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2 A. Iarrobino et al.
1 Introduction

Given two graded Artinian Gorenstein (AG) algebras A and T over a field F, of socle
degrees d > k, respectively, and a surjective algebra map between them 7: A — T,
we construct a new graded AG algebra A of socle degree d called the cohomological
blowup of A along 7; we shall sometimes refer to A as BUG, short for blowup
Gorenstein. As the name suggests, our construction is based on the blow-up operation
in complex geometry, and particularly, its effect on the (singular) cohomology rings
of the spaces involved. The purpose of the present paper is to extend this blow-up
operation on cohomology rings to the more general class of graded AG algebras, to
study its interactions with other familiar algebraic constructs, and to draw parallels to
corresponding geometric ones. Our cohomological blowups are very different from the
much-studied blow-up algebras (Rees algebras and related rings), which correspond to
the coordinate ring (not the cohomology ring) of the blow-up variety [45].

Generally speaking, graded AG algebras are algebraic analogues of cohomology
algebras (in even degrees) of smooth, compact, even-dimensional manifolds, for instance
complex manifolds or symplectic manifolds. For compact complex (or symplectic)
manifolds 7: Y — X of (complex) dimensions k < d, respectively, the blowup of X along
7 is another compact complex d-dimensional manifold X obtained from X by removing
Y and gluing in its place a codimension one submanifold ¥ called the exceptional
divisor, which can be realized as the projectivization of the normal bundle Ny x. The
cohomology algebras (over Q) of these spaces Y, X, Y, and X satisfy the following
three algebraic properties. For notational convenience, let A = H2(X), T = H?*(Y),
A = H?(X), and T = H?*(Y), graded so that A; = H%(X), and so on.

First, if B: X — X is the blow-down map, Bo: Y — Y its restriction to the excep-
tional divisor, and #: ¥ < X the natural inclusion map, then the obvious commutative

diagram of spaces induces a commutative diagram of cohomology algebras:

B
<;

&1T>>q1
:l*

N — >

HITDN

X
7-[1\
Y +——
Bo Bs

Second, as a projective space bundle over Y, the cohomology algebra of the

exceptional divisor ¥ is a free extension over the cohomology of Y generated by the
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Cohomological Blowups of Graded AG Algebras 3

Eulerclass & =e (NY/X) € H%(Y) of the normal bundle Nf(/)?, in symbols

T[&]
(gn A tn)

12

T ' (2)

where t; = (—1)!-¢;(Y) € T; are the Chern classes of the normal bundle Ny x. the top one
of which is the Euler class ¢, (Y) = e(Ny x) € T, (n = d — k = codimension of Y in X).

Third, the induced map B* is injective and fits into a short exact sequence of
A-modules:

A A
0 A A T/B;(T) —— O. (3)

Equations (2) and (3) imply that the Hilbert function of the cohomology of the

blowup is
H(A) = H(A) + H(D)[1] + - - - + H(T)[n — 11. (4)

In fact, one can show that Equations (1)-(3) uniquely determine the algebra structure
of A. Moreover, if the restriction map 7*: A — T is surjective, one can show that the

cohomology algebra of the blowup is given by

~ Al¢]
A= , (5)
(6K, &"+a "1+ +a, +ay,)

where K C A is the kernel of 7%, 7*(a;) = t;, and a, = (—1)" - 7(Y) € A,, where 7(Y) is the
Thom class of the normal bundle NY/X. See [14, 17, 21, 23, 32, 37] for further details
on geometric and topological aspects of blowups; specifically, [17, Proposition 6.4],
[37, Proposition 2.4], and [14, Theorem 3.11]. See also [41] for further details on
characteristic classes.

The novelty of this paper is to show that Equations (1)—(3) and (5) can be extended
to arbitrary AG algebras over any field F to define a new construction on these rings
called the cohomological blowup. Specifically, given any surjective degree preserving
map of graded AG algebras n: A — T, we define (Definition 3.10) a cohomological
blowup of A along = as in Equation (5), leaving a,,...,a,_; as free parameters and
setting a,, to be the algebraic analogue of the Thom class.

The algebraic analogue of the Thom class for a map of AG algebrasn: A — T

is defined as a certain annihilator of the kernel of m, determined by choices of socle
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4 A.Iarrobino et al.

generators, called orientations, of A and T (Definition 2.1). Assuming that 7 is surjective,
and A = R/I where I C R is a homogeneous ideal in a graded polynomial ring,
an alternative characterization of the Thom class is an element t € R for which
T = R/(I: 7). In terms of Macaulay duality, if R is acting on its dual divided power
algebra Q by contraction and if F € Q and G € Q are dual generators of A = R/ Ann(F)
and T/Ann(G), then v € R is a contraction operator satisfying t o F = G. Each of these
interpretations of the Thom class leads to distinct, but equivalent descriptions of the
cohomological blowup. We frame these in terms of three general constructions on AG
algebras, starting from the given data consisting of two oriented AG algebras A and T
of socle degrees d and k with n = d — k > 2 and a surjective degree preserving algebra
map between them 7: A — T.

Our 1st construction (Construction 3.1) fixes an indeterminate &, then chooses
any homogeneous monic polynomial f, (&) € Al¢] (we use the subscript to indicate the

coefficient algebra) and uses Equation (5) to construct a new algebra

fa® =8 +aE e, = A= Sl

(6 70)

where K is the kernel of n and a; € A; are any homogenous elements. We show that
A is an AG algebra if and only if a, = A -t is a nonzero scalar multiple of the Thom
class T € A, of m (Theorem 3.6). In this case, we replace the “hat” with a “tilde” and
call the resulting algebra A the cohomological blowup of A along = with parameters
(w(ay),...,m(a,_;), 1), and we call A the cohomological blowdown of A (Definition 3.10).
We show that A is essentially characterized by analogues of Equations (1)-(3) above
(Theorem 3.14). We then use a standard result in commutative algebra to show that A is
isomorphic to the general fiber in a flat family of algebras (Theorem 8.3). Using this flat
family, we further show that if both A and T have the strong Lefschetz property (SLP)
and F is infinite of characteristic either zero or sufficiently large, then A must also have
SLP (Theorem 8.5). This result has parallels in complex geometry; if ¥ C X are projective
manifolds, then the blowup ¥ C X is also projective, and projective manifolds always
satisfy the hard Lefschetz theorem; see, for example, [17, 21, 23]. We remark that the
essential result of Theorem 8.5, that blowups preserve SLP, seems to be well known in
various other contexts and guises, for example, [2, 9, 10, 31, 38, 44]; on the other hand, to
our knowledge, the generality of Theorem 8.5 is new, and we hope it will be a welcome
reference for this useful result. We further show that over an infinite field, if A and

T both have the weak Lefschetz property (WLP) and the difference between their socle
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Cohomological Blowups of Graded AG Algebras 5

degrees is two, then A also has WLP (Theorem 8.9). We give examples that show general
cohomological blowups may not preserve WLP (Example 8.8) and blowdowns may not
preserve SLP or WLP in general (Example 8.6). In a sequel [34], we plan to investigate
the behavior of the related Hodge-Riemann bilinear relations (HRR) in relation with
cohomological blowups and blowdowns.

Our 2nd construction (Construction 4.2) starts with Macaulay dual generators
F € Q and G € Q4 for A = R/Ann(F) and T = R/ Ann(G), and a contraction operator
7 € R, such that 7 oF = G. Then one again fixes an indeterminate £ and chooses a monic
homogeneous polynomial fz(&) € RI[¢] and, from this, constructs a new dual generator

F € Q[E], and its associated AG algebra

_ P RI¢]
=" +rE" M+, = Ayp=——,
Tr® =&+ ns " MP Ann(F)

where the r; € R; are homogeneous of degree i, 1 < i < n. Applying the projection
map RIE] — Alg] to fr(€) > f4(¢) = ]%, one can also construct A from above, but in
general, the algebras A and A, will be non-isomorphic. However, we show that they
are isomorphic exactly when they are equal to some cohomological blowup of A along
7, and we give necessary and sufficient conditions for this to occur (Theorem 4.6); in
this case, we shall replace the “hat” with “tilde”, drop the subscript, and simply write A.
We use this result to show that every cohomological blowup along a surjective map can
be realized as a connected sum in the sense of [30] (Theorem 5.4). We show that one can
also obtain the cohomological blowdown as a connected sum (Theorem 5.6). This latter
result implies that every AG algebra A can be realized as a connected sum (over some
T + F) by blowing up then blowing down.

Our 3rd construction (Construction 6.2) starts with presentations A = R/I and
T = R/( : 7). One then fixes an indeterminate &£ and chooses a monic homogeneous

polynomial fz(§) € R[¢] and constructs a new ideal I C RI£] by
fRE=E"+rE o, = I=I+E-0) + (fr©),

where the r; € R; are homogeneous of degree i, 1 < i < n. It is clear from the
definition that R[E]/f =~ A from Construction 3.1 above, and hence we deduce that Tisa
Gorenstein ideal (i.e., irreducible and primary to the maximal ideal of RI£]) if and only
if a,, = & - 7, a nonzero scalar multiple of the Thom class of x. In this case, we replace
the “hat” with “tilde” and call I a cohomological blow-up ideal because the quotient

algebra RI¢]/I is isomorphic to the cohomological blow-up algebra A defined above.
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6 A.Iarrobino et al.

We compute a minimal generating set of I in terms of minimal generating sets of I and
(I : 7) (Theorem 6.5). Using this result in conjunction with the notion of exact pairs of
zero divisors borrowed from [22, 33], we classify BUGs that are complete intersections
(CIs) (Theorem 6.12). We also use cohomological blowups to prove a special case of
Watanabe’s bold conjecture (WBC) [47], namely that any standard graded Artinian CI
cut out by products of linear and/or quadratic forms can be embedded as a subalgebra
of another standard graded Artinian CI cut out by quadratic forms and of the same socle
degree (Theorem 6.16); see [35] for a different proof of a related result, and see [36] for a
proof of other cases of WBC.

It is interesting to note that our cohomological blowup along a surjective map
preserves the standard grading, that is, if A and T are standard graded, then the
cohomological blowup A is also standard graded (Remark 5.5). However, we show
by examples that neither the cohomological blowdown nor, what one might call,
the cohomological blowup along a non-surjective map necessarily preserve standard
grading at all (Example 5.8, Remark 9.4). We say that a standard graded AG algebra A
has a standard BUG structure if it is a cohomological blowup of a standard graded AG
algebra A along some surjective map 7. Using Equation (4) above, we deduce that some
Hilbert functions cannot occur with standard BUG structures, and we call such Hilbert
functions inaccessible. Specifically, we show that the compressed Hilbert functions
of [24] with embedding dimension at least three and socle degree at least six are
always inaccessible (Theorem 7.2). We plan for a sequel [29] with further results in
this direction, including a complete description of cohomological blow-up algebras
of codimension two—where all AG Hilbert functions are accessible—and a study of
inaccessible AG Hilbert functions in codimension at least three.

This paper is organized as follows. In Section 2, we give a description of the
algebraic analogue of the Thom class of a map of graded AG algebras. In Section 3,
we give Construction 3.1 and necessary and sufficient conditions for it to yield a
Gorenstein algebra. Then we define the cohomological blow-up algebra and give a
description of its Hilbert function. In Section 4, we discuss Macaulay duality, we give
Construction 4.2, and we give necessary and sufficient conditions for it to yield the
cohomological blow-up algebra. In Section 5, we show that every cohomological blow-
up algebra is a connected sum. We also describe the blowdown in terms of connected
sums and show that every AG algebra has a connected sum decomposition, obtained
by blowing up then blowing down. In Section 6, we give Construction 6.2, introduce the
cohomological blow-up ideal, and compute its minimal generating set. In Section 7, we

define inaccessible Hilbert functions and show that almost all compressed AG algebras
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Cohomological Blowups of Graded AG Algebras 7

are inaccessible. In Section 8, we show that cohomological blowing up preserves SLP. In
Section 9, we discuss further the connection of our work with geometry and other areas,
give some geometrically motivated examples, and suggest problems for future work. In
this paper, we have made a special effort to include a wide array of examples, many
of which were found as counter-examples to conjectures or questions that arose in our
discussions and preparations of this manuscript, and we hope the reader will find them
useful. In the appendix, we have included a list of all examples and brief descriptions

of them for the readers convenience.

2 AG Algebras, Orientations, and Thom Classes

Let IF be any field. A graded AG algebra means a commutative Z. ,-graded connected AG
F-algebra; in particular, if A is a graded AG algebra of socle degree d, then A = @?:OAi
with Ay = F and socle(4) = A; = F. Since most algebraic objects in this paper are
graded, we may sometimes drop the adjective and refer simply to an AG algebra. Unless
explicitly stated otherwise (as Remark 3.11), we will not restrict the ground field F
except in our study of Lefschetz properties (Section 8). We say that A is standard graded
if it is generated as an algebra by its linear forms, that is, F[A;] = A. Although many
of our examples are standard graded, we will not assume this, except in our discussion
of compressed algebras (Section 7). An orientation on the AG algebra A is a choice of
linear isomorphism [,: A4 SF or, equivalently, a choice of socle generator, which we
shall denote by 0 # a

a graded AG algebra A and an orientation [,; when the orientation is understood we

soc € Ag. An oriented AG algebra is a pair (4, [,) consisting of
shall drop the [, and just speak of an oriented AG algebra A4, and its distinguished socle
generator a,,.

Suppose that A and T are two oriented AG algebras of socle degrees d and k,
respectively, with d > k, and suppose that 7: A — T is a degree-preserving algebra map
between them; we may occasionally drop the adjectives and simply refer to the map =.

Since A is Gorenstein, multiplication defines a perfect pairing forall0 <i < d:

Al X Ad—l — F
(a,a) —— fA aa
In particular, for any ¢ € Homy(4;,F), there exists a unique a € A;4_; such that ¢(b) =

J4 @b for every b € A;. Pulling back the orientation on T by = defines a homomorphism

fT om: A, — F and hence, as shown in [30, Lemma 2.1], there exists a unique element
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8 A.Iarrobino et al.

T € Ay_; for which

/n(a):/r-a, VacA. (6)
T A

Definition 2.1 (Thom class, Euler class). The unique element v € A, ; defined by
Equation (6) is called the Thom class of w. The image of the Thom class 7 (1) € T _;

is called the Euler class of r.

Topologically, if A = H?*(X) and T = H?*(Y) are the cohomology rings of a
manifold X and a submanifold n: Y — X and n*: H%*(X) — H?*(Y) is the induced
restriction map on cohomology algebras, then the Thom class of 7* is exactly the Thom
class of the normal bundle of Y in X, also known as the Poincaré dual class of Y C X,
and its image under the restriction map is the Euler class of the normal bundle, e.g., [41].
Note that the Thom class is zero if and only if the socle of T does not belong to the image
of 7. We call 7: A — T a restriction map if its Thom class is nonzero. In particular, if
7 is surjective, then it is a restriction map, but not every restriction map is surjective.
In complex geometry, if X is a Kdhler manifold and n: Y C X is a codimension n K&hler
submanifold, then the induced map on cohomology 7*: H?*(X) — H?*(Y) is a restriction
map [23, Exercise 3.3.9], though it need not be surjective, for example Example 9.3. Here

is a useful characterization of the Thom class of a restriction map.

Lemma 2.2. Letn: A — T be a restriction map between two oriented AG algebras of
socle degrees d > k, respectively, and let K = ker(xr) C A be its kernel. Let a € A be any
homogeneous element of degree n = d — k. Thena-K = 0if and onlyifa = A -t is a

multiple of the Thom class of 7.

Proof. Let [,: A; — Fand [,: T) — Fbe orientations on A and T, respectively. Assume
first that a € A,, and a - K = 0. Consider the short exact sequence of vector spaces
0 - K, - A, - T, — 0. Since T is Gorenstein of socle degree k, T} is one-
dimensional, and hence K;, C A; is a codimension-one subspace. Therefore, the set
of homomorphisms ¢ € Homy(A;,F) that vanish on K; is one-dimensional. Since
¢1(w) = [, -u= [p7(u) =0 for every u € K, and also ¢,(u) = [, a-u = 0 for every

u € K, we must have ¢, = 1 - ¢,, which implies that = A - a. The converse is clear. [ |

If 7: A — T is surjective, which will be a standing assumption throughout

this paper, then the Thom class has some nice alternative descriptions. First, let
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Cohomological Blowups of Graded AG Algebras 9

R = Flx,,...,x,] be a graded polynomial ring with homogeneous maximal ideal
m=(x;,...,X%,) CR,andletI C Rbe ahomogeneous m-primary ideal. Then R/I is graded
Artinian and it is Gorenstein if and only if I is irreducible, meaning that it cannot be
written as an intersection of two strictly larger ideals [39, Lemma I.1.3]. Suppose that
J C R is another homogeneous m-primary irreducible ideal with I c J, let T = R/J,
and let 7: A — T be the natural projection map. The following fact is well known; see
[46, Lemma 4] and [39, Theorem I1.2.1].

Lemma 2.3. With the above assumptions, let T € A = R/I be the Thom class of 7 and

let T € R any homogeneous lift. Then we have
J=:7) and (I:J) = (r) +1I.

In [39], the authors refer to the homogeneous lift of the Thom class 7 € R in
Lemma 2.3 as a transition element forI C J.

Next, let @ = FIX;,...,X,] be a divided power algebra on which R acts by
contraction, for example [25, Appendix A] or [12, Appendix A.2.4]:

ay a;—1 ar
X.OXal...Xai...Xar_ Xl Xl e Xr 1fai>0
i 1 i -

1 r

0 ifa, =0

Then it is well known that a homogeneous ideal I C R is m-primary irreducible of socle
degree d (meaning the socle degree of A = R/I) if and only if there exists a homogeneous
form F € Q4 for which I = Ann(F) = {r € R | roF = 0}. In this case, F is called a Macaulay
dual generator of A. Suppose that G € Q;, (k < d) is another homogeneous form for which
I = Ann(F) ¢ J = Ann(G), let T = R/J, and let 7: A = R/Ann(F) — R/Ann(G) be the
natural projection map. Note that A and T have natural orientations coming from F and
G given by [, a = (aoF)(0) and [t = (to G)(0).

Lemma 2.4. Under the assumptions of Lemma 2.3, if t € R is any homogeneous lift of

the Thom class of =, then

ToF =G.

Proof. Indeed, the Thom class condition (6) translates to the condition

(@oG)0)=(t-aoF)(0)=(ao(toF))(0), YaeR
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10 A. Iarrobino et al.

or, equivalently,
O=ao(G—10F)(0), VY a<R, (7)

but because the pairing R; x Q; — F, (a,H) = (a o H)(0) is nondegenerate, we see that

Condition (9) is equivalent to the claimed condition that G =t o F. |

Remark 2.5. If t is the Thom class of a map of AG algebras n: A — T, and if » € F*

is a nonzero constant, we can get a new Thom class ' = A - t by either scaling the

distinguished socle generator of A by 1, that is, ay,, — X - @y, = ag,., or by scaling the
. . . -1 . —1 _

distinguished socle generator of T by A", that is, t,,, > A7 - t550 = tpe-

In our proofs, we make frequent use of the following result: it is valid for an

arbitrary AG algebra A (not necessarily graded) and an arbitrary Artinian algebra B.

Lemma 2.6. Let ¢ : A — B be a homomorphism of Artinian algebras so that A is
Gorenstein and ¢ restricted to the socle of A is injective. Then ¢ is injective.
In particular, if ¢ : A — B is a surjective homomorphism of graded AG rings of

the same socle degree, then ¢ is an isomorphism.

Proof. Let¢:A — Bbe aring homomorphism with A AG. Let a be an element of the
kernel of ¢. If a # 0, then there exists 0 # a’ € A such that 0 # aa’ € soc(4). However,
p(aa’) = p(a)p(a’) = 0 since p(a) = 0 by assumption. This contradicts the restriction of
¢ to soc(A4) being injective. Thus, it must be the case that a = 0 and consequently ¢ is
injective.

Now, assume ¢ : A — B is a surjective homomorphism of graded AG rings of the
same socle degree. Then ¢ : soc(A) — soc(B) is a vector space isomorphism. Applying

the 1st assertion, ¢ is injective, hence bijective. [ |
3 Cohomological Blowups
Let A and T be oriented AG algebras of socle degrees d and k respectively with d > k

and 7: A — T a surjective degree preserving algebra map with Thom class r € A;_;.

Construction 3.1. Setn = d —k, and let & be an indeterminate of degree one. Choose
any homogeneous elements g; € A for 1 < i < n, and define the monic homogeneous

polynomial of degree n, f, (&) € Al¢], by

fa®) =" +a; "+ 4 a, £+a,. (8)
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Cohomological Blowups of Graded AG Algebras 11

Then, let K C A be the kernel of 7, and construct the algebra A by
Al¢]

(K, fa®)

We further set t; = n(q;) for 1 < i < n, define the monic homogeneous polynomial

fr&) € TIg]

A= (9)

fr@&) =&"+ 66"+ 8y, (10)

and construct the algebra T by
T[¢]

T= .
(fr)

(11)

Before giving the formal definition of the cohomological blowup (Definition 3.10),
we shall discuss some of the fundamental properties of the algebras A and T from
Construction 3.1. First, note that since £ - K = 0 in A, the algebra structure of A depends
only on the images ¢;,...,t,_;, as well as a,. There is a natural degree preserving
algebra map B: A — A induced from the natural inclusions A <> A[¢] that makes A
into an A-algebra. Also, the surjective tensor product map = ® 1: Al§] — TI[&] passes
to a surjective degree preserving map on quotients 7: A — T. Moreover, these maps
m:A—> T, B:A— Aand# : A — T together with the natural inclusion g,: T — T fit

together in a commutative diagram

B (12)
—

9

N

N
EN

—
Bo

The following elementary observation will be useful and we record it as a
lemma. We offer our own proof here for completeness, but it can also be deduced from
[27, Lemma 1.8] and [43, Lemma 2.1]. Recall that for graded Artinian algebras A, B, and
C, we say that C is a free extension of A with fiber B if there are maps (: A — C making C
into a free A-module and 7 : C — B with kernel ker(wr) = m, - C where m, is the maximal
ideal of A.

Lemma 3.2. The algebra T from Construction 3.1 in Equation (11) is a free extension
of T with fiber F = F[£]/(¢"). In particular, since T and F are Gorenstein, T is also
Gorenstein. (A more general result established in a 2008 unpublished note “Coexact

Sequences of Poincaré Duality Algebras” by L. Smith and R.E. Stong states that if T,
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12 A.Iarrobino et al.

T and F are graded Artinian algebras in which T is a free extension of T with fiber F,

and any two are Gorenstein, then so is the 3rd.)

Proof. We first claim that the map f,: T — T makes T into a free T-module with basis
{1,¢,... ,S”_l}. Clearly, this set generates T as a T-module, since powers of & generate
TI¢] as a T-module, and all powers greater than n— 1 can be eliminated with the relation
E" = —(t;6" 1 +.-- +1t,). A T-dependence relation in T lifts to a T-relation in T[¢] of the
formcy-1+ci6+---+c,_ 1" =t (" +¢,6" 1 + ...+ t,) for some ¢;, r € T. Comparing
&-coefficients, we conclude that t = 0, and hence c; = 0 for all i since {1,¢,... ,E" 1} are
T-linearly independent in T[£]. Finally, note that the natural projection map ¢: T — F
extends to a projection map ¢: T — Fl£]/(€™) with kernel ker(¢) = myp - T. Therefore, T is
a free extension of T with fiber F = F[£]/(§™) as claimed.

For the last statement, it suffices to show that the socle of T satisfies soc(T) =
soc(T) - €™ 1. One containment is obvious, and for the other, assume that ¢ € soc(T)
is a homogeneous socle element. From our arguments above, we may decompose it as
t=sy+5,&+---+s, £"! for some unique s; € T. Since t is in the socle, we must have
t -t = 0 for any positive degree element t € T,, which implies that s; € soc(T) for all i,
by linear independence of {1,..., s”_l}. On the other hand, since % is homogeneous, and
deg(s;) = deg(t) — i it follows that there is only one nonzero s;, and since & - t=0,it
follows that i = n— 1. Therefore, we have shown thatt =s,_;-£"~! where s, ; € soc(T),
which implies that soc(T) = soc(T) - €™, as desired. [ |

Lemma 3.2 implies that T is always Gorenstein. On the other hand, the algebra

A may not always be Gorenstein, as the following example shows.
Example 3.3. Let

F F
A= —[SX’;] X or= _[Z'Y],
(x,y°) x*,y)
where 7(x) = x and 7(y) =0 (hered =4,k =1,and n = d — k = 3). Note K = ker(w) =
(x2,y). Orient A and T with socle generators a,, = x; then, the Thom
class of 7 is T = xy? € A;. Set fy(§) = &3 + x£2 € T[¢], so that t; = x and t, = t; = 0, and

let T be the associated free extension:

= x?y? and t,,

Tl Flx,y,&l
Fr®) &2y, 6% +xE%)

T=
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Cohomological Blowups of Graded AG Algebras 13

Below are different algebras A for different choices of r-lifts fa®) = g3 +a1‘§2 +ayt+aq
of fr(&), according to Construction 3.1.
1. a; =x,a,=0,and a; = (x?y + xy?). Then f,(§) € Al£] is f4 (&) = £% + x£2 +
(x*y + xy?), and

AlE] Flx, y, &l

A= = )
(& -K.fa6) (x3,y% x%,y&,6% + x£2 + x%y + xy?)

Then an F-basis for A is
{I,X,Y,E,XZ,XY,YZ,X€,sz,xzy,xyz,xéz}
from which it follows that the Hilbert function for A is
H(A) =(1,3,5,3)

and hence A is not Gorenstein. Note that in this case, the socle generator
g, = x*y? is actually in the ideal (¢ - K, f(&)), hence B(a,,.) = 0, and thus 8
is not injective.

2. a; =x,a,=0,and a; = xy? = 7. Then, f, (§) = £3 + x£2 + xy? € Al¢] and

AlE] Flx, y, &l

A: =
(";:KrfA(E)) (X3:Y31X2§:Y§:§3+X‘§2+XY2)

has basis
{l,X, y,S,Xz,xy,yz,Xé,EZ,XZY,XYZ,XEZ,XZYZ}
and Hilbert function
HA)=(1,3,5,3,1).

Here, the socle of A is generated by a,,, = a,. = x*y%; hence, A is Gorenstein.

3. a; = x+yand a, = a; = 0. Here, we chose a different x-lift of t; = x, but
the reader will see it does not affect A; the important choice is a; = 0. Then,
fa®) =& +x£% € Al] and

F[X,Y,-’E] F[Xryr%_]

A= 3,13, %%, yE, B + (kL ED) (3,75, x%E, &, E3 1 xE2)
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14 A.Iarrobino et al.

with basis
{Lx 7652 xy, 2 x6, 62, Py, xp?, x62, Py
and Hilbert function
H(A) = (1,3,5,3,1).

However, note that in this case the socle of A is the two dimensional F-vector
space generated by x&2 and x2y?; therefore, A is not Gorenstein. In contrast
to case (1), in this case, the image of the socle of A in A via g is nonzero and

in fact the map 8: A — A is injective.

The example suggests a strong dependence of the Gorenstein property on the
choice of a,, from Equation (8). Before we give our main result in this direction, we need
some lemmas. The following lemma computes the Hilbert function of A in terms of those
of Aand T.

Lemma 3.4. For each @& € A, there exist unique elements b, € A and elements

S1s--.,S,_; € T for which
a =By +Bb)EL +--- + (b, E"L, forsome b; € A, where (b, =s;.
In particular, the Hilbert function of A satisfies
H(A)=H(,3(A))+H(T)[1]+~-~+H(T)[n—1]. (13)

Proof. Existence of such a decomposition is easy: every element a € A has a
representative in the polynomial ring A[£], and high powers of & can be reduced via

the relation
fag) =¢" +a1§n71 +-.--4+a,=0.

As for uniqueness, suppose that there are some other elements ¢, € A and other

syr...,S,_; € Twith 7-lifts ¢y, ..., c,_; € A such that

a

B(cy) + B(c)E + -+ Blc,_E™ L.
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Cohomological Blowups of Graded AG Algebras 15

Comparing their decompositions in T via the projection 7, we find that

0= By(m(by — o)) + By (m(by —¢)) E + -+ By (T(by_y — Cpp)) ™1

It follows from Lemma 3.2 that T is a free T-module with basis {1,&,...,£" 1} via the
injective map f,: T — T, and hence we conclude that s; = 7(b;) = n(c;) = s; for all
i=1,...,n—1and that n(a,) = n(cy); hence, by — ¢, € K. But we also have the relation

in A
0=p8(bg—Co) +B(by—cr)é+ - +B(byy—Cypq)E™
Since B (b; — ¢;) & € (£ - K), the identity displayed above simplifies to
0 =By —cp)

and hence B(by) = B(cy) in A. Thus, the decomposition is unique in the desired sense.

Equation (13) follows immediately from this decomposition. |

Lemma 3.5. WithA, T, n, K, and f,(§) = é"—l—aﬁ”*l +---+a, € Al¢] as in Construction
3.1, we have in A[£]

(€K, f4®) N BA) =a, K.

Proof. Letb € (£-K,f,(§)) N B(A). Then there is a polynomial g(§) € Al¢] for which

b —g€)f4(§) € (¢ - K) in A[g]. Writing g(§) = g,,§™ + - + 91§ + go for g; € A, since f, (§)
is monic, we must therefore have in A[£]

b — g,,£™™ + (lower order terms) € (¢ -K). (14)

Since m +n > n > 1 we can compare coefficients on the left-hand side and right-hand
side of (14) to deduce that g,,, € K. If m > 1, we can combine the term g,,™ ~f(§) with
the other (¢ - K) terms and lower the £-degree of g(¢). Repeating this procedure, we may
assume that the £-degree is m = 0, that g,,, = g, € K, and hence that b — g, - f4(§) €
(£ -K). Since g, € K, it follows that g, (f4(§) — a,) € (§ -K) as well and therefore that
b—g,-a, € (¢ -K), which implies that b—g,-a,, = 0 and hence that b € a,,-K, as desired.

The reverse containment is obvious. [ |
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16 A. Iarrobino et al.

Theorem 3.6. LetA, T, x, 7, f,(§), A, and B be as above. Then,

1. the algebra map : A — Ais injective if and only if the constant coefficient
of f, (&) satisfies a,, = A -  for some A € F (possibly A = 0) and

2. the algebra A is Gorenstein if and only if a,, = A - t for some nonzero 1 € F*.

Proof. For (1.), observe that 8: A — A is injective if and only if (§-K,fa(§))NBA) =0,
which by Lemma 3.5 is equivalent to a,, - K = 0, which is in turn, equivalent toa,, =1 -t
for some A € F by Lemma 2.2.

For (2.), assume first that A is Gorenstein. Then soc(4) = Ae where e is the largest
integer for which Ae # 0. It follows from Lemma 3.4 that e < d and that e < d if and only
if B(A4) = 0. But if e < d, then by the surjectivity of the algebra map 7 : A — T we must
have ﬁ(Ad_l) = Td—l # 0, and hence 0 # Ad—l = soc(A) and e = d — 1. By Lemma 2.6,

7 must be an isomorphism, that is,

Al¢] Al§]
G -K fa6) (K. fy()

=T.

b

T A=

In particular, we see that K C (¢ - K,f,(£)) in Al£], which by Lemma 3.5 implies that
K < a,.K, which is impossible for degree reasons (since we are assuming d > k).
Therefore, we must have soc(4) = Ad # 0, which by Lemma 3.4 must be the image of 4,
and hence B(ay,.) # 0. By (1), this implies that a,, = A - r for some A € F. Next, we claim
that A # 0. Indeed, assume that A = 0 so that a,, = 0. Let by € A be any n-lift of ¢, € T}.
Then note that £"~18(b,) € soc(A). Indeed, in A[£], we have & - (6" 1bg) —bofa(§) € (£ - K),
hence & - (6" by) € (£ - K,f,(§)), but also for any b € A of positive degree by - b € K
and hence b - (§"7! - by) € (£ - K) as well. We further claim that {§"! - B(by), B(a,)} are
linearly independent in A. Indeed, # (6" - B(by)) = £" 't

(hence is nonzero), whereas 7 (8(a,.)) = 0. Since B(ay,.) # 0, this shows that the socle

¢ 18 a socle generator of T

of A has dimension at least two, contradicting our assumption that A is Gorenstein.
Conversely assume that a,, = A-t for some nonzero A € F*. Then, by (1.) 8: A — A

is injective, and hence B(a,,) € soc(A). We want to show that S(a,,,) generates the socle.

To that end, suppose that @ € A is any other socle element, and as in Lemma 3.4, write

a=pBby) +BbE+ -+ B(b, DE"L. (15)
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Cohomological Blowups of Graded AG Algebras 17
Note that since # is surjective, it must map socle elements of A to socle elements of T.
Thus, applying 7 to (15), we find that there is a constant ¢ (possibly ¢ = 0) such that

7@@) =w(by) + w(bDE+ -+ 7(b, )E" ! =cC -ty ML

Since T is a free T-module with basis {1,&,...,&" 1}, it follows that 7(b;) = 01in T for
0<i<n-2andn(b,_;) =c-ty. This implies that b, ...,b,_, € K, and therefore that
,B(bi)si =0inAfori=1,...,n— 2. Thus, a reduces to

a = B(by) + (b, E"".

Since @ € soc(A), we have & - @ = 0 in A, and therefore,

0=¢-a=£-B(by) + B(b,_)E"
(since b, € K, and " = — (algn‘l RS an))
=- ﬂ(bnfl) ’ (algn_l +-oot anfls + an)

(since w(b,_;) =c-t andg; € A;forl <i<n-1)

soc’
=p(,_,) a,

(sinceb,, ; =c-t,,anda, =A-71)

=A-C- BAg0)-

Since A # 0 and B(ay,,) # 0 we must conclude that ¢ = 0 and hence b,,_; € K as well
and therefore that a = 8(b,). But since (b)) = a € soc(A) and B is injective, it follows
that b, € soc(4), as desired. Therefore, soc(A) C B(soc(A)), from which it follows that A

must be Gorenstein. |
Corollary 3.7. Ifa, = -t with A € F then

H(A) = H(A) + H(T)[11 + - - - + H(T)[n — 1]
and there is a split exact sequence of A-modules

0 AL AL i — o
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18 A. Iarrobino et al.

Proof. [Injectivity for g follows from Theorem 3.6 part (1) and surjectivity of 7 is by
definition. That the displayed sequence is a complex follows from the commutative
diagram (12). Exactness of the sequence above viewed as a sequence of vector spaces

follows from Lemma 3.4 and the identity
H(A) = H(B(A) + HD] + - + H(T)In — 11 = HA) + H(T/By(T)).

Finally, since A is a Gorenstein ring, A is injective as an A-module; thus, the above

sequence splits. |

Remark 3.8. It follows from Theorem 3.6 and Corollary 3.7 thatif a,, = 0,then 8: A —

A is injective and
H(A) = HA) + H(T)[11 + - - - + H(T)[n — 1],

but A is not Gorenstein. We call such algebras boundary Gorenstein algebras, indicating
that they are in the closure of the Gorenstein locus of the Hilbert scheme; the algebra
A in Example 3.3(3.) is a boundary Gorenstein algebra of this type. More precisely, one

can show that if F is algebraically closed, then the algebra

Alg, A
(E-K,"+a; g1+ +1-1)

Al =

is flat as a module over F[A], where the fibers A[c]/(k — ¢) - A[)] are Gorenstein if ¢ # 0
and not Gorenstein, but boundary Gorenstein, if ¢ = 0. We shall give another flat family

in which the Gorenstein algebra A is a general fiber in Section 8.

Definition 3.9 (Preferred orientations). By Lemma 3.2, T from Construction 3.1 is
always Gorenstein, and we define its preferred orientation as the one corresponding

to the socle generator, t,. = £&"! - t,.. If A from Construction 3.1 is Gorenstein, then

soc*
we define its preferred orientation as the one corresponding to the socle generator

spe = B(ag,.); hence, the preferred orientation on A is the one inherited from A via g.

Definition 3.10 (Cohomological blowup, exceptional divisor, cohomological blowdown).
Given oriented AG algebras A and T of socle degrees d > k, respectively, and surjective
degree-preserving algebra map n: A — T with Thom class r € A,, wheren =d — k, and

given a homogeneous monic polynomial f,(§) = £ +a;E" "1 +-.- +a, € Al¢] of degree n
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Cohomological Blowups of Graded AG Algebras 19

with homogeneous elements a; € A; for 1 < i < n and with a,, = 1 - r for some nonzero
constant A, and setting t; = w(a;) for 1 <i < n — 1, we call the corresponding oriented

AG algebra from Construction 3.1, Equation (9) the cohomological blowup of A along

with parameters (t,...,t,_;,A), or BUG for short, and write
- n A
A=(A= - 7[15—]1 .
(6-K,&" +aé 4+ A7)
fa®

with its preferred orientation ay,, = a,,.. The oriented AG algebra from Construction
3.1, Equation (11)
~ ~ T
R ==y
E"+ 46 +oo+A-m(7)
fr®

with its preferred orientation f,,, = £""! -t . is called the exceptional divisor of T with

soc
parameters (t,,...,t,_;,1). In this case, we refer to A as the cohomological blowdown

of A along #.

Remark 3.11. One can force A = 1 in Definition 3.10 by scaling orientations on either
A or T. Specifically, given n: A — T with Thom class t, take new distinguished socle
generator either aj,, = A - @y, OT thp, = A7 - £y, 0 that the same map with one of these
scaled orientations n’: A’ — T’ will have Thom class ' = -7, and hencea,, =1 -7 =1’

If A € F has an n'"-root, say u (e.g., if F is algebraically closed), then one can also
force » = 1 by rescaling the parameters in the cohomological blowup. Specifically, if A is
the cohomological blowup of A along 7: A — T with parameters (¢,...,t,_;,A), then A
is isomorphic to the cohomological blowup of A along = with parameters (t,...,t,_;,1)
where t; = pt-t; via the map & > u - €.

The following example shows that the hypothesis on F in Remark 3.11 is

necessary.

Example 3.12. Let A = QIx]/(x®) and T = Q = F with 7: A — T the natural projection
having ker(r) = (x) and Thom class t = x2. Taking f,(£) = £2 + Ax% with » € Q*, the
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20 A.Iarrobino et al.

cohomological blow-up algebra of A along = with parameters (0, 1) is

Qlx, &1

AN =G ey

We claim that any pair of integers p,q such that p is a prime that does not divide g
yields non-isomorphic algebras A(p) and A(q). Indeed, assume that there is a Q-algebra
isomorphism ¢ : A(q) — A(p). Then, for some a,b,c,d € Q, we must have {(x) =
ax + b¢ and ¥ (§) = cx + d&. Moreover, we may assume that a, b, ¢, d are integers such
that gcd(a, b, ¢, d) = 1 because v is an isomorphism if and only if @- ¢ is an isomorphism

for any @ € Q*. We have

Y ((xE,£2 + gx?)) = (acx? + (ad + bo)xt + bdE?, (¢ + qa®)x? +2(cd +qab)x& +(d? +gb?)E?).

In order for ¥ to be a Q-algebra isomorphism, the ideal above must be equal to (x£, &2 +

px?) and equating the two ideals in Qlx, £]/(x£) yields the following equations:

ac = pbd (16)

c? + ga? = p(d? + gb?). (17)

It follows from (16) that p divides a or ¢, and hence from (17) that p divides both @ and c.
Returning to (16), we now deduce that p divides bd and hence p divides b or d. Similarly,
we must also have p | (d?+gb?), which implies that p must divide b and d. Therefore, we
must have p divides a, b, ¢, and d, contradicting our assumption that gcd(a, b, c,d) = 1.

In particular, we have shown that every prime p gives a cohomological blowup
of A along 7 with parameters (0, p), which is not isomorphic to the cohomological blow-
up algebra A(1) with parameters (0, 1). In fact, this shows that there are infinitely many
distinct isomorphism classes of cohomological blow-up algebras A(p) of A along = with
parameters (0, p), one for each prime p.

On the other hand, we shall see in Theorem 8.3 that the algebras A(A?) and A(1)

are always isomorphic for any rational number A.

The next lemma gives the Thom class of the restriction map from the cohomo-

logical blowup to its exceptional divisor.

Lemma 3.13. With notations as in Definition 3.10, if A is the cohomological blowup of

A along n: A — T with parameters (¢;,...,t,_;,A), and T is its exceptional divisor then
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Cohomological Blowups of Graded AG Algebras 21
the Thom class of the projection map 7: A — T is

F=-1"lg.

Proof. The socle degree of T is d — 1, and it follows from Lemma 3.4 that the graded

component Zld_l has a F-vector space decomposition as

F-ap&" '@®A, ;, where n(ay) =t Ty

soc €

We may assume that kK < d—1, since if k = d — 1, we clearly have A=Aand T = T. Then,

foreacha e A, ;, wehavea € K; hence£-a=0in A. Also, we have

£-apg" ! =apE"
=ar (— (alénfl +o an))
sincea; € A, = ap-a; €K

=arp-(—ay)=ar- (2 -1)=—A Qg = =X Qg
from which it follows that & = —A - 7, as desired. [ |

The following theorem gives a useful characterization of the blow-up algebra in
terms of some universal properties, analogous to Equations (1)—(3) from the Introduc-

tion.

Theorem 3.14. Suppose that we are given oriented AG algebras (4, fA), (T, fT), (A, fA)'
and (T, fi‘) with socle degrees d, k, d, and d — 1, respectively, with d > k, and surjective
degree preserving algebra maps 7: A — T and 7: A — T. Then A is a cohomological
blowup of A along 7 for some parameters (¢;,...,t,_;,A), and T is its exceptional divisor
if and only if the following conditions are satisfied.

1. There are degree preserving algebra maps : A — A and Bo: T — T making

the following diagram commute:

B
—

d
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22 A.Iarrobino et al.

2. The Euler class € = 7 (%) € T, generates T as a T-algebra (via ) with a single

homogeneous relation in degree n = d — k:
€" + Bt 4+ By () =0

for some homogeneous elements t; eT;forl <i<n.
3. There is a short exact sequence of A-modules

0 AL AT Fpm — 0.

Proof. Assume that (A,fA) is the cohomological blowup of (4, [,) along 7 and that
A) from Definition 3.10,

(T, f%) is the exceptional divisor, with parameters (¢;,...,t,_;,

and their preferred orientations from Definition 3.9. Then our discussion following
Construction 3.1 shows condition (1.) is satisfied. Also, Lemma 3.13 shows that the
Thom class of 7 is 7 = —A~!£, and its Euler class is ¢ = #(—A"1£). From the presentation
of T in (11), we have fr& =&+ tlg”—l + .-+ A-7(t) = 0in T. Therefore, setting
t, = (=17t for 1 <i <n—1yields (-1)"A" (" + e 1 +-..+¢t, e+A".7)=0
in T, which is (2.). Finally, Corollary 3.7 implies condition (3.).

Conversely, assume that Conditions (1.)-(3.) hold. Define an algebra map

¢ AlE] —— A (18)

a —— B(a)

A

E— 1

where 8: A — A is the map given by (1.), and 7 is the Thom class of 7#: A — T. Then
Conditions (2.) and (3.) guarantee that ¢ is surjective. Indeed, by (2.), the quotient T/ﬂo(T)
is generated as an A module by nonzero powers of the Euler class ¢ = 7(7), and hence
by (3.), A is generated as an A module by 1 and nonzero powers of the Thom class 7.
Furthermore, note that the ideal generated by & - u for u € K = ker(r) is contained in
ker(¢). Indeed, ¢(u-&) = B(u) - T and for any a € A, we have

ﬁf-ﬂ(u)ﬁa:[ﬁ(ﬂ(u)ﬁ)
A T

Z/Tﬂo(ﬂ(u))ﬁ(fl):O,

which implies that 8(u)T = ¢ (u - &) = 0 since A is Gorenstein.
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Consider the relation on the Euler class from (2.):
€+ Byt 4o Bo(th_1)e + Bo(ty) = 0.

Foreach 1l <i <n-1,leta; be any n-lift of t; (which exists since 7 is surjective), and set
9a®) =" +a " + - +a, ;& € AlE]l Note that 7 (¢ (94(8))) = —Bo(t,) € Bo(T), and
hence according to condition (3.), there exists a, € A such that g(a,) = ¢(g,(§)) in A.
Then, setting £, (§) = g, (&) + a,,, we see that f, (§) € ker(¢) as well. Thus, we have shown
the containment of ideals (¢ - K, f,(€)) < ker(¢), and in particular, the map ¢ induces a

surjective map on the quotient

o Alg] ]
tA=————— 5 A
(&K, f4(6)

Since A’ follows Construction 3.1, Lemma 3.4 implies its Hilbert function is as in (13):
HA)=H( (A) +HD)]+ -+ H(DIn - 1], (19)

where g/: A — A’ is the natural map described after Construction 3.1. By condition (3.),

we know that the Hilbert function of A is
H(A) =H(A) + H(T)[11+ - - - + H(T)[n — 1]. (20)

Since H(B(A)); < H(A), for all i, but also H(A’)i > H(A), for all i by surjectivity of b,
we deduce that the Hilbert functions (19) and (20) must be equal and therefore that
q_ﬁ: A’ — A must be an isomorphism. Finally, since A is Gorenstein, it follows that A’ is

Gorenstein and hence must be a cohomological blowup, and the result follows. |

Remark 3.15. As discussed in the Introduction, the conditions of Theorem 3.14 are
satisfied by cohomology algebras. More precisely, if Y C X are compact complex
manifolds of dimension k < d, with cohomology algebras A = H?>*(X) and T = H?*(Y)
and 7: A — T the induced restriction map, surjective or not, then the cohomology
algebras of the blown up manifolds 7 = H2?*(Y) and A = H2*(X) with (possibly non-
surjective) restriction map 7: A — T satisfies Conditions (1.)~(3.) of Theorem 3.14.
Therefore, Theorem 3.14 seems to offer a way to define the cohomological blowup of
an oriented AG algebra A along any, possibly non-surjective, map 7: A — T. On the

other hand, without the surjectivity assumption on 7, one must sacrifice, among other
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things, the nice presentation given by Construction 3.1; see Example 9.3 and Remark 9.4

in Section 9.

4 Macaulay Dual Generators

Our reference for this section is [25, Appendix A], but see also [12, Appendix A.2.4]. Let
R =FI[x,,...,x,]1be apolynomial ring, and let Q = FlX;, ..., X,] be the dual divided power
algebra. Let F € Q; and G € Q; be homogeneous forms of degrees d > k, respectively,
and suppose that t € R;_j is a polynomial for which G = r o F. Then, if A = R/ Ann(F)
and T = R/ Ann(G) are the corresponding oriented AG algebras, the identity map on R

induces a surjective map on the quotients

R R
fd —_— = T
Ann(F) Ann(G)

T A

for which the Thom class is T as shown in Lemma 2.4.

Next, we give another construction, similar to Construction 3.1, that will lead to
yet another characterization of the cohomological blowup (Theorem 4.6). First, we need
some notation. Throughout this section, we use the notation 7 for the coset of r € R in

the quotient algebra T.

Definition 4.1 (G-dual polynomial). Given G and T as above, let £ be an indeterminate,
let n be any positive integer, and let f(¢§) = £"+a,E" "1+ .+a, € R[] be a homogeneous
monic polynomial with a; € R; for 1 < i < n. Evaluation at £ = 1 gives a non-
homogeneous element in fz(1) € R and projection to the local ring T gives a (non-
homogeneous) unit uy = 1+a@, +---+@, € T.Let uy = 1+U; +- - -+Uy, € T be its T-inverse,
that is, us - up, = 1 in T, with homogeneous components u; € T;. A homogeneous monic
polynomial hg(¢) = €% + u,£5"1 + ... 4 u, with homogeneous coefficients u; € R; that

project to u; € T; for every 1 <i < n is called a G-dual polynomial for fz(€).

Since T is graded and pg - pup, = 1in T, it follows that the polynomials fz(¢) and
its G-dual polynomial hg(¢) satisfy

fa(®) - hg®) =&"* mod Anng(G)- RIE].

Construction 4.2. Setn = d—k, let £ be an indeterminate, and let E be its dual divided

power. Choose homogeneous elements a; € R; for 1 < i < n, and define a homogeneous
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monic polynomial f(¢§) € RI¢] by
fr@) =&"+a; "+ ta,. (21)
Let hy(§) € RI£] be any G-dual polynomial of fz(&):
hp®) = 8 +ueF o by (22)
Construct the (d — 1)-form G € Q[E] by
G = hg(®) o (Ed—l : G) =816+ B Uy 06 + -+ BV (w0 6), (23)

and construct the oriented AG algebra

T = Ann(G) (24)

Next, fix a parameter A € F*, and construct the d-form F e QlE]

F=F—A-BG=F—A (E"G+ E (w0 G) 4+ E"+k(ukoG)) (25)

and construct the oriented AG algebra

Ayp = RIEL (26)
Ann(F)
In Construction 4.2, one can easily check that we have
Anng;(F) "R = Anng(F), and Anngy(G) NR = Anng(G),
which implies that the inclusion map R < RI[¢] induces injective maps
B A R RI] = A, and Bo: T R Rl = Typ»

= — = = — =

Next, we observe that £ o F = A - G, and hence the identity map RI£] — RI£] passes to a
surjective map on the quotient algebras
A R R ~
s A €] R €]

= = T
MD S A ~ MD
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with Thom class 7 = —A~!& (compare with Lemma 3.13). Since the identity and inclusion
maps on R and R[¢] form a commutative square, it follows that the maps on quotients
do too, resulting in a commutative diagram

B .
A —— Ay (27)

T —— TMD;
Bo
compare with condition (1.) of Theorem 3.14. The following result is related to condition

(2.) of Theorem 3.14, namely that TMD is a free extension of T; compare with Lemma 3.2.

Lemma4.3. LetG € Qi be any homogeneous form, let fy(§) = " +a,£" "1 +-.-+a, any
monic homogeneous polynomial with coefficients a; € R;, and let hg(¢) = &% + u k-1 +
-+ 4+ u € RI¢] be a G-dual of fz(§), as in Construction 4.2. Then we have the following
equality of ideals:

Ann (hR(g) o (ad—l : G)) = Anng(G) - RIE] + (f(©)).

In particular, the oriented AG algebra TMD from Construction 4.2, Equation (26) is a free
extension over T and in fact is equal to the algebra T from Construction 3.1 Equation
(11), that is,

RI¢] RI¢] Ti§]

— = = == T
Ann(G = hg(§) o (471 .G))  Anng(G)-RIEI+ (fr(6)  (fr(§) = fr(8)

Ty =
Proof. The containment
Anng(G) - RIE1 + (f(£)) € Anngy, (G = hg(®) o (adfl . G))
follows from the relation
fr(&) - hg(®) = ¥ mod Anng(G) - RI].

Therefore, the identity map R[¢§] — RI¢] passes to a surjective map of algebras

TIE] RIg] REI s

T = == = _ _ )
¢ (F()) Anng(G) - RIEl + (f(€) ~ Anng,(G) M
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Let t,,, € R, be any homogeneous polynomial that projects onto the socle generator of

soc
T, so that the distinguished socle generator of T is t,,, - £"~!. Since

tsoc - ‘i:nil : hR(E) o (Edil . G) =1,

it follows from Lemma 2.6 that ¢ must also be injective and hence an isomorphism, and
the result follows. n

Remark 4.4. 1In [43], the authors refer to the monic polynomial fz(£) as the homoge-
nizing polynomial for T and to the G-dual hy(¢) as the dual homogenizing polynomial.
We refer also to [8] for more on de-homoginization. We also remark monic polynomial

fr(€) and its G-dual polynomial hy(£) also satisfy
fa®) - hp® o (29 6) =fa®) 0 (8- 6) = G; (28)

in particular, fz(¢) is the Thom class of the projection map

R[¢] RI¢]

g: B = — — =
Anngy (2:G)  ARR(©)

The algebra B defined above will show up again when we discuss connected sums.

Lest the reader think that the AG algebra

RI¢]

T =
Anngy, (hg€) o (E4-1.G))

is always a free extension over T = R/ Anng(G); the following example shows otherwise.

Example 4.5. LetR = Flx,y,z]l, Q = F[X,Y,Z], and let G = XYZ with k = deg(G) = 3.
Suppose that we choose n = 2, and hgz(¢§) = £3 + (xy + xz + yz)& + (xyz) and define G as

in Construction 4.2 Equation (23):

G=EXYZ+ B (X +Y+2) +E" =h@)o (340) :
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Note that there is no monic polynomial fz(§) € AnnR[‘E](@) of degree n = 2, and in fact

we have

R[S] ]F[XIYIZIS]

T: = = ’
Ann(G) (x%,y%,z%,Exyz —E3(x+y +2),E3(x +y + 2) — £%,£9)

which is not a free extension over T = R/ Ann(G).

Note, however, that the corresponding unit h(1) € T is puj, = 1 + (xy + xz + yz) +

(xyz) and its T-inverse is (uh)_l =1— (xy + xz + yz) — (xyz), indicating that the “correct
choice” is fRr(§) = £3 — (xy + xz + yz)€ — xyz of degree n = 3 (not n = 2). Indeed, we see

that if we define the homogeneous form of degree 5
G =E2XYZ+ E*X +Y+2) +E® = hz(®) o (ESG) :

then

7 RIE] _ RI¢] _ T[]
AnnR[S](é’/) Anng(G) - RIE] + (fr(§)) (fT(E) — 3 _ (xy t xz t y2)t — (XYZ)) '

which is a free extension over T = R/ Ann(G) with fiber F = F[£]/(£3). The moral of the
story here is that given a k-form G € Q; and T = R/ Ann(G), then in order to construct
the dual generator of a free extension over T by the formula hz(§) o (E"*k*I -G) € Qq_y,
we can either choose the integer n and the monic polynomial fz(¢) of degree n and
then take hg(§) as its G-dual, or we can choose the monic polynomial hz(£) of degree
k, then take its G-dual fz(£) and take n = deg(fz(£)), but we cannot necessarily choose
the integer n and the polynomial hg(§) simultaneously. Of course, the G of Construction
4.2 Equation (23) follows the former procedure and, by Lemma 4.3, is always the dual

generator of a free extension of T.

The following result gives necessary and sufficient conditions for AMD to be a

cohomological blow-up algebra of A along 7: A — T in the sense of Definition 3.10.

Theorem 4.6. Let fz(¢), hr(%), G, TMD, A, F, and AMD be as in Construction 4.2. Then

the following statements are equivalent.

1. The algebra AMD is isomorphic to a cohomological blowup of A along 7= with

some parameters (ty,...,t,_;,A).
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2. The Hilbert function of A, satisfies
H(Ayp) = H(A) + HT)] + -+ + H(T)[n — 11

3. There exists an element r € R for which fz(§) —r € AnnR[E](F).

4. The constant coefficient r,, of fz(¢) satisfies
(r,—r)oF=1-G
for some r € Anng(G).

Proof. (1.) = (2.). Assume that AMD is isomorphic to a cohomological blowup of
7: A — T. Then Corollary 3.7 gives (2.).
(2.) = (3.). Assume that H(A,,) = H(A) + H(T)[1] + --- + H(T)[n — 1]. Then the

sequence of maps
B N 7 ~
0 — A —— Ayp —— T/By(T) —— 0

is exact by the argument in the proof of Corollary 3.7. Let f, (§€) be the equivalence class
of fz(¢) € RI¢] in A,y Note that by Lemma 4.3, f,(£) must be in the kernel of #, and
hence by exactness, there exists r € A = R/ Ann(F) for which () = f,(&). Thenif r € R
be any homogeneous lift of r, we have fr(§) —r € Ann(l:"), which is (3.).

(3.) = (4.). Assume that there exists r € R for which fz(£) — r € Ann(F). Then we

have

(F® = 1) o F = (fa® — 1) o (F = 3 hg(®) o (" G)) (29)
:fR(S)oF—T‘oF—)»-(fR(éE)-hR(S))o(En"'k-G)—i—)»-E~r‘oé
=r,0oF —1roF—%-G+1-8-10G

=(r, —1MoF—1-G+A-E-roG=0,
which implies, by comparing E-coefficients, that

(r,—1moF—x-G=0.
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Moreover, since fr(§) —r € Ann(F) € Ann(G = £ o F), and fr(€) € Ann(G), we see that
r € Ann(G) too, which implies that r € AnnR[S](G') N R = Anng(G), and (4.) follows.

(4.) = (1.). Assume that there exists r € Ann(G) such that the constant coefficient
of fr(¢§) — r € RI¢] satisfies (r, — ) o F = A - G. Then we claim that fz(§) — 7 € Ann(F).

Indeed, as in (31), we have
(fR(g)—r)oﬁz(rn—r)oF—x.G—)\.E.roéz—a(xroé) =0

since ro G = hy(§) o (B4 (ro G)) = 0.
Next, observe that for any 7 € Anng(G) = AnnR[S](@) NR we have &1 ¢ AnnR[s](ﬁ').

In particular then, the kernel of the surjective map

R[¢] i

®: Rl(] > ——————— =
AnnR[S](F)

MD

contains Anng(G)-£RI£], and fz(§) —r, not to mention the ideal Anng(F)-RI£]. Set I C RIE]
to be the sum of these components, that is, I = Anng(F)-RI[£]+Anng(G) -£RI[E]+(fr(§) —1).
Then, clearly, we have R[§]/T = Al£]l/(§ K, f,(§) = m‘) where K = ker(w) = Anng(G)-
RI£]/ Anng(F) - RI£]. Moreover, if t; € T; is the equivalence class of r; € R;, then since
it follows that R[£]/I is the

cohomological blowup of A along = with parameters (t,...,t,_;, ). Therefore, we have

the equivalence class of r, —r € R, in Ais A -1 € 4,,

a surjective map of Gorenstein algebras

Al¢] P

O:A=RE = ——> 5 A,
S A

Since A and AMD have the same socle degree, ® must be an isomorphism by Lemma 2.6,
which is (1.). |

The preceding Theorem 4.6 implies that the algebras A from Construction 3.1
Equation (9) and AMD from Construction 4.2 Equation (26) are equal precisely when
they are cohomological blowups; in this case, we shall replace “hat” with “tilde” on all
symbols and write

Amdy = R _ o AE

amn (F=F-2- (G=hg® o (289 G))) (¢ KJo®)

The following gives an example in which A # A,
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Example 4.7. Let F = X?Y? and G = XY so that

. Flx, yl N Flx, yl
T Ann(X2Y2?) ~ Ann(XY)

=T, 7x)=x, n(y)=y

is the natural projection map of corresponding AG algebras with Thom class 7 = xy;
here, d = 4, k = 2, and n = 2. Taking f = £2, we see that its G-dual is itself, that is,
hg(é) = £2, and hence setting G = hg(§) o (8471G) = £2 0 (E% - XY) = EXY, we get

Flx,y, ]  Flx,y,é&]

T = = .
Ann(EXY) (x%,y2,£2)

Then taking A = 1, Construction 4.2 yields F = F — 2G = X2Y2 — 82XV, and hence

A Flx,y, £ _ Flx,y, &l
MD T Ann(X2Y2 - B2XY)  (x3,y3,x2,y2€, x(6% + xy), y (62 + xy),£3)

Note in this case, there is no r € Ann(G = XY) for which fr(§) —r = £ —r €
Ann(F). We can also compute the Hilbert function H(AMD) = (1,3,6,3,1), whereas
H(A) + H(T)[1] = (1,3,5,3,1), and hence H(A,;p) # H(A) + H(T)[1], and therefore A,
is not a cohomological blowup of A along 7, by Theorem 4.6 (or by Theorem 3.14).
Moreover, taking f, (&) =]% = £2, Construction 3.1 yields

Alg] Flx,y, &l

A = = ’
(g ' K!fA(E) = 52) (XSIYSIEXZI%-yZ,%-Z)

which is not even Gorenstein; in particular, A # A,
Alternatively, a “correct choice” is fz(¢) = &2 — xy for which a G-dual polynomial
is hg(§) = £2 + xy yielding G = (§2 + xy) o (8°XY) = EXY + E°% and

Fix,y,&] Fix,y,&]

j:, — = .
Ann(EXY + 83) ~ (x2,y2,£2 — xy)

In this case, taking A = —1 (Theorem 4.6 requires it!), Construction 4.2 yields F = X?y?+
E (EXY + %) with

Az Gy o) Flx,y, &l B Flx,y,&]
— UMD T ANn(E2XY + B% + X2Y2) T (x3,y3,6x%,6y2,E2 — xy)|

Here, we can verify that the conditions of Theorem 4.6 are satisfied, for example the
Hilbert function is H(A) = (1,3,5,3,1) = H(A) + H(T)[1]. Hence, in this case, A(= AMD)
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is the cohomological blowup of A along = with parameters (t;,A) = (0, —1). In this case,

taking f, (¢) = fr(é) = &2 — xy, then Construction 3.1 yields the same algebra:

alel Flx, y, £]
& K. fa(6)  (3,y%6x2%,6y2,82 —xy)’

A= (A=)

5 Relation with Connected Sums
5.1 The cohomological blow-up algebra as a connected sum

In this section, we relate cohomologiocal blow-up algebras to a different algebraic
construction termed connected sum, an algebraic analogue of the better known topo-
logical construction by the same name. In the topogical construction, a connected sum
is obtained by gluing two 2d-dimensional manifolds M, and M, along diffeomorphic
tubular neighborhoods of a common 2k-dimensional submanifold N. In complex geom-
etry, it is well known that the connected sum of an n-dimensional complex manifold M
with a projective space P" is diffeomorphic to the blowup of M at a point [23, p.101].
Our contribution here is to recognize that any cohomological blow-up algebra along
a surjective map is a connected sum in the algebraic sense; see Theorem 5.4. We now
recall the algebraic connected sum construction as defined in [30], based on the original

construction defined in [3].

Definition 5.1 (Fibered product, connected sum). Given oriented AG algebras (A, f A),
(B, [3), another AG algebra (T, [;), and algebra maps 7,: A — T and 73: B — T one
forms the fibered product algebra as the sub algebra A x; B € A x B of the direct
product algebra given by

AxpB= {(a,b) €A xB|my(a) :rrB(b)}.

If A,B have the same socle degree d, 7, and nz have Thom classes 7, and tp
respectively, and the Euler classes wyz(t5) = 7,4(7,) are equal, then the total Thom class
(14, tp) is in the fibered product algebra A x B, and we define the connected sum algebra
as the quotient of the fibered product by the principal ideal generated by the total Thom
class, that is,

AxrpB

A#B = —————
" (4 p)

If the projection maps n, and ny are both surjective, then the connected sum
algebra defined above is an AG algebra of the same socle degree d as A and B; see for

example [30, Lemma 3.8].
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In terms of Macaulay duality, the following result in [30, Theorem 4.6] gives a

useful criterion to recognize an AG algebra as a connected sum.

Proposition 5.2. Let R = Flx;,...,x,], and let F,H € R; be two linearly independent
homogeneous forms of degree d. Suppose that there exists ¢ € R;_; (for some k < d)
satisfying

1. coF=00H #0, and

2. Ann(oc oF =0 o H) = Ann(F) + Ann(H).

In this case, set

. a B Q - Q
T AnnF' T AnnH)' ©  Ann(coF=ocoH)’

andlet7,: A — T and nz: B — T be the natural projection maps. Then the Thom classes
of 7, and 7y are given by 7, = 0 + Ann(F) and 13 = o + Ann(H), and we have algebra

isomorphisms

~ Q ~ Q
= ’ A#TB =
Ann(F) N Ann(H)

AxpB =
Ann(F — H)

And, conversely, every connected sum A#;B of graded AG algebras of the same socle

degree over graded AG algebra T arises in this way.

We utilize this result to realize a cohomological blow-up algebra defined as in

Construction 4.2 as a connected sum.

Example 5.3. Let F = X?Y?2 and G = Y and 7 the projection between their

corresponding AG algebras

_ Flxyl  Flxyl _
© Ann(X2Y?) ~ Ann(Y)

’

with Thom class ¢t = Xzy. Here,HA)=(1,2,3,2,1),H(T) =(1,1),d=4,k=1,and n = 3.
Take hg (&) = £ + y with corresponding unit u;, =1+ y € T, and inverse (,u,h)71 =1-y,
so that fz(¢) = &3 — £2y. Then,
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Choosing A = —2, we have
7 =x%v? - 28 (E2Y+ 33) — x2y? — 283y — 284,

Setting r = —2x%y € Anng(G), we have fr(§) = fr(€) —r = £3 — £2y + 2x%y € AnnR[S](I:"),

and hence

Flx,y, &1 Flx,y, &l
Ann(F) — (x%,y3,Ex,Ey?, E3 — £2y + 2x%y)

A=

is according to Theorem 4.6 the cohomological blowup of A along = with parameters
(=y,0,,0,2), with Hilbert function H(A) = HA) + H(D[1] + H(T)[2] = (1,3,5,3,1).

Setting H = 283Y + 224, we have F = F — H. Moreover, the element 7 = fR(S)
satisfies tTo H =t o F = Y and Anng(Y) = Anngp (F) + Anng (H). Hence, it follows
from Proposition 5.2 that we can also realize A as a connected sum of A = R[£]/ Ann(F)
and B = RI¢]/ Ann(H) over T = R/ Ann(Y), that is, A = A#;B.

In the following, we show that Example 5.3 is an instance of a general phe-
nomenon: any cohomological blow-up algebra is a connected sum. For the remainder
of this section, we work under the following set up. Fix a d-form F € Q, and a k-form
G € Q; with d > k, and let A = R/ Ann(F) and T = R/ Ann(G) be the associated oriented
AG algebras. Assume there exists homogeneous polynomial v € R;_; for which toF = G,
so that the natural projection map n,: A — T has Thomclasst, =7.Letn =d —k, let &
be an indeterminate, E a divided power variable dual to &, and fix a monic homogeneous
polynomial fz(§) = " +r "1 +...+r, € R[] with coefficients r; € R; such thatr, = At
for some nonzero constant 1 € F*. Let hz(§) = ek + ulék_l + -+ uy € R[] be a G-dual
polynomial of fz(¢). Define the (d—1)-form G and its associated oriented AG algebra T by

R[¢]

é=h o Ed_l-G, T=—.,
MORT| ) A @

Define the d-form F and its associated oriented AG algebra A
~ ~ ~ A R

F=F-1-B-G, A:AMD=i~

AnnR[E](F)
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as in construction 4.2; note that Theorem 4.6 guarantees that A,;, = A here. Define the
new d-form H and its associated AG algebra B

RI¢]

H=)-8-GeQlEl,, =
[Elq Anngg (H)

and recall that
H:A~E-@:A-hR($)o(Ed-G).

It follows that hg (&) is also a G-dual polynomial for & - fz(§) of degree n + 1, and hence

by Lemma 4.3, we have

_ R[] _ RI¢] _ T[&]
Anngpg (H)  Anng(Anng(G) - RIEE] + (6 - f(§)) (—g .fR(g)) '

Thus, the distinguished socle generator of B as b,,, = A~ - £" - t,.. The evaluation & = 0
passes to a map on quotients nz: B — T, and from the identity (28), it follows that its

Thom class is

5 =271 fr(E).

Note that the Euler class of ny is nB(A_l - fr(&)) = 7, which is equal to the Euler class of

74, and hence it makes sense to form the connected sum A#;B.

Theorem 5.4. The connected sum of A and B over T is equal to the cohomological

blowup of A along = with parameters (a;,...,a,_;,A), thatis,
A = A#.B.

Proof. With our setup above, Theorem 4.6 implies that A is the cohomological blowup

of A along m with parameters (a;,...,a,_;,A), thatis,

Setting o = fr(¢) in Proposition 5.2, it then suffice to check that Conditions (1.) and (2.)

hold. Condition (1.) holds since we have

frE) oF=(@E"+rg" ' 4.t r-1)oF=1-G=fr(€) o (H).
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It remains to see that
Anng(G) = Anngp (H) + Anng (F). (30)
By Lemma 4.3, we have
Anng (H) = Anng(G) - RIE] + (£ - fr(£)).

Also, since F is independent of &, we have

Anng(F) = Anng(F) - RIE] + (§).
Since Anng(F) C Anng(G) and

Anng(G) = Anng(G) - RIE] + (§),
(30) follows, and the desired conclusion follows by Proposition 5.2. |

Remark 5.5. In general, fibered products and connected sums of standard graded AG
algebras need not be standard graded, even in the simplest cases. Examples illustrating
this appear for the fibered product in [30, Example 4.5], and for the connected sum
in [30, Proposition 5.22]. Theorem 5.4 distinguishes cohomological blow-up algebras of
surjective maps as a class of connected sums, which preserves the standard grading.
However, there are examples from geometry where A and T are standard graded, but
the restriction map 7: A — T is not surjective, and the cohomological blowup has a

nonstandard grading; see Remark 9.4.

5.2 The blowdown as a connected sum

Continuing with our setup above, let 77,: A — T be the projection map with Thom class

T, =—2"l£.SetH=1-E- G, and consider the surjective map of AG algebras

S RI¢] RI£] -
g B:= — — — =T.

Ann(—H = —A-E-G) Ann(G)
The algebra B is the AG algebra B from the previous subsection, but with orientation
b

is equal to the Thom class of 7,. Then it makes sense to form the connected sum A#TE.

reversed, that is, by,, = —b,,.. Thus, the Thom class of the map 7, is 753 = —A~'&, which
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Theorem 5.6. The connected sum of A and B over T is equal to A, that is,

A= A#:B.

Proof. Write

RI&] _ RI£]
AnnR[E] (F =F— (—H)) Anng(F) - RIE] + (§)

A=

Setting ¢ = & in Proposition 5.2, we will show that Conditions (1.) and (2.) hold.

Condition (1.) holds because
EoF=—)-G=Eo(—H).

For Condition (2.), note that it follows from Theorem 4.6 and Construction 3.1 that

AlE] _ RI¢]
(E K'fR(g)) Anng(F) - RIE] 4 & - Anng(G) - RIE] + (fr(§))

12

A

and hence that
Anng(F) = Anng(F) - RIE] 4 £ - Anng(G) - RIE] + (fr(4)).

Also, from Lemma 4.3, we have
Anng)(H) = Anng(G) - RIET + (§ - fr(§)),
and since Anng(F) € Anng(G = t o F), their sum satisfies
AnnR[{;](f?) + Anngp(H) = Anng(G) - RIE] + (fr(8)) = AnnR[S](f}),
which is condition (2). Hence, the result follows from Proposition 5.2. [ |

One interesting consequence of Theorem 5.6 is that every AG algebra has a
nontrivial connected sum decomposition over some algebra T. This stands in direct
contrast to connected sums over the ground field T = F, where #z-indecomposable

AG algebras exist; see [3, Theorem 8.3] and also [42, Proposition 3.1]. On the other
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hand, Theorem 5.6 shows that over general T, there may be no #;-indecomposable AG

algebras.
Example 5.7. Set F = Z°XY — X?Y? so that the corresponding AG algebra is

_ Flx,y, 2] _ Flx,y, 2]
© Ann(Z2XY — X2Y?%)  (x3,y83,x%z,y%z,x(z% + xy), y (2% + xy), Z3)

with Hilbert function H(A) = (1,3,6,3,1). Set G = 1 so that T = F and the Thom class
for the projection 7: A — F is just the socle generator t = zxy. Then we can set fz(§) =
g4 —z°xy, which has G-dual hy(¢) = 1. Therefore, we have G = 2%, F = (Z2XY —X?Y?)—E%,
and H = £%. Then,

Flx,y,z,§]  Flx,y,z]

T = =
Ann(E3) (x,y,2,&%

and

A Flx,y, z &l

T Ann(Z2XY — X2Y?2 — %)

. Flx,y, z, ]

- (x8,y8%,x%2,y%2,x(2% + xy),y(2? + xy), 2%, 6x, 6y, 62,4 — Z2xy)
and

Flx,y,z, & Flx,y,z§]

B= = .
Ann(_E4) (Xl YIZI$5)

Since £ o (Z2XY — X?Y? — %) = —E% = £ o (—E%), and also Ann(Z2XY — X?Y? — E%) +
Ann(E%) = Ann(E9%), it follows that A is a connected sum of A and B along T, as

guaranteed by Theorem 5.6.

We conclude this section with an example that shows that unlike the blow-up

operation, the blow-down operation may not always preserve the standard grading.
Example 5.8. Define the AG algebra

Flx,y, ul Flx,y, ul

A = =
(x2,u?,xy,xu — yu,xu —y®)  Ann (XU + YU + Y3)
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with the nonstandard grading deg(x) = deg(y) = 1 and deg(u) = 2. We can blow up

along the projection

Flx] _ Flx]

7:A—>T= = —
Ann(X) (x2?)

with Thom class T = u—y? and kernel K = (y, u). Then setting fz(¢) = £2—(u—y?) (which
has G = X-dual polynomial hg(¢) = £¥), the cohomological blowup of A along 7 is

Flx,y, u, &l Flx,y, u, &l

A = = .
(x2,u?,xy, XU — yu,xu — y3,£y,6u,62 — (u—y?) Ann(E2X — XU — YU — ¥9)

Since u = £2 + y? in A, we can eliminate u and get

Flx,y,&]
(x2, (62 4+ y2)?,xy, (x —y)(E2 + ¥?), x(§2 + y?) — y3, £y, (62 + y?2))
~ Flx,y, &l
o (x%,83,xy,xE2 — y8,y8)’

A=

which has a standard grading.
Incidentally, A is also the cohomological blow-up algebra of a standard graded

AG algebra A’ along a different 77, namely

! = M —> T/ = F

(x2,&3)
Here, the kernel is K’ = (x,£) and the Thom class is the socle generator T = XEZ, and
taking y as the “blow-up variable” with fr(y) = y° — x£2, we find that the blowup
satisfies

i A Fix, §,yl

!/

= A =A.
(YK/rf(Y)) (eréerXrY&Ys—XEz)

6 Minimal Generating Sets and CIs

In this paper, a complete intersection (CI) is a quotient of a polynomial ring by an ideal
generated by a regular sequence of maximal length. At a cursory glance, the presentation
in Construction 3.1 may lead one to believe that cohomological blowups cannot be CIs,
except in embedding dimension two where all AG algebras are CIs, but the following

example shows otherwise.
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Example 6.1. Define the AG algebras and the surjective map between them

_ Flxyl « . _ Flxyl
- x%,y9) &y

, 1(x)=x, n(y) =0.

Then the kernel of 7 is K = (y) and the Thom class is r = y?. Here, d = 4, k = 2 and
n = 2. Letting £ be the blow-up variable and f,(§) = &2 — y?, define the associated

cohomological blow-up algebra as in Construction 3.1 as

Alg] Flx,y, ]

A= = .
(EKIfA(E)) (XSIYSIEYIEZ_YZ)

In this presentation, the generator y° is redundant, and we see that A is indeed a CI of
Hilbert function H(A) = (1, 3,4,3,1) = H(A) + H(T)[1l].

In this section, we will show that Example 6.1 is prototypical of the class of
BUGs, which are CIs. First, we introduce yet another description of the cohomological
blowup in terms of its defining ideal.

As usual, let R = Flx;,...,x,] be a graded polynomial ring with homogeneous
maximal ideal m = (x;,...,x,). Recall from Section 2 a homogeneous ideal I € R is
m-primary and irreducible if and only if the quotient R/I is a graded AG algebra. We
abuse notation slightly and call the socle degree of such an ideal the socle degree of the

corresponding quotient.

Construction 6.2. Fix an m-primary irreducible homogeneous ideal I C R of socle
degree d, and fix a homogeneous polynomial 7 € R of degree n where 2 <n <d -1
and such that I C (I: ) C R. Then the ideal (I: 7) is also homogeneous, m-primary, and
irreducible of socle degree k = d — n; see Lemma 2.3.

Let £ be an indeterminate, and fix a homogeneous monic polynomial fz(§) =
E" 4 r "1 ... 4 r, wherer; €RR;.

Define the ideal I  RI¢] = R by

I=1I-RIE]J+&-(I: ) RIE]+ fr() - RIEL (31)

We now describe some properties of the ideal (31) of Construction 6.2. Since I
and (I: ) are both m-primary and irreducible it follows that A = R/Tand T = R/(I: 1)
are AG algebras, and since I C (I: t), the identity map on R passes to a surjective map of

quotient algebras 7: A — T. Moreover, it follows from Lemma 2.2 that one can choose
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orientations on A and T such that T € A, is the Thom class of 7. Note that the kernel of
wis K = (I: 7)/I C R/I = A. It follows that if £, (§) = fr(§) € Al§] = RI¢]/I, then A from

Construction 3.1 satisfies

A Alg] _ RI¢] _ (32)
(¢ K, fr®) I-RIEI+E&-UT:7)-RIEI+ (fr(5)) - RIE]

~>| 9>

It follows therefore from Lemma 3.6 that the ideal I from Construction 6.2 is f =
(x1,...,X,,&)-primary irreducible if and only if the constant coefficient r,, € R,, of fz(§)
satisfies r, —1 -1 € I for some A € F*. In this case, we shall replace the “hat” with “tilde”
and call I = I the cohomological blow-up ideal of I and 7, as it is the defining ideal of
the cohomological blow-up algebra Aof A along 7 with parameters (r|,...,7,_;,1).

It is also clear from Construction 6.2, and Lemma 3.13, that the colon ideal
I &) C R satisfies

d:86) =T 1)+ (fr(&) = fr(E) (33)

and we have

T ey < __R (34)
(Fr(®) L) RE+fr© -REL (1. ¢)'

which is the algebra from Construction 3.1 Equation (11).

6.1 Minimal generating sets

Next, we would like to know how the minimal generators of the cohomological blow-up
ideal I compare with those of I and of (I: 7). We also determine the relations among
these minimal generators. We start by providing a lemma that helps explain some of

these relations.

Lemma 6.3. Let B(§) = bpép +---+byand C¢) = Cqéq ++ -+ ¢y be any homogeneous
polynomials in R[] with homogeneous coefficients b;,c; € R. Let J C R is any
homogeneous ideal in R and assume that C(¢) is monic, that is, Cq = 1. If the product of

B and C is in the ideal in R[¢] generated by J, that is,

B(§) - C(§) € J - RI§],

then every coefficient of B(£) must lie in J, thatis, b; € J-Rforall0 <i <p.
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Proof. The key observation here is that if D(§) = d,£" + - - - + d is any polynomial in
the ideal J - RI£], then its coefficients d; € J - R. Indeed, if D(§) € J- RI£], plugin & =0 to
see that D(0) = dy € J-R. Then D(§) —dy = D,(§) = & (d,£" ' +---+d,) € J-RI¢] and
hence d,&" ' + ... +d, € (J-RI¢]: &) = J - RI£], since ¢ is a nonzero divisor of J - RI].
Then plug in £ =0 to see that d; € J - R, and so on.

Therefore, if the product

p+q
B()-C(&) =D (boC; +by1C;y + -+ +bicy) &
i=0

is in the ideal J - RI£], then each of its coefficients must be in J - R, that is,
byc;+---+bicyeJ-R foreach0O<i<p+gq.

Taking first i = p+gq, we find that b, - ¢, € J- R and since ¢, = 1 it follows that b, € J-R.

Inductively, assume that b . ,bp € J - R. Then taking i = p + q — j we find that

p—j+1r

bpcq_j+bp_1Cq_ji1+ -+ bp_jy1€41+by_jcg €T R

_jCq = bp_j € J - R as well. Therefore, by induction, all

coefficients bj areinJ - R. |

from which it follows that bp

We can now provide a short exact sequence that determines the relations among
the obvious (not necessarily minimal) set of generators of the cohomological blow-up
ideal I.

Proposition 6.4. LetI =1-R[t]+&- (I : 1) - RIgE] + (fr(§)) be the ideal described in
Construction 6.2, let I' =I-R[¢], K’ = (I : 7) - R[], and let g = (fg(§) — At)/&. There is a

short exact sequence of graded R[£]-modules

& At
0 -1 IR
0->I'(-1)®K(-n) ———— S I'®K' (-1)®RIE] ————— > T — 0. (35)

Proof. The definition of I yields surjectivity of the rightmost nonzero map and the

injectivity of the leftmost nonzero map is clear from its description (note there is a
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unit entry in each column). That (35) is a complex is seen by matrix multiplication and
utilization of f = g& + At.

It remains to prove exactness in the middle of (35). For this, consider a triple
(@(§),B(8),7(§) e I'®K'(—1) ® RI¢] so that

a(§) + BEE +yE)frE) =0. (36)

Since I’ C K’ we have «(§) + 8(£)§ € K/, so that also y(§)fz(§) € K, and by Lemma 6.3, it
follows that y (£) € K’ since fz(¢) is monic. Adding the relation

Aty (§) + 9@y ) —fr®)y () =0,

to (36) yields («(§) — Aty (§)) + (B(E) — g(&)y(§)) = 0. Since y(§) € K' = (I : 1) - RI§], we
have Aty (§) € I - R[§] = I’ and thus B8/(§) := (B() — g(§)y(§) € I'. We have thus obtained
the identity

a(§) & AT
BE) | =-B&|-1|-v®| g |,
y(€) 0 -1
where /(&) € I’ and y (§) € K, establishing the desired exactness. [ |

Based on the presentation in Proposition 6.4, one can infer a minimal generating
set for I. Setting i to be the homogeneous maximal ideal of RI£], tensoring the short
exact sequence (35) with R[¢]/m, and observing that there are isomorphisms I'/mI’ =

I/mI and K'/@K’ = (I : 7)/m( : T), we obtain a new exact sequence of F-vector spaces

0 Ay
—-¢ 0
L e LD Ly S R LD e M I o @
ml m(l: 1) Y1 mlI  m(:71) V2 I

The zero entries in the 1st matrix are due to the containments I’ C mI’, gI' C mK’, and
&I' C mI’. We discuss the remaining maps ¢; and ¢,—the former is induced by inclusion

and the other by multiplication by r. These maps fit into the sequence

(I: v)/md: 1) ;’ IfmI —— (I: 0)/m(T: r)%I/mI. .
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Note this sequence of maps (38) forms a complex, that is, ¢; o ¢, = 0 and ¢, o ¢, = 0;

hence, there are homology groups

ker(¢;) and H — ker(¢,)

: - . (39)
im(¢,) im(¢,)

We will see that these homology groups H and H' measure the difference
between minimal generating sets of I and those of I or (I: 7). In fact, we will see that
these homology groups are obstructions to I being generated by a regular sequence.

Using (37), we can express a minimal generating set of I in terms of the minimal

generating sets of I and (I : t) and the homology groups H and H'.

Theorem 6.5. Let ¢, ¢, be defined as in (39), and consider the vector space decompo-

sitions

I . I:t .
— =U®im(¢,) @ H (¢ 7) =W @ im(p,) ® H, (40)
ml — — m(I. T) — —

ker(¢1) ker(¢z)

where U and W are some (noncanonical) complements for ker(¢;) and ker(¢,), respec-

tively. Then the vector space spanned by the minimal generators for I decomposes as

~t

A

m.

- ZUBDHBDEWDEH & (fr(§)). (41)

~

Proof. This follows almost immediately from exactness of Sequence (37): since
ker(yy) = im(y,) = im(¢y) @im(¢;) CI/mIS T : v)/m( : 7) ®F is a direct summand, and

since v, is surjective, it passes to an isomorphism

= I (I't)
I =@ -+=(-1)F
7;m[ m(l:7) ’EUGBGBHGBWGBH/EBIF
] ker(y,)
and the result follows. |

For a homogeneous ideal J C R, we denote by u(J) = dimy (J/mJ) the number
of minimal generators of J. The following corollary is an immediate consequence of

Theorem 6.5, and we omit the proof.
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Corollary 6.6. WithI, t, (I: 1) and I as above, we have

ud) = u(@) + dimH) + 1 = u(: 1) + dim(H) + 1.

Note that in our set up of Construction 6.2, u(I) > r+1 = dim(R) with equality if
and only if I is generated by a regular sequence. In particular, Corollary 6.6 shows that
the vanishing of homology groups H and H' from (39) is necessary for the cohomological
blow-up ideal to be generated by a regular sequence, and hence for the BUG quotient
A = R/I to be a CL. However, the following example shows that the vanishing of H and

H’ is not quite sufficient for that purpose.

Example 6.7. Let I = (x* y* zx? zy% z* —x%y?) and v = 22 — xy so that (I: 1) =
(x*, y* zx?, zy?, z* + xy). Then taking R = RI¢] = Flx,y,2zll¢] and fzr(¢) = &2 — 1 the

cohomological blow-up ideal is
T=(x" " 2x% 277 6 + xp), 6% = (7~ xp)

Hence, the cohomological blowup A = R/I is not a CI Note that in this case, the
homology groups H and H’' are both zero.

Note in Example 6.7 that the colon ideal (f: 5) = I+ (z% + xy) is principal over I.
This is related to exact pairs of zero divisors, which allow a complete characterization
of BUGs that are CI.

6.2 CI blow-up algebras and exact zero divisors

Below, we give a necessary and sufficient condition for a cohomological blow-up algebra
to be a CI based on exact zero divisors, a notion introduced by Henriques and Sega [22],

(see also [4, Section 3]), which is defined as follows.

Definition 6.8. A pair of non-unit elements a,b of a ring A is an exact pair of zero
divisorsif (0:ya)=b-Aand (0:, b) =a-A.

Example 6.9.

1. In Example 6.1 a = ;7 and b = y form an exact pair of zero divisors on

_ Flx,y]
CSE SN
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2. In Example 6.7, a = z2 —xy and b = z2 + xy form an exact pair of zero

divisors on

F r 4
A [x,y, 2]

(X4,Y4:ZX2,ZY2/Z4 - XZYZ) ‘
If A is Artinian, then it suffices to check only one of the conditions in
Definition 6.8; see also [4, Lemma 3.2].

Lemma 6.10. If A is a graded Artinian F-algebra, then homogeneous elements a,b € A

of positive degree form an exact pair of zero divisors of A provided that (0:4, a) =b - A.

Proof. From (0 :4, a) = b- A, we deduce there is an A-module isomorphism A/(b) =

A/(0:, a) = a- A by means of the diagram

0 —— A0 a) — A —— AJ(@ —— 0

R

00— a-A A Al@) — 0

~

Similarly, there is an isomorphism A/(0 :, b) = b - A. Moreover, the hypothesis yields
ab = 0and thusa-A C (0 :4 b). To see that this containment is in fact an equality, we

compute

dimp(A) = dimp(A/(D)) + dimp(b - A) = dimp(a - A) + dimp(4) — dimp(0 :, b);

whence dimg(a) = dimy(0 :, b), and hencea-A = (0 :4 b) as desired. [ |

The next lemma relates exact zero divisors to the homology group H in (39).

Lemma 6.11. LetA=R/ITand T =R/(: t) be AG algebras, and suppose that 7 € 4,, is
part of a pair of exact zero divisors on A. Then the homology groups H and H' from (39)

vanish.

Proof. Assume that there exists a homogeneous element (of positive degree) o € R for
which (I: 1) = I + (o) and (I: ) = I + (t), so that T and & are an exact pair of zero

divisors in A.
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Suppose that s € I is any minimal generator of I for which s+ mI € ker(¢,). Then,
sem(: t) = m(I+(0)), and hence there exists elements g;,...,g; € Ianda,,...,a;,bem
such that

t
s:Zaigi+b-a.

i=1

It follows that b € (I: ) = I + (tr) and hence b = g+ r -t for some g € I and r € R.

Therefore, we see that
Ss—r-t-0 eml
Then the equivalence class of s in H is
[s] =[rto] =0,

which shows that H = 0, as claimed.
Moreover, by [33, Proposition 1.9], we have 7 - ¢ € I \ mI, which yields that
(I:71)/md: )= (o). Consequently, the 2nd equation in (40) yields W = (o), im(¢;) = O,

and H' = 0, also as claimed. [ ]

The following is a characterization of CI cohomological blow-up algebras in

terms of exact pairs of zero divisors.

Theorem 6.12. Fix oriented AG algebras A = R/I and T = R/(I : 1) of socle degrees
d > k, and let 7 : A — T be the natural surjective algebra map between them with Thom
class T € A, and kernel K C A. Let fr(§) = &" + ré" 1 +...4+ 1.7 €REl = R for some
homogeneous elements r; € R, and let A = R/I be the associated cohomological blowup
of A along m with parameters (7;,...,7,_;,A). Then the following are equivalent.

1. AisaCl

2. AisaCland7 € A, is part of an exact pair of zero divisors on A.

3. TisaCIand T € A, is part of an exact pair of zero divisors on A.

Proof. Assume that (1) holds. Then I must be generated by a R-sequence, and hence it
follows from Corollary 6.6 that both I and (I: ) must also be generated by R-sequences
and hence that A and T must be CIs and that the homology groups H and H' must vanish.
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Thus, according to Equations (40) and (41), we have

I ¢y w CD o oew dj—U w
mi - U9, S =AW, and == =USE- WS fRE):

It follows that dimp(W) = 1, since no two elements of a minimal generating set of I (or I
can have a common divisor. Let 0 € (I: 7) be a minimal generator for which o+m(I: 7) e W.

Then we can write
I=Wy, ..., u,_,7-o)and I: 7) = (Uy, ..., U._;,0) =1+ (0),

which implies by Lemma 6.10 that a = 7T and b = & form an exact pair of zero divisors
for A. This shows that (1.) implies (2.) and (3.).

Next, assume that (2.) holds: A is a CI and T € 4,, is an exact zero divisor for A.
It follows from Lemma 6.11 that H = H' = 0, and hence by Corollary 6.6, it follows that I
is generated by a R-sequence and hence that the cohomological blowup A is a CI, which
is (L.).

Finally, assume that (3.) holds: T is a CI and T € A4,, is an exact zero divisor for A.
Again, it follows from Lemma 6.11 that H = 0, and hence it follows from Corollary 6.6
that the cohomological blowup A is a CI, and thus (1.) holds. ]

Remark 6.13. It follows from the description of the minimal generators of I in
Equation (41) together with Theorem 6.12 and Lemma 6.11 that when A is a CI and
thus &, 7 is an exact pair of zero divisors on A, a minimal generating set for I can be

described as

|~

= U (Eo) @ (fr®)).

i

m

In particular, since I is generated by a regular sequence and £o is a minimal generator
for I it follows from [33, Proposition 1.9] that & is an exact zero divisor of A. The
following example shows that this condition is not quite sufficient to identify a CI as a

cohomological blow-up algebra.

Example 6.14. Consider the CI

Flx, yl

A=__ 27
(x* + y*, x2%y?)
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Then § = X € Al is an exact zero divisor for A, and its Hilbert function is H(A) =
(1,2,3,4,3,2,1). This particular CI algebra (or any isomorphic to it) cannot be a

cohomological blow-up algebra by a result of [29] concerning codimension two.

6.3 Application: Watanabe’s Bold Conjecture (WBC)

The following “rather bold” conjecture was put forth by the 5th author [47] after noticing
that many CIs arising as invariant rings could be realized as subrings of CIs cut out by

quadrics and of the same socle degree.

Conjecture 6.15 (WBC). For any standard graded Artinian CI A of socle degree d, there
is another standard graded Artinian CI B of the same socle degree d cut out by quadrics

and an injective algebra map from A into B, in symbols:

_ Flxy,...,x,] . FIX,,..., Xyl

A= —B, deg(F)=2,V1<i<N.
¢ Frof Fy e Fy) 8%

In 2016, the 3rd author proved [35] WBC in the special case where A is cut out
by polynomials that factor into a product of linear forms (see also [36, Theorem 1] for
another case in which WBC holds). Here, we give another, much shorter proof of this
result (in fact something slightly stronger) using cohomological blowups. First, some
notation. Let A = R/I is a CI where R = F[x,,...,x,] has the standard grading and I
is minimally generated by some regular sequence (f},...,f,). If the minimal generators
fi.--..f, can be chosen such that each f; is a product of linear and/or quadratic forms,
that is, f; = L;---L; where deg(L;) = 1 or 2, then we shall say A is of class W. If
d; = deg(f;) > 1 for all i, then the degree sequence is (d,,...,d,) and we define its
defect to be

def(A) =d, +---+d,, — 2n = soc. deg(A) — n.

Let W(m) denote the subclass consisting of CIs of defect m, so that W = |_|,,_, W(m).
CIs of class W(0) are called quadratic CIs.

Theorem 6.16. For every CI A of class W, there is a CI B of class W(0) of the same

socle degree as A and an injective map of algebras ¢: A — B.

Proof. We use induction on m to show that every CI A € W(m) embeds into a CI

B € W(0) of the same socle degree. For the base case m = 0 there is nothing to show.
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For the inductive step, assume that m > 0 and that the statement holds for every
0 <m’ < m.Fix A € W(m) with presentation as in (20) with minimal generators fi, ..., f,
that factor into products of linear and/or quadratic forms. Since def(A) = m > O,
we may assume without loss of generality that deg(f;)) > 3. Write f,, = t - g where
deg(r) = 2, which is possible since we are assuming that f,, factors as a product of linear
and quadratic forms. Then let & be an indeterminate, and define the monic quadratic
polynomial f5(£) = £2 —t € R[]. Then the cohomological blow-up ideal of I with respect
to v and fx(§) is by (31)

I=(f, ... .fo1,£9.f()) C RIE]

and the quotient A = R[£]/I is the cohomological blowup of A along the map

A Flx,,..., x,] N Flx,...,x,] _r
(fll--~lfnfllrg) (fll-~~lfnfllg)

Note that the degree sequence of A is (d,,...,d,,_;,d, —1,2) and its defectis d, 4 --- +
d,—14+2-2(n+1)=(d,;+---+d,) —2n—1=m— 1. Finally, it is clear that the minimal
generators of I are either quadratic (like fz(£)) or factor into a product of linear and/or
quadratic forms (since the minimal generators of I do). Therefore, A € W(m — 1). For the

injection, note that the blow-down map will do the trick:

Flx,, ..., x,] Flx,,..., x,lI&]

=A.
G For 1D Grr o fo1 9. FE)

B: A=

To complete the proof note that by induction, there is an embedding of A € W(m — 1)

into some CI B € W(0) of the same socle degree as A (and hence also A), say
t: A— B.
Composing 8 and ¢ then gives an embedding t o 8: A — B, as desired. |

7 Restrictions on Hilbert Functions

In this section, we show that standard graded cohomological blow-up algebras cannot
have arbitrary Hilbert functions. In fact, in the parameter space of AG algebras of fixed
embedding dimension > 3 and socle degree 4 or > 6, cohomological blow-up algebras
are quite rare. To justify this assertion, we recall the notion of compressed AG algebra

[24]. We use the notation of Section 4: R = F[x,,...,x,] is a standard graded polynomial
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ring, O = F[X;, ..., X,] its dual divided power algebra. For a d-form H, its associated AG

algebra C = R/ Ann(H) has embedding dimension r if Ann(H) contains no linear forms.

Definition 7.1. A standard graded AG algebra C of embedding dimension r and socle
degree d is compressed provided

r—1

_ dimg R; = (7)) ifi<|4]
dim C; = .
dimg €, ifi>|4]
We can parametrize graded AG algebras of fixed socle degree d and codimension
r by their Macaulay dual generators in Qg , essentially by elements of the projective
space P(Q, ). The compressed algebras form a dense Zariski open set in this parameter
space [25, Proposition 3.12]. (This depends on Rj/(Iz)j being the tangent space to Gor(T)
at A = R/I and gives perhaps the shortest proof. Original references are [13, Theorem
3.31] and [16, Theorem 5.1]). We now show that for sufficiently large parameters the

cohomological blow-up algebras do not belong to this set.

Theorem 7.2. Compressed algebras of embedding dimension r > 3 whose socle degree

d satisfies d = 4 or d > 6 are not cohomological blow-up algebras.

Proof. Let C = R/Ann(H) be a compressed algebra of socle degree d and embedding
dimension r, and assume that C is the blowup along a surjective morphism 7 : A - T
of some AG algebras of socle degrees d and k, respectively. Then since C is compressed

I = Ann(H) is a homogeneous ideal with initial degree

min {i | §; 0} = EJJFL

By [7, Proposition 3.2] the minimal generators of I have degrees {%J + 1 and possibly

L%J + 2. Recall that the polynomial fz(£) of degree n = d — k is a minimal generator of I
by Theorem 6.5 and thus

(IR E| A | O

By the definition of blowup, when n > 1, the embedding dimension of Aisr—1
(one less than the embedding dimension of C) and by the surjectivity of = embedding

dimension of T is at most r — 1. This yields the following upper bounds on the Hilbert
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functions of A and T:

dimgA; < min I (r ;r ’), dimg Ad_i] (43)
.
dimg T, < min [ (r ) ;r l), dimg Tk_i] . (44)

By Theorem 4.6, we have
HC)=HQA) +H(DI1]+---+H(T)[n — 1]. (45)

Evaluating the above identity in degrees i < L%J + 1 combined with the above

inequalities yields
r+i—1 d r+j—2 r+i—1
H(A), H(T = )
(75 = S = 3 (70 = (7))

where the last equality is a well-known combinatorial identity. This implies that
equality must hold both in (43) and in (44) fori < L%J + 1. In degree i = L%J + 2 since
r > 3 the inequality (44) yields

r—3+ |k +i—-2
H(T);_, = H(T);_ HI_H(T)M 5( r_z{ZW)<(rriz )

Evaluating Equation (45) in degree i = L%J + 2 and combining the result with the
inequality (43) and the inequality displayed above gives

_ | — 1
H(C); = H(A)l+ZH(T)lJ<Z(r+J2 )z(r:ril )
j=1

This contradicts our assumption that C is compressed, provided that
k d d d
\‘EJ +2< LEJ,fOTkE HVE—‘ — 1,’75—‘ —2].
The above inequality is satisfied if and only if d =4 or d > 6. |

The following example shows that there exists compressed algebras of socle

degree 5, which are cohomological blowups.

220Z YoIe 01 uo 1senb Aq Z69259/2002.Ul/UIWI/SE0L 0 | /I0p/3|o1e-a0uBApe /UL /WO dno olwapeae//:sdiy Wol) papeojumod



Cohomological Blowups of Graded AG Algebras 53
Example 7.3. Let

_ Flx,yl o Flx, yl
S @y - (& —xy,7?)

be the map defined by #(x) = x and n(y) = y and distinguished socle generators o, =
x3y and oy = x%. Then © = xy and K = (x> — xy,y?), and hence taking parameters

t, =t, =0and A = 1, we get the cohomological blowup

Fix,y,&]

A= ,
(?f4,Y3:§(X2 _XY),SYZI"EZ _XY)

which has Hilbert function H(A) = (1,3,6,6,3,1), and hence A is a compressed BUG of

socle degree 5.

8 The Lefschetz Property

The SLP for graded AG algebras is an algebraic version of a property of cohomology
rings of smooth complex projective varieties stemming from the Hard Lefschetz theorem

in algebraic geometry.

Definition 8.1. A graded Artinian F-algebra A = EB?:O A, is said to satisfy the strong
Lefschetz property (SLP) if there is a linear form ¢ € A, for which the multiplication
maps x¥: A; — A;y; have full rank rank(x#) = min{dimg 4;, dimg A;y;} for each degree
i and each exponent j. A linear form ¢ with this property is called a strong Lefschetz
element for A.

If the multiplication maps x¢: A; — A;,; have full rank for each degree i, then

A is said to satisfy the weak Lefschetz property (WLP).

More generally, given any graded Artinian algebra A, and any linear form
¢ € A,, we can define its Jordan type P, to be the partition corresponding to the block
decomposition of the Jordan canonical form for the nilpotent linear operator x¢: A — A.
It is well known that for a standard-graded AG algebra with unimodal Hilbert function
then ¢ is strong Lefschetz if and only if the Jordan type P, is equal to H", the conjugate
of the Hilbert function regarded as a partition (switch rows and columns in the Ferrers
graph) [26, Proposition 2.10] and ¢ is weak Lefschetz if P, has number of parts equal to
the Sperner number of H [19, Proposition 3.5].

In this section, we study the SLP for cohomological blow-up algebras. To attain

this goal, we observe the behavior of these rings in families. Our strategy is to consider
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every cohomological blow-up algebra as the general fiber in a certain flat family.
Interestingly, all fibers in these familes will be AG algebras with the exception of the
special fiber. Our proof of the SLP for the cohomological blowup then employs the
following well-known fact: in a flat family, if SLP holds on the special fiber, then it
must also hold on a sufficiently general fiber by semicontinuity of Jordan type, for
example [26, Corollary 2.44].

We continue with the notation established in previous sections, namely
7 : A — T is a surjective map of oriented AG algebras with Thom class t and kernel K,
fa(€) € Al¢] is a homogeneous monic polynomial yielding the cohomological blow-up
algebra
Al¢] _Alg]

A= =
¢ K, fa®) I

’

as in Construction 3.1.

Consider a weighted monomial order < on Al¢] obtained by assigning weight 1
to the variable £ and weight O to each element of A. Then the weight of a monomial
uis w(u) = max{n : &" | u} and the weight of a polynomial g = > c;u; € Al¢] with
¢; € F* and p; monomials is w(g) = max{w(u;)}. Two monomials u, u’ satisfy u <
if and only if w(u) < w(u'). The initial form of a polynomial g = > c;u; € Al¢] is
in_(g) = ZW(Mj):W(g) Cjlkj and the initial ideal of an ideal J C A[£] is

in_(J)=(n_(g) |geJ).

While it is not usually the case that the generators of the initial ideal of an ideal
J are the initial forms of the generators of J, this is nevertheless the case for I since, as
we show below, the generators of I form a Grobner basis with respect to <. We obtain

the following description for the initial ideal of I.

Lemma 8.2. The set {£ - K, f,(£)} is a Grobner basis for I with respect to <, that is, the
initial ideal of I'is in_(I) = (£ - K, &™).

Proof. To show that the set {{ - K,f,(§)} is a Grobner basis for I one utilizes
Buchsberger's criterion; see [12, Theorem 15.8]. Since any element in & - K is equal to
its initial form, the S-polynomial of any two such elements is 0. It remains to compute
the S-polynomial of ué (with u € K) and f,(€), which is

S(Fa®), ut) =uE™ +a1&" '+t a, £+ AT) —uE £ =ua "+ tua, &
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since K - At = 0 by Lemma 2.2. Since S(f, (§), u§) € (¢ - K), this polynomial reduces to 0
modulo the set {¢ - K, f,(§)}, concluding the proof that this is a Grébner basis. It follows
thatin_(I) = (in_(§ - K),in_(f,(§))) = (§ - K,&"). u

The relationship between A = A[£]/I and its initial algebra in<(il) = Alg]l/in_(I)
is established by means of the following well-known construction; see [12, p. 343]. Given

a parameter z, one considers an ideal 7 of Al¢, z] given by
7= (g K"+ ayzE" 4 ta, £+ Mz") .

Note that setting z = 1 in Z recovers I while setting z = 0 gives in_(I). We recall some

key properties of this construction; cf. [12, Theorem 15.17].

Theorem 8.3. The following ring A is free and hence flat as a F[z]-algebra:

_ A4 Alg, z]

A = :
T (¢ -K,g"+a " lz+ .- +a, 1£2" 1 +a,z")

(46)

Thus, A can be viewed as a flat family of algebras with fibers A, = A ®p, Flzl/(z - ¢)
given by

AlElI = A[El/(£ - K, f4(E) = A if c e F*

A= N
AlEl/in_(I) = AlE]/(£ - K, ") =in_(A) ifc=0

In the literature, flat families in which the general fibers are isomorphic are
sometimes called jump deformations. We remark that Theorem 8.3 remains true if we
replace A with any A from Construction 3.1 but recall that A is Gorenstein if and only if
A = A by Theorem 3.6.

Since A is Gorenstein, Theorem 8.3 implies that the general fibers of the family .A
are Gorenstein. However, Theorem 3.6 implies that the special fiber A is not Gorenstein
but is boundary-Gorenstein (Remark 3.8). Moreover, Corollary 3.7 implies that all the

fibers have the same Hilbert function given by

H(A,) =HA) +HDI]+---+H(DIn — 11 forall c e F.
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We now consider the SLP for the special fiber. The ring in<(A) can thus be

recognized as a fibered product

s . T[&]
in_(A)=AxyB with B= D)

with respect to the projections 7y, =7 : A — T and ngz : B— T = B/(§), where 7y is the
canonical projection. Our proof of Lemma 8.4 below closely resembles the proof of [30,
Theorem 5.12], where the SLP is established for fibered products of certain AG algebras

of the same socle degree. This is not the case here as soc. deg(4) = soc. deg(B) + 1.

Lemma 8.4. Letx : A — T be a surjective homomorphism of graded AG F-algebras of
socle degrees d > k, respectively, such that both A and T have SLP. Assume that F has
characteristic zero, or characteristic p > d > k. Then the initial algebra of A, Algl/in_(D)
has SLP as well.

Proof. Recall from Lemma 8.2 that

) s AlE] Alg]
in_(A) = in_(D S E R

This algebra admits a decomposition

T[¢]

in_(A)=A®J, where J=TE @ --- @ TE"! =E~@.

The important point here is that in the algebra in_(A), the vector space J is actually an
ideal, and thus multiplication by a linear form ¢ = ¢, + & with £, € A, is represented

with respect to the above decomposition by a block matrix

(KA 0 ) 47)
* Ly

where ¢, stands for the map given by multiplication by £, on A and £|; denotes the
restriction of multiplication by ¢ to J. Since A and T have SLP, one can pick £, so that
both ¢, and its image ¢ = £, in T are strong Lefschetz elements. Then, by [20, Theorem
6.1] if characteristic F is zero, or [28, Theorem 2.6] in general, { = ¢, + £ is also a
strong Lefschetz element on the free extension T[£]/(§"~2) of T and hence on J. Since
the Hilbert functions of A and J are both symmetric around d/2 (due to both being AG)

and unimodal (due to both having SLP) we conclude that 5{4 tA;—~> A jand E|]} 2Jp > Jigg
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are simultaneously injective or simultaneously surjective. It follows from (47) that £ is a

strong Lefschetz element on in<(A). |
We are now ready to prove that cohomological blow-up algebras have SLP.

Theorem 8.5. Let F be an infinite field, and let # : A — T be a surjective
homomorphism of graded AG F-algebras of socle degrees d > k, respectively, such that
both A and T have SLP. Assume that characteristic F is zero or characteristic Fis p > d.

Then every cohomological blow-up algebra of A along T satisfies SLP.

Proof. We have seen that A is a flat family. By Lemma 8.4, the special fiber 4, has SLP.
Therefore, by semicontinuity of Jordan type [26, Corollary 2.44], and since F is infinite,
we deduce that there is some ¢ # 0 for which the general fiber A, has SLP. By Theorem
8.3, it follows that the cohomological blowup A= A, has SLP as well. [ |

The following example shows that our assumptions on the characteristic of the

field in Theorem 8.5 are necessary.

Example 8.6. Let d and k be integers satisfying 2k < d, and, following the usual
notation, write n = d — k. Let [F be a field of characteristic p, and suppose there is an

integer m > 1 such that n < p™ < d — 2. Consider the AG algebras

_ Flx,yl _ Fix,yl _ FIx]
and T= Ann(xF) ~ (y,xk) T (xkt1)’

B Flx, yl _ Flx,yl
- Annx? +Y4)  (xy,x9 — yd)

The Thom class of the natural surjection n:A — T is t=x", and choosing
fr(€) =& —x™ and hz(§) =1 as in Construction 4.2, we get a cohomological blow-up

algebra

Flx, y, ] _ Flx, y, &l
Ann(x? 4+ v + XkE")  (xy, x4 — yd,yE, xkt1g gn — xn)’

A=

We can easily check that £, = x + y and £; = x are Lefschetz elements in A and T, respec-
tively. We also know that the Hilbert function of A satisfies H(A), = H(A), , = 3. This
means that if A satisfies the SLP, multiplication by £¢~2, for a general ¢ € A, must have
rank 3. However, writing ¢ = ax + by + c&, we have P" = gP" xP" 4 bpmypm + cpmépm =

aP" xP" + bpmypm, because Epm is zero in A. Therefore, meé =0 (note that p™ > k),
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meaning that multiplication by ¢?" has rank less than 3; hence so does multiplication
by ¢9-2_ Therefore, A does not satisfy the SLP.

Theorem 8.5 once again singles out cohomological blow-up algebras among
connected sums. Connected sums A#pB over a field F of two strong or weak Lefschetz
algebras A,B are strong or weak Lefschetz, respectively; however, taking connected
sum A#;B over an arbitrary AG algebra T may not in general preserve SLP or WLP
[30, Section 5.2].

The following example shows that the converse of Theorem 8.5 is not true: if
the cohomological blowup A has SLP, it does not follow that A has SLP. In other words,
while the process of blowing up preserves SLP, the process of blowing down does not

preserve SLP, or even WLP.

Example 8.7. The following example, originally due to U. Perazzo but re-examined
more recently by Gondim and Russo [15], is an AG algebra with unimodal Hilbert
function that does not have SLP or WLP:

B Flx,y, z, u, vl
~ Ann(XU? + YUV + ZV?)

Flx,y,z u,vl

(x2,xy,y?%, xz,yz,2%,u3, u?v,uv?,v3,xv, Zu, Xu — yv, zv — yu) ’

Taking the quotient T of A given by the Thom class t = u? yields

_Flx,y,z,u,vl  Flx,y,zuvl _ Flx]
- AmX)  (x%y,zuv)  (xP)

Fix a parameter A € F, and define polynomials f(£) € TI¢] and f, (&) € Al¢] by

fr€) =&* —axé  andf,(§) = £2 — axE + u.

Denoting the ideal of relations of A by I, we obtain the cohomological blowup

Flx,y,z u,v,£&]
I+§(Y,Z, u, V) + (.fA(E)),

A=
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which has Hilbert function H(A) = H(A) + H(T)[1] = (1, 6,6, 1). Fix F-bases
Al = spany {x,y,z,u,v, £}, and Az = spang {uz, uv, Vz,yv, yu, —XE} ,
and let £ € A, be a general linear form
¢ =ax+by+cz+du+ev+fE.

Then the matrix for the Lefschetz map x¢: Al — Az and its determinant are given by

0 00 d O —f
0 0 0 e d 0
M= 0 000 e 0 = det(M) = f2e*.
d e 0 a b 0
0 d e b c 0
—f 0 0 0 0 —(a+Arf)

Thus, £ is a strong Lefschetz element for A if and only if e-f # 0. In particular, A satisfies
SLP and also WLP.

Surprisingly, the analogous result to Theorem 8.5 does not hold for the WLP. The
obstruction to establishing such a result via an analogue of Lemma 8.4 is that the tensor
product of two weak Lefschetz algebras need not be weak Lefschetz. Examples of non-
AG quadratic algebras that demonstrate this are given in [40, Section 4.1]. Here, we point
out an AG example. The AG algebra T in Example 8.8 below is an example of R. Gondim,
quoted as [26, Example 3.4]. Using the Clebsch-Gordan theorem [19, Theorem 3.29],
one can see that if charF = 0 or charF > 7, then the tensor product T ® B, where
B = FI£]/(£?), has Jordan type (for generic linear form) the tensor product of P; =
(5,3,3,3,2,2) and P = (2), which is (6,4%,32,23,12) with 12 parts; on the other hand,
H(T®B) = (1,6,11,11,6,1); hence, H(T ® B)” = (6,4%,2%) has 11 parts, so T ® B is not
weak Lefschetz.

Building upon this, we give an example illustrating that blowing up does not

preserve WLP.

220Z YoIe 01 uo 1senb Aq Z69259/2002.Ul/UIWI/SE0L 0 | /I0p/3|o1e-a0uBApe /UL /WO dno olwapeae//:sdiy Wol) papeojumod



60 A.Iarrobino et al.
Example 8.8. Consider the following algebra:
Flx,y,z, u,v]

A =
Ann(XUS + YUV2 + ZUSV)

Flx,y,z u,vl

(vz,xz,xy, vy — uz, vx,ux — vz, u®y, ubv?,ubv, u?, v8,x2, y?, z2)

with H(A) = (1,5,6,6,6,6,5,1) and its quotient corresponding to the Thom class t = us

. Flx,y,z u, vl
© Ann(XU3 + YUV?2 + ZU?V)

Flx,y,z u,vl

(22,yz,x2,y?,xy, vy — uz,x?,vx, ux — vz, u?y, v3, u?v?, udv, u?)

with H(T) = (1,5,6,5,1). Both A and T satisfy WLP, but not SLP: for a generic ¢, the
Jordan types are P,, = (8,6,6,6,5,5) and Pr, =(53,3,3,2,2). Denoting the ideal of
relations of A by I and the ideal of relations of T by K, consider the cohomological
blow-up algebra

Flx,y,z,u,v,&|

AR @ - wy

which has Hilbert function H(A) = HA)+H(T)[11+H(T)[2] = (1,6,12,17,17,12,6,1) and
dual Macaulay generator F = 23G + 26X + F, here A = —1 in the Construction 4.2. Fix

the following bases for the seventeen dimensional vector spaces

Az = spang [XEz,yuz,yuv, yut, yv?, yve, y&?, zve, 262, uly, uzé,uvz,uvs,uéz,vzs,Véz,ég}
A, = spang [XSS,tué,yuéz,yv2§,YV€2,y$3,zv$2,z§3, u?v?, u?ve, u?e?, uvie, uve?, ug,

V2§2,V§‘3,E4}

Taking a general linear form ¢ € le as { = ax + by + cz + du + ev + f&, we compute the

matrix for the Lefschetz map x¢: A3 — A4 and its determinant, which shows A does not
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satisfy WLP
f 0 e 0d 0O 0O 0O c O Db 0O OO0 0 a
0 0 f e 0Od 0O OO O c 0 b 0 O0O0OTUDO
0O 0 0O f 00 d OO OO0 O0OTO0OUDbDO0O0O0
0 0 00 f e 0d O O a 0 c 0 Db 0O
0 0 00O f e 0d O OOTOTCOUDO
0 d ooo0O O Ff O0OOUOUOTOOTOTU OO0 Db
d 0 000 0 0 f e 00 O0 O a 0 c O
0O ed 00 O0OO L f b 0OO0OO0OUO0OUO0OO0
M = 0O 0 0OOOO OO O e 0dO0O 0 O0O00O0 = det(M) = 0.
0 0 0OOOO OO O Ff e 0d 0 O0O0UDO
0O 0 0O0OOO OOOUO ff OO0OUCdTGOTUGOTDO
0O 0 0OOOO OO OUOTU OV f e 0 d 0o
0 0 0OOOO OO OO OTUO0OTYff e 0 do
0O 0 0O00OOO OO O O O0OO0OTO0OTYFf 0 o0d
0O 0 0OOO OO O OO OGO OTUOTGOTFf e o0
0 0 0OOOO OO O0Od OO0 O0OTO0OTUO0 f e
0O 0 0O0OOO OO O O0OdOOoOOoOTO0OTO o0 Ff

A Macaulay2 [18] calculation gives the generic Jordan type P; = (8, 6°,45,2% 12) with 18
parts, whereas the conjugate partition of the Hilbert function is H(A)" = (8, 65,45, 25)
with 17 parts, which implies that A has neither SLP nor WLP.

In Example 8.8, the Thom class of the map A — T has degree 3. This is the

minimal possible value for such an example based on the following result.

Theorem 8.9. Let F be an infinite field, and let # : A — T be a surjective
homomorphism of graded AG F-algebras such that the difference between the socle
degrees of A and T is at most 2 and A and T both satisfy WLP. Then every cohomological
blow-up algebra of A along = satisfies WLP.

Proof. The hypothesis on the socle degrees of A and T translates into n < 2. The proofs
of Lemma 8.4 in the spacial cases J = 0 (for n = 1) or J = T (for n = 2) and Theorem 8.5

go through upon replacing SLP by WLP throughout. |

9 Geometric View and Examples

As in the Introduction, our motivation for studying the cohomological blow-up algebras
stems from the blow-up construction in algebraic geometry. That the cohomology ring
of the blowup of a compact complex manifold along a closed complex submanifold

satisfies the conditions of Theorem 3.14 can be pieced together from results in the
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book of Griffiths and Harris [17, Chapter 4, Section 6]; see also the paper of McDuff
[37, Proposition 2.4] for the statements in the symplectic category. The cohomology
of the blowup was also studied by S. Gitler who has obtained a presentation, as in
Equation (5), of the cohomology of the blowup of a complex manifold along a complex
submanifold in the case of a surjective restriction map as in Equation (5) [14, Theorem
3.11]. An analogous presentation for the Chow ring of the blowup of an algebraic variety
along a regularly embedded subvariety with a surjective restriction map also appears
in the paper of Keel [32, Appendix, Theorem 1].

Blowing up and blowing down are fundamental building blocks in birational
geometry. For example, in the theory of algebraic surfaces, a classical result states that
every birational map between algebraic surfaces (smooth complex projective variety
of dimension two) admits a strong factorization, meaning it factors as a sequence
of blowups followed by a sequence of blowdowns [6, Corollary II.12]. More recently,
Abramovich et al. have proved the weak factorization conjecture, a higher-dimensional
analogue that states that every birational map between complete non-singular algebraic
varieties over an algebraically closed field of characteristic zero factors as a product
of blowups and blowdowns (in no specific order) [1, Theorem 0.1.1]. In the theory of
(smooth, projective) toric varieties, one can be quite explicit with these factorizations
by working with the associated (simplicial, polytopal) fan, where blowing up along a
toric subvariety corresponds to subdividing a cone of the fan [11, Proposition 3.3.15]. As
we have seen in Section 8 concerning the SLP and will show in a sequel [34] concerning
the Hodge-Riemann bilinear relations (HRR), factorizations in terms of blowups and
blowdowns can be useful in establishing these properties.

McMullen [38] in his proof of SLP and HRR for the polytope algebra, an AG
algebra that he shows is isomorphic to a certain Artinian reduction of the Stanley—
Reisner ring of the corresponding simplicial polytopal fan, has given an explicit formula
for a (weak) factorization of the birational map P" > (C*)" — X where X is a smooth
projective toric variety of dimension n; see also Timorin [44] for an exposition from the
point of view of Macaulay duality. Karu [31] used similar arguments in his proof of SLP
and HRR for non-simplicial polytopal fans; see also [5, 9]. More recently Ardila et al. [2]
have exploited blow-up factorizations to prove SLP and HRR for the Chow ring of the
Bergman fan associated with a matroid. Especially important in their work is the special
case of blowups that correspond to edge subdivisions in these Bergman fans, and in
fact, they factor any blowup as a sequence of successive edge subdivision blowups
and blowdowns. Geometrically, these edge subdivisions correspond to cohomological

blowups with n = 2. Theorem 8.9 indicates that this n = 2 scenario is particularly
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favorable in terms of ascent of the WLP to the cohomological blow-up algebra, but
it does not necessarily guarantee the descent of WLP or SLP to the blowdown; see
Example 8.7.

Algebraically, one might say that two oriented graded AG algebras A and A’
are birationally equivalent if there is a sequence of oriented graded AG algebras
(Ap, Ay, ..., A,) of some fixed socle degree d, where Ay = A and A,, = A" and for each i,
A, is either a cohomological blowup or a cohomological blowdown of 4; ;. We give an
example below of several birationally equivalent AG algebras using fans corresponding
to smooth projective toric surfaces; in fact, we derive a (strong) factorization of the
birational map P? --» P! x P!, First, we recall a few fundamental facts on toric varieties
and their associated fans; for further details, we refer the reader to the book [11]. In
these geometric examples, as in the Introduction, we take cohomology with coefficients
over the rationals F = Q.

A presentation for the cohomology ring of a complete simplicial toric variety
can be obtained from the associated fan in the following explicit manner. Let ¥ be a
complete simplicial fan, and let X be the corresponding toric variety. Let py,..., o, be
the rays of X, each p; having minimal generator u;. Introduce a variable x; for each p;.

In the ring Qlx,, ..., x,], let I be the square-free monomial ideal
I'=(x; - -x; |i; < <igand p;,...,p; arenot part of the same cone of X).

We call I the Stanley-Reisner ideal of Z. Let J be the ideal generated by the linear forms

J= (Z(m,ui)xi |me ZuiZ).

i=1 i=1
By [11, Theorem 12.4.1], the singular cohomology ring of X can be presented as

Qlxy, ..., x,]

20 ~
X Q= I4+J

(48)

The following example shows that the oriented graded AG algebras A; =
Qlxl/(x®), A, = Qly,zl/(y? z* — yz), Ay = Qlr,s,tl/(rt,st, r?,s%,t* + rs) = A,, and
Ay = Qlu,vl/(u? v?) are all birationally equivalent to one another. This corresponds
to the well-known fact from algebraic geometry that if P? is blown up at two points
and the proper transform of the line joining the two points is blown down, the resulting
surface is isomorphic to P! x P!. We work through the details of this example from the

perspective of cohomological blowups.
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Example 9.1. The algebraic varieties featured in this example correspond to the

following fans

U Uy Up Uy
u, u, Us u, Us u,
Us Us Uy Us Uy Uy
X, =P? X, =X, Xs=X,=X,=X; X5 =P! x P!
As a toric variety, X; = P? is defined by the fan ¥ with ray generators
U, = e, u; = e, u; = —e; — e,, where e, = (1,0) and e, = (0,1) are the standard

basis vectors; see [11, Example 12.4.2]. According to the formula above, its cohomology

algebra is

Qlxy, x5, X351 ~ Qlx]
(X1XpX3, X, — X3,Xy —X3) (%)

Ay =H* X)) =

The blowup X, = X; of X; = P? at a point is obtained by subdividing a cone of =
by adding the ray generated by u, = —e,. Then,

Qlxy, X5, X3, X4] _ Qlx;, x,l

(X1Xq, XoXa0,X) — Xq, X9 — X —Xa)  (Xx2,X%% — ’ (49)
1X3, XXy, X — X3,Xy) — X3 — X, (x7,Xx5 — XpX;)

A, = H*(X,) =

In terms of cohomological blowups, take T} = Q, and let 7: A; — T, be the
natural projection, with Thom class 7; = x? and kernel K; = (x). The normal bundle of
a point in P? has total Chern class ¢ = 1, and hence f7, (¢§) = 2 and f, (§) = £2 + x%, and

hence the cohomological blowup of A along 7, is

Qlx, &] Qlx,¢] .  Qlx;,x,]

N e e  EE2+HD) (K — xixy)

=A,, (50)

where the last isomorphism sends x — x, and £ — x; — x,.
Next, define X; = X, as the blowup of X, obtained by adding the ray generated
by ugy = —e;. Then its cohomology algebra is given by

Q[X1,X2,X3,X4,X5]
(X1X3, X1 X5, X9 X3, X9 Xy, X4 X5, X) — X3 — X5, Xy — X3 — Xy)

Ay = H**(X,) =

_ @[X1,X2,X3]
(XIXS,X%,XZXS,XE,Xg +X1X,)
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Again,let T, = Qand n,: A, — T, be the canonical projection, with Thom class 7, = x,x,
and kernel K = (x;, x,). Then we have f, (§) = £2 + x,x, and the cohomological blowup
of A, along n, is

~ Q[XPXZ’E] ~ Q[XI'XZ'XS]
Az =

(xF, x5 — X%, EX),EXp, 2 + X1X5) (X1 X3, X}, XpX3, X5, X5 + X1 Xp)

A3,

where the last isomorphism sends x; — x;, X, — X, — X5 and £ — x3.
Finally, let X; = P! x P!, defined by the fan ¥’ with ray generators u; = e,
U, = e,, u, = —e,, and us = —e,, and let X, = X; be the blowup at a point obtained by
adding the ray to ¥’ u; = —e; — e,. Since the fans for X, and X; are identical, it follows
that the toric varieties coincide as well. Hence, their cohomology algebras are
Qlxy, X5, X4, X5] Qlxy, x,]

Ag = H* (P! x P!) = = 1=
(X1X5, XpXy, X) — X5, X3 —Xy)  (X],X3)

and

Q[XerZIXS]
(X1X3, X2, XyXq, X5, X5 + X, X,)
~ Qlx,, x5, &1 -

1%y a

(X%IXEIX1€!X2$I§2 +X1X2)

A, = Ay =H?*(X,) = H*(X,) =

5r

where the last isomorphism is the obvious x; — x;, X, — X,, and x; — &.
It follows that the oriented graded AG algebras A;, A,, A; = A,, and Ay are all

birationally equivalent, corresponding to the (strong) factorization of the birational map

Xlz]}b2 ————————————— —>IP’IXIP’1:X5

Remark 9.2. The cohomology algebra of the blowup of a smooth toric variety X along
a smooth torus invariant subvariety Y C X will always agree with the Constructions 3.1,
4.2, or 6.2 of this paper since in that case the restriction map 7*: H**(X) — H?*(Y) is
always surjective. Indeed, in that case, the associated fan of Y corresponds to a subfan
of X, and the surjectivity follows from the combinatorial presentation of cohomology
algebras as in (48). The following examples show what can happen in cases where that

restriction map is not surjective.
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Example 9.3. Letn: Y = P! x P? < P% = X be the Segre embedding. Then we have a
short exact sequence of vector bundles on Y:

B . -
0 —— A —— Ayp —— T/By(T) —— 0

where 7y is the tangent bundle of ¥, 7*7 is the restriction of the tangent bundle of X to
7 (Y) and Ny/X is the normal bundle to 7 (Y) C X. If we identity the cohomology algebras
as the oriented graded AG algebras

QL

x5’

Qly, z]
%, 2%’

A=H>"*X)= T = H?* (P! x P?) =
where x, y, and z are the classes of a hyperplane in H?(P®), and the factors H?(P!), and
H?(P?) of H** (P! x P?) = H**(P') ® H**(P?), then the induced map 7*: A — T satisfies
7*(x) = y + z. Note that 7* is not surjective here. From the Euler sequence, we compute
the total Chern classes c(n*Ty) = (1 + 7*(x))® and ¢(Ty) = (1 +y)? - (1 + 2)3. It follows

from the Whitney product formula that the total Chern class for the normal bundle is

c(n*Tyx) (14y+2)°
c(Ty) @2 a+2?°

C(Ny/x) =

3
=(1+y+2)6‘(1—y)2~(1—2+z2)

= (6yz+ 32%) + (4y + 32) + 1
and hence the Chern classes are

CI(NY/X) == 4y+32
CZ(NY/X) - 6yZ+3Zz.

Hence, if we blow up X along Y then, according to Equation (2), the cohomology

algebra of the exceptional divisor Y is given by

Qly, z,£] ~
(y2,28,62 — (4y + 32)¢ + (6yz + 3z2))

T = H?* (V).
Moreover, using the conditions of Theorem 3.14, we can derive a presentation of the

cohomology algebra of the blow-up manifold X:

Qlx, &] N

20 /v
(83 — 6x£2 + 12x2€ — 8x3, 3% — 9x&3 + 6x2£2 + 4x3¢) =0, (51)

A=
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where the restriction map 7: A — T defined by #(x) = y + z and #(¢) = £ has Thom
class T = —&, the blow-up map g: A — A defined by 8(x) = x is injective with Bagye) =

= x°, and the Hilbert function satisfies H(A) = H(A) + H(T)[1] = (1, 2,3,3,2,1). Fur-

thermore, a Macaulay2 [18] calculation computes the Macaulay dual generator of A as

aSOC

F=x%-3x%8% - 10x%2°% — 24xE* — 48E5.

Note that A in (51) does not fit the model described by our Construction 3.1; in particular,

the defining ideal of A does not contain any monic polynomial of degree n = 2.

Remark 9.4. The algebra A computed in Equation (51) might be termed a cohomolog-
ical blowup along the non-surjective map x. In that case, A and T are both standard
graded, and A is, too, but this need not hold in general. For example, if we blow up
X = P8 along the Segre embedding of ¥ = P? x P2, then again we have a non-surjective

restriction map

7 A=H>X) = Qlxl/(x%) — Qly,zl/(y?,2°) = H*(Y) = T

but the cohomology of the blowup of X along ¥, A = H?*(X) has Hilbert function

H(A) = HA) + H(D)[11 + H(T)[2] + H(T)[3] = (1,2,4,7,8,7,4,2,1),

which implies that A cannot be standard graded.
Motivated by these examples, we pose some problems for further research.

Problem 9.5. Generalize Example 9.1, and find other algebras that are birationally

equivalent to Ay = Fix]/(x%*1). Can one classify them?

Problem 9.6. Generalize Example 9.3, and find a construction, similar in spirit to
Construction 3.1, for a cohomological blowup of an AG algebra A along any (i.e.,
possibly non-surjective) restriction map n: A — T. Does it have similar properties as
the cohomological blowup along a surjective map, that is, flat family, strong Lefschetz,

connected sum, minimal generators?
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1 A Guide to Our Examples

Given below is a list of the examples in this paper together with a brief description of

the idea that example is attempting to illustrate.

1.

10.
11.
12.

13.

14.

15.

16.

Example 3.3 shows that without further qualifications, Construction 3.1 can
produce non-Gorenstein, Gorenstein, or boundary-Gorenstein algebras, that
is, non-Gorenstein algebras in the closure of the Gorenstein locus of the
Hilbert scheme of that Hilbert function.

Example 3.12 shows that over non-algebraically closed fields, distinct
parameter values A can produce non-isomorphic cohomological blow-up
algebras.

Example 4.5 shows that T = RI£]/ Ann (hg(£) o (E4! - G)) is not necessarily
a free extension over T = R/ Ann(G) for any choice of hyz(§) € RIE].

Example 4.7 provides an algebra AMD from Construction 4.2 that is not a
cohomological blowup.

Example 5.3 shows a cohomological blowup as a connected sum.

Example 5.7 shows a cohomological blowdown of Hilbert function H(A) =
(1,3,6,3,1) as a connected sum.

Example 5.8 shows that the cohomological blowup A may be standard
graded even if A is not.

Example 6.1 gives a cohomological blowup that is a CI.

Example 6.7 gives ideals I and (I : 7) with homology groups H and H’ equal to
zero, but where the cohomogical blow-up ideal I is not generated by a regular
sequence.

Example 6.9 gives examples of exact pairs of zero divisors.

Example 6.14 gives a CI with exact zero divisors, which is not a BUG.
Example 7.3 shows a compressed AG algebra of socle degree 5 and embed-
ding dimension 3 can be a cohomological blowup of a standard graded AG
algebra.

Example 8.6 shows if A and T have SLP over F,, then A may fail SLP.
Example 8.7 gives algebras in which A and T both have SLP, but the
cohomological blowdown A does not have SLP.

Example 8.8 shows that if A and T both have WLP (but fail SLP), then A may
fail WLP.

Example 9.1 gives a geometric example of a strong factorization of a bira-

tional map between toric varieties, which yields several birationally equiv-
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alent AG algebras, that is, a sequence of AG algebras in which each one is
either a cohomological blowup or blowdown of the previous.

17. Example 9.3 computes a presentation of the blowup of P° along the Segre
embedding P! x P? — P® in which case the restriction map on cohomology is

not surjective.
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