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Abstract—Thanks to the high mobility and rich sensing ca-
pabilities of unmanned aerial vehicles (UAVs), or drones, they
are increasingly leveraged to perform a series of military and
civilian tasks today. Meanwhile, UAVs are also facing various
security and safety concerns raised by both external attacks
and internal hardware/software failures. Therefore, detecting the
abnormal status of a UAV is a critical task to protect it against
malicious adversaries and prevent potential crashes. In this paper,
we propose an anomaly detection system for UAVs by monitoring
and analyzing their sensor data in real-time using deep learning
approaches. The proposed system leverages the convolutional
neural network (CNN) to extract and learn features automatically
from raw sensor data and then process them to support anomaly
detection. We construct a data set of UAV IMU sensor data
using our UAV cybersecurity simulation platform to support
the training of our CNN model. Different deep learning models
are also evaluated and compared in this paper. We validate the
performance of the proposed detection system using extensive
experimental evaluation, which demonstrates that our system
achieves high detection accuracy under different conditions.

I. INTRODUCTION

In recent years, UAVs have been adopted in a spectrum of
military and civilian applications, including remote sensing,
search and rescue, infrastructure inspection, and intelligence,
surveillance, and reconnaissance (ISR) [1]–[4]. Compared with
traditional static sensors, UAVs have clear advantages in
coverage, mobility, and easy deployment, which make them
extremely suitable for onsite aerial monitoring in both urban
and rural areas, especially for these difficult-to-reach areas.
Currently, there are over 522, 000 commercial UAVs registered
in the United States with the Federal Aviation Administration
(FAA), and this number is expected to double by 2024 [5].

As a typical type of cyber-physical system, UAVs face
potential security attacks from multiple aspects, including but
not limited to control, software, sensors, and communications
[6], [7]. Once these external threats have been successfully
launched on a UAV, its operation might turn into abnormal
status, which can further cause severe consequences. For
example, GPS spoofing attacks can mislead the UAV’s flying
pattern [8] and spoofing attacks on gyroscopic sensors of a
UAV through acoustic noises can lead to its crash [9]. In addi-
tion, a UAV’s operation can also be affected by internal factors,
such as defects on UAV parts and software failures. These
factors are usually not obvious to identify at beginning, but
can cause abnormal status during the operation. For example,

a small crack on the propeller of a UAV may not be noticed
during the takeoff phase, however, it can gradually affect the
operations of the UAV and may even lead to an accident if
the crack becomes larger during its flight. Therefore, with the
increasing usage of UAVs, it is critical to accurately detect the
abnormal status of UAVs in real-time and help prevent attacks
and accidents in advance.

To enable the detection of a UAV’s abnormal status, we
consider analyzing its sensor data in real-time. This is because
the status of a UAV greatly relies on the inputs of these
sensors. In particular, inertial measurement unit (IMU) sensor
is selected in this paper for the following reasons: (1) As an
important sensor, IMU is equipped by most UAVs; (2) IMU
detects the real-time rate of acceleration as well as the changes
in rotational attributes of the UAV, and thus can be leveraged
for the real-time monitoring of a UAV’s flying status; (3)
IMU has a high data generation rate and hence has a high
possibility of generating sufficient data points before and after
the appearance of abnormal status for detection.

With these factors in mind, this paper aims to explore and
investigate how to detect a UAV’s abnormal status by capturing
and analyzing the corresponding changes in IMU sensor data.
In particular, we propose a data-driven approach with deep
learning to perform effective and efficient anomaly detection
for UAVs, in which a CNN model is constructed and trained to
extract and learn features from IMU sensor data for capturing
signs of abnormal status. As deep learning approaches have
been demonstrated to be effective to learn complex patterns
from labeled data sets, we collect and label a high-quality data
set to support the training of deep learning models through
extensive simulation using our UAV cybersecurity platform.
Our data set covers IMU sensor data obtained from normal
UAV operations as well as these from abnormal UAV status
with different patterns, frequency, duration, and strength. This
data set can also be used to support other related research
in the community (e.g., IMU-based UAV tracking). Different
deep neural network (DNN) models are also examined in this
paper to optimize the performance of our anomaly detection
system. Our evaluation results demonstrate that our detection
system is effective and stable under different conditions.

The rest of our paper is structured as follows: In Section II,
we review and discuss related work. Section III introduces
the construction of our proposed UAV anomaly detection
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Fig.1. ConstructionOverview

system.Weevaluatetheperformanceofourdetectionsystem
inSectionIV.Weconcludethepaperanddiscussfuturework
inSectionV.

II.RELATEDWORK

TheproblemofanomalydetectionforUAVsandother
roboticvehicleshasattractedmanyresearcheffortsdueto
itsimportancetoassuretheirsecurityandsafety[10]–[22].
Existinganomalydetectionsolutionscanbeclassifiedintothe
followingcategoriesaccordingtothemaintechniquestheyare
using,includingsignature-based,redundancy-based,behavior-
based,andlearning-based.
Thesignature-basedapproaches monitorthesystemand

compareitwithpre-definedabnormalpatterns[10].Asthe
performanceofthesignature-basedapproachgreatlyrelieson
thequalityandamountofthesepre-definedabnormalpatterns,
ithastomaintainacomprehensiveandup-to-dateanomaly
dictionary.Therefore,itisnotsuitableforthedetectionof
time-sensitivesystemslikeUAVs,especiallyconsideringits
restrictedonboardcomputingresources.
Theredundancy-basedapproaches[11]–[13]typicallyde-

ployredundanthardwareandsoftwarecomponentstoperform
cross-checkoftheirstatusatruntime.Althoughtheseredun-
dantcomponentsareonlyusedforcriticalsystemtasks,they
inevitablycauseadditionalcostandsystemcomplexity.For
example,multipleversionsofthesamecontrollershavetobe
implementedtoenablesomeredundancy-basedapproaches.
Inaddition,theredundant-basedapproachescannothandle
abnormalstatuscausedbythedefectsofUAVparts(e.g.,a
crackonthepropeller),sincetheduplicationofthesepartsis
physicallyimpractical.
Thebehavioral-basedapproaches[14]–[17]describethe

normalsystemoperationsusingaspecification.Inthespeci-
fication,constraintsareusuallyprogrammedintermsofthe
programstateorexecutiontimeofspecificoperations.The
behavioral-basedapproachesmainlyfocusonprogram-level
anomalies,inwhichbehaviorsinthesystemareconsidered
abnormalifthesespecifiedconstraintsarenotmet.However,
theabnormalstatusofaUAVsystemcanbecausedbymany
factorswithouttouchingtheprogram-level.

Thelearning-basedapproacheshavereceivedmanyresearch
effortsinrecentyears[18]–[22]withtherapiddevelopmentof
machinelearning/deeplearningalgorithmsandhardware.For
example,Nvidia’sJetsonAImodules[23]havebeenadopted
bymultipleUAVplatformstosupportmachinelearningandAI
operations.Thelearning-basedapproachmonitorsthestatus
ofasystemusingatrainedmachinelearningordeeplearning
model.Themainchallengeinlearning-basedapproachesis
howtoobtainahigh-qualitydatasetwithsufficientnormaland
abnormalrecordsfortraining,especiallyfortheabnormaldata.
Unsupervisedlearninghasthepotentialtoeliminatetheneed
forabnormaldata,nevertheless,itcanbesusceptibletoahigh
falsepositiverate.Inthispaper,weovercomethischallenge
byleveragingour UAVcybersecuritysimulationplatform
tosimulatedifferentflyingconditionswiththeinjectionof
anomaliescausedbydifferentfactors.

III.DETAILEDCONSTRUCTION

Theconstructionofourdetectionsystemconsistsofthree
majorstagesaspresentedinFig.1:(1)thecollectionofIMU
sensordatafromUAVoperationsunderbothnormaland
abnormalstatus;(2)theselection,training,andtuningof
appropriateDNNmodelsforUAVanomalydetection;(3)the
constructionofthedetectionsystembasedontheDNNmodel.
Inthefollowing,wepresentthedetailsofeachstageinour
construction.

A.DataCollectionandLabeling

Ahigh-qualitydatasetisanessentialcomponentoftraining
deeplearningmodelsandhelpthemperformthedesiredtask.
Therefore,thefirsttaskinourconstructionistocollecta
balanceddatasetthatcontainssufficientIMUsensordata
frombothnormalandabnormaloperationsofUAVs. While
thenormaldatacanbequicklycollectedbyflyingUAVs
regularly,thegenerationofsufficientabnormaldatafaces
challengesfromthefollowingtwoaspects:(1)theappearance
ofabnormaloperationstatusofUAVsinfieldtestscancause
thecrashofUAVsandleadtohighexperimentalcostdue
tohardwarereplacement;(2)ahigh-qualitydatasetneedsto
coverdatafromabnormalstatusunderdifferentconditions,
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which include the variation of abnormal status in terms of
UAV models, strength, duration, frequency, patterns, as well as
IMU parameters. To overcome these challenges, we leverage
our UAV cybersecurity simulation platform [24] to simulate
the operation of UAVs under different abnormal status. In
particular, PX4 Autopilot [25], Gazebo [26], and QGround-
Control [27] are adopted to establish the flying environment
of UAVs with different UAV models. We then develop the
cybersecurity plug-ins and integrate them into the simulation
platform, which will trigger the corresponding abnormal status
of UAVs during operations. As an example shown in Fig.2,
we can customize UAV flying plans that cover both normal
and abnormal UAV status to support the data collection of the
training of DNN models. An example of the corresponding
IMU sensor data samples on x-acceleration with regard to the
abnormal UAV status is presented in Fig.3. To collect sufficient
data for training, we simulate different flying plans with 7
hours of flying, which consists of both normal flying plans
and flying plans with different anomalies injected.

Fig. 2. Example of a Flying Plan

To prepare the data set for training, we apply different time
windows on the time series data we collected in the simulation.
We vary the duration of time windows from 0.5 second to 5
seconds on the collected data, and represent each time window
as a data vector. A longer time window contains more data
points, however, will also lead to a longer data collection time
for the UAV to perform real-time monitoring and detection.
When labeling the collected time windows, we consider a
time window as abnormal when T% of its data points are
abnormal. Hence, the value of T can be used as the threshold
and adjusted to optimize the detection accuracy. When the
value of T is too small, it may cause a high false positive
rate since a small number of abnormal data points can also be
introduced by environmental factors, such as UAV vibration
caused by wind. Likewise, a large T can lead to the miss
of detection for short abnormal status that does not contain

Fig. 3. Example of Abnormal Status in the Flying and the Abnormal IMU
Sensor Data Samples on x-acceleration

sufficient abnormal data points. According to our evaluation
results, we set time window as 0.5-second and T% = 40%
in our construction. More detailed analyses are provided in
Section IV-A.

B. DNN Model Selection and Training

To identify an appropriate DNN model to build the ab-
normal detection system for the UAV, we examined major
architectures that have been demonstrated to be effective
when handling time series data, including CNN, unidirectional
long short-term memory (LSTM) [28], bidirectional LSTM
(BiLSTM), as well as the combination of CNN and LSTM. In
particular, we consider two combinations of CNN and LSTM:
(1) CNN is used to extract features from raw data and then feed
them into the LSTM for sequence prediction (CNN+LSTM),
and (2) directly integrated CNN into LSTM (ConvLSTM).
We consider CNN and LSTM architectures because CNN
has been demonstrated to be effective for anomaly detection
in different systems [29]. In addition, LSTM is capable of
learning the relationship between past data values and current
data values and representing that relationship in the form of
learned weights, which further preserve the features in the
time-series data.

After evaluating different DNN models, our construction
adopts and tunes the CNN model as presented in Fig.4. Specifi-
cally, convolutional layers are utilized as feature extractors and
a dropout layer is applied after them to prevent the network
from overfitting. After that, the pooling layer is used to reduce
the number of parameters in the model prior to classification.
The outputs are then flattened and fed into the fully-connected
layer with an output size of 2 for final classification with
the follow-up softmax layer and a classification layer. Our
CNN model achieves the best detection accuracy, especially
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Fig.4. ArchitectureofAdoptedCNNModel

whenshorttimewindowsareadoptedtoenablefastdetection.
TheevaluationandcomparisonresultsbetweendifferentDNN
modelsaredetailedinSectionIV-A.

C.ConstructionofDetectionSystem

BasedontheCNNmodel,wenowconstructtheanomaly
detectionsystemasshowninFig.5.TheUAVsystemhasthe
pre-trainedCNNmodeldeployedonit.Toperformreal-time
anomalydetection,theUAVkeepsmonitoringtheIMUsensor
dataandprocessingitaccordingtothetimewindowadopted
bythepre-trainedCNNmodel.ByfeedingtheprocessedIMU
sensordataintotheCNNmodel,itoutputswhetherthedata
isabnormalornot.Toreducethefalsepositiverateduring
thedetection,oursystemconsidersatwo-levelabnormal
determination,i.e.,high-levelwarningiftheprobabilityofthe
monitoreddatatobeabnormalisgreaterthan65%,otherwise
low-levelwarning.Ifahigh-levelwarningisdetected,our
systemwillwarntheUAVsystemimmediatelytotriggerits
protectionstrategies(e.g.,UAVsafemode).Foralow-level
warning,oursystemwillperformasecondarycheck,which
willturnthelow-levelwarningtohigh-levelifanotherlow-
levelwarningisdetectedinthenextfivetimewindows.

IV.EVALUATION

Inthissection,wepresentourevaluationoftheproposed
anomalydetectionsystem.Receiveroperatingcharacteristic
curve(ROCcurve)[30]isusedto measuretheaccuracy
ofourdetectionsystemwiththetruepositiverate(TPR)
andfalsepositiverate(FRP),becausethedetectionsystem
canbemappedasaclassificationproblemwithtwocate-
gories,i.e.,normalandabnormal.TPR= TP

TP+FN measures
thecapabilityofourdetectionsystemtocorrectlyidentify
abnormaldataandFPR= FP

FP+TN

Real-timeIMUdatamonitoring

Datareconstruction

TrainedCNNModel

UAVSystem

Abnormal data detected?

NoYesWarningLevel
High?

No
Secondary
Check

Yes,AnomalyDetected

measurestheerrors
madebyourdetectionsystemthatclassifynormaldataas

Fig.5. UAVAnomalyDetectionSystem

abnormal,whereFNandTNdenotefalsenegativeandtrue
negativerespectively.Therefore,weaimtoincreasetheTPR
ofourproposeddetectionsystemwhileloweringitsFPR,
whichismeasuredbytheAreaundertheROCCurve(AUC)
[30].AUCmeasureshowwellthedetectionmodeliscapable
ofdistinguishingbetweenclasses,andahigherAUCvalue
(0∼1)indicatesabetterperformanceofthedetectionmodel,
inwhichAUC=0andAUC=1indicatethe0%and100%
accuracyrespectively.

A.EvaluationResults

Inourevaluation,weperformedextensiveexperimentsto
exploretheimpactofdifferentfactorsontheperformance
ofourproposeddetectionsystem,includingtheselectionof
DNNmodels,thedurationoftimewindowsfordetection,and
thethresholdvalueT.Inaddition,ourevaluationconsiders
differenttypesofabnormalstatustovalidatetheperformance
ofourdetectionsystem.

Fig.6. EvaluationResultsonDifferentDNNmodels
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WefirstevaluatetheperformanceofdifferentDNNmodels
inourdetectionsystem.Wetrainedandtested6differentCNN
andLSTM-basedDNNmodels.Allmodelsaretrainedwith
200epochs.AsshowninFig.6,CNN-baseddetectionsystem
achievesthebestperformanceforthedetectionofUAVab-
normalstatuswithAUC=0.82.Itisalsonotablethatmodels
withCNNlayersinvolvedachieveabetterperformancethan
theseLSTM-onlymodels.Therefore,CNNisadoptedinthe
constructionofourdetectionsystem.
Todeterminetheappropriatetimewindowusedforthe

detectionofabnormalstatus,wevaryitfrom0.5secondto
5secondsforourCNN-baseddetectionsystemaspresented
inFig.7.Althoughthebestdetectionperformancecanbe
achievedbythe5-secondtimewindowwithAUC=0.921,it
alsosignificantlyincreasesthereal-timedatacollectiontime
foreachdetection.Asanomalydetectionisatime-sensitive
taskforUAVs,earlierdetectionofabnormalstatusisimportant
toprotecttheUAVagainstpotentialsecuritythreatsandhard-
ware/softwarefailures.Therefore,ourdetectionsystemadopts
the0.5-secondtimewindowthatachievesAUC=0.826.With
regardtothethresholdvalueT% inourconstruction,we
varyitfrom0%to50%asshowninFig.8.T%=20%is
adoptedinourconstructionsinceitachievesthebestaccuracy
withAUC =0.871andarelativelylowerthresholdwill
alsoincreasethesensitivityofourdetectionmodeltowards
abnormalstatusofUAVs.

Fig.7. EvaluationResultsonDifferentTimeWindows

Wenowevaluatetheperformanceofourdetectionsys-
temfordifferentanomalies. We firstconsideranoma-
liesthataffect differentcomponents oftheIMU,in-
cludingaccelerometeronly,accelerometer+gyroscope,and
accelerometer+gyroscope+orientation.AsshowninFig.9,our
detectionsystemachievesthebestperformance(AUC=0.937)
foranomaliesthatonlyaffecttheaccelerometer,andisalso
effectiveforothertypesofanomaliesthataffect multiple
componentsintheIMU.Moreover,wealsoevaluateanomalies
withdifferentduration,from 1∼ 2secondsto4∼ 5
seconds.Fig.10showsthatourdetectionsystemiseffectiveto

Fig.8. EvaluationResultsonDifferentThresholdValues

detectanomalieswithdifferentdurationandachievesastable
performancewithAUCfrom0.841to0.881

Fig.9. EvaluationResultsonDifferentTypesofAnomalies

V.CONCLUSIONANDFUTUREWORK

Inthispaper,weproposeaUAVanomalydetectionsystem
poweredbytheCNN-basedIMUsensordataanalysis.By
examiningandanalyzingdifferentDNNmodelsanddetection
timewindowsinourdesign,weoptimizetobalancethe
performanceofourdetectionsystemintermsofaccuracy
andefficiency.AdatasetforUAVIMUdataiscollected
andlabeledwithourextensivesimulationusingourUAV
cybersecurityplatform,whichnotonlysupportsthetraining
ofCNNmodelsinourdesign,butwillalsobenefittheother
relatedresearchinthecommunity(e.g.,IMU-basedUAV
tracking).Ourevaluationresultsdemonstratethatourdetection
systemachieveshighaccuracyunderdifferentconditions.
Asfuturework,weplantofurthertestandevaluateour
proposeddetectionsystemusinghardware-in-the-loopsimu-
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Fig. 10. Evaluation results on Anomalies with Different Duration

lation and field tests. In addition, we plan to design a fail-safe
mechanism for UAVs to protect them from detected anomalies.
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