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Abstract—Unmanned aerial vehicles (UAVs) are increasingly
leveraged to perform infrastructure inspection tasks, especially
with the support of rapidly evolving AI algorithms and hardware
in recent years. While the integration of UAV and AI techniques
enhances the efficiency and effectiveness of infrastructure in-
spection, it also raises security concerns due to the potential
vulnerabilities existing in the underlying AI models. In this paper,
we propose to investigate and discover these vulnerabilities with
the case study on bridge inspection. In particular, we designed
a two-stage approach that can construct effective adversarial
perturbations that make the UAV miss the detection of risk-
prone regions during the inspection. Spatial constraints, physical
limits, as well as dynamic environmental changes are taken into
consideration in our approach to make it practical in the physical
world. We evaluate our approach using the COCO-Bridge
dataset. Our experimental results demonstrate the effectiveness
of our approach in both white-box attack and black-box attack
settings.

I. INTRODUCTION

Recent years have witnessed a significant growth in the

adoption of UAVs, or drones, in various commercial services.

According to a report from Philly By Air [1], there are over

522, 000 commercial drone registered in the United States

with the Federal Aviation Administration (FAA) and this

number is expected to double by 2024. Thanks to the high

mobility and rich sensing capabilities of UAVs, they are now

being increasingly leveraged for infrastructure monitoring and

inspection tasks (e.g., bridge, pavement, and power utility)

[2], especially for these hard-to-access areas. The UAV-based

infrastructure inspection is made more effective with the rapid

development of AI algorithms and hardware [3]–[6]. For

example, Nvidia’s Jetson AI modules [7] have been adopted

by multiple UAV platforms to support AI operations. In a

UAV-based infrastructure inspection task, the UAV leverages

the deep neural network (DNN), such as YOLO [8] and

Faster-RCNN [9], to detect risk-prone regions and then collect

additional data from these detected regions for further analysis.

Although the integration of DNN and UAV can enhance the

efficiency and effectiveness of inspection, it also raises security

and safety concerns due to the fact that the DNN models used

for inspection can be vulnerable to adversarial perturbations.

In particular, multiple recent studies have demonstrated that
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crafted perturbations on visual input can confuse DNN models

and make them misunderstand the input data to output wrong

results [10]. If this kind of vulnerabilities are successfully ex-

ploited by adversaries, risk-prone regions of the infrastructure

will be ignored during the inspection, which can cause severe

safety consequences, such as bridge failures. In this paper, we

choose bridge inspection as the case study to explore potential

vulnerabilities in DNN-assisted UAV infrastructure inspection.

According to a recent report from the American Society of

Civil Engineers (ASCE) [11], 42% of all bridges are at least

50 years old, and 7.5% of the nation’s bridges are considered

structurally deficient. All these facts indicate the importance

of accurate and timely inspection of bridge structures, and

hence it is critical to understand and address the potential

vulnerability in the inspection process.

The generation of effective adversarial perturbations to iden-

tify the potential vulnerabilities in UAV-based bridge inspec-

tion faces challenges from the following aspects. First, bridge’s

risk-prone regions exist in an unconstrained environment that

has changing conditions, such as ambient light, weather,

distance and angle of UAV’s camera. Second, the adversarial

perturbation applied on the bridge shall be sensitive to the

UAV’s camera, but inconspicuous to the human eyes. Third,

instead of misclassifying the risk-prone regions to a wrong

category (e.g., bearing to cover plate termination), successful

adversarial attacks need to make the UAV completely skip risk-

prone regions during the inspection. This is because a wrong

classification will still trigger the UAV to collect additional

data of that region for in-depth analysis.

With these factors in mind, this paper proposes to discover

potential vulnerabilities of UAV-based bridge inspection by

designing effective adversarial perturbations. In particular, this

paper aims to contribute to the understanding of adversarial

perturbations against DNN models used for bridge inspection,

which can be leveraged to support the design of corresponding

defenses in the future to secure the UAV-based infrastructure

inspection. Specifically, we propose a two-stage approach

towards the generation of practical and effective adversarial

perturbations. The stage-one of our approach creates adver-

sarial perturbations with bounded modifications to minimize

the probability of detecting risk-prone regions using DNN. In

stage-two, an adjustment is applied to the created adversarial

perturbations to make them fit into the spatial constraints

661

2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI)

DOI 10.1109/ICTAI52525.2021.00105

20
21

 IE
EE

 3
3r

d 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 T
oo

ls
 w

ith
 A

rti
fic

ia
l I

nt
el

lig
en

ce
 (I

C
TA

I)
 | 

97
8-

1-
66

54
-0

89
8-

1/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

TA
I5

25
25

.2
02

1.
00

10
5

978-1-6654-0898-1/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on February 08,2022 at 16:20:18 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Problem Overview

and physical limits. We evaluate our proposed approach using

Faster R-CNN [9], which supports the deployment on UAVs

with Nvidia Jetson for bridge inspection. Our experimental

results show that white-box attacks and black-box attacks

constructed using the proposed approach can cause the UAV

to miss the detection of 48.28% ∼ 65.38% and 41.38% ∼
62.89% risk-prone regions respectively under different envi-

ronmental conditions.

The rest of this paper is organized as follows: In Section II,

we review and discuss related works. Section III formulates

the problem of this paper with the discussion of the system

model and the adversary model. Section IV presents the

detailed construction of our approach, which is followed by

the evaluation in Section V. We conclude this paper in Section

VI.

II. RELATED WORK

The vulnerability of neural networks to adversarial examples

was first pointed out by Szegedy et al. [12], which demon-

strated that a small perturbation on an image can lead to the

misclassification of the learning model with high confidence.

Since then, a significant amount of research efforts have been

put in towards adversarial perturbations on DNNs [10]. The

core idea of these works is using carefully crafted modifi-

cations to the visual inputs of DNNs to cause the systems

they control to misbehave in unexpected and even dangerous

manner. Schemes proposed to generate adversarial examples

can be classified into two major categories: 1) maximizing

the loss function of the target model by adjusting the inputs

of the model; and 2) using a surrogate objective function to

cause the target model to misclassify the modified input. For

both categories of schemes, per-instance generation is typically

needed to optimize the performance of the adversarial exam-

ples, i.e., separate optimization for each image to generate an

adversarially perturbed image.

Besides leveraging adversarial examples to attack the clas-

sification of DNN models, recent research also proposed to

apply the attacks to DNN-based object detection. In object

detection tasks, region of interest (RoI) is typically recognized

first and then classified to a specific object. Therefore, the core

idea of generating adversarial attacks against object detection

is to create adversarial examples against the ROIs. Bao et. al.

[13] proposed a sparse adversarial attack on object detectors

with bounded l0 norm pertubation. Xie et al. [14] proposed

a scheme using dense adversary generation that considers all

objects at the same time and then extends the optimization

problem on classification to object detection for the generation

of adversarial examples. Also, attacks using project gradient

descent and adversarial training on one-stage object detectors

are studied in [15], [16]. Recently, Liu et al. proposed a

momentum iterative fast gradient sign method [17], which

improves the accuracy of adversarial attacks on Faster R-CNN

for object detection.

III. PROBLEM FORMULATION

As depicted in Fig.1, a UAV with a trained DNN model

is performing inspections of a bridge. The UAV captures

imagery data and analyzes in real-time to determine if the

inspected region is risk-prone. For detected risk-prone regions,

the UAV will collect additional data for further analysis. In

this paper, we consider four categories of risk-prone regions

in bridges that may contain defects, including bearing, out
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of plane stiffener, gusset plate connection, and cover plate

termination.

The purpose of the adversary is to confuse the UAV and

make them miss the detection of risk-prone regions of the

bridge during the inspection. The adversary launches the attack

by placing adversarial perturbations to risk-prone regions of

the bridge before it is inspected by the task UAV. In practice,

the adversary can place adversarial perturbations with spray

painting after the position to attack is determined. Alterna-

tively, the adversary can have UAVs perform an inspection on

the target bridge and collect data for analysis. We consider

both white-box and black-box attacks from the adversary. In

the white-box attack, the adversary has the DNN model and

parameters to be used by the task UAV, and then analyzes

the model and bridge data to figure out optimized adversarial

perturbations used for attacking. In the black-box attack, the

adversary does not have access to the DNN model used by

the task UAV, and will generate the adversarial perturbations

based on his/her own DNN models and the bridge data he/she

collected.

IV. ADVERSARIAL ATTACKS TOWARDS BRIDGE

INSPECTION

During the detection of risk-prone regions of a bridge,

the DNN model first recognizes RoIs from the imagery data

collected by the task UAV and place bounding boxes on them.

Then, these RoIs will be classified into the corresponding

category of risk-prone regions. Therefore, the goal of our

design is to examine whether it is possible to create effective

perturbations on the bridge that cause the DNN model to skip

RoIs during the inspection.

We denote a single image of a bridge area captured by

the UAV as x, which is used as the input of the DNN

model. The perturbation to be added to x is denoted as β
and hence x′ = x+ β is the corresponding adversarial input.

We also use C to denote the set of all categories of risk-

prone regions, and B to denote the set of all potential RoIs.

Given an RoI b ∈ B, the target of the added adversarial

perturbation is to make the probability of classifying b as any

category of risk-prone regions (c ∈ C) become smaller than

the predefined threshold (T ). Therefore, our problem can be

transformed as a constrained optimization problem to search

an effective adversarial perturbation β for a risk-prone region,

which achieves

β < D s.t. P(b→ c) < T , ∀ c ∈ C (1)

where D is the maximum size of the perturbation that can

be applied to a risk-prone region of the bridge. To improve

the effectiveness and robustness of the perturbations, we

reformulate it as

β < D s.t. min P(γ, x′, C), c ∈ C (2)

where γ is the set of model parameters and P() is the

probability that x′ is classified as a risk-prone region category

Algorithm 1: Construction of Adversarial Perturbation

Input: x, target area θ to add perturbation

Output: Adversarial perturbation (βoptimal, koptimal)

Stage-1:

k: the position of β (denoted as k), K: a queue;

set minProb = 100%;

for β = 0.1D; β ≤ D; β = β + 0.1D do
Set k to the left-top corner of θ;

while k does not reach the right-bottom corner of
θ do

p = average(P(γ, x+ β, c)), c ∈ C;

push (β, k, p) to K;

if p < minProb then
minProb = p;

βoptimal = β, koptimal = k;

end
Move k rightward by w;

if k reaches the right bound of θ then
Move k downward by h;

Move k leftward to the left bound of θ;

end
end

end

Stage-2:

if (βoptimal, koptimal) is a valid pertubation then
break;

end
sort K in an ascending order in terms of p;

for each k in K do
if (β, k) is a valid pertubation then

βoptimal = β, koptimal = k;

break;

end
end

c, c ∈ C. It is clear that adversarial perturbations can achieve

the best performance by minimizing the output of P(γ, x′, C).

A. Construction of Adversarial Perturbations

We now present the two-stage approach for the construction

of attacks using adversarial perturbations by solving Eq.2 with

the consideration of spatial constraints and physical limits. The

detailed design of our approach is presented in Algorithm.1.

In our design, the adversary can identify the initial target

area θ to add perturbations by flying his/her UAVs around the

bridge and collect imagery data of its risk-prone regions. After

target area θ are determined, our approach will completely

scan it with different sizes of adversary perturbations from

corner to corner in the Stage-1, in which the combination of

(βoptimal, koptimal) that minimize the average probability of

P(γ, x + β, c), c ∈ C can be obtained. The Stage-2 of our

approach is designed to examine whether (βoptimal, koptimal)
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obtained in Stage-1 is a valid perturbation. If not, the pertur-

bations sorted in queue K according to their probabilities will

be checked until a valid perturbation is obtained.

To determine whether a perturbation is valid or not, we

consider the following factors in terms of spatial constraints

and physical limits introduced by the physical world. Unlike

attacking digital images that can apply perturbations to any

part of the image, the spatial constraints in our situation limit

the application of perturbations on the physical object (i.e.,

bridge) only but not on the background areas (e.g., sky and

river). In addition, attacks on digital images are able to modify

any single pixel to the desired value for the generation of

perturbation. However, it is impractical to generate physical

perturbations (e.g., paint, sticker) to match the size and value

of such optimal pixels for attacking. Therefore, the checking

in Stage-2 of our approach will exclude solutions that are

restricted by these physical factors. For example, the values

of the perturbations shall be in the set of printable colors.

B. Impact of Environmental Conditions

Besides the spatial constraints and physical limits, dynamic

environmental conditions can also affect the effectiveness of

the adversarial perturbations. For example, UAVs can perform

the inspection task at different distances and angles with

dynamic ambient light and weather conditions. Therefore,

instead of obtaining a local optimal adversarial perturbation in

a specific environmental condition, our approach shifts the em-

phasis to figuring out a global optimal adversarial perturbation

that achieves the overall best performance in different condi-

tions for the same risk-prone region. Given p1, p2, · · · , pn as

the probability of average(P(γ, x + β, c)), c ∈ C under n
different conditions, we define the global optimal adversarial

perturbation βoptimal that achieves the minimized weighted

average probability as

βoptimal → min
u1p1 + u2p2 + · · ·+ unpn

n
(3)

u1, u2, · · · , un are the weights for each condition, which are

assigned based on the possibility to appear of each condition

in practice. For example, a regular daylight condition is more

common for inspection tasks compared with a low ambient

light condition. To obtain data under different conditions, we

first rotate the image during the analysis to simulate different

angles. Then, data augmentation is applied to obtain images

with different ambient light conditions (bright to low-light)

and distances (zoom in/out) as examples shown in Fig.2.

V. EVALUATION

A. Experimental Settings

To evaluate the performance of our proposed approach,

we implemented it on Faster-RCNN based bridge inspection.

ResNet and VGG are adopted as the backbone architectures

respectively. We use COCO-Bridge dataset [6] for our evalu-

ation, which contains 719 bridge images with 2337 annotated

risk-prone regions for training and another 55 images for

testing. Four categories of risk-prone regions of bridges are

Fig. 2. Examples of the Same Bridge Area under Different Conditions

considered, including bearing, out of plane stiffener, gusset

plate connection, and cover plate termination. The training of

DNN models and generation of adversarial perturbations are

performed on a desktop computer with i7 8-core CPU, 32GB

memory, and one RTX 3070 GPU.

In our evaluation, the IoU threshold is set as 0.7. To measure

the effectiveness of our attacks, we compare the numbers of

RoIs detected for risk-prone regions with and without our

attacks. Therefore, we define the attack success rate as

# RoIs without attack −# RoIs with attack

# RoIs without attack
(4)

Without Attacks With Attacks

Fig. 3. Examples of Inspection with and without Attacks

B. Experimental Results

White-box Attack: We first evaluate the performance of our

approach in terms of white-box attacks, in which the Faster-

RCNN (ResNet) is used. Fig.3 presents examples of the

inspection results with and without attacks. As summarized

in Table I, our approach achieves attack success rates from

48.28% to 65.38% under different environmental conditions,

i.e., the attacks will confuse the UAV to miss more than half

of the risk-prone regions during the inspection of most cases.

If defects exist in these missed risk-prone regions are not

addressed in time, they can cause severe safety consequences.

It is noteworthy that the DNN model detects a relatively lower

number of RoIs in the low-light environment. This is because
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the reduced light environment significantly affects the quality

of imagery data collected by the UAV’s camera.

TABLE I
WHITE-BOX ATTACK RESULTS

Scenario
# of RoIs
without Attack

# of RoIs
with Attack

Success Rate

Regular 98 44 55.1%
Bright 78 27 65.38%
Low-light 29 15 48.28%
Changed Distance 97 37 61.86%

Black-box Attack: With regard to the black-box attacks,

we apply the adversarial perturbations generated using the

adversary’s Faster-RCNN model (VGG) to the Faster-RCNN

model (ResNet) used by the UAV. As presented in Table II,

the effectiveness of our approach for black-box attacks is

comparable with that in white-box attacks.

TABLE II
BLACK-BOX ATTACK RESULTS

Scenario
# of RoIs
without Attack

# of RoIs
with Attack

Success Rate

Regular 98 43 56.12%
Bright 78 32 58.97%
Low-light 29 17 41.38%
Changed Distance 97 36 62.89%

C. Discussion

Attack Success Rate: In practical attacks towards UAV-

based infrastructure inspection, a high attack success rate

(e.g., > 75%) can lead the inspector to doubt about the data

collected by the UAV. When the attacks make the UAV detect

only a small portion of risk-prone regions, the inspector has a

high chance to realize the potential problems in the detection

tools, because bridges typically contain multiple risk-prone

regions. Therefore, practical adversarial perturbation may try

to reduce the number of RoIs by 30% ∼ 40% for a UAV’s

inspection. For infrastructures like bridge, the missed detection

of a small amount of risk-prone regions with defects can still

lead to severe consequences if they are not addressed in time.

Size of Perturbation: During the practical UAV-based in-

spection, the size of the same perturbation can vary in images

captured by UAVs at different distances, i.e., a smaller distance

indicates a larger perturbation. In practical attacks, the size

of perturbation can be determined by images collected at a

relatively large distance using UAVs. This is because the per-

turbation will be enlarged in the image when the UAV flying

towards the bridge, which guarantees that the perturbation still

covers the attacking area.

VI. CONCLUSION

In this paper, we investigate and discover the potential

security vulnerabilities in UAV-based infrastructure inspection

with the focus on bridge inspection. A two-stage approach

is proposed in this paper for the generation of effective and

physically realizable adversarial perturbations. The evaluation

results on the real-world dataset demonstrate the effectiveness

of adversarial perturbations generated using our approach in

both white-box and black-box attacks. Evaluation with the

consideration of different environmental conditions is also

conducted to validate the robustness of our approach. This

research contributes to the understanding of adversarial attacks

against DNN models used for infrastructure inspection. Based

on the discovery of this paper, corresponding defenses shall be

designed in the future to protect the UAV-based infrastructure

inspection from adversarial attacks.
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