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1. Introduction
There has been a substantial discussion in various
methodological and applied literatures around causal
inference; especially in the use of machine learning
and statistical models to understand heterogeneity in
treatment effects and to make optimal decision alloca-
tions. I commend Fernández-Lorı́a and Provost (2021)
for highlighting the important, and in retrospect, intu-
itive differences between causal estimation and causal
decision making. This commentary is aimed at ex-
panding the conversation in fruitful directions, with
an eye toward real-world practice in organizations.
Specifically, I highlight that future work will need to
address how to exploit these theoretical results in
practice (Section 2), how to ensure that causal deci-
sions are fair (Section 3), and what are the additional
benefits and challenges when there is a human in the
loop (Section 4).

2. From Theory to Practice
Fernández-Lorı́a and Provost (2021) provide an intui-
tive argument about the differences between causal ef-
fect estimation (CEE) and causal decision making
(CDM), and now the conversation in the literature
should progress to identify concrete steps for utilizing
these compelling “theoretical” results in practice.
Their figure 2 provides three scenarios juxtaposing
the effect estimates of a biased model (BM) with an
unbiased model, relative to a decision boundary τ. In
their final scenario, representing reinforcing bias, BM
(based on large confounded data) is more valuable for
decision making; however, in practice, one is not
generally able to determine whether BM provides de-
sirable reinforcing bias or, alternatively, large and

opposite bias. If we also consider their figure 1 (in
light of figure 2), we realize that it shows the error for
an individual (covariate profile). Therefore, unless
Model 1 is particularly fortuitous, it will also underes-
timate some effects. When considered in conjunction
with Model 1’s larger variance, it appears that this can
actually produce the undesirable consequences of
large and opposite bias (figure 1(a)), engendering less
confidence from practitioners. This may precisely be
why one often opts for the CEE model built on (poten-
tially) smaller but unconfounded data because even
though “traditionally ‘good’ estimates of causal effects
are not necessary to make good causal decisions,”
(Fernández-Lorı́a and Provost 2021, p. 4) these esti-
mates (in the limit) are reliable. Therefore, now that
we are convinced that CDM is different from CEE, it
must be asked how to reliably exploit this difference
in practice.

3. Fairness
Staying with the concept of practice, in the present
day, it is difficult (and often unwise) to consider the
topic of algorithmic decision making and not consider
the question of algorithmic fairness,1 especially when
discussing algorithms making automated decisions.
Therefore, given that fairness is beyond the scope
of the original work, I want to take this opportunity
to highlight its importance in the setting of CDM.
Although CDM exploits the important fact that
“overestimating (underestimating) the effect has no
bearing on decision making when the focal individu-
als have an effect greater (smaller) than” the decision
threshold, the (unintended) consequences of misesti-
mation can be profound and should be an integral
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part of this conversation. Borrowing the authors’ tag-
line, I contend that “Fair Casual Decision Making and
Fair Causal Estimation Are Not the Same… and It
Matters.”

As the authors do, let us consider the case of decid-
ing whether to advertise to (i.e., allocate to treatment)
users and imagine the advertisement is for a higher
interest-rate loan. The algorithm is going to be con-
cerned with estimating a quantity of the form P(x) �
P(Y(1) −Y(0) > t | X � x), the probability that treating
an individual with covariate profile x will lead to a
“sufficiently higher” outcome for the firm, where the
decision threshold t is selected to encode the firm’s
risk-reward trade-off. Let us now consider two covari-
ate profiles xm and xn, where there is a single differ-
ence between the two: the feature capturing whether
the user belongs to an underrepresented minority
group is true for xm and false for xn. Finally, assume
P(xm) � 0:5+ ε and P(xn) � 0:5− ε, for some very small
ε > 0, representing a slightly larger probability that
treating xm will lead to a sufficiently higher outcome
as compared with treating xn. Further, assume that
users are allocated to treatment when P(x) (or a ma-
chine learning estimate P̂(x)) is greater than the thresh-
old 0.5.2 Although this may lead to a higher utility
(causal lift in revenue), all and only the members
of the disadvantaged minority group will be offered
the higher-interest advertising, leading to potentially
widely disparate impacts. Moreover, these disparate
impacts will exacerbate existing societal disparities to
further disadvantage an already-disadvantaged group.
Informed algorithmic decision making often requires
this mapping of a probabilistic measure of benefit into
some discrete action space; although it makes sense to
focus on maximizing utility, there is a question of if (or
at what point) the disparate impact is unjustified (Jung
et al. 2018). Intuitively, when ε is small, it seems unfair
because we believe that similar subpopulations—not
just with respect to features but also with respect to
utility—should receive similar treatment (Dwork et al.
2012). This is a contrived example; but the core point is
critical to the conversation: causal decision making
brings with it some benefits but also some challenges.
As the literature begins to build upon this work, it
seems pertinent to use a lens of how do we maxi-
mize utility while minimizing (unjustified) dispa-
rate impact.

4. Decisions vs. Recommendations
Finally, there is a large and important question of
whether algorithms should be making decisions auto-
matically, given the well-documented harms from un-
intended consequences of these decisions (Rainie and
Anderson 2017). I imagine there may not be a single
correct answer or even a binary decision as to the

appropriateness of algorithmic decision making but
rather a continuum from low- to high-stakes settings.
Regardless, a curiosity is how the questions and con-
clusions from this work change if we move from
causal decision making to causal recommendations pro-
vided to a human decision maker, who may consider
these recommendations as part of his or her own
decision-making process. In such a case, we may not
simply consider the estimation of models built on po-
tentially biased data but also (the need to model) the
behavior of a likely biased decision maker. Moreover,
the causal decision-making framework must also con-
sider how the recommendations (i.e., additional infor-
mation) will causally impact the decision maker’s
eventual decision, with the goal of achieving a fairer
decision than either the algorithm or the decision
maker would achieve on his or her own.

5. Conclusion
In summary, Fernández-Lorı́a and Provost (2021) ex-
plore a critical distinction between estimation of causal
effects and the causal decisions they intend to drive.
Along the way, they articulate the value of this distinc-
tion when decision making is the final objective. Armed
with this knowledge, the literature must investigate its
usability and reliability in practical settings. Doing so
could enable organizations to squeeze more value from
their data in an era where data are seemingly the key
determinate of success.

Endnotes
1 I refrain from using the term bias to not overload its meaning in
this context.
2 I consider P(x) � P(Y(1) −Y(0) > t | X � x) because the disparate
impact will exist even if the machine learning estimates are perfect
(i.e., P̂(x) � P(x)). The central point will still stand if we consider
E(x) � E[Y(1) −Y(0) | X � x]; but in this case, the disparate impact
will exist when the algorithm Ê(x) overestimates (underestimates)
the effects such that Ê(xm) > t while Ê(xn) < t. Therefore, although
this is still plausible in practice, that is, in finite samples, it should
resolve asymptotically.
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