chose an unbiased proteomic approach of CscB/SPS at time
175 intervals 24, 48, 72, and 96 h following induction of sucrose export. We unambiguously
176 identified 913 proteins across all sample conditions and timepoints (Fig. 2A),
177 corresponding to a coverage of 34% of total proteins encoded in the genome of *S.*
178 *elongatus* (913/2,657). Enrichment analysis using KEGG-assigned gene ontology
179 terms allowed calculation of the percentage enrichment of identified proteins across
180 17 functional categories relative to the total gene products encoded in the genome
181 (Fig. 2B). Across annotated functional categories, >50% proteins within each
182 functional group were identified (Fig. 2B). Reduced coverage of lower abundance
183 and/or poorly characterized proteins was observed (240/913 proteins in our
184 proteomics dataset).

185 Proteomic analysis identified a relatively small set of changes in protein abundance
186 that were consistent across all time points following sucrose export (Fig. 2D). CscB
187 and SPS were identified as significantly upregulated in the proteomic analysis, which
188 is expected because they are components specifically induced to trigger sucrose
189 export (Supplemental Table S1). Among the significantly upregulated endogenous
190 proteins (8), the Rubisco enzyme subunits RbcL and RbcS were among the most
191 statistically significant changes (Fig. 2C). Further, factors involved in the maturation of
192 Rubisco were also over-represented among the upregulated proteins following
193 sucrose export. This included chaperonins directly associated with the correct folding

194 and assembly of Rubisco into higher order complexes, such as GroEL and its co-factor
195 GroES which contribute to folding of RbcL and assembly of RbcL dimers (Hayer-Hartl
196 et al., 2016). Another upregulated chaperone was high-temperature protein G (HtpG)
197 (Synpcc7942_1813), a member of the heat-shock protein (Hsp90A) family which play
198 roles in thermal or oxidative stress response in *Synechococcus* (Hossain and
199 Nakamoto, 2003; Kobayashi et al., 2017). Three additional proteins that were identified
200 as significantly upregulated were; iron-deficiency-induced protein A (IdiA), a factor
201 associated with protection of photosystem II (PSII) under various stress conditions
202 (Yousef et al., 2003); Synpcc7942_0369, a conserved but poorly characterized
203 putative oxidoreductase, and; nitrite reductase B (NirB), a protein involved in nitrate
204 assimilation and carbon/nitrogen balance (Ohashi et al., 2011) (Fig. 2C).

205 The seven proteins that were significantly downregulated following engagement of the
206 sucrose export pathway were not as clearly concentrated around a common molecular
207 function (Supplemental Table S1). Three of the downregulated targets were subunits
208 related to ribosomal activities (Synpcc7942_2020, Synpcc7942_2352, and
209 Synpcc7942_2204) (Hood et al., 2016). Two proteins in the antibiotic resistance
210 protein B (AbrB)-like family (Synpcc7942_1969 and Synpcc7942_2255) were
211 downregulated, these have been characterized to act as transcription factors involved
212 in carbon/nitrogen balancing in *Synechocystis* PCC 6803 (Lieman-Hurwitz et al., 2009;
213 Yamauchi et al., 2011; Orf et al., 2016; Rachedi et al., 2020). To better visualize the
214 overall changes in the proteome, we mapped identified proteins with conserved and
215 well-established molecular functions onto a proteomap (Supplemental Fig. S2), which
216 can provide a crude approximation of the relative protein abundance of each factor as
217 a function of the summation of identified peptides for each protein (Liebermeister et
218 al., 2014). In addition to the increase in Rubisco subunits, the proteomap highlights a
219 subtle decrease in the abundance of multiple proteins involved in ribosomal
220 functioning and PET chain components (Supplemental Fig. S2).

221 **Rubisco is upregulated and reorganized following sucrose export**

222 To independently confirm the proteomic analysis, we evaluated total Rubisco enzyme
223 activity in cell extracts from sucrose exporting cells relative to controls. A significant
224 increase in total Rubisco activity was observed at all time intervals when normalized
225 to Chl a content, peaking at ~50% increased activity at 48 h post-induction (Fig. 3A).
226 Quantitative Western blots also indicated an increase in Rubisco levels following

227 induction of the sucrose secretion pathway (Fig. 3B), this increases similar in
228 magnitude to the enhanced activity of the *in vitro* enzyme assay. Increased Rubisco
229 activity is consistent with prior reports that have shown that total carbon fixation rates
230 and total biomass accumulation (*i.e.*, cell biomass plus secreted carbon biomass)
231 increase on a per cell basis when the sucrose secretion pathway is induced (Ducat et
232 al., 2012; Abramson et al., 2016; Santos-Merino et al., 2021).

233 While we have previously reported enhancements in photosynthetic performance
234 within the hours following induction of the heterologous sucrose sink (Supplemental
235 Fig. S1) (Ducat et al., 2012; Abramson et al., 2016; Santos-Merino et al., 2021), we
236 do not find comparable evidence for significant alterations in the abundance of the
237 light harvesting machinery. Consistent with our proteomics dataset (Fig. 2C and
238 Supplemental Fig. S2), quantitative Western blotting for subunits of key components
239 of the photosynthetic electron transport chain does not show substantial changes in
240 representative subunits of PSI (PsaC) and PSII (PsbA) (Fig. 3C).

241 **Effect of exogenous sucrose on photosynthetic activity and glycogen content**

242 One possible interpretation of the physiological changes observed following induction
243 of the sucrose export pathway is that they may be partially related (directly or indirectly)
244 to the depletion of internal pools of carbon and/or energy equivalents. Pathways
245 involved in carbon/energy sensing in plants were classically identified by
246 manipulations that increased or decreased flux of carbon (*e.g.*, sucrose) to specific
247 tissues (Rolland et al., 2006; Lemoine et al., 2013). In order to determine if artificial
248 increases in carbohydrate availability would impact similar cellular features, we
249 examined the effect of supplying exogenous sucrose on cell physiology (Fig. 1A). We
250 first analyzed the impact of sucrose feeding on Chl *a* and glycogen content by varying
251 the concentration of sucrose (0-200 mM) with or without inducing expression of the
252 sucrose transporter (CscB). Glycogen content increased by 2-3-fold in cells where
253 external sucrose was supplied and CscB was induced to facilitate sucrose uptake in
254 *S. elongatus* (Fig. 4A). In the absence of exogenous sucrose (*i.e.*, 0 mM sucrose),
255 inducing expression of CscB did not change glycogen pools. A small, but significant
256 increase in glycogen content was observed at higher exogenous sucrose
257 concentrations (150-200 mM), possibly indicating alternative uptake pathways or
258 indirect effects of the increased osmotic pressure (Page-Sharp et al., 1998; Suzuki et
259 al., 2010).

260 Cellular Chl *a* content was inversely related to uptake of exogenous carbohydrates, as
261 treatment with 50-200 mM sucrose caused chlorosis only in strains with induced CscB
262 (Fig. 4B, C). As a rise in the total photosynthetic activity (e.g., as measured by
263 evolution of O₂ and assimilation of CO₂) and apparent quantum efficiency of PSII are
264 well-characterized aspects that follow secretion of sucrose (Ducat et al., 2012;
265 Abramson et al., 2016; Santos-Merino et al., 2021) and other carbon products (Oliver
266 et al., 2013), we evaluated the impact of sucrose feeding on photosynthetic
267 parameters. Chl *a* fluorescence-based measurements are routinely used in plants and
268 algae to estimate photosynthetic performance, while cyanobacterial differences (e.g.,
269 phycobilin absorbance/fluorescence) require such approaches to be interpreted
270 differently (Campbell et al., 1998; Ogawa et al., 2017). Estimates of PSII activity can
271 be derived as a function of the variable fluorescence in the light (F'_V), which is
272 determined by subtracting the basal fluorescence when the PSII pool is oxidized (F'₀)
273 from the maximal fluorescence (F'_M) when the PSII pool is closed (e.g., under a
274 saturating pulse). Parameters such as the quantum efficiency of PSII (Φ_{II} : [F'_M – F_s]/F'_M]
275 see Materials and Methods) and PSII openness (q_P : [(F'_M – F_s)/(F'_M – F'₀)]). We
276 observed significantly reduced values in the apparent Φ_{II} and q_P under conditions of
277 sucrose uptake across most measured actinic light intensities (Fig. 4D-F). The
278 reduction in apparent Φ_{II} and q_P was observed regardless of the wavelength of light
279 used to excite the cyanobacterial samples, including conditions that minimized the
280 contribution of phycobilin fluorescence (Supplemental Fig. S3).

281 In tandem with the apparent decrease in Chl *a* fluorescence-based metrics of
282 photosynthetic performance, we independently observed downregulation of
283 components involved in the PET and in the light-harvesting phycobilins. Quantitative
284 Western blot analysis indicated a ~2-fold decrease in the abundance of a core PSII
285 subunit, PsbA, in the presence of 100 mM sucrose when CscB was expressed (Fig.
286 4E). A central PSI subunit, PsaC, also appeared to be reduced in abundance (Fig. 4E;
287 bottom), albeit to a lesser extent than PsbA. Taken together, these results strongly
288 support the interpretation that there is a decrease in total photosystem abundance in
289 sucrose-importing cells (Figs. 4D-F, Supplemental Fig. S3). Phycobilisomes are a
290 major component of light harvesting antennae composed of two phycobiliproteins,
291 allophycocyanin and phycocyanin. The spectral features of these proteins were
292 reduced by ~72% and 70% in sucrose fed cells, respectively (Supplemental Fig. S4).

293 **Carboxysomes are reorganized in response to sucrose export and uptake**

294 In cyanobacteria, the bulk of Rubisco is housed within the lumen of the carboxysome.
295 Since we observed changes in Rubisco activity/abundance following sucrose export
296 and import, we examined if the cyanobacterial carboxysome was also altered in
297 response to these interventions. To visualize changes in carboxysome organization,
298 we expressed an exogenous copy of the small subunit of Rubisco fused to the
299 fluorescent reporter mNeonGreen (RbcS-mNG) under the control of the native P_{rbcLS}
300 promoter. Similar constructs have been employed by our group and others to examine
301 carboxysome dynamics *in vivo* (Savage et al., 2010; Cameron et al., 2013; Chen et
302 al., 2013; Hill et al., 2020). As expected, the RbcS-mNG reporter was concentrated to
303 carboxysomal foci that were arranged along the central axis along the length of the
304 cell when expressed in the mutant background of our strains containing the exogenous
305 *cscB* and/or *sps* genes (Fig. 5A and Supplemental Fig. S5). Carboxysomes were most
306 frequently arranged in a linear or hexagonal packing that maximizes the distance
307 between neighboring microcompartments (Maccready et al., 2018).

308 When sucrose export was induced through the heterologous expression of *CscB* and
309 *SPS*, we observed changes in carboxysome number and in the intensity of foci (Fig.
310 5B, C, Supplemental Fig. S5). The intensity of RbcS-mNG puncta was noticeably
311 brighter within 24 h of induction of sucrose export, and this difference was maintained
312 for multiple days relative to uninduced controls (Fig. 5B, C). The number of
313 carboxysomes contained within each cell was also increased in the hours following
314 induction of sucrose export (Fig. 5B, C). Since a slight cell elongation and narrowing
315 of cell width was also evident in sucrose-secreting cells (Fig. 5A, Supplemental Fig.
316 S6), we quantified carboxysome density, observing a slight, but significant increase in
317 carboxysome number relative to cell length in sucrose-exporting cells (Fig. 5D). The
318 ratio of cytosolic RbcS-mNG to carboxysome RbcS-mNG remained constant
319 (Supplemental Fig. S7). Taken together, this is in agreement with our prior evidence
320 for increased Rubisco content in sucrose-secreting cells (Figs. 2, 3), and suggests that
321 the additional Rubisco remains packaged within carboxysomes, resulting in increased
322 carboxysome number and/or quantity of Rubisco per carboxysome.

323 When strains containing both the *rbcS-mNG* and *cscB* constructs were fed with
324 exogenous sucrose, we observed changes in carboxysome organization that were tied
325 to sucrose uptake (Fig. 6), as well as subtle changes in cell width (Supplemental Fig.

326 S8). The number and density of carboxysomes declined in sucrose-importing strains
327 (100 mM sucrose +IPTG; Fig. 6A and Supplemental Figs. S9, S10) and there was a
328 change in carboxysome organization (Fig. 6A). We observed increased clustering of
329 carboxysome puncta in many cells with the capacity to import exogenous sucrose (Fig.
330 6A (+IPTG); red arrowheads, Supplemental Fig. S9). We also observed an increase
331 in the heterogeneity of puncta size/intensity within each cell, some of this may be
332 attributable to clustering of carboxysomes, but in other cases puncta that appeared to
333 be single carboxysomes at the resolution limits of light microscopy also exhibited
334 notably brighter RbcS-mNG fluorescence relative to puncta within the same cell (Fig.
335 6A, C; blue arrowheads). Direct assessment of Rubisco protein abundance and
336 activity levels under sucrose feeding conditions in the mutant background, a strain
337 containing CscB (but lacking the RbcS-mNG reporter), indicated a ~25% reduction in
338 Rubisco content on a total protein basis (Fig. 6E) and a ~60% decline in Rubisco
339 activity on a per-cell basis (Fig. 6B).

340 **Discussion**

341 Our results suggest that cyanobacteria exhibit numerous changes in photosynthetic
342 components following an engagement of a heterologous sucrose export (sink)
343 pathway, and that these changes are concentrated around Rubisco. We observed
344 changes in the abundance, activity, and organization of Rubisco within carboxysomes
345 after inducing sucrose export, and that many of these effects are reversed when
346 exogenous sucrose is supplied to induce a state of carbon overabundance. Taken
347 together, our evidence suggests that the cyanobacterial CCM – Rubisco and
348 carboxysome organization especially - may respond to internal metabolic signals and
349 source/sink dynamics.

350 **Proteomic changes enhance carbon fixation capacity following engagement of
351 a heterologous carbon sink**

352 We found that a relatively small subset of proteins is significantly altered in response
353 to the activation of our engineered sucrose export pathway. Aside from the expected
354 strong increase in the proteins required for sucrose production (CscB and SPS), 4 of
355 the remaining 8 significantly upregulated proteins were subunits of Rubisco (RbcL,
356 RbcS) or molecular chaperones with established functions in Rubisco's maturation
357 process (GroES, GroEL; Fig. 2C). We validated the proteomic results in Rubisco

358 abundance by Western blot (Fig. 3B) and Rubisco activity assays (Fig. 3A), indicating
359 that adjusted Rubisco levels are a primary target of regulation following engagement
360 of the heterologous sink. Therefore, the increase in total CO₂ fixation and biomass
361 accumulation rates that have been reported following sucrose export (Ducat et al.,
362 2012; Santos-Merino et al., 2021) likely stems both from increased Rubisco catalytic
363 activity and improved efficiency of light reactions of photosynthesis (Abramson et al.,
364 2016; Santos-Merino et al., 2021). Long-term changes in the abundance of other
365 components of photosynthetic machinery (e.g., photosystems, light harvesting
366 complexes, subunits of the PET) following sucrose export are relatively subtle or
367 insignificant by both proteomics approaches and targeted assays (Figs. 2, 3).

368 We also report alterations in the organization of carboxysomes following sucrose
369 export, as observed by imaging of live cells bearing a fluorescent Rubisco reporter
370 (Fig. 5). Despite the observed increase in carboxysome number/density in sucrose-
371 secreting cells (Fig. 5C, D), we did not detect significant upregulation of other
372 carboxysome components in our proteomic analysis (Fig. 2C). A simple explanation is
373 that the average size of carboxysomes may be increased in response to sucrose
374 export and that changes in carboxysome surface area (and associated shell/structural
375 proteins) are relatively minor in comparison to the expanded luminal volume and/or
376 change in Rubisco content. Increased carboxysome size would be consistent with the
377 increased carboxysome foci fluorescence intensity we observe in sucrose-secreting
378 cells (RbcS-mNG reporter; Fig. 5B, C). However, we cannot quantify carboxysome
379 size changes due to resolution limits of light microscopy, and other possible
380 interpretations include: i) shell proteins and other carboxysome structural components
381 increase, but sensitivity limits of proteomics approaches prevent detection (Long et
382 al., 2005; Faulkner et al., 2017); ii) there is no increase in protein level of carboxysome
383 components because they are in excess supply in the cytosol of *S. elongatus* under
384 our growth conditions; iii) carboxysome size remains constant but Rubisco is more
385 densely packaged, or; iv) the RbcS-mNG reporter may not behave identically to native
386 RbcS with regard to luminal packaging.

387 One hypothesis regarding the physiological changes we observe following
388 engagement of the sucrose secretion pathway is that they are representative of a
389 regulatory response to the altered energy/carbon balance that occurs when a
390 substantial proportion of cellular resources are redirected towards non-native

391 processes (Santos-Merino et al., 2019). We and others reported a pronounced
392 decrease in glycogen content in sucrose-secreting cyanobacteria, possibly attributable
393 to the redirection of carbon pools (e.g., glucose, fructose) away from endogenous
394 sinks and to the engineered pathway (Fig. 1C) (Qiao et al., 2018; Lin et al., 2020).
395 Indirect evidence for this interpretation has also been provided in the form of studies
396 showing that glycogen synthesis is in competition with bioproduct synthesis: reducing
397 the capacity to store cellular carbon as glycogen can improve bioproduction from a
398 number of engineered pathways (Ducat et al., 2012; Davies et al., 2014; Wang et al.,
399 2020). Conversely, heterologous metabolism can mitigate impairments in growth and
400 photosynthesis observed in cyanobacterial strains with restricted flux towards
401 endogenous sinks (Li et al., 2014; Abramson et al., 2016; Xiong et al., 2017; Cano et
402 al., 2018; Díaz-Troya et al., 2020; Santos-Merino et al., 2021).

403 **Rubisco activity and cellular organization is impacted following carbohydrate
404 feeding experiments**

405 If redirection of internal carbon pools away from endogenous metabolism and towards
406 secreted bioproducts results in changes sensed by regulatory machinery in
407 cyanobacteria, it would be expected that interventions that artificially increase internal
408 carbon resources might also result in phenotypic changes in these cellular features.
409 Although *S. elongatus* is regarded as a strict photoautotroph, it can grow photo-
410 mixotrophically when heterologous transporters are expressed (McEwen et al., 2016),
411 a property we used to artificially increase intracellular carbon availability by importing
412 sucrose through the heterologous transporter, CscB. Increased glycogen content and
413 measurements of Chl a fluorescence dynamics are consistent with increased cellular
414 carbon resources and an over-reduced PET (Figs. 4A, D, F, Supplemental Fig. S3).
415 Sucrose feeding experiments also result in a rapid downregulation of many
416 components of the photosynthetic machinery, including light harvesting
417 phycobilisomes, photosystems, and Rubisco (Figs. 4 and 6). Carboxysome number is
418 decreased, and their spatial positioning is disrupted in sucrose-feeding experiments
419 (compare Figs. 5 and 6). One possibility is that metabolic changes that accompany
420 the influx of exogenous carbon impact (directly or indirectly) the activity of
421 carboxysome distribution AB proteins (McdA/McdB) involved in
422 microcompartment positioning along the cyanobacterial nucleoid (MacCready et al.,
423 2018). An alternative speculative hypothesis is that exogenous carbohydrate uptake

424 leads to changes in the integrity and/or dynamic association of carboxysome shell
425 proteins on the bacterial microcompartment, as we have recently observed similar
426 phenotypes when we visualize carboxysomes in real-time following destabilization of
427 components of carboxysome shell proteins (specifically, CcmO or CcmL) (Sakkos et
428 al., 2021). Distinguishing between these possibilities will require further research with
429 more directed approaches to interrogate carboxysome dynamics and shell integrity.
430 Regardless, our observations raise the possibility that carboxysome properties may
431 be tied to internal metabolic states as well as external environmental conditions (e.g.,
432 light, CO₂, temperature) as previously reported (Woodger et al., 2003; Sun et al., 2016;
433 Rohnke et al., 2018; Sun et al., 2019; Rillema et al., 2021).

434 **Possible implications for source/sink regulatory machinery in cyanobacteria**

435 Rubisco is one of the primary regulatory targets for source/sink regulatory systems in
436 plants (Nielsen et al., 1998; Cho et al., 2006; Granot et al., 2013; Koper et al., 2021).
437 In addition to the previously mentioned mechanistic connection between HXK1 and
438 Rubisco expression, multiple studies in plants have associated intracellular
439 carbohydrate availability with the expression of Rubisco and other components of the
440 photosynthetic machinery. For example, interventions that decrease sink capacity
441 relative to source energy (e.g., exogenous feeding of sugars) lead to decreased
442 Rubisco abundance across many crop plants (Moore et al., 1998; Nielsen et al., 1998;
443 Kasai, 2008; Lobo et al., 2015). Our results suggest that this relationship between
444 Rubisco abundance and source/sink dynamics is maintained in cyanobacteria,
445 although the specific mechanisms for monitoring energetic balance that have been
446 elucidated in plants (e.g., HXK1, SNF-related serine/threonine-protein kinase [SnRK],
447 and Target of Rapamycin [TOR]) do not appear to be conserved. This apparent
448 functional conservation may result from the relatively high burden Rubisco synthesis
449 places on photosynthetic organisms (*i.e.*, energetically and in nitrogen requirements).
450 Stated differently, minimizing the cellular burden of Rubisco synthesis in a given
451 environment may be of similar importance to organismal fitness as acquiring sufficient
452 carbon fixation capacity to meet metabolic demands.

453 A deeper understanding of the mechanisms that regulate source/sink balance in
454 cyanobacteria is likely to have biotechnological implications given the potential for
455 cyanobacteria as a “carbon neutral” production chassis to combat anthropogenic
456 climate change (Sabine et al., 2004; Zhang et al., 2017; DeLisi et al., 2020). Future

457 research is required to determine mechanisms of cyanobacterial source/sink sensing
458 so that they can be leveraged to maximize CO₂ fixation and photosynthetic efficiency
459 in cyanobacteria.

460 **Materials and Methods**

461 **Growth medium and culture condition**

462 Cultures of *Synechococcus elongatus* PCC 7942 mutant strains were grown in BG-11
463 (Sigma-Aldrich) medium buffered with 1g L⁻¹ 4-(2-hydroxyethyl)-1-
464 piperazineethanesulfonic acid (HEPES), pH 8.3 adjusted with potassium hydroxide.
465 For routine cultivation of cultures, Infors-Multitron incubators with 250 µmol photons
466 m⁻² s⁻¹ compact fluorescent (GRO-LUX[®]) lighting supplemented with 2% (v/v) CO₂
467 were used at 30°C with orbital shaking at 130 rpm. Cultures were maintained with a
468 daily back-dilution to OD₇₅₀ ~0.3 unless otherwise noted. The sucrose exporting
469 (CscB/SPS) and importing (CscB) mutants were used as previously described
470 (Abramson et al., 2016). Strains bearing heterologous genes under P_{trc} promoters (i.e.,
471 cscB and/or sps) were induced with 1 mM Isopropyl β-D-1-thiogalactopyranoside
472 (IPTG) as indicated. The carboxysome fluorescence reporter Rubisco small subunit
473 (RbcS-mNG) expression construct was driven by native promoter (P_{rbcLS}) and
474 genetically inserted into Neutral Site (NS1) (Clerico et al., 2007). All mutant selections
475 were carried out with BG11 plates with appropriate antibiotic supplementation;
476 Spectinomycin (100 µg mL⁻¹) and Chloramphenicol (25 µg mL⁻¹). Axenic liquid cultures
477 were maintained through supplementation of the same antibiotics, although antibiotics
478 were removed at least 3 days prior to the experiments described.

479 **Total Protein extraction and LC-MS/MS analysis**

480 For protein extraction, 50 mL of culture was centrifuged (6,000 ×g, 15 min, 4°C),
481 supernatants were discarded, and pellets were transferred to 50 mL tubes. All steps
482 of protein extraction were performed at 4°C. The pellets were resuspended in 10 mL
483 of a protein extraction buffer (50 mM Tris-HCl, pH 7.6, 10 mM MgCl₂, 0.1% (v/v)
484 TritonX-100, 1X of Halt protease inhibitor cocktail, Thermo, USA). Cell disruption was
485 performed by French press (AMINCO[®]) at 1100 psi. After homogenization, the
486 samples were centrifuged (17,000 xg, 10 min, 4°C) using round bottom tubes to
487 remove cell debris. The supernatant was transferred to a 50mL conical tube, and 4
488 volumes 100% acetone was added, whereupon samples were stored overnight at -

489 20°C for complete protein precipitation. The samples were re-suspended in
490 resuspension buffer (10 mM Tris-HCl, 5% (v/v) SDS, 1% (v/v) β -mercaptoethanol, pH~
491 8.0) and further used for proteomics measurements using LC-MS/MS (for details see
492 Supplemental Method S1).

493 Raw LC-MS/MS data was further processed for protein identification and differential
494 expression analysis through Scaffold software (version 4.11.1, Proteome Software
495 Inc., Portland, OR). For protein identification, 1% false discovery rate (FDR) and
496 minimum 2 unique peptides were specified as cut-offs to filter data for protein
497 identification and analysis. A significance level of $P<0.05$ (Mann-Whitney Test) and
498 Benjamin-Hochberg correction were applied in Scaffold for differential analysis.
499 Enrichment analysis was performed with KEGG (Kyoto Encyclopedia of Genes and
500 Genomes) pathways assigned functional categories using STRING v11 database
501 (<https://string-db.org>). Proteomaps were developed through modification and
502 customization of the online tool (<https://www.proteomaps.net/>) following user
503 documentation and literature available (Liebermeister et al., 2014).

504 **Fluorescence microscopy and image analysis**

505 For microscopy images, 1 mL of cells were pelleted by centrifugation at 5,000g for 5
506 min and the pellet was resuspended in 100 μ L of BG-11. A 3 μ L aliquot was transferred
507 to a 3% (w/v) agarose pad. The cells were allowed to equilibrate for ~5min before the
508 pad was placed onto a #1.5 glass coverslip for imaging. Fluorescence images were
509 taken with a Zeiss Axio Observer D1 microscope (63x1.3NA) with an Axiocam 503
510 (mono-chrome) camera using light from X-Cite® 120Q (Lumen Dynamics). For
511 fluorescent mNG signals, we used filter set 46 (000000-1196-681): excitation BP
512 500/20, emission BP 535/30 and beamsplitter FT515. Images were further processed
513 for pixel-based data analysis using MicrobeJ (v5.12d) an image analysis plugin for
514 ImageJ (Abràmoff et al., 2005; Schindelin et al., 2012). MicrobeJ, as previously
515 reported and described (Ducret et al., 2016), was used to measure carboxysome foci
516 fluorescence and number based on RbcS-mNG reporter fluorescence. The main
517 attributes for defining cell are as follows (Fit shaped; rod shaped; Length: 1.5-10;
518 Width: 0.3-1.5; Area: 1-max) and smoothed maxima foci determination (Tolerance:
519 100; z-score:10; Intensity: 0-max). This automated image analysis assisted in
520 removing experimenter bias relative to manual image analysis, however, not all

521 carboxysomes were identified in some instances (e.g., due to low puncta fluorescence
522 or focal plane artifacts).

523 **Rubisco activity assay**

524 Rubisco activity was assayed *in vitro* spectrophotometrically by following the coupled
525 conversion of reduced Nicotinamide adenine dinucleotide (NADH) to oxidized NAD⁺
526 (Ruuska et al., 1999). For protein extraction, 10 mL of culture was centrifuged (6,000
527 ×g, 15 min, 4°C) and supernatant was discarded. The pellets were resuspended in
528 500µL of a protein extraction buffer (50 mM N-(2-Hydroxyethyl) piperazine-N'-(3-
529 propanesulfonic acid (EPPS), pH 8.1, 1 mM Ethylenediaminetetraacetic acid (EDTA),
530 10 mM Dithiothreitol (DTT), 0.1% (v/v) TritonX-100 and 1X of Halt protease inhibitor
531 cocktail, Thermo, USA) and transferred to 1.5mL tubes. The cell disruption was
532 performed by sonication (Fisher scientific) using 20 cycles (30 s on: 10 s off) and
533 amplitude 45% at 4°C. After protein extraction, the solution was centrifuged (6200 xg,
534 10 min, 4°C) to remove cell debris. To fully activate Rubisco, cell-free extracts were
535 incubated at room temperature for 20 min in the presence of 15 mM NaHCO₃ and 15
536 mM MgCl₂. Following activation, 40 uL of the lysate was mixed in a cuvette with 960µL
537 of an assay buffer containing 100 mM HEPES, pH 8.1, 20 mM MgCl₂, 1 mM EDTA, 1
538 mM ATP, 20 mM NaHCO₃, 0.2 mM NADH, 30 mM ribulose- 1,5-bisphosphate and a
539 coupling enzyme cocktail containing 20 units (U) glyceraldehyde-3-phosphate
540 dehydrogenase, 22.5 U 3-phosphoglyceric phosphokinase, 12.5 U creatine
541 phosphokinase, 250 U CA and 56 U triose-phosphate isomerase. The reaction was
542 initiated by adding sample, and the rate of NADH oxidation was monitored at 340nm
543 for 10 min using a UV spectrometer (Agilent). Activity was calculated from the
544 molecular extinction coefficient of NADH. To avoid potential Rubisco inhibitors often
545 found in commercial preparations, RuBP was synthesized and purified in-house and
546 confirmed to have minimal “fall-over” kinetics on purified Rubisco samples (Kane et
547 al., 1994; Kane et al., 1998).

548 **Biochemical assay for sucrose and glycogen content**

549 Cyanobacterial culture aliquots (2 mL) were pelleted in a centrifuge at 6,200 xg. Pellets
550 were processed for the glycogen assay and the supernatant was sampled for sucrose
551 assays. The glycogen assay was performed following the protocol of Nakajima et al.
552 (Nakajima et al., 2017) with modifications. Briefly, pellets were resuspended in 200 µL

553 of 30% (w/v) KOH and incubated in a 95°C in water bath for 2 h. After incubation, 600
554 μ L absolute ethanol was added and further incubated at –20°C overnight. The next
555 day, the suspension was centrifuged, and the pellet was dried in an oven. Dried pellets
556 were resuspended in ddH₂O and analysed with a commercially available Glycogen
557 assay kit (EnzyChromTM, USA). Sucrose quantification from culture supernatants was
558 determined using the Sucrose/ d-Glucose Assay Kit (Megazyme: K-SUCGL) following
559 the manufacturer's instructions.

560 **Pigment analysis**

561 Chlorophyll *a* was extracted from cell pellets by incubation in 100% methanol for 30
562 min at 4°C. Chl *a* was measured spectrophotometrically following the protocols of
563 Porra et al. (Porra et al., 1989). Briefly, the pigment suspension was centrifuged, and
564 the supernatant was used for absorption at 665nm. Chl *a* content was determined
565 using an UV/Visible Spectrophotometer (Genesis 20, Thermo, USA). For absorption
566 spectrum and phycobiliprotein content analysis, cells were lysed by glass beads and
567 solubilized phycobilins were recovered in phosphate buffer (PBS) following the
568 protocol of Zavrel et al. (Zavřel et al., 2018).

569 **Fluorescence measurements of photosynthetic parameters**

570 Estimates of photosynthetic performance in cyanobacteria using Chl *a* fluorescence
571 are not as straightforward as in eukaryotic members of the green lineage, although
572 insights can still be gleaned if appropriate controls and precautions are observed
573 (Campbell et al., 1998; Ogawa et al., 2017). Fluorescence of photosynthetic
574 parameters were measured on a customized fluorimeter/spectrophotometer (Hall et
575 al., 2013) modified for liquid samples. A cuvette with sample was illuminated with a
576 pulsed measuring beam [λ = 590 or 505 nm peak emission light-emitting diode (LED),
577 Luxeon Z Color Line] and then illuminated at three different intensities of
578 photosynthetically active radiation (PAR), 100, 275 and 500 μ mol photons $m^{-2} s^{-1}$ (λ
579 = 460 nm peak emission, Luxeon Rebel Royal-Blue LED). To acclimate the sample
580 and minimize the impact of successive saturating pulses. the cuvette was illuminated
581 at the relevant actinic light for 3 min and 2 min, before the first saturating pulse, and
582 between each pulse, respectively. Cyanobacterial samples containing 2.5 μ g mL⁻¹ Chl
583 *a* were pelleted, then resuspended in fresh medium sparged with 2% (v/v) CO₂ in air
584 and dark-adapted for 3 min before fluorescence measurements. The relative yields of

585 Chl *a* fluorescence were measured under steady-state illumination (F_s), and 1.5 s
586 saturating pulses were delivered by the LED ($\sim 5,000 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$) ($F'm$) and
587 after exposure to ~ 2 s of darkness with far-red illumination ($F'0$). Chl *a* fluorescence
588 was used to calculate apparent values of the quantum yield of PSII (Φ_{II}), and the
589 coefficient of photochemical quenching (q_p) using equations (1) and (2), respectively
590 (Campbell et al., 1998; Maxwell and Johnson, 2000).

591
$$\Phi_{II} = \frac{F'm - F_s}{F'm} \quad (1)$$

592
$$q_p = \frac{F'm - F_s}{F'm - F'0} \quad (2)$$

593 Where, $F'm$ = the value of maximal fluorescence in the light-adapted state, F_s = the
594 steady-state fluorescence in the light-adapted state, and $F'0$ = the minimal
595 fluorescence in the light-adapted state

596 **Western blot analysis**

597 For Western blotting, cells were lysed in extraction buffer (50 mM Tris-HCl, pH 7.6, 10
598 mM MgCl₂, 0.1% (v/v) TritonX-100), fortified with 1X protease inhibitor (Halt protease
599 inhibitor cocktail, Thermo, USA). Extracted protein samples were quantified by using
600 PierceTM BCA Protein Assay Kit (Thermo). 30 μg of total protein extracts were
601 electrophoretically separated on 10% (w/v) SDS-polyacrylamide gels and transferred
602 to a polyvinylidene difluoride (PVDF) membrane preactivated with absolute methanol
603 using Trans-Blot Turbo Transfer System (Bio-Rad). After blocking with 5% (w/v)
604 powdered skim milk in 1X phosphate buffer solution plus 0.1% (v/v) Tween-20 (PBST),
605 blots were probed with primary antibodies when included, anti-RbcL (PhytoAB;
606 PHY5236A, a dilution of 1:2,000), PsbA (Agrisera; AS05084, a dilution of 1:5,000) and
607 PsaC (Agrisera; AS10939, a dilution of 1:5,000) overnight at 4°C. Secondary antibody
608 α -rabbit HRP conjugate (Invitrogen, G21234, a dilution of 1:20,000) was incubated
609 with blots for 1 h at room temperature, and antigen-antibody complexes were
610 visualized via a chemiluminescence detection system (Super signal, Thermo scientific,
611 USA). The Precision plus protein dual-color standard (Bio-Rad) was used as reference
612 molecular weight markers.

613 **Statistical analysis**

614 Statistical analysis and plots were generated using Microsoft Excel, R and python. All
615 experiments were performed with at least three biological replicates and technical
616 replicates for same-day experiments as indicated. Exact replicates and/or n values are
617 described in detail in the accompanying figure legends. Statistical tests and indications
618 of statistical significance are also elaborated in figure legends and the main text. Data
619 was shown as mean \pm standard deviation (SD). Statistical analysis was performed
620 using one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison
621 test, or Student's test and Mann-Whitney test with Benjamini-Hochberg correction,
622 when appropriate. Differences were considered statistically significant at $P < 0.05$.

623 **Data availability**

624 The mass spectrometry proteomics data have been deposited to the
625 ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner
626 repository with the dataset identifier PXD027430 and 10.6019/PXD027430. Proteins
627 were searched against the UniProt protein database UP000002717_*Synechococcus*
628 *elongatus* PCC 7942. Rubisco protein structure was downloaded from PDBe-KB and
629 modified for figure display (Fig. 1A). The data that support the findings of this study
630 are available from the corresponding author on request.

631 **Accession Numbers**

632 Sequence data from this article can be found in the GenBank/EMBL data libraries
633 under accession numbers_. Sucrose permease (*cscB*) and Sucrose phosphatase
634 synthase (*sps*) genes were from *E. coli* W genomic DNA (ATCC 9637; ECW_m2594)
635 and *Synechocystis* sp. PCC 6803 (sll0045,SPS-6803), respectively and used as
636 previously described (Ducat et al., 2012; Abramson et al., 2016).

637 **Supplemental Data**

638 **Supplemental Figure S1.** Photosynthetic activity enhanced in sucrose-exporting
639 CscB/SPS mutant of *S. elongatus*.

640 **Supplemental Figure S2.** Visualization of cellular protein abundance using
641 proteomaps.

642 **Supplemental Figure S3.** Chlorophyll a fluorescence traces in response to
643 exogenous sucrose supplementation.

644 **Supplemental Figure S4.** Pigment profile in sucrose feeding condition.

645 **Supplemental Figure S5.** Extended fields of RbcS-mNG in CscB/SPS mutant cells.
646 **Supplemental Figure S6.** Comparison of cell size and carboxysome position in
647 sucrose export condition.
648 **Supplemental Figure S7.** Comparison of relative fluorescence in sucrose exporting
649 cells.
650 **Supplemental figure S8.** Comparison of cell size and carboxysome position in
651 sucrose feeding experiment.
652 **Supplemental figure S9.** Extended fields of RbcS-mNG in CscB mutant cells.
653 **Supplemental figure S10.** Relationship between carboxysome number and cell
654 length in sucrose import condition.
655 **Supplemental Table S1.** List of proteins up- and down-regulated in sucrose export
656 condition along with overexpressed proteins.
657 **Supplemental methods.** Liquid chromatography - mass spectrometry (LC-MS)
658 based protein analysis.

659 **Funding information**

660 This work was supported by the Department of Energy, Basic Energy Sciences
661 Division (Grant: DE-FG02-91ER20021). Additional support was provided from the
662 National Science Foundation, Molecular and Cellular Bioscience Division (Grant:
663 #1517241).

664 **Acknowledgements**

665 We would like to thank Dr. Curtis G. Wilkerson and Douglas Whitten for mass
666 spectrometry analysis and critical feedback in experimental setup. We would like to
667 thank Dr. Sigal Lechno-Yossef (Cheryl Lab) and Kaila Smith (Walker Lab) for technical
668 assistance, and our lab pre-doctoral fellows Lisa Yun, Emmanuel Kokarakis and Rees
669 Rillema for helpful comments on this manuscript.

670 **Competing interests:**

671 The authors declare no competing interests.
672

673 **Figure Legends**

674 **Figure 1. Connection of heterologous sucrose pathway with endogenous**
675 **metabolism in *S. elongatus***

676 **A.** Schematic representation of cyanobacterial source/sink relationships. Endogenous
677 metabolic sinks include metabolism leading to formation of glycogen, sucrose, and
678 other cell biomass are depicted on the right. Cell inputs include light captured for
679 photosynthesis as well as artificially supplied sucrose imported through heterologous
680 transporters. Overexpressed genes for sucrose synthesis (sucrose phosphate
681 synthase: SPS) and transport (sucrose permease: CscB) are shown in red.
682 Quantification of exported sucrose (**B**) and internal glycogen stores (**C**) for strains
683 induced to express SPS and CscB are shown in time series, with uninduced
684 controls. Error bars represent the standard deviation of three independent biological
685 replicates from the average in a representative time series.

686 **Figure 2. System level proteomic response to sucrose export.**

687 **A.** Venn diagram summarizing the number of unambiguously identified proteins from
688 untargeted proteomic analysis of three biological replicates. **B.** Representation of
689 proteins from proteomic analysis within established annotated functional groups, with
690 the number and percentage of identified proteins from the indicated categories relative
691 to the total number of proteins with that designation in *S. elongatus* 7942, as assigned
692 by KEGG pathway using the STRING database resource. **C.** Volcano plot indicating
693 changing protein abundance in induced strains integrated across time points 24, 48,
694 72 and 96 h relative to controls. The non-axial vertical dashed-line shows $\pm 0.3 \log_2$ fold
695 protein change and non-axial horizontal dashed-line shows Mann-Whitney test $P < 0.05$
696 with Benjamini-Hochberg correction cutoffs. Differential protein analysis cut-offs were
697 $-1.3 >$ down-regulation and $+1.3 <$ upregulation. Proteins represented by blue data
698 points indicate significantly up-regulated proteins, while red points are downregulated.
699 Proteins are identified with the abbreviated number 'XXXX' instead of the full genomic
700 locus name (i.e., Synpcc7942_XXXX; Supplemental Table S1). **D.** Heatmap of
701 significantly up- and downregulated proteins for each sample in the proteomic time-
702 series.

703 **Figure 3. Rubisco is upregulated and reorganized following sucrose export.**

704 **A.** Rubisco activity was measured from CscB/SPS lysates at 24 h intervals following
705 induction of sucrose export (+IPTG) in comparison to uninduced controls (-IPTG). The
706 activity measured for each sample was normalized to the Chl a content of the same
707 sample. Western blots of (**B**) RbcL (**C**) PsbA, or PsAC levels were examined 72 h post-
708 induction (+IPTG) and normalized against uninduced controls (-IPTG). Error bars
709 indicate the standard deviation of three independent biological replicates. Asterisk '*'
710 indicates statistical significance (Student's *t*- test, $P < 0.05$) against controls.

711 **Figure 4. Impact of sucrose uptake on photosynthetic activity and glycogen**
712 **content.**

713 External sucrose was supplemented in growth medium at indicated levels and CscB
714 mutant lines were induced to allow uptake through sucrose permease expression. **A.**
715 Effect of external sucrose uptake on glycogen content. Measurements of glycogen
716 content were observed under induced (+IPTG) and uninduced (Control; -IPTG)
717 conditions at 24 h time intervals with the indicated levels of externally-supplied
718 sucrose. **B.** Visual bleaching of CscB strains at 24 h following sucrose uptake. **C.** Chl
719 a content of cultures incubated with external sucrose at 24 h. Photosynthetic
720 parameters such as the apparent PSII quantum yield (Φ_{II}) (**D**) and estimated fraction
721 of open PSII reaction centers (q_p) (**F**) were analysed using a custom Chl
722 a fluorescence-based spectrometer at actinic light intensities of 100, 275 and
723 500 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$. **E.** Western blots of total cellular protein with antibodies
724 targeting PsbA and PsaC from samples in induced and uninduced conditions
725 supplemented with external sucrose. Error bars indicate standard deviation of ≥ 3
726 biological replicates and asterisk '*' shows significant level with $P < 0.05$ by Student's *t*-
727 test (E) and by one-way ANOVA followed by Tukey's multiple comparison test (D and
728 F).

729 **Figure 5. Carboxysomes are reorganized in response to sucrose export.**
730 *S. elongatus* lines bearing a RbcS-mNG reporter were used to visualize carboxysome
731 organization following induction of the sucrose export pathway. **A.** Representative
732 images of CscB/SPS strains 72 h after sucrose export induction (+IPTG) or control
733 treatment (-IPTG). Violin plots represent the distribution of carboxysome puncta
734 fluorescence intensity (**B**) and number per cell (**C**) in induced (+IPTG) cells compared
735 to uninduced controls (-IPTG). **D.** Density plot of carboxysome number as a function
736 of the containing cell length in both uninduced (-IPTG) and induced (+IPTG)
737 conditions. Probability density is indicated and a linear best-fit trendline is displayed.
738 For visual comparison, a blue dotted trendline of the uninduced sample is overlaid on
739 the induced condition and the grey horizontal dotted line is drawn to facilitate ease of
740 comparison between control and induced populations. Error bars represent standard
741 deviation ($\pm \text{SD}$). Each mutant strain has $n > 4,000$ cells. Scale bars = 1 μm .

742 **Figure 6. Carboxysomes are reorganized in response to sucrose import.**
743 **A.** Carboxysome reporter (RbcS-mNG) expressed in the CscB strain was visualized
744 following 24 h of incubation in 100 mM external sucrose with the sucrose transporter
745 induced (+IPTG) or without (-IPTG). **B.** Rubisco activity in strains as above was
746 measured after 24 h of incubation with the indicated external sucrose level. The activity
747 measured for each sample was measured as a function of cell number. Violin and box
748 plots depicting the difference in the distribution of carboxysome puncta intensity (**C**)
749 and carboxysome number (**D**) for sucrose importing (+IPTG) strains relative to
750 uninduced. Western blot analysis and relative signal density of Rubisco large subunit
751 (RbcL) abundance in induced and uninduced conditions **E.** Each bar represents the
752 mean of three independent biological replicates ($\pm \text{SD}$). Asterisk '*' shows significant
753 level with $P < 0.05$ by Student's *t*-test. Each analyzed strain has $n > 4,000$ cells. AU,
754 Arbitrary units. Scale bars = 1 μm .

755 **References**

- 756 **Abràmoff MD, Magalhães PJ, Ram SJ** (2005) Image processing with ImageJ Part
757 II. Biophotonics Int **11**: 36–43
- 758 **Abramson B, Lensmire J, Yang-Tsung L, Jennings E, Ducat D** (2018)
759 Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-
760 secreting cyanobacterium. Algal Res **248**: 255
- 761 **Abramson BW, Kachel B, Kramer DM, Ducat DC** (2016) Increased photochemical
762 efficiency in cyanobacteria via an engineered sucrose sink. Plant Cell Physiol
763 **57**: 2451–2460
- 764 **Adams WW, Muller O, Cohu CM, Demmig-Adams B** (2013) May photoinhibition
765 be a consequence, rather than a cause, of limited plant productivity? Photosynth
766 Res. doi: 10.1007/s11120-013-9849-7
- 767 **Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G,
768 Battchikova N, Cournac L, Aro E-M** (2013) Flavodiiron proteins Flv1 and Flv3
769 enable cyanobacterial growth and photosynthesis under fluctuating light. PNAS
770 **110**: 4111–4116
- 771 **Badger MR, Price GD** (2003) CO₂ concentrating mechanisms in cyanobacteria:
772 Molecular components, their diversity and evolution. J Exp Bot **54**: 609–622
- 773 **Bailey S, Grossman A** (2008) Photoprotection in cyanobacteria: Regulation of light
774 harvesting. Photochem Photobiol **84**: 1410–1420
- 775 **Bhatti AF, Kirilovsky D, van Amerongen H, Wientjes E** (2021) State transitions
776 and photosystems spatially resolved in individual cells of the cyanobacterium
777 *Synechococcus elongatus*. Plant Physiol **186**: 569–580
- 778 **Borden JS, Savage DF** (2021) New discoveries expand possibilities for
779 carboxysome engineering. Curr Opin Microbiol **61**: 58–66
- 780 **Calzadilla PI, Kirilovsky D** (2020) Revisiting cyanobacterial state transitions.
781 Photochem Photobiol Sci **19**: 585–603
- 782 **Cameron JC, Wilson SC, Bernstein SL, Kerfeld CA** (2013) XBiogenesis of a
783 bacterial organelle: The carboxysome assembly pathway. Cell. doi:
784 10.1016/j.cell.2013.10.044
- 785 **Campbell DA, Hurry V, Clarke a K, Gustafsson P, Oquist G** (1998) Chlorophyll
786 fluorescence analysis of cyanobacterial photosynthesis and acclimation.
787 Microbiol Mol Biol Rev **62**: 667–683
- 788 **Cano M, Holland SC, Artier J, Burnap RL, Ghirardi M, Morgan JA, Cano M,
789 Holland SC, Artier J, Burnap RL, et al** (2018) Glycogen Synthesis and
790 Metabolite Overflow Contribute to Energy Balancing in Cyanobacteria Report
791 Glycogen Synthesis and Metabolite Overflow Contribute to Energy Balancing in
792 Cyanobacteria. 667–672
- 793 **Chen AH, Robinson-Mosher A, Savage DF, Silver PA, Polka JK** (2013) The
794 Bacterial Carbon-Fixing Organelle Is Formed by Shell Envelopment of
795 Preassembled Cargo. PLoS One. doi: 10.1371/journal.pone.0076127
- 796 **Cho YH, Yoo SD, Sheen J** (2006) Regulatory Functions of Nuclear Hexokinase1

- 797 Complex in Glucose Signaling. *Cell*. doi: 10.1016/j.cell.2006.09.028
- 798 **Clerico EM, Ditty JL, Golden SS** (2007) Specialized Techniques for Site-Directed
799 Mutagenesis in Cyanobacteria. *In* E Rosato, ed, Circadian Rhythm. Methods
800 Protoc. Humana Press, Totowa, NJ, pp 155–171
- 801 **Davies FK, Work VH, Beliaev AS, Posewitz MC** (2014) Engineering Limonene and
802 Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of
803 *Synechococcus* sp. PCC 7002. *Front Bioeng Biotechnol* **2**: 1–11
- 804 **DeLisi C, Patrinos A, MacCracken M, Drell D, Annas G, Arkin A, Church G,
805 Cook-Deegan R, Jacoby H, Lidstrom M, et al** (2020) The Role of Synthetic
806 Biology in Atmospheric Greenhouse Gas Reduction: Prospects and Challenges.
807 *BioDesign Res* **2020**: 1–8
- 808 **Diamond S, Jun D, Rubin BE, Golden SS** (2015) The circadian oscillator in
809 *Synechococcus elongatus* controls metabolite partitioning during diurnal growth.
810 *Proc Natl Acad Sci U S A* **112**: E1916–E1925
- 811 **Díaz-Troya S, Roldán M, Mallén-Ponce MJ, Ortega-Martínez P, Florencio FJ**
812 (2020) Lethality caused by ADP-glucose accumulation is suppressed by salt-
813 induced carbon flux redirection in cyanobacteria. *J Exp Bot* **71**: 2005–2017
- 814 **Ducat DC, Avelar-Rivas JA, Way JC, Silvera PA** (2012) Rerouting carbon flux to
815 enhance photosynthetic productivity. *Appl Environ Microbiol* **78**: 2660–2668
- 816 **Ducret A, Quardokus EM, Brun Y V.** (2016) MicrobeJ, a tool for high throughput
817 bacterial cell detection and quantitative analysis. *Nat Microbiol* **1**: 1–7
- 818 **Faulkner M, Rodriguez-Ramos J, Dykes GF, Owen S V., Casella S, Simpson
819 DM, Beynon RJ, Liu LN** (2017) Direct characterization of the native structure
820 and mechanics of cyanobacterial carboxysomes. *Nanoscale* **9**: 10662–10673
- 821 **Granot D, David-Schwartz R, Kelly G** (2013) Hexose Kinases and Their Role in
822 Sugar-Sensing and Plant Development. *Front Plant Sci*. doi:
823 10.3389/fpls.2013.00044
- 824 **Grossman AR, van Waasbergen LG, Kehoe D** (2003) Environmental Regulation of
825 Phycobilisome Biosynthesis. *In* BR Green, WW Parson, eds, Light. Antennas
826 Photosynth. Springer Netherlands, Dordrecht, pp 471–493
- 827 **Hall CC, Cruz J, Wood M, Zegarac R, DeMars D, Carpenter J, Kanazawa A,
828 Kramer D** (2013) Photosynthetic measurements with the idea spec: An
829 integrated diode emitter array spectrophotometer/fluorometer. *Adv Top Sci
830 Technol China* **184**–188
- 831 **Hayer-Hartl M, Bracher A, Hartl FU** (2016) The GroEL-GroES Chaperonin
832 Machine: A Nano-Cage for Protein Folding. *Trends Biochem Sci*. doi:
833 10.1016/j.tibs.2015.07.009
- 834 **Hill NC, Tay JW, Altus S, Bortz DM, Cameron JC** (2020) Life cycle of a
835 cyanobacterial carboxysome. *Sci Adv* **6**: eaba1269
- 836 **Ho M-Y, Soulier NT, Canniffe DP, Shen G, Bryant DA** (2017) Light regulation of
837 pigment and photosystem biosynthesis in cyanobacteria. *Curr Opin Plant Biol*
838 **37**: 24–33

- 839 **Hood RD, Higgins SA, Flamholz A, Nichols RJ, Savage DF** (2016) The stringent
840 response regulates adaptation to darkness in the cyanobacterium
841 *Synechococcus elongatus*. *Proc Natl Acad Sci* **113**: E4867–E4876
- 842 **Hossain M, Nakamoto H** (2003) Role for the cyanobacterial HtpG in protection from
843 oxidative stress. *Curr Microbiol* **46**: 70–76
- 844 **Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, Forsström B, Uhlén M, Käll
845 L, Hudson EP** (2018) Growth of Cyanobacteria Is Constrained by the
846 Abundance of Light and Carbon Assimilation Proteins. *Cell Rep.* doi:
847 10.1016/j.celrep.2018.09.040
- 848 **Kane HJ, Viil J, Entsch B, Paul K, Morrell MK, Andrews TJ** (1994) An improved
849 method for measuring the CO₂/O₂ specificity of ribulosebisphosphate
850 carboxylase-oxygenase. *Aust J Plant Physiol* **21**: 449–461
- 851 **Kane HJ, Wilkin J-M, Portis Jr. AR, John Andrews T** (1998) Potent Inhibition of
852 Ribulose-Bisphosphate Carboxylase by an Oxidized Impurity in Ribulose-1,5-
853 Bisphosphate1. *Plant Physiol* **117**: 1059–1069
- 854 **Kasai M** (2008) Regulation of leaf photosynthetic rate correlating with leaf
855 carbohydrate status and activation state of Rubisco under a variety of
856 photosynthetic source/sink balances. *Physiol Plant* **134**: 216–226
- 857 **Kirilovsky D, Kerfeld CA** (2016) Cyanobacterial photoprotection by the orange
858 carotenoid protein. *Nat Plants* **2**: 16180
- 859 **Kobayashi I, Watanabe S, Kanesaki Y, Shimada T, Yoshikawa H, Tanaka K**
860 (2017) Conserved two-component Hik34-Rre1 module directly activates heat-
861 stress inducible transcription of major chaperone and other genes in
862 *Synechococcus elongatus* PCC 7942. *Mol Microbiol* **104**: 260–277
- 863 **Koper K, Hwang S-K, Singh S, Okita TW** (2021) Source-Sink Relationships and Its
864 Effect on Plant Productivity: Manipulation of Primary Carbon and Starch
865 Metabolism. *In* BK Sarmah, BK Borah, eds, *Genome Eng. Crop Improv.*
866 Springer International Publishing, Cham, pp 1–31
- 867 **Lemoine R, Camera S La, Atanassova R, Dédaldéchamp F, Allario T, Pourtau
868 N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, et al** (2013)
869 Source-to-sink transport of sugar and regulation by environmental factors. *Front
870 Plant Sci.* doi: 10.3389/fpls.2013.00272
- 871 **Li X, Shen CR, Liao JC** (2014) Isobutanol production as an alternative metabolic
872 sink to rescue the growth deficiency of the glycogen mutant of *Synechococcus*
873 *elongatus* PCC 7942. *Photosynth Res.* doi: 10.1007/s11120-014-9987-6
- 874 **Liebermeister W, Noor E, Flamholz A, Davidi D, Bernhardt J, Milo R** (2014)
875 Visual account of protein investment in cellular functions. *Proc Natl Acad Sci U
876 S A* **111**: 8488–8493
- 877 **Lieman-Hurwitz J, Haimovich M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A,
878 Lebendiker M, Kaplan A** (2009) A cyanobacterial AbrB-like protein affects the
879 apparent photosynthetic affinity for CO₂ by modulating low-CO₂-induced gene
880 expression. *Environ Microbiol* **11**: 927–936
- 881 **Lin PC, Zhang F, Pakrasi HB** (2020) Enhanced production of sucrose in the fast-

- 882 growing cyanobacterium *Synechococcus elongatus* UTEX 2973. *Sci Rep.* doi:
883 10.1038/s41598-019-57319-5
- 884 **Lobo AKM, de Oliveira Martins M, Lima Neto MC, Machado EC, Ribeiro RV,**
885 **Silveira JAG** (2015) Exogenous sucrose supply changes sugar metabolism and
886 reduces photosynthesis of sugarcane through the down-regulation of Rubisco
887 abundance and activity. *J Plant Physiol.* doi: 10.1016/j.jplph.2015.03.007
- 888 **Logothetis K, Dakanali S, Ioannidis N, Kotzabasis K** (2004) The impact of high
889 CO₂ concentrations on the structure and function of the photosynthetic
890 apparatus and the role of polyamines. *J Plant Physiol.* doi: 10.1078/0176-1617-
891 00942
- 892 **Long BM, Price GD, Badger MR** (2005) Proteomic assessment of an established
893 technique for carboxysome enrichment from *Synechococcus PCC7942*. *Can J*
894 *Bot* **83**: 746–757
- 895 **Maccready JS, Hakim P, Young EJ, Hu L, Liu J, Osteryoung KW, Vecchiarelli**
896 **AG, Ducat DC** (2018) Protein gradients on the nucleoid position the carbon-
897 fixing organelles of cyanobacteria. *Elife.* doi: 10.7554/eLife.39723
- 898 **Mackenzie TDB, Burns RA, Campbell DA, Brunswick N, Brunswick N** (2004)
899 Carbon Status Constrains Light Acclimation in the Cyanobacterium. **136**: 3301–
900 3312
- 901 **Mangan N, Brenner M** (2014) Systems analysis of the CO₂ concentrating
902 mechanism in cyanobacteria. *Elife.* doi: 10.7554/eLife.02043
- 903 **Maxwell K, Johnson GN** (2000) Chlorophyll fluorescence—a practical guide. *J Exp*
904 *Bot* **51**: 659–668
- 905 **Mccormick AJ, Watt DA, Cramer MD** (2009) Supply and demand: Sink regulation
906 of sugar accumulation in sugarcane. *J Exp Bot* **60**: 357–364
- 907 **McEwen JT, Kanno M, Atsumi S** (2016) 2,3 Butanediol production in an obligate
908 photoautotrophic cyanobacterium in dark conditions via diverse sugar
909 consumption. *Metab Eng.* doi: 10.1016/j.ymben.2016.03.004
- 910 **Montgomery BL** (2014) The regulation of light sensing and light-harvesting impacts
911 the use of cyanobacteria as biotechnology platforms. *Front Bioeng Biotechnol.*
912 doi: 10.3389/fbioe.2014.00022
- 913 **Moore BD, Cheng SH, Rice J, Seemann JR** (1998) Sucrose cycling, Rubisco
914 expression, and prediction of photosynthetic acclimation to elevated
915 atmospheric CO₂. *Plant, Cell Environ* **21**: 905–915
- 916 **Mullineaux CW** (2014) Electron transport and light-harvesting switches in
917 cyanobacteria. *Front Plant Sci* **5**: 7
- 918 **Muramatsu M, Hihara Y** (2012) Acclimation to high-light conditions in
919 cyanobacteria: from gene expression to physiological responses. *J Plant Res*
920 **125**: 11–39
- 921 **Nakajima T, Yoshikawa K, Toya Y, Matsuda F, Shimizu H** (2017) Metabolic Flux
922 Analysis of the *Synechocystis* sp. PCC 6803 Δ nrtABCD Mutant Reveals a
923 Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions. *Plant Cell*
924 *Physiol* **58**: 537–545

- 925 **Nielsen TH, Krapp A, Röper-Schwarz U, Stitt M** (1998) The sugar-mediated
926 regulation of genes encoding the small subunit of Rubisco and the regulatory
927 subunit of ADP glucose pyrophosphorylase is modified by phosphate and
928 nitrogen. *Plant, Cell Environ* **21**: 443–454
- 929 **Ogawa T, Misumi M, Sonoike K** (2017) Estimation of photosynthesis in
930 cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence:
931 problems and solutions. *Photosynth Res* **133**: 63–73
- 932 **Ohashi Y, Shi W, Takatani N, Aichi M, Maeda SI, Watanabe S, Yoshikawa H,
933 Omata T** (2011) Regulation of nitrate assimilation in cyanobacteria. *J Exp Bot*
934 **62**: 1411–1424
- 935 **Oliver JWK, Machado IMP, Yoneda H, Atsumi S** (2013) Cyanobacterial conversion
936 of carbon dioxide to 2,3-butanediol. *Proc Natl Acad Sci*. doi:
937 10.1073/pnas.1213024110
- 938 **Orf I, Schwarz D, Kaplan A, Kopka J, Hess WR, Hagemann M, Klähn S** (2016)
939 CyAbrB2 contributes to the transcriptional regulation of low CO₂ acclimation in
940 *synechocystis* sp. PCC 6803. *Plant Cell Physiol* **57**: 2232–2243
- 941 **Page-Sharp M, Behm CA, Smith GD** (1998) Cyanophycin and glycogen synthesis
942 in a cyanobacterial *Scytonema* species in response to salt stress. *FEMS
943 Microbiol Lett* **160**: 11–15
- 944 **Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu
945 DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, et al** (2019) The PRIDE
946 database and related tools and resources in 2019: Improving support for
947 quantification data. *Nucleic Acids Res* **47**: D442–D450
- 948 **Porra RJ, Thompson WA, Kriedemann PE** (1989) Determination of accurate
949 extinction coefficients and simultaneous equations for assaying chlorophylls a
950 and b extracted with four different solvents: verification of the concentration of
951 chlorophyll standards by atomic absorption spectroscopy. *BBA - Bioenerg* **975**:
952 384–394
- 953 **Qiao C, Duan Y, Zhang M, Hagemann M, Luo Q, Lu X** (2018) Effects of reduced
954 and enhanced glycogen pools on salt-induced sucrose production in a sucrose-
955 secreting strain of *Synechococcus elongatus* PCC 7942. *Appl Environ Microbiol*
956 **84**: 1–11
- 957 **Rachedi R, Foglino M, Latifi A** (2020) life Stress Signaling in Cyanobacteria: A
958 Mechanistic Overview. doi: 10.3390/life10120312
- 959 **Raven JA, Beardall J** (2014) CO₂ concentrating mechanisms and environmental
960 change. *Aquat Bot*. doi: 10.1016/j.aquabot.2014.05.008
- 961 **Rillema R, Hoang Y, S. MJ, G. VA, Arash K** (2021) Carboxysome Mispositioning
962 Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium
963 *Synechococcus elongatus* PCC 7942. *MBio* **12**: e02696-20
- 964 **Roach T, Krieger-Liszka A** (2014) Regulation of Photosynthetic Electron
965 Transport and Photoinhibition. *Curr Protein Pept Sci* **15**: 351–362
- 966 **Rohnke BA, Singh SP, Pattanaik B, Montgomery BL** (2018) RcaE-Dependent
967 Regulation of Carboxysome Structural Proteins Has a Central Role in

- 968 Environmental Determination of Carboxysome Morphology and Abundance in
969 *Fremyella diplosiphon*. *mSphere*. doi: 10.1128/msphere.00617-17
- 970 **Rolland F, Baena-Gonzalez E, Sheen J** (2006) SUGAR SENSING AND
971 SIGNALING IN PLANTS: Conserved and Novel Mechanisms. *Annu Rev Plant*
972 *Biol*. doi: 10.1146/annurev.arplant.57.032905.105441
- 973 **Roth MS, Gallaher SD, Westcott DJ, Iwai M, Louie KB, Mueller M, Walter A, Foflonker F, Bowen BP, Ataii NN, et al** (2019a) Regulation of Oxygenic
974 Photosynthesis during Trophic Transitions in the Green Alga *Chromochloris*
975 *zofingiensis* [OPEN]. doi: 10.1105/tpc.18.00742
- 977 **Roth MS, Westcott DJ, Iwai M, Niyogi KK** (2019b) Hexokinase is necessary for
978 glucose-mediated photosynthesis repression and lipid accumulation in a green
979 alga. *Commun Biol*. doi: 10.1038/s42003-019-0577-1
- 980 **Ruuska S, Andrews TJ, Badger MR, Hudson GS, Laisk A, Price GD, Caemmerer S von** (1999) Interplay between limiting processes in C3 photosynthesis studied
981 by rapid-response gas exchange using transgenic tobacco impaired in
982 photosynthesis. *Funct Plant Biol* **25**: 859–870
- 984 **Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, et al** (2004) The oceanic sink for
985 anthropogenic CO₂. *Science* (80-). doi: 10.1126/science.1097403
- 987 **Sakkos JK, Hernandez-Ortiz S, Osteryoung KW, Ducat DC** (2021) Orthogonal
988 Degron System for Controlled Protein Degradation in Cyanobacteria. *ACS Synth*
989 *Biol* **10**: 1667–1681
- 990 **Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia M-D, Ogé L, Hamama L, Atanassova R** (2018) Molecular Sciences The Sugar-Signaling Hub: Overview
991 of Regulators and Interaction with the Hormonal and Metabolic Network. doi:
992 10.3390/ijms19092506
- 994 **Santos-Merino M, Singh AK, Ducat DC** (2019) New applications of synthetic
995 biology tools for cyanobacterial metabolic engineering. *Front Bioeng Biotechnol*.
996 doi: 10.3389/fbioe.2019.00033
- 997 **Santos-Merino M, Torrado A, Davis GA, Rottig A, Bibby TS, Kramer DM, Ducat DC** (2021) Improved photosynthetic capacity and photosystem I oxidation via
998 heterologous metabolism engineering in cyanobacteria. *Proc Natl Acad Sci U S*
999 *A*. doi: 10.1073/pnas.2021523118
- 1001 **Savage DF, Afonso B, Chen AH, Silver PA** (2010) Spatially Ordered Dynamics of
1002 the Bacterial Carbon Fixation Machinery. *Science* (80-) **327**: 1258–1261
- 1003 **Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al** (2012) Fiji: An open-
1004 source platform for biological-image analysis. *Nat Methods* **9**: 676–682
- 1006 **Spreitzer RJ, Salvucci ME** (2002) R UBISCO : Structure, Regulatory Interactions,
1007 and Possibilities for a Better Enzyme . *Annu Rev Plant Biol*. doi:
1008 10.1146/annurev.arplant.53.100301.135233
- 1009 **Sun Y, Casella S, Fang Y, Huang F, Faulkner M, Barrett S, Liu L-NN** (2016) Light
1010 Modulates the Biosynthesis and Organization of Cyanobacterial Carbon Fixation

- 1011 Machinery through Photosynthetic Electron Flow. *Plant Physiol* **171**: 530–541

1012 **Sun Y, Wollman AJM, Huang F, Leake MC, Liu LN** (2019) Single-organelle
1013 quantification reveals stoichiometric and structural variability of carboxysomes
1014 dependent on the environment. *Plant Cell* **31**: 1648–1664

1015 **Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S,**
1016 **Tsuzuki M, Nakamura Y** (2010) Carbohydrate metabolism in mutants of the
1017 cyanobacterium *synechococcus elongatus* PCC 7942 defective in glycogen
1018 synthesis. *Appl Environ Microbiol* **76**: 3153–3159

1019 **Tcherkez GGB, Farquhar GD, Andrews TJ** (2006) Despite slow catalysis and
1020 confused substrate specificity, all ribulose bisphosphate carboxylases may be
1021 nearly perfectly optimized. *Proc Natl Acad Sci* **103**: 7246–7251

1022 **Ungerer J, Tao L, Davis M, Ghirardi M, Maness PC, Yu J** (2012) Sustained
1023 photosynthetic conversion of CO₂ to ethylene in recombinant cyanobacterium
1024 *Synechocystis* 6803. *Energy Environ Sci.* doi: 10.1039/c2ee22555g

1025 **Walker BJ, Kramer DM, Fisher N, Fu X** (2020) Flexibility in the Energy Balancing
1026 Network of Photosynthesis Enables Safe Operation under Changing
1027 Environmental Conditions. *Plants*. doi: 10.3390/plants9030301

1028 **Wang H, Yan X, Aigner H, Bracher A, Nguyen ND, Hee WY, Long BM, Price GD,**
1029 **Hartl FU, Hayer-Hartl M** (2019) Rubisco condensate formation by CcmM in β -
1030 carboxysome biogenesis. *Nature*. doi: 10.1038/s41586-019-0880-5

1031 **Wang M, Luan G, Lu X** (2020) Engineering ethanol production in a marine
1032 cyanobacterium *Synechococcus* sp. PCC7002 through simultaneously removing
1033 glycogen synthesis genes and introducing ethanolgenic cassettes. *J Biotechnol*
1034 **317**: 1–4

1035 **White AC, Rogers A, Rees M, Osborne CP** (2016) How can we make plants grow
1036 faster? A source-sink perspective on growth rate. *J Exp Bot* **67**: 31–45

1037 **Woodger FJ, Badger MR, Price GD** (2003) Inorganic Carbon Limitation Induces
1038 Transcripts Encoding Components of the CO₂-Concentrating Mechanism in
1039 *Synechococcus* sp. PCC7942 through a Redox-Independent Pathway. *Plant*
1040 **Physiol** **133**: 2069–2080

1041 **Xiong W, Cano M, Wang B, Douchi D, Yu J** (2017) The plasticity of cyanobacterial
1042 carbon metabolism. *Curr Opin Chem Biol* **41**: 12–19

1043 **Yamauchi Y, Kaniya Y, Kaneko Y, Hihara Y** (2011) Physiological Roles of the
1044 cyAbrB Transcriptional Regulator Pair SII0822 and SII0359 in *Synechocystis* sp.
1045 strain PCC 6803 †. *J Bacteriol* **193**: 3702–3709

1046 **Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM** (2008) Protein-
1047 based organelles in bacteria: Carboxysomes and related microcompartments.
1048 *Nat Rev Microbiol.* doi: 10.1038/nrmicro1913

1049 **Yousef N, Pistorius EK, Michel KP** (2003) Comparative analysis of idIA and isiA
1050 transcription under iron starvation and oxidative stress in *Synechococcus*
1051 *elongatus* PCC 7942 wild-type and selected mutants. *Arch Microbiol* **180**: 471–
1052 483

1053 **Zavřel T, Chmelík D, Sinetova MA, Červený J** (2018) Spectrophotometric

1054 determination of phycobiliprotein content in cyanobacterium *synechocystis*. *J Vis*
1055 *Exp* **2018**: 1–9

1056 **Zhang A, Carroll AL, Atsumi S** (2017) Carbon recycling by cyanobacteria:
1057 Improving CO₂fixation through chemical production. *FEMS Microbiol Lett* **364**:
1058 1–7

1059

1060