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Abstract—Thanks to the high mobility and rich sensing ca-
pabilities of unmanned aerial vehicles (UAVs), or drones, they
are increasingly leveraged to perform a series of military and
civilian tasks today. Meanwhile, UAVs are also facing various
security and safety concerns raised by both external attacks
and internal hardware/software failures. Therefore, detecting the
abnormal status of a UAV is a critical task to protect it against
malicious adversaries and prevent potential crashes. In this paper,
we propose an anomaly detection system for UAVs by monitoring
and analyzing their sensor data in real-time using deep learning
approaches. The proposed system leverages the convolutional
neural network (CNN) to extract and learn features automatically
from raw sensor data and then process them to support anomaly
detection. We construct a data set of UAV IMU sensor data
using our UAV cybersecurity simulation platform to support
the training of our CNN model. Different deep learning models
are also evaluated and compared in this paper. We validate the
performance of the proposed detection system using extensive
experimental evaluation, which demonstrates that our system
achieves high detection accuracy under different conditions.

I. INTRODUCTION

In recent years, UAVs have been adopted in a spectrum of
military and civilian applications, including remote sensing,
search and rescue, infrastructure inspection, and intelligence,
surveillance, and reconnaissance (ISR) [1]-[4]. Compared with
traditional static sensors, UAVs have clear advantages in
coverage, mobility, and easy deployment, which make them
extremely suitable for onsite aerial monitoring in both urban
and rural areas, especially for these difficult-to-reach areas.
Currently, there are over 522, 000 commercial UAVs registered
in the United States with the Federal Aviation Administration
(FAA), and this number is expected to double by 2024 [5].

As a typical type of cyber-physical system, UAVs face
potential security attacks from multiple aspects, including but
not limited to control, software, sensors, and communications
[6], [7]. Once these external threats have been successfully
launched on a UAY, its operation might turn into abnormal
status, which can further cause severe consequences. For
example, GPS spoofing attacks can mislead the UAV’s flying
pattern [8] and spoofing attacks on gyroscopic sensors of a
UAV through acoustic noises can lead to its crash [9]. In addi-
tion, a UAV’s operation can also be affected by internal factors,
such as defects on UAV parts and software failures. These
factors are usually not obvious to identify at beginning, but
can cause abnormal status during the operation. For example,

a small crack on the propeller of a UAV may not be noticed
during the takeoff phase, however, it can gradually affect the
operations of the UAV and may even lead to an accident if
the crack becomes larger during its flight. Therefore, with the
increasing usage of UAVs, it is critical to accurately detect the
abnormal status of UAVs in real-time and help prevent attacks
and accidents in advance.

To enable the detection of a UAV’s abnormal status, we
consider analyzing its sensor data in real-time. This is because
the status of a UAV greatly relies on the inputs of these
sensors. In particular, inertial measurement unit (IMU) sensor
is selected in this paper for the following reasons: (1) As an
important sensor, IMU is equipped by most UAVs; (2) IMU
detects the real-time rate of acceleration as well as the changes
in rotational attributes of the UAV, and thus can be leveraged
for the real-time monitoring of a UAV’s flying status; (3)
IMU has a high data generation rate and hence has a high
possibility of generating sufficient data points before and after
the appearance of abnormal status for detection.

With these factors in mind, this paper aims to explore and
investigate how to detect a UAV’s abnormal status by capturing
and analyzing the corresponding changes in IMU sensor data.
In particular, we propose a data-driven approach with deep
learning to perform effective and efficient anomaly detection
for UAVs, in which a CNN model is constructed and trained to
extract and learn features from IMU sensor data for capturing
signs of abnormal status. As deep learning approaches have
been demonstrated to be effective to learn complex patterns
from labeled data sets, we collect and label a high-quality data
set to support the training of deep learning models through
extensive simulation using our UAV cybersecurity platform.
Our data set covers IMU sensor data obtained from normal
UAV operations as well as these from abnormal UAV status
with different patterns, frequency, duration, and strength. This
data set can also be used to support other related research
in the community (e.g., IMU-based UAV tracking). Different
deep neural network (DNN) models are also examined in this
paper to optimize the performance of our anomaly detection
system. Our evaluation results demonstrate that our detection
system is effective and stable under different conditions.

The rest of our paper is structured as follows: In Section II,
we review and discuss related work. Section III introduces
the construction of our proposed UAV anomaly detection
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system. We evaluate the performance of our detection system
in Section IV. We conclude the paper and discuss future work
in Section V.

II. RELATED WORK

The problem of anomaly detection for UAVs and other
robotic vehicles has attracted many research efforts due to
its importance to assure their security and safety [10]-[22].
Existing anomaly detection solutions can be classified into the
following categories according to the main techniques they are
using, including signature-based, redundancy-based, behavior-
based, and learning-based.

The signature-based approaches monitor the system and
compare it with pre-defined abnormal patterns [10]. As the
performance of the signature-based approach greatly relies on
the quality and amount of these pre-defined abnormal patterns,
it has to maintain a comprehensive and up-to-date anomaly
dictionary. Therefore, it is not suitable for the detection of
time-sensitive systems like UAVs, especially considering its
restricted onboard computing resources.

The redundancy-based approaches [11]-[13] typically de-
ploy redundant hardware and software components to perform
cross-check of their status at runtime. Although these redun-
dant components are only used for critical system tasks, they
inevitably cause additional cost and system complexity. For
example, multiple versions of the same controllers have to be
implemented to enable some redundancy-based approaches.
In addition, the redundant-based approaches cannot handle
abnormal status caused by the defects of UAV parts (e.g., a
crack on the propeller), since the duplication of these parts is
physically impractical.

The behavioral-based approaches [14]-[17] describe the
normal system operations using a specification. In the speci-
fication, constraints are usually programmed in terms of the
program state or execution time of specific operations. The
behavioral-based approaches mainly focus on program-level
anomalies, in which behaviors in the system are considered
abnormal if these specified constraints are not met. However,
the abnormal status of a UAV system can be caused by many
factors without touching the program-level.

The learning-based approaches have received many research
efforts in recent years [18]-[22] with the rapid development of
machine learning/deep learning algorithms and hardware. For
example, Nvidia’s Jetson Al modules [23] have been adopted
by multiple UAV platforms to support machine learning and Al
operations. The learning-based approach monitors the status
of a system using a trained machine learning or deep learning
model. The main challenge in learning-based approaches is
how to obtain a high-quality data set with sufficient normal and
abnormal records for training, especially for the abnormal data.
Unsupervised learning has the potential to eliminate the need
for abnormal data, nevertheless, it can be susceptible to a high
false positive rate. In this paper, we overcome this challenge
by leveraging our UAV cybersecurity simulation platform
to simulate different flying conditions with the injection of
anomalies caused by different factors.

ITI. DETAILED CONSTRUCTION

The construction of our detection system consists of three
major stages as presented in Fig.1: (1) the collection of IMU
sensor data from UAV operations under both normal and
abnormal status; (2) the selection, training, and tuning of
appropriate DNN models for UAV anomaly detection; (3) the
construction of the detection system based on the DNN model.
In the following, we present the details of each stage in our
construction.

A. Data Collection and Labeling

A high-quality data set is an essential component of training
deep learning models and help them perform the desired task.
Therefore, the first task in our construction is to collect a
balanced data set that contains sufficient IMU sensor data
from both normal and abnormal operations of UAVs. While
the normal data can be quickly collected by flying UAVs
regularly, the generation of sufficient abnormal data faces
challenges from the following two aspects: (1) the appearance
of abnormal operation status of UAVs in field tests can cause
the crash of UAVs and lead to high experimental cost due
to hardware replacement; (2) a high-quality data set needs to
cover data from abnormal status under different conditions,
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which include the variation of abnormal status in terms of
UAV models, strength, duration, frequency, patterns, as well as
IMU parameters. To overcome these challenges, we leverage
our UAV cybersecurity simulation platform [24] to simulate
the operation of UAVs under different abnormal status. In
particular, PX4 Autopilot [25], Gazebo [26], and QGround-
Control [27] are adopted to establish the flying environment
of UAVs with different UAV models. We then develop the
cybersecurity plug-ins and integrate them into the simulation
platform, which will trigger the corresponding abnormal status
of UAVs during operations. As an example shown in Fig.2,
we can customize UAV flying plans that cover both normal
and abnormal UAV status to support the data collection of the
training of DNN models. An example of the corresponding
IMU sensor data samples on x-acceleration with regard to the
abnormal UAV status is presented in Fig.3. To collect sufficient
data for training, we simulate different flying plans with 7
hours of flying, which consists of both normal flying plans
and flying plans with different anomalies injected.
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Fig. 2. Example of a Flying Plan

To prepare the data set for training, we apply different time
windows on the time series data we collected in the simulation.
We vary the duration of time windows from 0.5 second to 5
seconds on the collected data, and represent each time window
as a data vector. A longer time window contains more data
points, however, will also lead to a longer data collection time
for the UAV to perform real-time monitoring and detection.
When labeling the collected time windows, we consider a
time window as abnormal when T'% of its data points are
abnormal. Hence, the value of T can be used as the threshold
and adjusted to optimize the detection accuracy. When the
value of 7T is too small, it may cause a high false positive
rate since a small number of abnormal data points can also be
introduced by environmental factors, such as UAV vibration
caused by wind. Likewise, a large T' can lead to the miss
of detection for short abnormal status that does not contain

x-acceleration
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Fig. 3. Example of Abnormal Status in the Flying and the Abnormal IMU
Sensor Data Samples on x-acceleration

sufficient abnormal data points. According to our evaluation
results, we set time window as 0.5-second and T% = 40%
in our construction. More detailed analyses are provided in
Section IV-A.

B. DNN Model Selection and Training

To identify an appropriate DNN model to build the ab-
normal detection system for the UAV, we examined major
architectures that have been demonstrated to be effective
when handling time series data, including CNN, unidirectional
long short-term memory (LSTM) [28], bidirectional LSTM
(BiLSTM), as well as the combination of CNN and LSTM. In
particular, we consider two combinations of CNN and LSTM:
(1) CNN is used to extract features from raw data and then feed
them into the LSTM for sequence prediction (CNN+LSTM),
and (2) directly integrated CNN into LSTM (ConvLSTM).
We consider CNN and LSTM architectures because CNN
has been demonstrated to be effective for anomaly detection
in different systems [29]. In addition, LSTM is capable of
learning the relationship between past data values and current
data values and representing that relationship in the form of
learned weights, which further preserve the features in the
time-series data.

After evaluating different DNN models, our construction
adopts and tunes the CNN model as presented in Fig.4. Specifi-
cally, convolutional layers are utilized as feature extractors and
a dropout layer is applied after them to prevent the network
from overfitting. After that, the pooling layer is used to reduce
the number of parameters in the model prior to classification.
The outputs are then flattened and fed into the fully-connected
layer with an output size of 2 for final classification with
the follow-up softmax layer and a classification layer. Our
CNN model achieves the best detection accuracy, especially
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Fig. 4. Architecture of Adopted CNN Model

when short time windows are adopted to enable fast detection.
The evaluation and comparison results between different DNN
models are detailed in Section IV-A.

C. Construction of Detection System

Based on the CNN model, we now construct the anomaly
detection system as shown in Fig.5. The UAV system has the
pre-trained CNN model deployed on it. To perform real-time
anomaly detection, the UAV keeps monitoring the IMU sensor
data and processing it according to the time window adopted
by the pre-trained CNN model. By feeding the processed IMU
sensor data into the CNN model, it outputs whether the data
is abnormal or not. To reduce the false positive rate during
the detection, our system considers a two-level abnormal
determination, i.e., high-level warning if the probability of the
monitored data to be abnormal is greater than 65%, otherwise
low-level warning. If a high-level warning is detected, our
system will warn the UAV system immediately to trigger its
protection strategies (e.g., UAV safe mode). For a low-level
warning, our system will perform a secondary check, which
will turn the low-level warning to high-level if another low-
level warning is detected in the next five time windows.

IV. EVALUATION

In this section, we present our evaluation of the proposed
anomaly detection system. Receiver operating characteristic
curve (ROC curve) [30] is used to measure the accuracy
of our detection system with the true positive rate (TPR)
and false positive rate (FRP), because the detection system
can be mapped as a classification problem with two cate-
gories, i.e., normal and abnormal. TPR = TPT;% measures
the capability of our detection system to correctly identify
abnormal data and FPR = % measures the errors
made by our detection system that classify normal data as
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Fig. 5. UAV Anomaly Detection System

abnormal, where FN and T'N denote false negative and true
negative respectively. Therefore, we aim to increase the TPR
of our proposed detection system while lowering its FPR,
which is measured by the Area under the ROC Curve (AUC)
[30]. AUC measures how well the detection model is capable
of distinguishing between classes, and a higher AUC value
(0 ~ 1) indicates a better performance of the detection model,
in which AUC = 0 and AUC = 1 indicate the 0% and 100%
accuracy respectively.

A. Evaluation Results

In our evaluation, we performed extensive experiments to
explore the impact of different factors on the performance
of our proposed detection system, including the selection of
DNN models, the duration of time windows for detection, and
the threshold value T'. In addition, our evaluation considers
different types of abnormal status to validate the performance
of our detection system.

Fig. 6. Evaluation Results on Different DNN models
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We first evaluate the performance of different DNN models
in our detection system. We trained and tested 6 different CNN
and LSTM-based DNN models. All models are trained with
200 epochs. As shown in Fig.6, CNN-based detection system
achieves the best performance for the detection of UAV ab-
normal status with AUC = 0.82. It is also notable that models
with CNN layers involved achieve a better performance than
these LSTM-only models. Therefore, CNN is adopted in the
construction of our detection system.

To determine the appropriate time window used for the
detection of abnormal status, we vary it from 0.5 second to
5 seconds for our CNN-based detection system as presented
in Fig.7. Although the best detection performance can be
achieved by the 5-second time window with AUC = 0.921, it
also significantly increases the real-time data collection time
for each detection. As anomaly detection is a time-sensitive
task for UAVs, earlier detection of abnormal status is important
to protect the UAV against potential security threats and hard-
ware/software failures. Therefore, our detection system adopts
the 0.5-second time window that achieves AUC = 0.826. With
regard to the threshold value T'% in our construction, we
vary it from 0% to 50% as shown in Fig.8. T% = 20% is
adopted in our construction since it achieves the best accuracy
with AUC = 0.871 and a relatively lower threshold will
also increase the sensitivity of our detection model towards
abnormal status of UAVs.

Fig. 7. Evaluation Results on Different Time Windows

We now evaluate the performance of our detection sys-
tem for different anomalies. We first consider anoma-
lies that affect different components of the IMU, in-
cluding accelerometer only, accelerometer+gyroscope, and
accelerometer+gyroscope--orientation. As shown in Fig.9, our
detection system achieves the best performance (AUC = 0.937)
for anomalies that only affect the accelerometer, and is also
effective for other types of anomalies that affect multiple
components in the IMU. Moreover, we also evaluate anomalies
with different duration, from 1 ~ 2 seconds to 4 ~ 5
seconds. Fig.10 shows that our detection system is effective to
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Fig. 8. Evaluation Results on Different Threshold Values

detect anomalies with different duration and achieves a stable
performance with AUC from 0.841 to 0.881

Fig. 9. Evaluation Results on Different Types of Anomalies

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a UAV anomaly detection system
powered by the CNN-based IMU sensor data analysis. By
examining and analyzing different DNN models and detection
time windows in our design, we optimize to balance the
performance of our detection system in terms of accuracy
and efficiency. A data set for UAV IMU data is collected
and labeled with our extensive simulation using our UAV
cybersecurity platform, which not only supports the training
of CNN models in our design, but will also benefit the other
related research in the community (e.g., IMU-based UAV
tracking). Our evaluation results demonstrate that our detection
system achieves high accuracy under different conditions.

As future work, we plan to further test and evaluate our
proposed detection system using hardware-in-the-loop simu-
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lation and field tests. In addition, we plan to design a fail-safe
mechanism for UAVs to protect them from detected anomalies.
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