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We introduce the cohomological blowup of a graded Artinian Gorenstein algebra along

a surjective map, which we term BUG (blowup Gorenstein) for short. This is intended

to translate to an algebraic context the cohomology ring of a blowup of a projective

manifold along a projective submanifold. We show, among other things, that a BUG

is a connected sum, that it is the general fiber in a flat family of algebras, and that it

preserves the strong Lefschetz property. We also show that standard graded compressed

algebras are rarely BUGs, and we classify those BUGs that are complete intersections.

We have included many examples throughout this manuscript.
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2 A. Iarrobino et al.

1 Introduction

Given two graded Artinian Gorenstein (AG) algebras A and T over a field F, of socle

degrees d > k, respectively, and a surjective algebra map between them π : A → T,

we construct a new graded AG algebra Ã of socle degree d called the cohomological

blowup of A along π ; we shall sometimes refer to Ã as BUG, short for blowup

Gorenstein. As the name suggests, our construction is based on the blow-up operation

in complex geometry, and particularly, its effect on the (singular) cohomology rings

of the spaces involved. The purpose of the present paper is to extend this blow-up

operation on cohomology rings to the more general class of graded AG algebras, to

study its interactions with other familiar algebraic constructs, and to draw parallels to

corresponding geometric ones. Our cohomological blowups are very different from the

much-studied blow-up algebras (Rees algebras and related rings), which correspond to

the coordinate ring (not the cohomology ring) of the blow-up variety [45].

Generally speaking, graded AG algebras are algebraic analogues of cohomology

algebras (in even degrees) of smooth, compact, even-dimensional manifolds, for instance

complex manifolds or symplectic manifolds. For compact complex (or symplectic)

manifolds π : Y ↪→ X of (complex) dimensions k < d, respectively, the blowup of X along

π is another compact complex d-dimensional manifold X̃ obtained from X by removing

Y and gluing in its place a codimension one submanifold Ỹ called the exceptional

divisor, which can be realized as the projectivization of the normal bundle NY/X . The

cohomology algebras (over Q) of these spaces Y, X, Ỹ, and X̃ satisfy the following

three algebraic properties. For notational convenience, let A = H2•(X), T = H2•(Y),

Ã = H2•(X̃), and T̃ = H2•(Ỹ), graded so that Ai = H2i(X), and so on.

First, if β : X̃ → X is the blow-down map, β0 : Ỹ → Y its restriction to the excep-

tional divisor, and π̂ : Ỹ ↪→ X̃ the natural inclusion map, then the obvious commutative

diagram of spaces induces a commutative diagram of cohomology algebras:

(1)

Second, as a projective space bundle over Y, the cohomology algebra of the

exceptional divisor Ỹ is a free extension over the cohomology of Y generated by the
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Cohomological Blowups of Graded AG Algebras 3

Euler class ξ = e
(
NỸ/X̃

)
∈ H2(Ỹ) of the normal bundle NỸ/X̃ , in symbols

T̃ ∼= T[ξ ](
ξn + tn−1

ξ + · · · + tn−1ξ + tn

) , (2)

where ti = (−1)i ·ci(Y) ∈ Ti are the Chern classes of the normal bundle NY/X , the top one

of which is the Euler class cn(Y) = e(NY/X) ∈ Tn, (n = d − k = codimension of Y in X).

Third, the induced map β∗ is injective and fits into a short exact sequence of

A-modules:

(3)

Equations (2) and (3) imply that the Hilbert function of the cohomology of the

blowup is

H(Ã) = H(A) + H(T)[1] + · · · + H(T)[n − 1]. (4)

In fact, one can show that Equations (1)–(3) uniquely determine the algebra structure

of Ã. Moreover, if the restriction map π∗ : A → T is surjective, one can show that the

cohomology algebra of the blowup is given by

Ã = A[ξ ](
ξ · K, ξn + a1ξn−1 + · · · + an−1 + an

) , (5)

where K ⊂ A is the kernel of π∗, π∗(ai) = ti, and an = (−1)n · τ (Y) ∈ An where τ (Y) is the

Thom class of the normal bundle NY/X . See [14, 17, 21, 23, 32, 37] for further details

on geometric and topological aspects of blowups; specifically, [17, Proposition 6.4],

[37, Proposition 2.4], and [14, Theorem 3.11]. See also [41] for further details on

characteristic classes.

The novelty of this paper is to show that Equations (1)–(3) and (5) can be extended

to arbitrary AG algebras over any field F to define a new construction on these rings

called the cohomological blowup. Specifically, given any surjective degree preserving

map of graded AG algebras π : A → T, we define (Definition 3.10) a cohomological

blowup of A along π as in Equation (5), leaving a1, . . . , an−1 as free parameters and

setting an to be the algebraic analogue of the Thom class.

The algebraic analogue of the Thom class for a map of AG algebras π : A → T

is defined as a certain annihilator of the kernel of π , determined by choices of socle
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4 A. Iarrobino et al.

generators, called orientations, of A and T (Definition 2.1). Assuming that π is surjective,

and A = R/I where I ⊂ R is a homogeneous ideal in a graded polynomial ring,

an alternative characterization of the Thom class is an element τ ∈ R for which

T = R/(I : τ ). In terms of Macaulay duality, if R is acting on its dual divided power

algebra Q by contraction and if F ∈ Q and G ∈ Q are dual generators of A = R/ Ann(F)

and T/ Ann(G), then τ ∈ R is a contraction operator satisfying τ ◦ F = G. Each of these

interpretations of the Thom class leads to distinct, but equivalent descriptions of the

cohomological blowup. We frame these in terms of three general constructions on AG

algebras, starting from the given data consisting of two oriented AG algebras A and T

of socle degrees d and k with n = d − k ≥ 2 and a surjective degree preserving algebra

map between them π : A → T.

Our 1st construction (Construction 3.1) fixes an indeterminate ξ , then chooses

any homogeneous monic polynomial fA(ξ) ∈ A[ξ ] (we use the subscript to indicate the

coefficient algebra) and uses Equation (5) to construct a new algebra

fA(ξ) = ξn + a1ξn−1 + · · · + an ⇒ Â = A[ξ ](
ξ · K, f̂ (ξ)

) ,

where K is the kernel of π and ai ∈ Ai are any homogenous elements. We show that

Â is an AG algebra if and only if an = λ · τ is a nonzero scalar multiple of the Thom

class τ ∈ An of π (Theorem 3.6). In this case, we replace the “hat” with a “tilde” and

call the resulting algebra Ã the cohomological blowup of A along π with parameters

(π(a1), . . . , π(an−1), λ), and we call A the cohomological blowdown of Ã (Definition 3.10).

We show that Ã is essentially characterized by analogues of Equations (1)–(3) above

(Theorem 3.14). We then use a standard result in commutative algebra to show that Ã is

isomorphic to the general fiber in a flat family of algebras (Theorem 8.3). Using this flat

family, we further show that if both A and T have the strong Lefschetz property (SLP)

and F is infinite of characteristic either zero or sufficiently large, then Ã must also have

SLP (Theorem 8.5). This result has parallels in complex geometry; if Y ⊂ X are projective

manifolds, then the blowup Ỹ ⊂ X̃ is also projective, and projective manifolds always

satisfy the hard Lefschetz theorem; see, for example, [17, 21, 23]. We remark that the

essential result of Theorem 8.5, that blowups preserve SLP, seems to be well known in

various other contexts and guises, for example, [2, 9, 10, 31, 38, 44]; on the other hand, to

our knowledge, the generality of Theorem 8.5 is new, and we hope it will be a welcome

reference for this useful result. We further show that over an infinite field, if A and

T both have the weak Lefschetz property (WLP) and the difference between their socle

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac002/6528492 by guest on 10 M

arch 2022



Cohomological Blowups of Graded AG Algebras 5

degrees is two, then Ã also has WLP (Theorem 8.9). We give examples that show general

cohomological blowups may not preserve WLP (Example 8.8) and blowdowns may not

preserve SLP or WLP in general (Example 8.6). In a sequel [34], we plan to investigate

the behavior of the related Hodge–Riemann bilinear relations (HRR) in relation with

cohomological blowups and blowdowns.

Our 2nd construction (Construction 4.2) starts with Macaulay dual generators

F ∈ Qd and G ∈ Qk for A = R/ Ann(F) and T = R/ Ann(G), and a contraction operator

τ ∈ Rn such that τ ◦F = G. Then one again fixes an indeterminate ξ and chooses a monic

homogeneous polynomial fR(ξ) ∈ R[ξ ] and, from this, constructs a new dual generator

F̂ ∈ Q[']d and its associated AG algebra

fR(ξ) = ξn + r1ξn−1 + · · · + rn ⇒ ÂMD = R[ξ ]

Ann(F̂)
,

where the ri ∈ Ri are homogeneous of degree i, 1 ≤ i ≤ n. Applying the projection

map R[ξ ] → A[ξ ] to fR(ξ) +→ fA(ξ) = fR(ξ), one can also construct Â from above, but in

general, the algebras Â and ÂMD will be non-isomorphic. However, we show that they

are isomorphic exactly when they are equal to some cohomological blowup of A along

π , and we give necessary and sufficient conditions for this to occur (Theorem 4.6); in

this case, we shall replace the “hat” with “tilde”, drop the subscript, and simply write Ã.

We use this result to show that every cohomological blowup along a surjective map can

be realized as a connected sum in the sense of [30] (Theorem 5.4). We show that one can

also obtain the cohomological blowdown as a connected sum (Theorem 5.6). This latter

result implies that every AG algebra A can be realized as a connected sum (over some

T̃ ,= F) by blowing up then blowing down.

Our 3rd construction (Construction 6.2) starts with presentations A = R/I and

T = R/(I : τ ). One then fixes an indeterminate ξ and chooses a monic homogeneous

polynomial fR(ξ) ∈ R[ξ ] and constructs a new ideal Î ⊂ R[ξ ] by

fR(ξ) = ξn + r1ξn−1 + · · · + rn ⇒ Î = I + ξ · (I : τ ) + (fR(ξ)),

where the ri ∈ Ri are homogeneous of degree i, 1 ≤ i ≤ n. It is clear from the

definition that R[ξ ]/Î ∼= Â from Construction 3.1 above, and hence we deduce that Î is a

Gorenstein ideal (i.e., irreducible and primary to the maximal ideal of R[ξ ]) if and only

if an = λ · τ , a nonzero scalar multiple of the Thom class of π . In this case, we replace

the “hat” with “tilde” and call Ĩ a cohomological blow-up ideal because the quotient

algebra R[ξ ]/Ĩ is isomorphic to the cohomological blow-up algebra Ã defined above.
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6 A. Iarrobino et al.

We compute a minimal generating set of Ĩ in terms of minimal generating sets of I and

(I : τ ) (Theorem 6.5). Using this result in conjunction with the notion of exact pairs of

zero divisors borrowed from [22, 33], we classify BUGs that are complete intersections

(CIs) (Theorem 6.12). We also use cohomological blowups to prove a special case of

Watanabe’s bold conjecture (WBC) [47], namely that any standard graded Artinian CI

cut out by products of linear and/or quadratic forms can be embedded as a subalgebra

of another standard graded Artinian CI cut out by quadratic forms and of the same socle

degree (Theorem 6.16); see [35] for a different proof of a related result, and see [36] for a

proof of other cases of WBC.

It is interesting to note that our cohomological blowup along a surjective map

preserves the standard grading, that is, if A and T are standard graded, then the

cohomological blowup Ã is also standard graded (Remark 5.5). However, we show

by examples that neither the cohomological blowdown nor, what one might call,

the cohomological blowup along a non-surjective map necessarily preserve standard

grading at all (Example 5.8, Remark 9.4). We say that a standard graded AG algebra Ã

has a standard BUG structure if it is a cohomological blowup of a standard graded AG

algebra A along some surjective map π . Using Equation (4) above, we deduce that some

Hilbert functions cannot occur with standard BUG structures, and we call such Hilbert

functions inaccessible. Specifically, we show that the compressed Hilbert functions

of [24] with embedding dimension at least three and socle degree at least six are

always inaccessible (Theorem 7.2). We plan for a sequel [29] with further results in

this direction, including a complete description of cohomological blow-up algebras

of codimension two—where all AG Hilbert functions are accessible—and a study of

inaccessible AG Hilbert functions in codimension at least three.

This paper is organized as follows. In Section 2, we give a description of the

algebraic analogue of the Thom class of a map of graded AG algebras. In Section 3,

we give Construction 3.1 and necessary and sufficient conditions for it to yield a

Gorenstein algebra. Then we define the cohomological blow-up algebra and give a

description of its Hilbert function. In Section 4, we discuss Macaulay duality, we give

Construction 4.2, and we give necessary and sufficient conditions for it to yield the

cohomological blow-up algebra. In Section 5, we show that every cohomological blow-

up algebra is a connected sum. We also describe the blowdown in terms of connected

sums and show that every AG algebra has a connected sum decomposition, obtained

by blowing up then blowing down. In Section 6, we give Construction 6.2, introduce the

cohomological blow-up ideal, and compute its minimal generating set. In Section 7, we

define inaccessible Hilbert functions and show that almost all compressed AG algebras
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Cohomological Blowups of Graded AG Algebras 7

are inaccessible. In Section 8, we show that cohomological blowing up preserves SLP. In

Section 9, we discuss further the connection of our work with geometry and other areas,

give some geometrically motivated examples, and suggest problems for future work. In

this paper, we have made a special effort to include a wide array of examples, many

of which were found as counter-examples to conjectures or questions that arose in our

discussions and preparations of this manuscript, and we hope the reader will find them

useful. In the appendix, we have included a list of all examples and brief descriptions

of them for the readers convenience.

2 AG Algebras, Orientations, and Thom Classes

Let F be any field. A graded AG algebra means a commutative Z≥0-graded connected AG

F-algebra; in particular, if A is a graded AG algebra of socle degree d, then A = ⊕d
i=0 Ai

with A0 = F and socle(A) = Ad
∼= F. Since most algebraic objects in this paper are

graded, we may sometimes drop the adjective and refer simply to an AG algebra. Unless

explicitly stated otherwise (as Remark 3.11), we will not restrict the ground field F
except in our study of Lefschetz properties (Section 8). We say that A is standard graded

if it is generated as an algebra by its linear forms, that is, F[A1] = A. Although many

of our examples are standard graded, we will not assume this, except in our discussion

of compressed algebras (Section 7). An orientation on the AG algebra A is a choice of

linear isomorphism
∫

A : Ad
∼=→ F or, equivalently, a choice of socle generator, which we

shall denote by 0 ,= asoc ∈ Ad. An oriented AG algebra is a pair
(
A,

∫
A

)
consisting of

a graded AG algebra A and an orientation
∫

A; when the orientation is understood we

shall drop the
∫

A and just speak of an oriented AG algebra A, and its distinguished socle

generator asoc.

Suppose that A and T are two oriented AG algebras of socle degrees d and k,

respectively, with d > k, and suppose that π : A → T is a degree-preserving algebra map

between them; we may occasionally drop the adjectives and simply refer to the map π .

Since A is Gorenstein, multiplication defines a perfect pairing for all 0 ≤ i ≤ d:

In particular, for any φ ∈ HomF(Ai, F), there exists a unique a ∈ Ad−i such that φ(b) =
∫

A a · b for every b ∈ Ai. Pulling back the orientation on T by π defines a homomorphism
∫

T ◦ π : Ak → F and hence, as shown in [30, Lemma 2.1], there exists a unique element
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8 A. Iarrobino et al.

τ ∈ Ad−k for which

∫

T
π(a) =

∫

A
τ · a, ∀ a ∈ A. (6)

Definition 2.1 (Thom class, Euler class). The unique element τ ∈ Ad−k defined by

Equation (6) is called the Thom class of π . The image of the Thom class π(τ ) ∈ Td−k

is called the Euler class of π .

Topologically, if A = H2•(X) and T = H2•(Y) are the cohomology rings of a

manifold X and a submanifold π : Y ↪→ X and π∗ : H2•(X) → H2•(Y) is the induced

restriction map on cohomology algebras, then the Thom class of π∗ is exactly the Thom

class of the normal bundle of Y in X, also known as the Poincaré dual class of Y ⊂ X,

and its image under the restriction map is the Euler class of the normal bundle, e.g., [41].

Note that the Thom class is zero if and only if the socle of T does not belong to the image

of π . We call π : A → T a restriction map if its Thom class is nonzero. In particular, if

π is surjective, then it is a restriction map, but not every restriction map is surjective.

In complex geometry, if X is a Kähler manifold and π : Y ⊂ X is a codimension n Kähler

submanifold, then the induced map on cohomology π∗ : H2•(X) → H2•(Y) is a restriction

map [23, Exercise 3.3.9], though it need not be surjective, for example Example 9.3. Here

is a useful characterization of the Thom class of a restriction map.

Lemma 2.2. Let π : A → T be a restriction map between two oriented AG algebras of

socle degrees d > k, respectively, and let K = ker(π) ⊂ A be its kernel. Let a ∈ A be any

homogeneous element of degree n = d − k. Then a · K = 0 if and only if a = λ · τ is a

multiple of the Thom class of π .

Proof. Let
∫

A : Ad → F and
∫

T : Tk → F be orientations on A and T, respectively. Assume

first that a ∈ An and a · K = 0. Consider the short exact sequence of vector spaces

0 → Kk → Ak → Tk → 0. Since T is Gorenstein of socle degree k, Tk is one-

dimensional, and hence Kk ⊂ Ak is a codimension-one subspace. Therefore, the set

of homomorphisms φ ∈ HomF(Ak, F) that vanish on Kk is one-dimensional. Since

φ1(u) =
∫

A τ · u =
∫

T π(u) = 0 for every u ∈ K, and also φ2(u) =
∫

A a · u = 0 for every

u ∈ K, we must have φ1 = λ · φ2, which implies that τ = λ · a. The converse is clear. !

If π : A → T is surjective, which will be a standing assumption throughout

this paper, then the Thom class has some nice alternative descriptions. First, let
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Cohomological Blowups of Graded AG Algebras 9

R = F[x1, . . . , xr] be a graded polynomial ring with homogeneous maximal ideal

m = (x1, . . . , xr) ⊂ R, and let I ⊂ R be a homogeneous m-primary ideal. Then R/I is graded

Artinian and it is Gorenstein if and only if I is irreducible, meaning that it cannot be

written as an intersection of two strictly larger ideals [39, Lemma I.1.3]. Suppose that

J ⊂ R is another homogeneous m-primary irreducible ideal with I ⊂ J, let T = R/J,

and let π : A → T be the natural projection map. The following fact is well known; see

[46, Lemma 4] and [39, Theorem I.2.1].

Lemma 2.3. With the above assumptions, let τ̄ ∈ A = R/I be the Thom class of π and

let τ ∈ R any homogeneous lift. Then we have

J = (I : τ ) and (I : J) = (τ ) + I.

In [39], the authors refer to the homogeneous lift of the Thom class τ ∈ R in

Lemma 2.3 as a transition element for I ⊆ J.

Next, let Q = F[X1, . . . , Xr] be a divided power algebra on which R acts by

contraction, for example [25, Appendix A] or [12, Appendix A.2.4]:

xi ◦ Xa1
1 · · · Xai

i · · · Xar
r =





Xa1

1 · · · Xai−1
i · · · Xar

r if ai > 0

0 if ai = 0
.

Then it is well known that a homogeneous ideal I ⊂ R is m-primary irreducible of socle

degree d (meaning the socle degree of A = R/I) if and only if there exists a homogeneous

form F ∈ Qd for which I = Ann(F) = {r ∈ R | r◦F = 0}. In this case, F is called a Macaulay

dual generator of A. Suppose that G ∈ Qk (k < d) is another homogeneous form for which

I = Ann(F) ⊂ J = Ann(G), let T = R/J, and let π : A = R/ Ann(F) → R/ Ann(G) be the

natural projection map. Note that A and T have natural orientations coming from F and

G given by
∫

A a = (a ◦ F)(0) and
∫

T t = (t ◦ G)(0).

Lemma 2.4. Under the assumptions of Lemma 2.3, if τ ∈ R is any homogeneous lift of

the Thom class of π , then

τ ◦ F = G.

Proof. Indeed, the Thom class condition (6) translates to the condition

(a ◦ G)(0) = (τ · a ◦ F)(0) = (a ◦ (τ ◦ F))(0), ∀ a ∈ R
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10 A. Iarrobino et al.

or, equivalently,
0 = a ◦ (G − τ ◦ F) (0), ∀ a ∈ R, (7)

but because the pairing Ri × Qi → F, (a, H) = (a ◦ H)(0) is nondegenerate, we see that

Condition (9) is equivalent to the claimed condition that G = τ ◦ F. !

Remark 2.5. If τ is the Thom class of a map of AG algebras π : A → T, and if λ ∈ F×

is a nonzero constant, we can get a new Thom class τ ′ = λ · τ by either scaling the

distinguished socle generator of A by λ, that is, asoc +→ λ · asoc = a′
soc, or by scaling the

distinguished socle generator of T by λ−1, that is, tsoc +→ λ−1 · tsoc = t′
soc.

In our proofs, we make frequent use of the following result: it is valid for an

arbitrary AG algebra A (not necessarily graded) and an arbitrary Artinian algebra B.

Lemma 2.6. Let ϕ : A → B be a homomorphism of Artinian algebras so that A is

Gorenstein and ϕ restricted to the socle of A is injective. Then ϕ is injective.

In particular, if ϕ : A → B is a surjective homomorphism of graded AG rings of

the same socle degree, then ϕ is an isomorphism.

Proof. Let ϕ : A → B be a ring homomorphism with A AG. Let a be an element of the

kernel of ϕ. If a ,= 0, then there exists 0 ,= a′ ∈ A such that 0 ,= aa′ ∈ soc(A). However,

ϕ(aa′) = ϕ(a)ϕ(a′) = 0 since ϕ(a) = 0 by assumption. This contradicts the restriction of

ϕ to soc(A) being injective. Thus, it must be the case that a = 0 and consequently ϕ is

injective.

Now, assume ϕ : A → B is a surjective homomorphism of graded AG rings of the

same socle degree. Then ϕ : soc(A) → soc(B) is a vector space isomorphism. Applying

the 1st assertion, ϕ is injective, hence bijective. !

3 Cohomological Blowups

Let A and T be oriented AG algebras of socle degrees d and k respectively with d > k

and π : A → T a surjective degree preserving algebra map with Thom class τ ∈ Ad−k.

Construction 3.1. Set n = d − k, and let ξ be an indeterminate of degree one. Choose

any homogeneous elements ai ∈ A for 1 ≤ i ≤ n, and define the monic homogeneous

polynomial of degree n, fA(ξ) ∈ A[ξ ], by

fA(ξ) = ξn + a1ξn−1 + · · · + an−1ξ + an. (8)
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Cohomological Blowups of Graded AG Algebras 11

Then, let K ⊂ A be the kernel of π , and construct the algebra Â by

Â = A[ξ ]
(ξ · K, fA(ξ))

. (9)

We further set ti = π(ai) for 1 ≤ i ≤ n, define the monic homogeneous polynomial

fT(ξ) ∈ T[ξ ]

fT(ξ) = ξn + t1ξn−1 + · · · + tn, (10)

and construct the algebra T̃ by

T̃ = T[ξ ]
(fT(ξ))

. (11)

Before giving the formal definition of the cohomological blowup (Definition 3.10),

we shall discuss some of the fundamental properties of the algebras Â and T̃ from

Construction 3.1. First, note that since ξ · K = 0 in Â, the algebra structure of Â depends

only on the images t1, . . . , tn−1, as well as an. There is a natural degree preserving

algebra map β : A → Â induced from the natural inclusions A ↪→ A[ξ ] that makes Â

into an A-algebra. Also, the surjective tensor product map π ⊗ 1: A[ξ ] → T[ξ ] passes

to a surjective degree preserving map on quotients π̂ : Â → T̃. Moreover, these maps

π : A → T, β : A → Â and π̂ : Â → T̃ together with the natural inclusion β0 : T → T̃ fit

together in a commutative diagram

(12)

The following elementary observation will be useful and we record it as a

lemma. We offer our own proof here for completeness, but it can also be deduced from

[27, Lemma 1.8] and [43, Lemma 2.1]. Recall that for graded Artinian algebras A, B, and

C, we say that C is a free extension of A with fiber B if there are maps ι : A → C making C

into a free A-module and π : C → B with kernel ker(π) = mA · C where mA is the maximal

ideal of A.

Lemma 3.2. The algebra T̃ from Construction 3.1 in Equation (11) is a free extension

of T with fiber F ∼= F[ξ ]/(ξn). In particular, since T and F are Gorenstein, T̃ is also

Gorenstein. (A more general result established in a 2008 unpublished note “Coexact

Sequences of Poincaré Duality Algebras” by L. Smith and R.E. Stong states that if T̃,
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12 A. Iarrobino et al.

T and F are graded Artinian algebras in which T̃ is a free extension of T with fiber F,

and any two are Gorenstein, then so is the 3rd.)

Proof. We first claim that the map β0 : T → T̃ makes T̃ into a free T-module with basis

{1, ξ , . . . , ξn−1}. Clearly, this set generates T̃ as a T-module, since powers of ξ generate

T[ξ ] as a T-module, and all powers greater than n−1 can be eliminated with the relation

ξn ≡ −(t1ξn−1 + · · · + tn). A T-dependence relation in T̃ lifts to a T-relation in T[ξ ] of the

form c0 ·1+c1ξ +· · ·+cn−1ξn−1 = t ·
(
ξn + t1ξn−1 + · · · + tn

)
for some ci, r ∈ T. Comparing

ξ-coefficients, we conclude that t = 0, and hence ci = 0 for all i since {1, ξ , . . . , ξn−1} are

T-linearly independent in T[ξ ]. Finally, note that the natural projection map φ : T → F
extends to a projection map φ̃ : T̃ → F[ξ ]/(ξn) with kernel ker(φ̃) = mT · T̃. Therefore, T̃ is

a free extension of T with fiber F = F[ξ ]/(ξn) as claimed.

For the last statement, it suffices to show that the socle of T̃ satisfies soc(T̃) =
soc(T) · ξn−1. One containment is obvious, and for the other, assume that t̂ ∈ soc(T̃)

is a homogeneous socle element. From our arguments above, we may decompose it as

t̂ = s0 + s1ξ + · · · + sn−1ξn−1 for some unique si ∈ T. Since t̂ is in the socle, we must have

t · t̂ = 0 for any positive degree element t ∈ T+, which implies that si ∈ soc(T) for all i,

by linear independence of {1, . . . , ξn−1}. On the other hand, since t̂ is homogeneous, and

deg(si) = deg(t̂) − i it follows that there is only one nonzero si, and since ξ · t̂ = 0, it

follows that i = n−1. Therefore, we have shown that t̂ = sn−1 · ξn−1 where sn−1 ∈ soc(T),

which implies that soc(T̃) = soc(T) · ξn−1, as desired. !

Lemma 3.2 implies that T̃ is always Gorenstein. On the other hand, the algebra

Â may not always be Gorenstein, as the following example shows.

Example 3.3. Let

A = F[x, y]
(x3, y3)

π→ T = F[x, y]
(x2, y)

,

where π(x) = x and π(y) = 0 (here d = 4, k = 1, and n = d − k = 3). Note K = ker(π) =
(x2, y). Orient A and T with socle generators asoc = x2y2 and tsoc = x; then, the Thom

class of π is τ = xy2 ∈ A3. Set fT(ξ) = ξ3 + xξ2 ∈ T[ξ ], so that t1 = x and t2 = t3 = 0, and

let T̃ be the associated free extension:

T̃ = T[ξ ]
(fT(ξ))

= F[x, y, ξ ]
(x2, y, ξ3 + xξ2)

.
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Cohomological Blowups of Graded AG Algebras 13

Below are different algebras Â for different choices of π-lifts fA(ξ) = ξ3 +a1ξ2 +a2ξ +a3

of fT(ξ), according to Construction 3.1.

1. a1 = x, a2 = 0, and a3 = (x2y + xy2). Then fA(ξ) ∈ A[ξ ] is fA(ξ) = ξ3 + xξ2 +
(x2y + xy2), and

Â = A[ξ ]
(ξ · K, fA(ξ))

= F[x, y, ξ ]
(x3, y3, x2ξ , yξ , ξ3 + xξ2 + x2y + xy2)

.

Then an F-basis for Â is

{
1, x, y, ξ , x2, xy, y2, xξ , ξ2, x2y, xy2, xξ2

}

from which it follows that the Hilbert function for Â is

H(Â) = (1, 3, 5, 3)

and hence Â is not Gorenstein. Note that in this case, the socle generator

asoc = x2y2 is actually in the ideal (ξ · K, f̂ (ξ)), hence β(asoc) = 0, and thus β

is not injective.

2. a1 = x, a2 = 0, and a3 = xy2 = τ . Then, fA(ξ) = ξ3 + xξ2 + xy2 ∈ A[ξ ] and

Â = A[ξ ]
(ξ · K, fA(ξ))

= F[x, y, ξ ]
(x3, y3, x2ξ , yξ , ξ3 + xξ2 + xy2)

has basis

{
1, x, y, ξ , x2, xy, y2, xξ , ξ2, x2y, xy2, xξ2, x2y2

}

and Hilbert function

H(Â) = (1, 3, 5, 3, 1).

Here, the socle of Â is generated by âsoc = asoc = x2y2; hence, Â is Gorenstein.

3. a1 = x + y and a2 = a3 = 0. Here, we chose a different π-lift of t1 = x, but

the reader will see it does not affect Â; the important choice is a3 = 0. Then,

fA(ξ) = ξ3 + xξ2 ∈ A[ξ ] and

Â = F[x, y, ξ ]
(x3, y3, x2ξ , yξ , ξ3 + (x + y)ξ2)

= F[x, y, ξ ]
(x3, y3, x2ξ , yξ , ξ3 + xξ2)
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14 A. Iarrobino et al.

with basis

{
1, x, y, ξ , x2, xy, y2, xξ , ξ2, x2y, xy2, xξ2, x2y2

}

and Hilbert function

H(Â) = (1, 3, 5, 3, 1).

However, note that in this case the socle of Â is the two dimensional F-vector

space generated by xξ2 and x2y2; therefore, Â is not Gorenstein. In contrast

to case (1), in this case, the image of the socle of A in Â via β is nonzero and

in fact the map β : A → Â is injective.

The example suggests a strong dependence of the Gorenstein property on the

choice of an from Equation (8). Before we give our main result in this direction, we need

some lemmas. The following lemma computes the Hilbert function of Â in terms of those

of A and T.

Lemma 3.4. For each â ∈ Â, there exist unique elements b0 ∈ A and elements

s1, . . . , sn−1 ∈ T for which

â = β(b0) + β(b1)ξ1 + · · · + β(bn−1)ξn−1, for some bi ∈ A, where π(bi) = si.

In particular, the Hilbert function of Â satisfies

H(Â) = H(β(A)) + H(T)[1] + · · · + H(T)[n − 1]. (13)

Proof. Existence of such a decomposition is easy: every element â ∈ Â has a

representative in the polynomial ring A[ξ ], and high powers of ξ can be reduced via

the relation

fA(ξ) = ξn + a1ξn−1 + · · · + an ≡ 0.

As for uniqueness, suppose that there are some other elements c0 ∈ A and other

s′
1, . . . , s′

n−1 ∈ T with π-lifts c1, . . . , cn−1 ∈ A such that

â = β(c0) + β(c1)ξ + · · · + β(cn−1)ξn−1.
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Cohomological Blowups of Graded AG Algebras 15

Comparing their decompositions in T̃ via the projection π̂ , we find that

0 = β0(π(b0 − c0)) + β0
(
π(b1 − c1)

)
ξ + · · · + β0

(
π(bn−1 − cn−1)

)
ξn−1.

It follows from Lemma 3.2 that T̃ is a free T-module with basis {1, ξ , . . . , ξn−1} via the

injective map β0 : T → T̃, and hence we conclude that si = π(bi) = π(ci) = s′
i for all

i = 1, . . . , n − 1 and that π(a0) = π(c0); hence, b0 − c0 ∈ K. But we also have the relation

in Â

0 = β
(
b0 − c0

)
+ β

(
b1 − c1

)
ξ + · · · + β

(
bn−1 − cn−1

)
ξn−1.

Since β
(
bi − ci

)
ξ i ∈ (ξ · K), the identity displayed above simplifies to

0 = β(b0 − c0)

and hence β(b0) = β(c0) in Â. Thus, the decomposition is unique in the desired sense.

Equation (13) follows immediately from this decomposition. !

Lemma 3.5. With A, T, π , K, and fA(ξ) = ξn +a1ξn−1 +· · ·+an ∈ A[ξ ] as in Construction

3.1, we have in A[ξ ]

(
ξ · K, fA(ξ)

)
∩ β(A) = an · K.

Proof. Let b ∈
(
ξ · K, fA(ξ)

)
∩ β(A). Then there is a polynomial g(ξ) ∈ A[ξ ] for which

b − g(ξ)fA(ξ) ∈ (ξ · K) in A[ξ ]. Writing g(ξ) = gmξm + · · · + g1ξ + g0 for gi ∈ A, since fA(ξ)

is monic, we must therefore have in A[ξ ]

b − gmξm+n + (lower order terms) ∈ (ξ · K) . (14)

Since m + n ≥ n ≥ 1 we can compare coefficients on the left-hand side and right-hand

side of (14) to deduce that gm ∈ K. If m ≥ 1, we can combine the term gmξm · f̂ (ξ) with

the other (ξ · K) terms and lower the ξ-degree of g(ξ). Repeating this procedure, we may

assume that the ξ-degree is m = 0, that gm = g0 ∈ K, and hence that b − g0 · fA(ξ) ∈
(ξ · K). Since g0 ∈ K, it follows that g0

(
fA(ξ) − an

)
∈ (ξ · K) as well and therefore that

b−g0 ·an ∈ (ξ · K), which implies that b−g0 ·an = 0 and hence that b ∈ an ·K, as desired.

The reverse containment is obvious. !
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16 A. Iarrobino et al.

Theorem 3.6. Let A, T, π , τ , fA(ξ), Â, and β be as above. Then,

1. the algebra map β : A → Â is injective if and only if the constant coefficient

of fA(ξ) satisfies an = λ · τ for some λ ∈ F (possibly λ = 0) and

2. the algebra Â is Gorenstein if and only if an = λ · τ for some nonzero λ ∈ F×.

Proof. For (1.), observe that β : A → Â is injective if and only if
(
ξ · K, fA(ξ)

)
∩ β(A) = 0,

which by Lemma 3.5 is equivalent to an · K = 0, which is in turn, equivalent to an = λ · τ
for some λ ∈ F by Lemma 2.2.

For (2.), assume first that Â is Gorenstein. Then soc(Â) = Âe where e is the largest

integer for which Âe ,= 0. It follows from Lemma 3.4 that e ≤ d and that e < d if and only

if β(Ad) = 0. But if e < d, then by the surjectivity of the algebra map π̂ : Â → T̃ we must

have π̂(Âd−1) = T̃d−1 ,= 0, and hence 0 ,= Âd−1 = soc(Â) and e = d − 1. By Lemma 2.6,

π̂ must be an isomorphism, that is,

π̂ : Â = A[ξ ]
(ξ · K, fA(ξ))

∼=→ A[ξ ]
(K, fA(ξ))

= T̃.

In particular, we see that K ⊆ (ξ · K, fA(ξ)) in A[ξ ], which by Lemma 3.5 implies that

K ⊆ an.K, which is impossible for degree reasons (since we are assuming d > k).

Therefore, we must have soc(Â) = Âd ,= 0, which by Lemma 3.4 must be the image of Ad,

and hence β(asoc) ,= 0. By (1), this implies that an = λ · τ for some λ ∈ F. Next, we claim

that λ ,= 0. Indeed, assume that λ = 0 so that an = 0. Let b0 ∈ A be any π-lift of tsoc ∈ Tk.

Then note that ξn−1β(b0) ∈ soc(Â). Indeed, in A[ξ ], we have ξ ·
(
ξn−1b0

)
−b0fA(ξ) ∈ (ξ · K),

hence ξ ·
(
ξn−1b0

)
∈ (ξ · K, fA(ξ)), but also for any b ∈ A of positive degree b0 · b ∈ K

and hence b ·
(
ξn−1 · b0

)
∈ (ξ · K) as well. We further claim that

{
ξn−1 · β(b0), β(asoc)

}
are

linearly independent in Â. Indeed, π̂(ξn−1 · β(b0)) = ξn−1tsoc is a socle generator of T̃

(hence is nonzero), whereas π̂(β(asoc)) = 0. Since β(asoc) ,= 0, this shows that the socle

of Â has dimension at least two, contradicting our assumption that Â is Gorenstein.

Conversely assume that an = λ·τ for some nonzero λ ∈ F×. Then, by (1.) β : A → Â

is injective, and hence β(asoc) ∈ soc(Â). We want to show that β(asoc) generates the socle.

To that end, suppose that â ∈ Â is any other socle element, and as in Lemma 3.4, write

â = β(b0) + β(b1)ξ + · · · + β(bn−1)ξn−1. (15)
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Cohomological Blowups of Graded AG Algebras 17

Note that since π̂ is surjective, it must map socle elements of Â to socle elements of T̃.

Thus, applying π̂ to (15), we find that there is a constant c (possibly c = 0) such that

π̂(â) = π(b0) + π(b1)ξ + · · · + π(bn−1)ξn−1 = c · tsoc · ξn−1.

Since T̃ is a free T-module with basis {1, ξ , . . . , ξn−1}, it follows that π(bi) = 0 in T for

0 ≤ i ≤ n − 2 and π(bn−1) = c · tsoc. This implies that b0, . . . , bn−2 ∈ K, and therefore that

β(bi)ξ
i = 0 in Â for i = 1, . . . , n − 2. Thus, â reduces to

â = β(b0) + β(bn−1)ξn−1.

Since â ∈ soc(Â), we have ξ · â = 0 in Â, and therefore,

0 = ξ · â =ξ · β(b0) + β(bn−1)ξn

(since b0 ∈ K, and ξn ≡ −
(
a1ξn−1 + · · · + an

)
)

≡ − β(bn−1) ·
(
a1ξn−1 + · · · + an−1ξ + an

)

(since π(bn−1) = c · tsoc, and ai ∈ Ai for 1 ≤ i ≤ n − 1)

≡β(bn−1) · an

(since bn−1 = c · tsoc and an = λ · τ )

≡λ · c · β(asoc).

Since λ ,= 0 and β(asoc) ,= 0 we must conclude that c = 0 and hence bn−1 ∈ K as well

and therefore that â = β(b0). But since β(b0) = â ∈ soc(Â) and β is injective, it follows

that b0 ∈ soc(A), as desired. Therefore, soc(Â) ⊆ β(soc(A)), from which it follows that Â

must be Gorenstein. !

Corollary 3.7. If an = λ · τ with λ ∈ F then

H(Â) = H(A) + H(T)[1] + · · · + H(T)[n − 1]

and there is a split exact sequence of A-modules
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18 A. Iarrobino et al.

Proof. Injectivity for β follows from Theorem 3.6 part (1) and surjectivity of π̂ is by

definition. That the displayed sequence is a complex follows from the commutative

diagram (12). Exactness of the sequence above viewed as a sequence of vector spaces

follows from Lemma 3.4 and the identity

H(Â) = H(β(A)) + H(T)[1] + · · · + H(T)[n − 1] = H(A) + H(T̃/β0(T)).

Finally, since A is a Gorenstein ring, A is injective as an A-module; thus, the above

sequence splits. !

Remark 3.8. It follows from Theorem 3.6 and Corollary 3.7 that if an = 0, then β : A →
Â is injective and

H(Â) = H(A) + H(T)[1] + · · · + H(T)[n − 1],

but Â is not Gorenstein. We call such algebras boundary Gorenstein algebras, indicating

that they are in the closure of the Gorenstein locus of the Hilbert scheme; the algebra

Â in Example 3.3(3.) is a boundary Gorenstein algebra of this type. More precisely, one

can show that if F is algebraically closed, then the algebra

Ã[λ] = A[ξ , λ]
(ξ · K, ξn + a1ξn−1 + · · · + λ · τ )

is flat as a module over F[λ], where the fibers Ã[c]/(λ − c) · Ã[λ] are Gorenstein if c ,= 0

and not Gorenstein, but boundary Gorenstein, if c = 0. We shall give another flat family

in which the Gorenstein algebra Â is a general fiber in Section 8.

Definition 3.9 (Preferred orientations). By Lemma 3.2, T̃ from Construction 3.1 is

always Gorenstein, and we define its preferred orientation as the one corresponding

to the socle generator, t̂soc = ξn−1 · tsoc. If Â from Construction 3.1 is Gorenstein, then

we define its preferred orientation as the one corresponding to the socle generator

âsoc = β(asoc); hence, the preferred orientation on Â is the one inherited from A via β.

Definition 3.10 (Cohomological blowup, exceptional divisor, cohomological blowdown).

Given oriented AG algebras A and T of socle degrees d > k, respectively, and surjective

degree-preserving algebra map π : A → T with Thom class τ ∈ An where n = d − k, and

given a homogeneous monic polynomial fA(ξ) = ξn + a1ξn−1 + · · · + an ∈ A[ξ ] of degree n
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Cohomological Blowups of Graded AG Algebras 19

with homogeneous elements ai ∈ Ai for 1 ≤ i ≤ n and with an = λ · τ for some nonzero

constant λ, and setting ti = π(ai) for 1 ≤ i ≤ n − 1, we call the corresponding oriented

AG algebra from Construction 3.1, Equation (9) the cohomological blowup of A along π

with parameters (t1, . . . , tn−1, λ), or BUG for short, and write

Ã = (Â =)
A[ξ ]

(ξ · K, ξn + a1ξn−1 + · · · + λ · τ
︸ ︷︷ ︸

fA(ξ)

)
.

with its preferred orientation ãsoc = asoc. The oriented AG algebra from Construction

3.1, Equation (11)

T̃ = (T̃ =)
T[ξ ]

(ξn + t1ξn−1 + · · · + λ · π(τ ))︸ ︷︷ ︸
fT (ξ)

with its preferred orientation t̃soc = ξn−1 · tsoc is called the exceptional divisor of T with

parameters (t1, . . . , tn−1, λ). In this case, we refer to A as the cohomological blowdown

of Ã along π̂ .

Remark 3.11. One can force λ = 1 in Definition 3.10 by scaling orientations on either

A or T. Specifically, given π : A → T with Thom class τ , take new distinguished socle

generator either a′
soc = λ · asoc or t′

soc = λ−1 · tsoc so that the same map with one of these

scaled orientations π ′ : A′ → T ′ will have Thom class τ ′ = λ · τ , and hence an = λ · τ = τ ′.

If λ ∈ F has an nth-root, say µ (e.g., if F is algebraically closed), then one can also

force λ = 1 by rescaling the parameters in the cohomological blowup. Specifically, if Ã is

the cohomological blowup of A along π : A → T with parameters (t1, . . . , tn−1, λ), then Ã

is isomorphic to the cohomological blowup of A along π with parameters (t′
1, . . . , t′

n−1, 1)

where t′
i = µi · ti via the map ξ +→ µ · ξ .

The following example shows that the hypothesis on F in Remark 3.11 is

necessary.

Example 3.12. Let A = Q[x]/(x3) and T = Q = F with π : A → T the natural projection

having ker(π) = (x) and Thom class τ = x2. Taking fA(ξ) = ξ2 + λx2 with λ ∈ Q×, the
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20 A. Iarrobino et al.

cohomological blow-up algebra of A along π with parameters (0, λ) is

Ã(λ) = Q[x, ξ ]
(xξ , ξ2 + λx2)

.

We claim that any pair of integers p, q such that p is a prime that does not divide q

yields non-isomorphic algebras Ã(p) and Ã(q). Indeed, assume that there is a Q-algebra

isomorphism ψ : Ã(q) → Ã(p). Then, for some a, b, c, d ∈ Q, we must have ψ(x) =
ax + bξ and ψ(ξ) = cx + dξ . Moreover, we may assume that a, b, c, d are integers such

that gcd(a, b, c, d) = 1 because ψ is an isomorphism if and only if α ·ψ is an isomorphism

for any α ∈ Q×. We have

ψ((xξ , ξ2 + qx2))=(acx2 + (ad + bc)xξ + bdξ2, (c2 + qa2)x2+2(cd+qab)xξ+(d2+qb2)ξ2).

In order for ψ to be a Q-algebra isomorphism, the ideal above must be equal to (xξ , ξ2 +
px2) and equating the two ideals in Q[x, ξ ]/(xξ) yields the following equations:

ac = pbd (16)

c2 + qa2 = p(d2 + qb2). (17)

It follows from (16) that p divides a or c, and hence from (17) that p divides both a and c.

Returning to (16), we now deduce that p divides bd and hence p divides b or d. Similarly,

we must also have p | (d2 +qb2), which implies that p must divide b and d. Therefore, we

must have p divides a, b, c, and d, contradicting our assumption that gcd(a, b, c, d) = 1.

In particular, we have shown that every prime p gives a cohomological blowup

of A along π with parameters (0, p), which is not isomorphic to the cohomological blow-

up algebra Â(1) with parameters (0, 1). In fact, this shows that there are infinitely many

distinct isomorphism classes of cohomological blow-up algebras Ã(p) of A along π with

parameters (0, p), one for each prime p.

On the other hand, we shall see in Theorem 8.3 that the algebras Ã(λ2) and Ã(1)

are always isomorphic for any rational number λ.

The next lemma gives the Thom class of the restriction map from the cohomo-

logical blowup to its exceptional divisor.

Lemma 3.13. With notations as in Definition 3.10, if Ã is the cohomological blowup of

A along π : A → T with parameters (t1, . . . , tn−1, λ), and T̃ is its exceptional divisor then
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Cohomological Blowups of Graded AG Algebras 21

the Thom class of the projection map π̃ : Ã → T̃ is

τ̃ = −λ−1ξ .

Proof. The socle degree of T̃ is d − 1, and it follows from Lemma 3.4 that the graded

component Ãd−1 has a F-vector space decomposition as

F · aTξn−1 ⊕ Ad−1, where π(aT) = tsoc ∈ Tk.

We may assume that k < d−1, since if k = d−1, we clearly have Ã = A and T̃ = T. Then,

for each a ∈ Ad−1, we have a ∈ K; hence ξ · a ≡ 0 in Ã. Also, we have

ξ · aTξn−1 ≡ aTξn

≡ aT

(
−

(
a1ξn−1 + · · · + an

))

since ai ∈ A+ ⇒ aT · ai ∈ K

≡ aT · (−an) ≡ aT · (−λ · τ ) = −λ · asoc = −λ · ãsoc,

from which it follows that ξ = −λ · τ̃ , as desired. !

The following theorem gives a useful characterization of the blow-up algebra in

terms of some universal properties, analogous to Equations (1)–(3) from the Introduc-

tion.

Theorem 3.14. Suppose that we are given oriented AG algebras
(
A,

∫
A

)
,
(
T,

∫
T

)
,
(
Ã,

∫
Ã

)
,

and
(
T̃,

∫
T̃

)
with socle degrees d, k, d, and d − 1, respectively, with d > k, and surjective

degree preserving algebra maps π : A → T and π̃ : Ã → T̃. Then Ã is a cohomological

blowup of A along π for some parameters (t1, . . . , tn−1, λ), and T̃ is its exceptional divisor

if and only if the following conditions are satisfied.

1. There are degree preserving algebra maps β : A → Â and β0 : T → T̃ making

the following diagram commute:
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22 A. Iarrobino et al.

2. The Euler class ε = π̃(τ̃ ) ∈ T̃1 generates T̃ as a T-algebra (via β0) with a single

homogeneous relation in degree n = d − k:

εn + β0(t′
1)εn−1 + · · · + β0(t′

n) ≡ 0

for some homogeneous elements t′
i ∈ Ti for 1 ≤ i ≤ n.

3. There is a short exact sequence of A-modules

Proof. Assume that
(
Ã,

∫
Ã

)
is the cohomological blowup of

(
A,

∫
A

)
along π and that

(
T̃,

∫
T̃

)
is the exceptional divisor, with parameters (t1, . . . , tn−1, λ) from Definition 3.10,

and their preferred orientations from Definition 3.9. Then our discussion following

Construction 3.1 shows condition (1.) is satisfied. Also, Lemma 3.13 shows that the

Thom class of π̃ is τ̃ = −λ−1ξ , and its Euler class is ε = π̃(−λ−1ξ). From the presentation

of T̃ in (11), we have fT(ξ) = ξn + t1ξn−1 + · · · + λ · π(τ ) ≡ 0 in T̃. Therefore, setting

t′
i = (−1)iλ−iti for 1 ≤ i ≤ n − 1 yields (−1)nλn (

εn + t′
1εn−1 + · · · + t′

n−1ε + λ1−n · τ
)

≡ 0

in T̃, which is (2.). Finally, Corollary 3.7 implies condition (3.).

Conversely, assume that Conditions (1.)–(3.) hold. Define an algebra map

(18)

where β : A → Ã is the map given by (1.), and τ̃ is the Thom class of π̃ : Ã → T̃. Then

Conditions (2.) and (3.) guarantee that φ is surjective. Indeed, by (2.), the quotient T̃/β0(T)

is generated as an A module by nonzero powers of the Euler class ε = π̃(τ̃ ), and hence

by (3.), Ã is generated as an A module by 1 and nonzero powers of the Thom class τ̃ .

Furthermore, note that the ideal generated by ξ · u for u ∈ K = ker(π) is contained in

ker(φ). Indeed, φ(u · ξ) = β(u) · τ̃ and for any ã ∈ Ã, we have

∫

Ã
τ̃ · β(u) · ãa =

∫

T̃
π̃(β(u) · ã)

=
∫

T̃
β0(π(u)) · π̃(ã) = 0,

which implies that β(u)τ̃ = φ(u · ξ) = 0 since Ã is Gorenstein.
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Cohomological Blowups of Graded AG Algebras 23

Consider the relation on the Euler class from (2.):

εn + β0(t′
1)εn−1 + · · · + β0(t′

n−1)ε + β0(t′
n) ≡ 0.

For each 1 ≤ i ≤ n−1, let ai be any π-lift of t′
i (which exists since π is surjective), and set

gA(ξ) = ξn + a1ξn−1 + · · · + an−1ξ ∈ A[ξ ]. Note that π̃
(
φ

(
gA(ξ)

))
= −β0(t′

n) ∈ β0(T), and

hence according to condition (3.), there exists an ∈ A such that β(an) = φ(gA(ξ)) in Ã.

Then, setting fA(ξ) = gA(ξ)+ an, we see that fA(ξ) ∈ ker(φ) as well. Thus, we have shown

the containment of ideals (ξ · K, fA(ξ)) ⊆ ker(φ), and in particular, the map φ induces a

surjective map on the quotient

φ̄ : Ã′ = A[ξ ]
(ξ · K, fA(ξ))

→ Ã.

Since Ã′ follows Construction 3.1, Lemma 3.4 implies its Hilbert function is as in (13):

H(Ã′) = H(β ′(A)) + H(T)[1] + · · · + H(T)[n − 1], (19)

where β ′ : A → Ã′ is the natural map described after Construction 3.1. By condition (3.),

we know that the Hilbert function of Ã is

H(Ã) = H(A) + H(T)[1] + · · · + H(T)[n − 1]. (20)

Since H(β(A))i ≤ H(A)i for all i, but also H(Ã′)i ≥ H(A)i for all i by surjectivity of φ̄,

we deduce that the Hilbert functions (19) and (20) must be equal and therefore that

φ̄ : Ã′ → Ã must be an isomorphism. Finally, since Ã is Gorenstein, it follows that Ã′ is

Gorenstein and hence must be a cohomological blowup, and the result follows. !

Remark 3.15. As discussed in the Introduction, the conditions of Theorem 3.14 are

satisfied by cohomology algebras. More precisely, if Y ⊂ X are compact complex

manifolds of dimension k < d, with cohomology algebras A = H2•(X) and T = H2•(Y)

and π : A → T the induced restriction map, surjective or not, then the cohomology

algebras of the blown up manifolds T̃ = H2•(Ỹ) and Â = H2•(X̃) with (possibly non-

surjective) restriction map π̂ : Â → T̃ satisfies Conditions (1.)–(3.) of Theorem 3.14.

Therefore, Theorem 3.14 seems to offer a way to define the cohomological blowup of

an oriented AG algebra A along any, possibly non-surjective, map π : A → T. On the

other hand, without the surjectivity assumption on π , one must sacrifice, among other
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24 A. Iarrobino et al.

things, the nice presentation given by Construction 3.1; see Example 9.3 and Remark 9.4

in Section 9.

4 Macaulay Dual Generators

Our reference for this section is [25, Appendix A], but see also [12, Appendix A.2.4]. Let

R = F[x1, . . . , xr] be a polynomial ring, and let Q = F[X1, . . . , Xr] be the dual divided power

algebra. Let F ∈ Qd and G ∈ Qk be homogeneous forms of degrees d > k, respectively,

and suppose that τ ∈ Rd−k is a polynomial for which G = τ ◦ F. Then, if A = R/ Ann(F)

and T = R/ Ann(G) are the corresponding oriented AG algebras, the identity map on R

induces a surjective map on the quotients

π : A = R
Ann(F)

→ R
Ann(G)

= T

for which the Thom class is τ as shown in Lemma 2.4.

Next, we give another construction, similar to Construction 3.1, that will lead to

yet another characterization of the cohomological blowup (Theorem 4.6). First, we need

some notation. Throughout this section, we use the notation r for the coset of r ∈ R in

the quotient algebra T.

Definition 4.1 (G-dual polynomial). Given G and T as above, let ξ be an indeterminate,

let n be any positive integer, and let fR(ξ) = ξn+a1ξn−1+· · ·+an ∈ R[ξ ] be a homogeneous

monic polynomial with ai ∈ Ri for 1 ≤ i ≤ n. Evaluation at ξ = 1 gives a non-

homogeneous element in fR(1) ∈ R and projection to the local ring T gives a (non-

homogeneous) unit µf = 1+a1+· · ·+an ∈ T. Let µh = 1+u1+· · ·+uk ∈ T be its T-inverse,

that is, µf · µh = 1 in T, with homogeneous components ui ∈ Ti. A homogeneous monic

polynomial hR(ξ) = ξk + u1ξk−1 + · · · + uk with homogeneous coefficients ui ∈ Ri that

project to ui ∈ Ti for every 1 ≤ i ≤ n is called a G-dual polynomial for fR(ξ).

Since T is graded and µf · µh = 1 in T, it follows that the polynomials fR(ξ) and

its G-dual polynomial hR(ξ) satisfy

fR(ξ) · hR(ξ) ≡ ξn+k mod AnnR(G) · R[ξ ].

Construction 4.2. Set n = d−k, let ξ be an indeterminate, and let ' be its dual divided

power. Choose homogeneous elements ai ∈ Ri for 1 ≤ i ≤ n, and define a homogeneous
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Cohomological Blowups of Graded AG Algebras 25

monic polynomial fR(ξ) ∈ R[ξ ] by

fR(ξ) = ξn + a1ξn−1 + · · · + an. (21)

Let hR(ξ) ∈ R[ξ ] be any G-dual polynomial of fR(ξ):

hR(ξ) = ξk + u1ξk−1 + · · · + uk. (22)

Construct the (d − 1)-form G̃ ∈ Q['] by

G̃ = hR(ξ) ◦
(
'd−1 · G

)
= 'n−1G + 'n(u1 ◦ G) + · · · + 'd−1(uk ◦ G), (23)

and construct the oriented AG algebra

T̃MD = R[ξ ]

Ann(G̃)
. (24)

Next, fix a parameter λ ∈ F×, and construct the d-form F̂ ∈ Q[']

F̂ = F − λ · 'G̃ = F − λ
(
'nG + 'n+1(u1 ◦ G) + · · · + 'n+k(uk ◦ G)

)
(25)

and construct the oriented AG algebra

ÂMD = R[ξ ]

Ann(F̂)
. (26)

In Construction 4.2, one can easily check that we have

AnnR[ξ ](F̂) ∩ R = AnnR(F), and AnnR[ξ ](G̃) ∩ R = AnnR(G),

which implies that the inclusion map R ↪→ R[ξ ] induces injective maps

β : A = R
AnnR(F)

→ R[ξ ]

AnnR[ξ ](F̂)
= ÂMD and β0 : T = R

AnnR(G)
→ R[ξ ]

AnnR[ξ ](G̃)
= T̃MD,

Next, we observe that ξ ◦ F̃ = λ · G̃, and hence the identity map R[ξ ] → R[ξ ] passes to a

surjective map on the quotient algebras

π̂ : ÂMD = R[ξ ]

AnnR[ξ ](F̂)
→ R[ξ ]

AnnR[ξ ]

(
λ−1ξ ◦ F̂ = −G̃

) = T̃MD
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26 A. Iarrobino et al.

with Thom class τ̃ = −λ−1ξ (compare with Lemma 3.13). Since the identity and inclusion

maps on R and R[ξ ] form a commutative square, it follows that the maps on quotients

do too, resulting in a commutative diagram

(27)

compare with condition (1.) of Theorem 3.14. The following result is related to condition

(2.) of Theorem 3.14, namely that T̂MD is a free extension of T; compare with Lemma 3.2.

Lemma 4.3. Let G ∈ Qk be any homogeneous form, let fR(ξ) = ξn +a1ξn−1 +· · ·+an any

monic homogeneous polynomial with coefficients ai ∈ Ri, and let hR(ξ) = ξk + u1ξk−1 +
· · · + uk ∈ R[ξ ] be a G-dual of fR(ξ), as in Construction 4.2. Then we have the following

equality of ideals:

Ann
(
hR(ξ) ◦

(
'd−1 · G

))
= AnnR(G) · R[ξ ] + (fR(ξ)).

In particular, the oriented AG algebra T̃MD from Construction 4.2, Equation (26) is a free

extension over T and in fact is equal to the algebra T̃ from Construction 3.1 Equation

(11), that is,

T̃MD = R[ξ ]

Ann(G̃ = hR(ξ) ◦
(
'd−1 · G

)
)

= R[ξ ]
AnnR(G) · R[ξ ] + (fR(ξ))

= T[ξ ]

(fT(ξ) = fR(ξ))
= T̃.

Proof. The containment

AnnR(G) · R[ξ ] + (fR(ξ)) ⊆ AnnR[ξ ]

(
G̃ = hR(ξ) ◦

(
'd−1 · G

))

follows from the relation

fR(ξ) · hR(ξ) ≡ ξd mod AnnR(G) · R[ξ ].

Therefore, the identity map R[ξ ] → R[ξ ] passes to a surjective map of algebras

φ : T̃ = T[ξ ]

(f (ξ))
= R[ξ ]

AnnR(G) · R[ξ ] + (fR(ξ))
→ R[ξ ]

AnnR[ξ ](G̃)
= T̃MD.
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Cohomological Blowups of Graded AG Algebras 27

Let tsoc ∈ Rk be any homogeneous polynomial that projects onto the socle generator of

T, so that the distinguished socle generator of T̃ is tsoc · ξn−1. Since

tsoc · ξn−1 · hR(ξ) ◦
(
'd−1 · G

)
= 1,

it follows from Lemma 2.6 that φ must also be injective and hence an isomorphism, and

the result follows. !

Remark 4.4. In [43], the authors refer to the monic polynomial fR(ξ) as the homoge-

nizing polynomial for T and to the G-dual hR(ξ) as the dual homogenizing polynomial.

We refer also to [8] for more on de-homoginization. We also remark monic polynomial

fR(ξ) and its G-dual polynomial hR(ξ) also satisfy

fR(ξ) · hR(ξ) ◦
(
'd · G

)
= fR(ξ) ◦

(
' · Ĝ

)
= G; (28)

in particular, fR(ξ) is the Thom class of the projection map

πB : B := R[ξ ]

AnnR[ξ ]

(
' · G̃

) → R[ξ ]
AnnR[ξ ](G)

= T.

The algebra B defined above will show up again when we discuss connected sums.

Lest the reader think that the AG algebra

T̃ = R[ξ ]
AnnR[ξ ]

(
hR(ξ) ◦

(
'd−1 · G

))

is always a free extension over T = R/ AnnR(G); the following example shows otherwise.

Example 4.5. Let R = F[x, y, z], Q = F[X, Y, Z], and let G = XYZ with k = deg(G) = 3.

Suppose that we choose n = 2, and hR(ξ) = ξ3 + (xy + xz + yz)ξ + (xyz) and define G̃ as

in Construction 4.2 Equation (23):

G̃ ='XYZ + '3(X + Y + Z) + '4 = h(ξ) ◦
(
'4G

)
.
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28 A. Iarrobino et al.

Note that there is no monic polynomial fR(ξ) ∈ AnnR[ξ ](G̃) of degree n = 2, and in fact

we have

T̃ = R[ξ ]

Ann(G̃)
= F[x, y, z, ξ ]

(x2, y2, z2, ξxyz − ξ3(x + y + z), ξ3(x + y + z) − ξ4, ξ5)
,

which is not a free extension over T = R/ Ann(G).

Note, however, that the corresponding unit h(1) ∈ T is µh = 1 + (xy + xz + yz) +
(xyz) and its T-inverse is

(
µh

)−1 = 1 − (xy + xz + yz)− (xyz), indicating that the “correct

choice” is fR(ξ) = ξ3 − (xy + xz + yz)ξ − xyz of degree n = 3 (not n = 2). Indeed, we see

that if we define the homogeneous form of degree 5

G̃′ = '2XYZ + '4(X + Y + Z) + '5 = hR(ξ) ◦
(
'5G

)
,

then

T̃ ′ = R[ξ ]

AnnR[ξ ](G̃′)
= R[ξ ]

AnnR(G) · R[ξ ] + (fR(ξ))
= T[ξ ](

fT(ξ) = ξ3 − (xy + xz + yz)ξ − (xyz)
) ,

which is a free extension over T = R/ Ann(G) with fiber F = F[ξ ]/(ξ3). The moral of the

story here is that given a k-form G ∈ Qk and T = R/ Ann(G), then in order to construct

the dual generator of a free extension over T by the formula hR(ξ) ◦
(
'n+k−1 · G

)
∈ Qd−1,

we can either choose the integer n and the monic polynomial fR(ξ) of degree n and

then take hR(ξ) as its G-dual, or we can choose the monic polynomial hR(ξ) of degree

k, then take its G-dual fR(ξ) and take n = deg(fR(ξ)), but we cannot necessarily choose

the integer n and the polynomial hR(ξ) simultaneously. Of course, the G̃ of Construction

4.2 Equation (23) follows the former procedure and, by Lemma 4.3, is always the dual

generator of a free extension of T.

The following result gives necessary and sufficient conditions for ÂMD to be a

cohomological blow-up algebra of A along π : A → T in the sense of Definition 3.10.

Theorem 4.6. Let fR(ξ), hR(ξ), G̃, T̃MD, λ, F̂, and ÂMD be as in Construction 4.2. Then

the following statements are equivalent.

1. The algebra ÂMD is isomorphic to a cohomological blowup of A along π with

some parameters (t1, . . . , tn−1, λ).
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Cohomological Blowups of Graded AG Algebras 29

2. The Hilbert function of ÂMD satisfies

H(ÂMD) = H(A) + H(T)[1] + · · · + H(T)[n − 1].

3. There exists an element r ∈ R for which fR(ξ) − r ∈ AnnR[ξ ](F̃).

4. The constant coefficient rn of fR(ξ) satisfies

(
rn − r

)
◦ F = λ · G

for some r ∈ AnnR(G).

Proof. (1.) ⇒ (2.). Assume that ÂMD is isomorphic to a cohomological blowup of

π : A → T. Then Corollary 3.7 gives (2.).

(2.) ⇒ (3.). Assume that H(ÂMD) = H(A) + H(T)[1] + · · · + H(T)[n − 1]. Then the

sequence of maps

is exact by the argument in the proof of Corollary 3.7. Let fA(ξ) be the equivalence class

of fR(ξ) ∈ R[ξ ] in ÂMD. Note that by Lemma 4.3, fA(ξ) must be in the kernel of π̂ , and

hence by exactness, there exists r̄ ∈ A = R/ Ann(F) for which β(r̄) = fA(ξ). Then if r ∈ R

be any homogeneous lift of r̄, we have fR(ξ) − r ∈ Ann(F̂), which is (3.).

(3.) ⇒ (4.). Assume that there exists r ∈ R for which fR(ξ) − r ∈ Ann(F̂). Then we

have

(
fR(ξ) − r

)
◦ F̂ =

(
fR(ξ) − r

)
◦

(
F − λ · hR(ξ) ◦

(
'n+k · G

))
(29)

=fR(ξ) ◦ F − r ◦ F − λ ·
(
fR(ξ) · hR(ξ)

)
◦ ('n+k · G) + λ · ' · r ◦ G̃

=rn ◦ F − r ◦ F − λ · G + λ · ' · r ◦ G̃

=(rn − r) ◦ F − λ · G + λ · ' · r ◦ G̃ = 0,

which implies, by comparing '-coefficients, that

(rn − r) ◦ F − λ · G = 0.
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30 A. Iarrobino et al.

Moreover, since fR(ξ) − r ∈ Ann(F̂) ⊆ Ann(G̃ = ξ ◦ F̂), and fR(ξ) ∈ Ann(G̃), we see that

r ∈ Ann(G̃) too, which implies that r ∈ AnnR[ξ ](G̃) ∩ R = AnnR(G), and (4.) follows.

(4.) ⇒ (1.). Assume that there exists r ∈ Ann(G) such that the constant coefficient

of fR(ξ) − r ∈ R[ξ ] satisfies (rn − r) ◦ F = λ · G. Then we claim that fR(ξ) − r ∈ Ann(F̂).

Indeed, as in (31), we have

(
fR(ξ) − r

)
◦ F̂ = (rn − r) ◦ F − λ · G − λ · ' · r ◦ G̃ = −'

(
λr ◦ G̃

)
= 0

since r ◦ G̃ = hR(ξ) ◦
(
'd · (r ◦ G)

)
= 0.

Next, observe that for any r′ ∈ AnnR(G) = AnnR[ξ ](G̃)∩R we have ξ ·r′ ∈ AnnR[ξ ](F̂).

In particular then, the kernel of the surjective map

. : R[ξ ] → R[ξ ]

AnnR[ξ ](F̂)
= ÂMD

contains AnnR(G) ·ξR[ξ ], and fR(ξ)−r, not to mention the ideal AnnR(F) ·R[ξ ]. Set I ⊂ R[ξ ]

to be the sum of these components, that is, I = AnnR(F)·R[ξ ]+AnnR(G)·ξR[ξ ]+(fR(ξ)−r).

Then, clearly, we have R[ξ ]/I ∼= A[ξ ]/(ξ ·K, fA(ξ) = fR(ξ) − r) where K = ker(π) = AnnR(G)·
R[ξ ]/ AnnR(F) · R[ξ ]. Moreover, if ti ∈ Ti is the equivalence class of ri ∈ Ri, then since

the equivalence class of rn − r ∈ Rn in A is λ · τ ∈ An, it follows that R[ξ ]/I is the

cohomological blowup of A along π with parameters (t1, . . . , tn−1, λ). Therefore, we have

a surjective map of Gorenstein algebras

.̄ : Â = R[ξ ]/I = A[ξ ]
(ξ · K, fA(ξ))

→ ÂMD.

Since Â and ÂMD have the same socle degree, .̄ must be an isomorphism by Lemma 2.6,

which is (1.). !

The preceding Theorem 4.6 implies that the algebras Â from Construction 3.1

Equation (9) and ÂMD from Construction 4.2 Equation (26) are equal precisely when

they are cohomological blowups; in this case, we shall replace “hat” with “tilde” on all

symbols and write

Ã = ÂMD = R[ξ ]

Ann
(
F̃ = F − ' ·

(
G̃ = hR(ξ) ◦

(
'd−1 · G

))) = A[ξ ](
ξ · K, fR(ξ)

) = Â.

The following gives an example in which Â ,= ÂMD.
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Example 4.7. Let F = X2Y2 and G = XY so that

π : A = F[x, y]
Ann(X2Y2)

→ F[x, y]
Ann(XY)

= T, π(x) = x, π(y) = y

is the natural projection map of corresponding AG algebras with Thom class τ = xy;

here, d = 4, k = 2, and n = 2. Taking fR = ξ2, we see that its G-dual is itself, that is,

hR(ξ) = ξ2, and hence setting G̃ = hR(ξ) ◦
(
'd−1G

)
= ξ2 ◦

(
'3 · XY

)
= 'XY, we get

T̃ = F[x, y, ξ ]
Ann('XY)

= F[x, y, ξ ]
(x2, y2, ξ2)

.

Then taking λ = 1, Construction 4.2 yields F̂ = F − 'G̃ = X2Y2 − '2XY, and hence

ÂMD = F[x, y, ξ ]
Ann(X2Y2 − '2XY)

= F[x, y, ξ ]
(x3, y3, x2ξ , y2ξ , x(ξ2 + xy), y(ξ2 + xy), ξ3)

.

Note in this case, there is no r ∈ Ann(G = XY) for which fR(ξ) − r = ξ2 − r ∈
Ann(F̂). We can also compute the Hilbert function H(ÂMD) = (1, 3, 6, 3, 1), whereas

H(A) + H(T)[1] = (1, 3, 5, 3, 1), and hence H(ÂMD) ,= H(A) + H(T)[1], and therefore ÂMD

is not a cohomological blowup of A along π , by Theorem 4.6 (or by Theorem 3.14).

Moreover, taking fA(ξ) = fR(ξ) = ξ2, Construction 3.1 yields

Â = A[ξ ]
(ξ · K, fA(ξ) = ξ2)

= F[x, y, ξ ]
(x3, y3, ξx2, ξy2, ξ2)

,

which is not even Gorenstein; in particular, Â ,= ÂMD.

Alternatively, a “correct choice” is fR(ξ) = ξ2 − xy for which a G-dual polynomial

is hR(ξ) = ξ2 + xy yielding G̃ = (ξ2 + xy) ◦
(
'3XY

)
= 'XY + '3 and

T̃ = F[x, y, ξ ]
Ann('XY + '3)

= F[x, y, ξ ]
(x2, y2, ξ2 − xy)

.

In this case, taking λ = −1 (Theorem 4.6 requires it!), Construction 4.2 yields F̃ = X2Y2 +
'

(
'XY + '3)

with

Ã = (ÂMD =)
F[x, y, ξ ]

Ann('2XY + '4 + X2Y2)
= F[x, y, ξ ]

(x3, y3, ξx2, ξy2, ξ2 − xy)
.

Here, we can verify that the conditions of Theorem 4.6 are satisfied, for example the

Hilbert function is H(Ã) = (1, 3, 5, 3, 1) = H(A) + H(T)[1]. Hence, in this case, Ã(= ÂMD)
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32 A. Iarrobino et al.

is the cohomological blowup of A along π with parameters (t1, λ) = (0, −1). In this case,

taking fA(ξ) = fR(ξ) = ξ2 − xy, then Construction 3.1 yields the same algebra:

Ã = (Â =)
A[ξ ]

(ξ · K, fA(ξ))
= F[x, y, ξ ]

(x3, y3, ξx2, ξy2, ξ2 − xy)
.

5 Relation with Connected Sums

5.1 The cohomological blow-up algebra as a connected sum

In this section, we relate cohomologiocal blow-up algebras to a different algebraic

construction termed connected sum, an algebraic analogue of the better known topo-

logical construction by the same name. In the topogical construction, a connected sum

is obtained by gluing two 2d-dimensional manifolds M1 and M2 along diffeomorphic

tubular neighborhoods of a common 2k-dimensional submanifold N. In complex geom-

etry, it is well known that the connected sum of an n-dimensional complex manifold M

with a projective space Pn is diffeomorphic to the blowup of M at a point [23, p.101].

Our contribution here is to recognize that any cohomological blow-up algebra along

a surjective map is a connected sum in the algebraic sense; see Theorem 5.4. We now

recall the algebraic connected sum construction as defined in [30], based on the original

construction defined in [3].

Definition 5.1 (Fibered product, connected sum). Given oriented AG algebras
(
A,

∫
A

)
,

(
B,

∫
B

)
, another AG algebra

(
T,

∫
T

)
, and algebra maps πA : A → T and πB : B → T one

forms the fibered product algebra as the sub algebra A ×T B ⊆ A × B of the direct

product algebra given by

A ×T B =
{
(a, b) ∈ A × B | πA(a) = πB(b)

}
.

If A, B have the same socle degree d, πA and πB have Thom classes τA and τB

respectively, and the Euler classes πB(τB) = πA(τA) are equal, then the total Thom class

(τA, τB) is in the fibered product algebra A×TB, and we define the connected sum algebra

as the quotient of the fibered product by the principal ideal generated by the total Thom

class, that is,

A#TB = A ×T B〈
(τA, τB)

〉 .

If the projection maps πA and πB are both surjective, then the connected sum

algebra defined above is an AG algebra of the same socle degree d as A and B; see for

example [30, Lemma 3.8].
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Cohomological Blowups of Graded AG Algebras 33

In terms of Macaulay duality, the following result in [30, Theorem 4.6] gives a

useful criterion to recognize an AG algebra as a connected sum.

Proposition 5.2. Let R = F[x1, . . . , xr], and let F, H ∈ Rd be two linearly independent

homogeneous forms of degree d. Suppose that there exists σ ∈ Rd−k (for some k < d)

satisfying

1. σ ◦ F = σ ◦ H ,= 0, and

2. Ann(σ ◦ F = σ ◦ H) = Ann(F) + Ann(H).

In this case, set

A = Q
Ann F

, B = Q
Ann(H)

, T = Q
Ann(σ ◦ F = σ ◦ H)

,

and let πA : A → T and πB : B → T be the natural projection maps. Then the Thom classes

of πA and πB are given by τA = σ + Ann(F) and τB = σ + Ann(H), and we have algebra

isomorphisms

A ×T B ∼= Q
Ann(F) ∩ Ann(H)

, A#TB ∼= Q
Ann(F − H)

.

And, conversely, every connected sum A#TB of graded AG algebras of the same socle

degree over graded AG algebra T arises in this way.

We utilize this result to realize a cohomological blow-up algebra defined as in

Construction 4.2 as a connected sum.

Example 5.3. Let F = X2Y2 and G = Y and π the projection between their

corresponding AG algebras

π : A = F[x, y]
Ann(X2Y2)

→ F[x, y]
Ann(Y)

= T,

with Thom class τ = x2y. Here, H(A) = (1, 2, 3, 2, 1), H(T) = (1, 1), d = 4, k = 1, and n = 3.

Take hR(ξ) = ξ + y with corresponding unit µh = 1 + y ∈ T, and inverse
(
µh

)−1 = 1 − y,

so that fR(ξ) = ξ3 − ξ2y. Then,

G̃ = (ξ + y) ◦
(
'3Y

)
= '2Y + '3.
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34 A. Iarrobino et al.

Choosing λ = −2, we have

F̃ = X2Y2 − 2'
(
'2Y + '3

)
= X2Y2 − 2'3Y − 2'4.

Setting r = −2x2y ∈ AnnR(G), we have f̂R(ξ) = fR(ξ) − r = ξ3 − ξ2y + 2x2y ∈ AnnR[ξ ](F̃),

and hence

Ã = F[x, y, ξ ]

Ann(F̃)
= F[x, y, ξ ]

(x3, y3, ξx, ξy2, ξ3 − ξ2y + 2x2y)

is according to Theorem 4.6 the cohomological blowup of A along π with parameters

(−y, 0, , 0, 2), with Hilbert function H(Ã) = H(A) + H(T)[1] + H(T)[2] = (1, 3, 5, 3, 1).

Setting H = 2'3Y + 2'4, we have F̃ = F − H. Moreover, the element τ = f̂R(ξ)

satisfies τ ◦ H = τ ◦ F = Y and AnnR[ξ ](Y) = AnnR[ξ ](F) + AnnR[ξ ](H). Hence, it follows

from Proposition 5.2 that we can also realize Ã as a connected sum of A = R[ξ ]/ Ann(F)

and B = R[ξ ]/ Ann(H) over T = R/ Ann(Y), that is, Ã ∼= A#TB.

In the following, we show that Example 5.3 is an instance of a general phe-

nomenon: any cohomological blow-up algebra is a connected sum. For the remainder

of this section, we work under the following set up. Fix a d-form F ∈ Qd and a k-form

G ∈ Qk with d > k, and let A = R/ Ann(F) and T = R/ Ann(G) be the associated oriented

AG algebras. Assume there exists homogeneous polynomial τ ∈ Rd−k for which τ ◦F = G,

so that the natural projection map πA : A → T has Thom class τA = τ . Let n = d − k, let ξ

be an indeterminate, ' a divided power variable dual to ξ , and fix a monic homogeneous

polynomial fR(ξ) = ξn+r1ξn−1+· · ·+rn ∈ R[ξ ] with coefficients ri ∈ Ri such that rn = λ·τ
for some nonzero constant λ ∈ F×. Let hR(ξ) = ξk + u1ξk−1 + · · · + uk ∈ R[ξ ] be a G-dual

polynomial of fR(ξ). Define the (d−1)-form G̃ and its associated oriented AG algebra T̃ by

G̃ = hR(ξ) ◦
(
'd−1 · G

)
, T̃ = R[ξ ]

AnnR[ξ ](G̃)
.

Define the d-form F̃ and its associated oriented AG algebra Ã

F̃ = F − λ · ' · G̃, Ã = ÂMD = R[ξ ]

AnnR[ξ ](F̃)
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Cohomological Blowups of Graded AG Algebras 35

as in construction 4.2; note that Theorem 4.6 guarantees that ÂMD = Ã here. Define the

new d-form H and its associated AG algebra B

H = λ · ' · G̃ ∈ Q[']d, B = R[ξ ]
AnnR[ξ ] (H)

and recall that

H = λ · ' · G̃ = λ · hR(ξ) ◦
(
'd · G

)
.

It follows that hR(ξ) is also a G-dual polynomial for ξ · fR(ξ) of degree n + 1, and hence

by Lemma 4.3, we have

B = R[ξ ]
AnnR[ξ ] (H)

= R[ξ ]
AnnR[ξ ](AnnR(G) · R[ξ ] + (ξ · fR(ξ))

= T[ξ ](
ξ · fR(ξ)

) .

Thus, the distinguished socle generator of B as bsoc = λ−1 · ξn · tsoc. The evaluation ξ = 0

passes to a map on quotients πB : B → T, and from the identity (28), it follows that its

Thom class is

τB = λ−1 · fR(ξ).

Note that the Euler class of πB is πB(λ−1 · fR(ξ)) = τ , which is equal to the Euler class of

πA, and hence it makes sense to form the connected sum A#TB.

Theorem 5.4. The connected sum of A and B over T is equal to the cohomological

blowup of A along π with parameters (a1, . . . , an−1, λ), that is,

Ã = A#TB.

Proof. With our setup above, Theorem 4.6 implies that Ã is the cohomological blowup

of A along π with parameters (a1, . . . , an−1, λ), that is,

ÂMD = Ã = R[ξ ]

AnnR[ξ ]

(
F̃ = F − H

) .

Setting σ = fR(ξ) in Proposition 5.2, it then suffice to check that Conditions (1.) and (2.)

hold. Condition (1.) holds since we have

fR(ξ) ◦ F = (ξn + r1ξn−1 + · · · + λ · τ ) ◦ F = λ · G = fR(ξ) ◦ (H) .
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36 A. Iarrobino et al.

It remains to see that

AnnR[ξ ](G) = AnnR[ξ ](H) + AnnR[ξ ](F). (30)

By Lemma 4.3, we have

AnnR[ξ ](H) = AnnR(G) · R[ξ ] + (ξ · fR(ξ)).

Also, since F is independent of ξ , we have

AnnR[ξ ](F) = AnnR(F) · R[ξ ] + (ξ).

Since AnnR(F) ⊂ AnnR(G) and

AnnR[ξ ](G) = AnnR(G) · R[ξ ] + (ξ),

(30) follows, and the desired conclusion follows by Proposition 5.2. !

Remark 5.5. In general, fibered products and connected sums of standard graded AG

algebras need not be standard graded, even in the simplest cases. Examples illustrating

this appear for the fibered product in [30, Example 4.5], and for the connected sum

in [30, Proposition 5.22]. Theorem 5.4 distinguishes cohomological blow-up algebras of

surjective maps as a class of connected sums, which preserves the standard grading.

However, there are examples from geometry where A and T are standard graded, but

the restriction map π : A → T is not surjective, and the cohomological blowup has a

nonstandard grading; see Remark 9.4.

5.2 The blowdown as a connected sum

Continuing with our setup above, let π̃A : Ã → T̃ be the projection map with Thom class

τ̃A = −λ−1ξ . Set H = λ · ' · G̃, and consider the surjective map of AG algebras

π̃B : B̃ := R[ξ ]

Ann(−H = −λ · ' · G̃)
→ R[ξ ]

Ann(G̃)
= T̃.

The algebra B̃ is the AG algebra B from the previous subsection, but with orientation

reversed, that is, b̃soc = −bsoc. Thus, the Thom class of the map π̃B is τ̃B = −λ−1ξ , which

is equal to the Thom class of π̃A. Then it makes sense to form the connected sum Ã#T̃ B̃.
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Cohomological Blowups of Graded AG Algebras 37

Theorem 5.6. The connected sum of Ã and B̃ over T̃ is equal to A, that is,

A = Ã#T̃ B̃.

Proof. Write

A = R[ξ ]

AnnR[ξ ]

(
F = F̃ − (−H)

) = R[ξ ]
AnnR(F) · R[ξ ] + (ξ)

.

Setting σ = ξ in Proposition 5.2, we will show that Conditions (1.) and (2.) hold.

Condition (1.) holds because

ξ ◦ F̃ = −λ · G̃ = ξ ◦ (−H).

For Condition (2.), note that it follows from Theorem 4.6 and Construction 3.1 that

Ã ∼= A[ξ ](
ξ · K, fR(ξ)

) = R[ξ ]
AnnR(F) · R[ξ ] + ξ · AnnR(G) · R[ξ ] + (fR(ξ))

and hence that

AnnR[ξ ](F̃) = AnnR(F) · R[ξ ] + ξ · AnnR(G) · R[ξ ] + (fR(ξ)).

Also, from Lemma 4.3, we have

AnnR[ξ ](H) = AnnR(G) · R[ξ ] + (ξ · fR(ξ)),

and since AnnR(F) ⊆ AnnR(G = τ ◦ F), their sum satisfies

AnnR[ξ ](F̃) + AnnR[ξ ](H) = AnnR(G) · R[ξ ] + (fR(ξ)) = AnnR[ξ ](G̃),

which is condition (2). Hence, the result follows from Proposition 5.2. !

One interesting consequence of Theorem 5.6 is that every AG algebra has a

nontrivial connected sum decomposition over some algebra T̃. This stands in direct

contrast to connected sums over the ground field T = F, where #F-indecomposable

AG algebras exist; see [3, Theorem 8.3] and also [42, Proposition 3.1]. On the other
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38 A. Iarrobino et al.

hand, Theorem 5.6 shows that over general T, there may be no #T-indecomposable AG

algebras.

Example 5.7. Set F = Z2XY − X2Y2 so that the corresponding AG algebra is

A = F[x, y, z]
Ann(Z2XY − X2Y2)

= F[x, y, z]
(x3, y3, x2z, y2z, x(z2 + xy), y(z2 + xy), z3)

with Hilbert function H(A) = (1, 3, 6, 3, 1). Set G = 1 so that T = F and the Thom class

for the projection π : A → F is just the socle generator τ = z2xy. Then we can set fR(ξ) =
ξ4−z2xy, which has G-dual hR(ξ) = 1. Therefore, we have G̃ = '3, F̃ = (Z2XY−X2Y2)−'4,

and H = '4. Then,

T̃ = F[x, y, z, ξ ]
Ann('3)

= F[x, y, z]
(x, y, z, ξ4)

and

Ã = F[x, y, z, ξ ]
Ann(Z2XY − X2Y2 − '4)

= F[x, y, z, ξ ]
(x3, y3, x2z, y2z, x(z2 + xy), y(z2 + xy), z3, ξx, ξy, ξz, ξ4 − z2xy)

and

B̃ = F[x, y, z, ξ ]
Ann(−'4)

= F[x, y, z, ξ ]
(x, y, z, ξ5)

.

Since ξ ◦
(
Z2XY − X2Y2 − '4)

= −'3 = ξ ◦
(
−'4)

, and also Ann(Z2XY − X2Y2 − '4) +
Ann('4) = Ann('3), it follows that A is a connected sum of Ã and B̃ along T̃, as

guaranteed by Theorem 5.6.

We conclude this section with an example that shows that unlike the blow-up

operation, the blow-down operation may not always preserve the standard grading.

Example 5.8. Define the AG algebra

A = F[x, y, u]
(x2, u2, xy, xu − yu, xu − y3)

= F[x, y, u]
Ann

(
XU + YU + Y3

)
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with the nonstandard grading deg(x) = deg(y) = 1 and deg(u) = 2. We can blow up

along the projection

π : A → T = F[x]
Ann(X)

= F[x]
(x2)

with Thom class τ = u−y2 and kernel K = (y, u). Then setting fR(ξ) = ξ2−(u−y2) (which

has G = X-dual polynomial hR(ξ) = ξk), the cohomological blowup of A along π is

Ã = F[x, y, u, ξ ]
(x2, u2, xy, xu − yu, xu − y3, ξy, ξu, ξ2 − (u − y2))

= F[x, y, u, ξ ]
Ann('2X − XU − YU − Y3)

.

Since u ≡ ξ2 + y2 in Ã, we can eliminate u and get

Ã = F[x, y, ξ ]
(x2, (ξ2 + y2)2, xy, (x − y)(ξ2 + y2), x(ξ2 + y2) − y3, ξy, ξ(ξ2 + y2))

∼= F[x, y, ξ ]
(x2, ξ3, xy, xξ2 − y3, yξ)

,

which has a standard grading.

Incidentally, Ã is also the cohomological blow-up algebra of a standard graded

AG algebra A′ along a different T ′, namely

A′ = F[x, ξ ]
(x2, ξ3)

→ T ′ = F.

Here, the kernel is K′ = (x, ξ) and the Thom class is the socle generator τ = xξ2, and

taking y as the “blow-up variable” with fR(y) = y3 − xξ2, we find that the blowup

satisfies

Ã′ = A[y]

(yK′, f (y))
= F[x, ξ , y]

(x2, ξ3, yx, yξ , y3 − xξ2)
∼= Ã.

6 Minimal Generating Sets and CIs

In this paper, a complete intersection (CI) is a quotient of a polynomial ring by an ideal

generated by a regular sequence of maximal length. At a cursory glance, the presentation

in Construction 3.1 may lead one to believe that cohomological blowups cannot be CIs,

except in embedding dimension two where all AG algebras are CIs, but the following

example shows otherwise.
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40 A. Iarrobino et al.

Example 6.1. Define the AG algebras and the surjective map between them

A = F[x, y]
(x3, y3)

π−→ T = F[x, y]
(x3, y)

, π(x) = x, π(y) = 0.

Then the kernel of π is K = (y) and the Thom class is τ = y2. Here, d = 4, k = 2 and

n = 2. Letting ξ be the blow-up variable and fA(ξ) = ξ2 − y2, define the associated

cohomological blow-up algebra as in Construction 3.1 as

Ã = A[ξ ]
(ξ · K, fA(ξ))

= F[x, y, ξ ]
(x3, y3, ξy, ξ2 − y2)

.

In this presentation, the generator y3 is redundant, and we see that Ã is indeed a CI of

Hilbert function H(Ã) = (1, 3, 4, 3, 1) = H(A) + H(T)[1].

In this section, we will show that Example 6.1 is prototypical of the class of

BUGs, which are CIs. First, we introduce yet another description of the cohomological

blowup in terms of its defining ideal.

As usual, let R = F[x1, . . . , xr] be a graded polynomial ring with homogeneous

maximal ideal m = (x1, . . . , xr). Recall from Section 2 a homogeneous ideal I ⊆ R is

m-primary and irreducible if and only if the quotient R/I is a graded AG algebra. We

abuse notation slightly and call the socle degree of such an ideal the socle degree of the

corresponding quotient.

Construction 6.2. Fix an m-primary irreducible homogeneous ideal I ⊂ R of socle

degree d, and fix a homogeneous polynomial τ ∈ R of degree n where 2 ≤ n < d − 1

and such that I ! (I : τ ) ! R. Then the ideal (I : τ ) is also homogeneous, m-primary, and

irreducible of socle degree k = d − n; see Lemma 2.3.

Let ξ be an indeterminate, and fix a homogeneous monic polynomial fR(ξ) =
ξn + r1ξn−1 + · · · + rn where ri ∈ Ri.

Define the ideal Î ⊂ R[ξ ] = R̂ by

Î = I · R[ξ ] + ξ · (I : τ ) · R[ξ ] + fR(ξ) · R[ξ ]. (31)

We now describe some properties of the ideal (31) of Construction 6.2. Since I

and (I : τ ) are both m-primary and irreducible it follows that A = R/I and T = R/(I : τ )

are AG algebras, and since I ⊆ (I : τ ), the identity map on R passes to a surjective map of

quotient algebras π : A → T. Moreover, it follows from Lemma 2.2 that one can choose
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Cohomological Blowups of Graded AG Algebras 41

orientations on A and T such that τ ∈ An is the Thom class of π . Note that the kernel of

π is K = (I : τ )/I ⊂ R/I = A. It follows that if fA(ξ) = fR(ξ) ∈ A[ξ ] = R[ξ ]/I, then Â from

Construction 3.1 satisfies

Â = A[ξ ]

(ξ · K, fR(ξ))
= R[ξ ]

I · R[ξ ] + ξ · (I : τ ) · R[ξ ] + (fR(ξ)) · R[ξ ]
= R̂

Î
. (32)

It follows therefore from Lemma 3.6 that the ideal Î from Construction 6.2 is m̂ =
(x1, . . . , xr, ξ)-primary irreducible if and only if the constant coefficient rn ∈ Rn of fR(ξ)

satisfies rn −λ · τ ∈ I for some λ ∈ F×. In this case, we shall replace the “hat” with “tilde”

and call Ĩ = Î the cohomological blow-up ideal of I and τ , as it is the defining ideal of

the cohomological blow-up algebra Ã of A along π with parameters (r1, . . . , rn−1, λ).

It is also clear from Construction 6.2, and Lemma 3.13, that the colon ideal

(Î : ξ) ⊂ R̂ satisfies

(Î : ξ) = (I : τ ) + (fT(ξ) = fR(ξ)) (33)

and we have

T̃ = T[ξ ](
fT(ξ)

) = R[ξ ]
(I : τ ) · R[ξ ] + fR(ξ) · R[ξ ]

= R̂(
Î : ξ

) , (34)

which is the algebra from Construction 3.1 Equation (11).

6.1 Minimal generating sets

Next, we would like to know how the minimal generators of the cohomological blow-up

ideal Ĩ compare with those of I and of (I : τ ). We also determine the relations among

these minimal generators. We start by providing a lemma that helps explain some of

these relations.

Lemma 6.3. Let B(ξ) = bpξp + · · · + b0 and C(ξ) = cqξq + + · · · + c0 be any homogeneous

polynomials in R[ξ ] with homogeneous coefficients bi, ci ∈ R. Let J ⊂ R is any

homogeneous ideal in R and assume that C(ξ) is monic, that is, cq = 1. If the product of

B and C is in the ideal in R[ξ ] generated by J, that is,

B(ξ) · C(ξ) ∈ J · R[ξ ],

then every coefficient of B(ξ) must lie in J, that is, bi ∈ J · R for all 0 ≤ i ≤ p.
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42 A. Iarrobino et al.

Proof. The key observation here is that if D(ξ) = drξ
r + · · · + d0 is any polynomial in

the ideal J · R[ξ ], then its coefficients di ∈ J · R. Indeed, if D(ξ) ∈ J · R[ξ ], plug in ξ = 0 to

see that D(0) = d0 ∈ J · R. Then D(ξ) − d0 = D1(ξ) = ξ
(
drξ

r−1 + · · · + d1
)

∈ J · R[ξ ] and

hence drξ
r−1 + · · · + d1 ∈ (J · R[ξ ] : ξ) = J · R[ξ ], since ξ is a nonzero divisor of J · R[ξ ].

Then plug in ξ = 0 to see that d1 ∈ J · R, and so on.

Therefore, if the product

B(ξ) · C(ξ) =
p+q∑

i=0

(
b0ci + b1ci−1 + · · · + bic0

)
ξ i

is in the ideal J · R[ξ ], then each of its coefficients must be in J · R, that is,

b0ci + · · · + bic0 ∈ J · R for each 0 ≤ i ≤ p + q.

Taking first i = p+q, we find that bp ·cq ∈ J ·R and since cq = 1 it follows that bp ∈ J ·R.

Inductively, assume that bp−j+1, . . . , bp ∈ J · R. Then taking i = p + q − j we find that

bpcq−j + bp−1cq−j+1 + · · · + bp−j+1cq−1 + bp−jcq ∈ J · R

from which it follows that bp−jcq = bp−j ∈ J · R as well. Therefore, by induction, all

coefficients bj are in J · R. !

We can now provide a short exact sequence that determines the relations among

the obvious (not necessarily minimal) set of generators of the cohomological blow-up

ideal Ĩ.

Proposition 6.4. Let Ĩ = I · R[ξ ] + ξ · (I : τ ) · R[ξ ] + (fR(ξ)) be the ideal described in

Construction 6.2, let I ′ = I · R[ξ ], K′ = (I : τ ) · R[ξ ], and let g = (fR(ξ) − λτ )/ξ . There is a

short exact sequence of graded R[ξ ]-modules

0 → I ′(−1) ⊕ K′(−n)





ξ λτ

−1 g

0 −1





−−−−−−−−→ I ′ ⊕ K′(−1) ⊕ R[ξ ]

[
1 ξ fR

]

−−−−−−−−→ Ĩ → 0. (35)

Proof. The definition of Ĩ yields surjectivity of the rightmost nonzero map and the

injectivity of the leftmost nonzero map is clear from its description (note there is a
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Cohomological Blowups of Graded AG Algebras 43

unit entry in each column). That (35) is a complex is seen by matrix multiplication and

utilization of f = gξ + λτ .

It remains to prove exactness in the middle of (35). For this, consider a triple

(α(ξ), β(ξ), γ (ξ)) ∈ I ′ ⊕ K′(−1) ⊕ R[ξ ] so that

α(ξ) + β(ξ)ξ + γ (ξ)fR(ξ) = 0. (36)

Since I ′ ⊆ K′ we have α(ξ) + β(ξ)ξ ∈ K′, so that also γ (ξ)fR(ξ) ∈ K′, and by Lemma 6.3, it

follows that γ (ξ) ∈ K′ since fR(ξ) is monic. Adding the relation

λτγ (ξ) + g(ξ)γ (ξ) − fR(ξ)γ (ξ) = 0,

to (36) yields (α(ξ) − λτγ (ξ)) + (β(ξ) − g(ξ)γ (ξ))ξ = 0. Since γ (ξ) ∈ K′ = (I : τ ) · R[ξ ], we

have λτγ (ξ) ∈ I · R[ξ ] = I ′ and thus β ′(ξ) := (β(ξ) − g(ξ)γ (ξ) ∈ I ′. We have thus obtained

the identity





α(ξ)

β(ξ)

γ (ξ)



 = −β ′(ξ)





ξ

−1

0



 − γ (ξ)





λτ

g

−1



 ,

where β ′(ξ) ∈ I ′ and γ (ξ) ∈ K′, establishing the desired exactness. !

Based on the presentation in Proposition 6.4, one can infer a minimal generating

set for Ĩ. Setting m̂ to be the homogeneous maximal ideal of R[ξ ], tensoring the short

exact sequence (35) with R[ξ ]/m̂, and observing that there are isomorphisms I ′/m̂I ′ ∼=
I/mI and K′/m̂K′ ∼= (I : τ )/m(I : τ ), we obtain a new exact sequence of F-vector spaces

I
mI

(−1) ⊕ (I : τ )

m(I : τ )
(−n)





0 λφ2

−φ1 0

0 0





−−−−−−−−−−→
ψ1

I
mI

⊕ (I : τ )

m(I : τ )
(−1) ⊕ F

[
1 ξ fR

]

−−−−−−−−→
ψ2

Ĩ

m̂Ĩ
→ 0. (37)

The zero entries in the 1st matrix are due to the containments τ I ′ ⊆ m̂I ′, gI ′ ⊆ m̂K′, and

ξ I ′ ⊆ m̂I ′. We discuss the remaining maps φ1 and φ2—the former is induced by inclusion

and the other by multiplication by τ . These maps fit into the sequence

(38)
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44 A. Iarrobino et al.

Note this sequence of maps (38) forms a complex, that is, φ1 ◦ φ2 = 0 and φ2 ◦ φ1 = 0;

hence, there are homology groups

H = ker(φ1)

im(φ2)
and H ′ = ker(φ2)

im(φ1)
. (39)

We will see that these homology groups H and H ′ measure the difference

between minimal generating sets of Ĩ and those of I or (I : τ ). In fact, we will see that

these homology groups are obstructions to Ĩ being generated by a regular sequence.

Using (37), we can express a minimal generating set of Ĩ in terms of the minimal

generating sets of I and (I : τ ) and the homology groups H and H ′.

Theorem 6.5. Let φ1, φ2 be defined as in (39), and consider the vector space decompo-

sitions

I
mI

=U ⊕ im(φ2) ⊕ H︸ ︷︷ ︸
ker(φ1)

(I : τ )

m(I : τ )
=W ⊕ im(φ1) ⊕ H ′

︸ ︷︷ ︸
ker(φ2)

, (40)

where U and W are some (noncanonical) complements for ker(φ1) and ker(φ2), respec-

tively. Then the vector space spanned by the minimal generators for Ĩ decomposes as

Ĩ

m̂Ĩ
∼= U ⊕ H ⊕ ξW ⊕ ξH ′ ⊕ 〈fR(ξ)〉. (41)

Proof. This follows almost immediately from exactness of Sequence (37): since

ker(ψ2) = im(ψ1) = im(φ2) ⊕ im(φ1) ⊂ I/mI ⊕ (I : τ )/m(I : τ ) ⊕ F is a direct summand, and

since ψ2 is surjective, it passes to an isomorphism

Ĩ

m̂Ĩ
∼=

I
mI ⊕ (I:τ )

m(I:τ ) (−1) ⊕ F
ker(ψ2)

∼= U ⊕ ⊕H ⊕ W ⊕ H ′ ⊕ F

and the result follows. !

For a homogeneous ideal J ⊂ R, we denote by µ(J) = dimF (J/mJ) the number

of minimal generators of J. The following corollary is an immediate consequence of

Theorem 6.5, and we omit the proof.
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Corollary 6.6. With I, τ , (I : τ ) and Ĩ as above, we have

µ(Ĩ) = µ(I) + dim(H ′) + 1 = µ(I : τ ) + dim(H) + 1.

Note that in our set up of Construction 6.2, µ(Ĩ) ≥ r+1 = dim(R̂) with equality if

and only if Ĩ is generated by a regular sequence. In particular, Corollary 6.6 shows that

the vanishing of homology groups H and H ′ from (39) is necessary for the cohomological

blow-up ideal to be generated by a regular sequence, and hence for the BUG quotient

Ã = R̂/Ĩ to be a CI. However, the following example shows that the vanishing of H and

H ′ is not quite sufficient for that purpose.

Example 6.7. Let I =
(
x4, y4, zx2, zy2, z4 − x2y2)

and τ = z2 − xy so that (I : τ ) =
(
x4, y4, zx2, zy2, z2 + xy

)
. Then taking R̂ = R[ξ ] = F[x, y, z][ξ ] and fR(ξ) = ξ2 − τ the

cohomological blow-up ideal is

Ĩ =
(
x4, y4, zx2, zy2, ξ(z2 + xy), ξ4 − (z2 − xy)

)
.

Hence, the cohomological blowup Ã = R̂/Ĩ is not a CI. Note that in this case, the

homology groups H and H ′ are both zero.

Note in Example 6.7 that the colon ideal
(
Ĩ : ξ

)
= Ĩ + (z2 + xy) is principal over Ĩ.

This is related to exact pairs of zero divisors, which allow a complete characterization

of BUGs that are CI.

6.2 CI blow-up algebras and exact zero divisors

Below, we give a necessary and sufficient condition for a cohomological blow-up algebra

to be a CI based on exact zero divisors, a notion introduced by Henriques and Şega [22],

(see also [4, Section 3]), which is defined as follows.

Definition 6.8. A pair of non-unit elements a, b of a ring A is an exact pair of zero

divisors if (0 :A a) = b · A and (0 :A b) = a · A.

Example 6.9.

1. In Example 6.1 a = y2 and b = y form an exact pair of zero divisors on

A = F[x, y]
(x3, y3)

.
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46 A. Iarrobino et al.

2. In Example 6.7, a = z2 − xy and b = z2 + xy form an exact pair of zero

divisors on

A = F[x, y, z](
x4, y4, zx2, zy2, z4 − x2y2

) .

If A is Artinian, then it suffices to check only one of the conditions in

Definition 6.8; see also [4, Lemma 3.2].

Lemma 6.10. If A is a graded Artinian F-algebra, then homogeneous elements a, b ∈ A

of positive degree form an exact pair of zero divisors of A provided that (0 :A a) = b · A.

Proof. From (0 :A a) = b · A, we deduce there is an A-module isomorphism A/(b) =
A/(0 :A a) ∼= a · A by means of the diagram

Similarly, there is an isomorphism A/(0 :A b) ∼= b · A. Moreover, the hypothesis yields

ab = 0 and thus a · A ⊆ (0 :A b). To see that this containment is in fact an equality, we

compute

dimF(A) = dimF(A/(b)) + dimF(b · A) = dimF(a · A) + dimF(A) − dimF(0 :A b);

whence dimF(a) = dimF(0 :A b), and hence a · A = (0 :A b) as desired. !

The next lemma relates exact zero divisors to the homology group H in (39).

Lemma 6.11. Let A = R/I and T = R/(I : τ ) be AG algebras, and suppose that τ ∈ An is

part of a pair of exact zero divisors on A. Then the homology groups H and H ′ from (39)

vanish.

Proof. Assume that there exists a homogeneous element (of positive degree) σ ∈ R for

which (I : τ ) = I + (σ ) and (I : σ ) = I + (τ ), so that τ and σ are an exact pair of zero

divisors in A.
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Cohomological Blowups of Graded AG Algebras 47

Suppose that s ∈ I is any minimal generator of I for which s+mI ∈ ker(φ1). Then,

s ∈ m(I : τ ) = m(I +(σ )), and hence there exists elements g1, . . . , gt ∈ I and a1, . . . , at, b ∈ m

such that

s =
t∑

i=1

aigi + b · σ .

It follows that b ∈ (I : σ ) = I + (τ ) and hence b = q + r · τ for some q ∈ I and r ∈ R.

Therefore, we see that

s − r · τ · σ ∈ mI.

Then the equivalence class of s in H is

[s] ≡ [rτσ ] ≡ 0,

which shows that H = 0, as claimed.

Moreover, by [33, Proposition 1.9], we have τ · σ ∈ I \ mI, which yields that

(I : τ )/m(I : τ ) = 〈σ 〉. Consequently, the 2nd equation in (40) yields W = 〈σ 〉, im(φ1) = 0,

and H ′ = 0, also as claimed. !

The following is a characterization of CI cohomological blow-up algebras in

terms of exact pairs of zero divisors.

Theorem 6.12. Fix oriented AG algebras A = R/I and T = R/(I : τ ) of socle degrees

d > k, and let π : A → T be the natural surjective algebra map between them with Thom

class τ ∈ An and kernel K ⊂ A. Let fR(ξ) = ξn + r1ξn−1 + · · · + λ · τ ∈ R[ξ ] = R̂ for some

homogeneous elements ri ∈ R, and let Ã = R̂/Ĩ be the associated cohomological blowup

of A along π with parameters (r1, . . . , rn−1, λ). Then the following are equivalent.

1. Ã is a CI.

2. A is a CI and τ ∈ An is part of an exact pair of zero divisors on A.

3. T is a CI and τ ∈ An is part of an exact pair of zero divisors on A.

Proof. Assume that (1) holds. Then Ĩ must be generated by a R̂-sequence, and hence it

follows from Corollary 6.6 that both I and (I : τ ) must also be generated by R-sequences

and hence that A and T must be CIs and that the homology groups H and H ′ must vanish.
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48 A. Iarrobino et al.

Thus, according to Equations (40) and (41), we have

I
mI

= U ⊕ φ2(W),
(I : τ )

m(I : τ )
= φ1(U) ⊕ W, and

Ĩ

m̂Ĩ
=U ⊕ ξ · W ⊕ 〈fR(ξ)〉.

It follows that dimF(W) = 1, since no two elements of a minimal generating set of I (or Ĩ)

can have a common divisor. Let σ ∈(I : τ ) be a minimal generator for which σ+m(I : τ )∈W.

Then we can write

I = (u1, . . . , ur−1, τ · σ ) and (I : τ ) = (u1, . . . , ur−1, σ ) = I + (σ ),

which implies by Lemma 6.10 that a = τ and b = σ form an exact pair of zero divisors

for A. This shows that (1.) implies (2.) and (3.).

Next, assume that (2.) holds: A is a CI and τ ∈ An is an exact zero divisor for A.

It follows from Lemma 6.11 that H = H ′ = 0, and hence by Corollary 6.6, it follows that Ĩ

is generated by a R̂-sequence and hence that the cohomological blowup Ã is a CI, which

is (1.).

Finally, assume that (3.) holds: T is a CI and τ ∈ An is an exact zero divisor for A.

Again, it follows from Lemma 6.11 that H = 0, and hence it follows from Corollary 6.6

that the cohomological blowup Ã is a CI, and thus (1.) holds. !

Remark 6.13. It follows from the description of the minimal generators of Ĩ in

Equation (41) together with Theorem 6.12 and Lemma 6.11 that when Ã is a CI and

thus σ , τ is an exact pair of zero divisors on A, a minimal generating set for Ĩ can be

described as

Ĩ

m̂Ĩ
∼= U ⊕ 〈ξσ 〉 ⊕ 〈fR(ξ)〉.

In particular, since Ĩ is generated by a regular sequence and ξσ is a minimal generator

for Ĩ it follows from [33, Proposition 1.9] that ξ is an exact zero divisor of Ã. The

following example shows that this condition is not quite sufficient to identify a CI as a

cohomological blow-up algebra.

Example 6.14. Consider the CI

Ã = F[x, y]
(x4 + y4, x2y2)

.
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Then ξ = x ∈ Ã1 is an exact zero divisor for Ã, and its Hilbert function is H(Ã) =
(1, 2, 3, 4, 3, 2, 1). This particular CI algebra (or any isomorphic to it) cannot be a

cohomological blow-up algebra by a result of [29] concerning codimension two.

6.3 Application: Watanabe’s Bold Conjecture (WBC)

The following “rather bold” conjecture was put forth by the 5th author [47] after noticing

that many CIs arising as invariant rings could be realized as subrings of CIs cut out by

quadrics and of the same socle degree.

Conjecture 6.15 (WBC). For any standard graded Artinian CI A of socle degree d, there

is another standard graded Artinian CI B of the same socle degree d cut out by quadrics

and an injective algebra map from A into B, in symbols:

φ : A = F[x1, . . . , xr]
(f1, . . . , fr)

↪→ F[X1, . . . , XN ]
(F1, . . . , FN)

= B, deg(Fi) = 2, ∀ 1 ≤ i ≤ N.

In 2016, the 3rd author proved [35] WBC in the special case where A is cut out

by polynomials that factor into a product of linear forms (see also [36, Theorem 1] for

another case in which WBC holds). Here, we give another, much shorter proof of this

result (in fact something slightly stronger) using cohomological blowups. First, some

notation. Let A = R/I is a CI where R = F[x1, . . . , xr] has the standard grading and I

is minimally generated by some regular sequence (f1, . . . , fr). If the minimal generators

f1, . . . , fn can be chosen such that each fi is a product of linear and/or quadratic forms,

that is, fi = L1 · · · Lk where deg(Lj) = 1 or 2, then we shall say A is of class W. If

di = deg(fi) > 1 for all i, then the degree sequence is (d1, . . . , dn) and we define its

defect to be

def(A) = d1 + · · · + dn − 2n = soc. deg(A) − n.

Let W(m) denote the subclass consisting of CIs of defect m, so that W = ⊔∞
m=0 W(m).

CIs of class W(0) are called quadratic CIs.

Theorem 6.16. For every CI A of class W, there is a CI B of class W(0) of the same

socle degree as A and an injective map of algebras φ : A ↪→ B.

Proof. We use induction on m to show that every CI A ∈ W(m) embeds into a CI

B ∈ W(0) of the same socle degree. For the base case m = 0 there is nothing to show.
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50 A. Iarrobino et al.

For the inductive step, assume that m > 0 and that the statement holds for every

0 ≤ m′ < m. Fix A ∈ W(m) with presentation as in (20) with minimal generators f1, . . . , fn

that factor into products of linear and/or quadratic forms. Since def(A) = m > 0,

we may assume without loss of generality that deg(fn) ≥ 3. Write fn = τ · g where

deg(τ ) = 2, which is possible since we are assuming that fn factors as a product of linear

and quadratic forms. Then let ξ be an indeterminate, and define the monic quadratic

polynomial fR(ξ) = ξ2 − τ ∈ R[ξ ]. Then the cohomological blow-up ideal of I with respect

to τ and fR(ξ) is by (31)

Ĩ = (f1, . . . , fn−1, ξg, fR(ξ)) ⊂ R[ξ ]

and the quotient Ã = R[ξ ]/Ĩ is the cohomological blowup of A along the map

π : A = F[x1, . . . , xn]
(f1, . . . , fn−1, τg)

→ F[x1, . . . , xn]
(f1, . . . , fn−1, g)

= T.

Note that the degree sequence of Ã is (d1, . . . , dn−1, dn − 1, 2) and its defect is d1 + · · · +
dn −1+2−2(n+1) = (d1 +· · ·+dn)−2n−1 = m−1. Finally, it is clear that the minimal

generators of Ĩ are either quadratic (like fR(ξ)) or factor into a product of linear and/or

quadratic forms (since the minimal generators of I do). Therefore, Ã ∈ W(m − 1). For the

injection, note that the blow-down map will do the trick:

β : A = F[x1, . . . , xn]
(f1, . . . , fn−1, τg)

↪→ F[x1, . . . , xn][ξ ]
(f1, . . . , fn−1, ξg, f (ξ))

= Ã.

To complete the proof note that by induction, there is an embedding of Ã ∈ W(m − 1)

into some CI B ∈ W(0) of the same socle degree as Ã (and hence also A), say

ι : Ã ↪→ B.

Composing β and ι then gives an embedding ι ◦ β : A ↪→ B, as desired. !

7 Restrictions on Hilbert Functions

In this section, we show that standard graded cohomological blow-up algebras cannot

have arbitrary Hilbert functions. In fact, in the parameter space of AG algebras of fixed

embedding dimension ≥ 3 and socle degree 4 or ≥ 6, cohomological blow-up algebras

are quite rare. To justify this assertion, we recall the notion of compressed AG algebra

[24]. We use the notation of Section 4: R = F[x1, . . . , xr] is a standard graded polynomial
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ring, Q = F[X1, . . . , Xr] its dual divided power algebra. For a d-form H, its associated AG

algebra C = R/ Ann(H) has embedding dimension r if Ann(H) contains no linear forms.

Definition 7.1. A standard graded AG algebra C of embedding dimension r and socle

degree d is compressed provided

dimk Ci =






dimF Ri =
(r−1+i

r−1

)
if i ≤

⌊
d
2

⌋

dimF Cd−i if i >
⌊

d
2

⌋ .

We can parametrize graded AG algebras of fixed socle degree d and codimension

r by their Macaulay dual generators in Qd, essentially by elements of the projective

space P(Qd). The compressed algebras form a dense Zariski open set in this parameter

space [25, Proposition 3.12]. (This depends on Rj/(I
2)j being the tangent space to Gor(T)

at A = R/I and gives perhaps the shortest proof. Original references are [13, Theorem

3.31] and [16, Theorem 5.1]). We now show that for sufficiently large parameters the

cohomological blow-up algebras do not belong to this set.

Theorem 7.2. Compressed algebras of embedding dimension r ≥ 3 whose socle degree

d satisfies d = 4 or d ≥ 6 are not cohomological blow-up algebras.

Proof. Let C = R/ Ann(H) be a compressed algebra of socle degree d and embedding

dimension r, and assume that C is the blowup along a surjective morphism π : A → T

of some AG algebras of socle degrees d and k, respectively. Then since C is compressed

Ĩ = Ann(H) is a homogeneous ideal with initial degree

min
{
i | Ĩi ,= 0

}
=

⌊
d
2

⌋
+ 1.

By [7, Proposition 3.2] the minimal generators of Ĩ have degrees
⌊

d
2

⌋
+ 1 and possibly

⌊
d
2

⌋
+ 2. Recall that the polynomial fR(ξ) of degree n = d − k is a minimal generator of Ĩ

by Theorem 6.5 and thus

n = d − k ∈
{⌊

d
2

⌋
+ 1,

⌊
d
2

⌋
+ 2

}
, thus k ∈

{⌈
d
2

⌉
− 1,

⌈
d
2

⌉
− 2

}
. (42)

By the definition of blowup, when n > 1, the embedding dimension of A is r − 1

(one less than the embedding dimension of C) and by the surjectivity of π embedding

dimension of T is at most r − 1. This yields the following upper bounds on the Hilbert

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac002/6528492 by guest on 10 M

arch 2022



52 A. Iarrobino et al.

functions of A and T:

dimF Ai ≤ min
{(

r − 2 + i
r − 2

)
, dimF Ad−i

}
(43)

dimF Ti ≤ min
{(

r − 2 + i
r − 2

)
, dimF Tk−i

}
. (44)

By Theorem 4.6, we have

H(C) = H(A) + H(T)[1] + · · · + H(T)[n − 1]. (45)

Evaluating the above identity in degrees i ≤
⌊

k
2

⌋
+ 1 combined with the above

inequalities yields

(
r + i − 1

r − 1

)
= H(A)i +

i∑

j=1

H(T)i−j ≤
i∑

j=0

(
r + j − 2

r − 2

)
=

(
r + i − 1

r − 1

)
,

where the last equality is a well-known combinatorial identity. This implies that

equality must hold both in (43) and in (44) for i ≤
⌊

k
2

⌋
+ 1. In degree i =

⌊
k
2

⌋
+ 2 since

r ≥ 3 the inequality (44) yields

H(T)i−1 = H(T)k−i+1 = H(T)⌈ k
2

⌉
−1

≤
(r − 3 +

⌈
k
2

⌉

r − 2

)
<

(
r + i − 2

r − 2

)
.

Evaluating Equation (45) in degree i =
⌊

k
2

⌋
+ 2 and combining the result with the

inequality (43) and the inequality displayed above gives

H(C)i = H(A)i +
i∑

j=1

H(T)i−j <

i∑

j=0

(
r + j − 2

r − 2

)
=

(
r + i − 1

r − 1

)
.

This contradicts our assumption that C is compressed, provided that

⌊
k
2

⌋
+ 2 ≤

⌊
d
2

⌋
, for k ∈

{⌈
d
2

⌉
− 1,

⌈
d
2

⌉
− 2

}
.

The above inequality is satisfied if and only if d = 4 or d ≥ 6. !

The following example shows that there exists compressed algebras of socle

degree 5, which are cohomological blowups.
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Cohomological Blowups of Graded AG Algebras 53

Example 7.3. Let

π : A = F[x, y]
(x4, y3)

→ T = F[x, y]
(x2 − xy, y2)

be the map defined by π(x) = x and π(y) = y and distinguished socle generators σA =
x3y and σT = x2. Then τ = xy and K = (x2 − xy, y2), and hence taking parameters

t1 = t2 = 0 and λ = 1, we get the cohomological blowup

Ã = F[x, y, ξ ]
(x4, y3, ξ(x2 − xy), ξy2, ξ2 − xy)

,

which has Hilbert function H(Ã) = (1, 3, 6, 6, 3, 1), and hence Ã is a compressed BUG of

socle degree 5.

8 The Lefschetz Property

The SLP for graded AG algebras is an algebraic version of a property of cohomology

rings of smooth complex projective varieties stemming from the Hard Lefschetz theorem

in algebraic geometry.

Definition 8.1. A graded Artinian F-algebra A = ⊕d
i=0 Ai is said to satisfy the strong

Lefschetz property (SLP) if there is a linear form 1 ∈ A1 for which the multiplication

maps ×1j : Ai → Ai+j have full rank rank(×1j) = min{dimF Ai, dimF Ai+j} for each degree

i and each exponent j. A linear form 1 with this property is called a strong Lefschetz

element for A.

If the multiplication maps ×1 : Ai → Ai+1 have full rank for each degree i, then

A is said to satisfy the weak Lefschetz property (WLP).

More generally, given any graded Artinian algebra A, and any linear form

1 ∈ A1, we can define its Jordan type P1 to be the partition corresponding to the block

decomposition of the Jordan canonical form for the nilpotent linear operator ×1 : A → A.

It is well known that for a standard-graded AG algebra with unimodal Hilbert function

then 1 is strong Lefschetz if and only if the Jordan type P1 is equal to H∨, the conjugate

of the Hilbert function regarded as a partition (switch rows and columns in the Ferrers

graph) [26, Proposition 2.10] and 1 is weak Lefschetz if P1 has number of parts equal to

the Sperner number of H [19, Proposition 3.5].

In this section, we study the SLP for cohomological blow-up algebras. To attain

this goal, we observe the behavior of these rings in families. Our strategy is to consider
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54 A. Iarrobino et al.

every cohomological blow-up algebra as the general fiber in a certain flat family.

Interestingly, all fibers in these familes will be AG algebras with the exception of the

special fiber. Our proof of the SLP for the cohomological blowup then employs the

following well-known fact: in a flat family, if SLP holds on the special fiber, then it

must also hold on a sufficiently general fiber by semicontinuity of Jordan type, for

example [26, Corollary 2.44].

We continue with the notation established in previous sections, namely

π : A → T is a surjective map of oriented AG algebras with Thom class τ and kernel K,

fA(ξ) ∈ A[ξ ] is a homogeneous monic polynomial yielding the cohomological blow-up

algebra

Ã = A[ξ ]
(ξ · K, fA(ξ))

= A[ξ ]
I

,

as in Construction 3.1.

Consider a weighted monomial order < on A[ξ ] obtained by assigning weight 1

to the variable ξ and weight 0 to each element of A. Then the weight of a monomial

µ is w(µ) = max{n : ξn | µ} and the weight of a polynomial g = ∑
ciµi ∈ A[ξ ] with

ci ∈ F× and µi monomials is w(g) = max{w(µi)}. Two monomials µ, µ′ satisfy µ < µ′

if and only if w(µ) < w(µ′). The initial form of a polynomial g = ∑
ciµi ∈ A[ξ ] is

in<(g) = ∑
w(µj)=w(g) cjµj and the initial ideal of an ideal J ⊆ A[ξ ] is

in<(J) = (in<(g) | g ∈ J).

While it is not usually the case that the generators of the initial ideal of an ideal

J are the initial forms of the generators of J, this is nevertheless the case for I since, as

we show below, the generators of I form a Gröbner basis with respect to <. We obtain

the following description for the initial ideal of I.

Lemma 8.2. The set {ξ · K, fA(ξ)} is a Gröbner basis for I with respect to <, that is, the

initial ideal of I is in<(I) = (ξ · K, ξn).

Proof. To show that the set {ξ · K, fA(ξ)} is a Gröbner basis for I one utilizes

Buchsberger’s criterion; see [12, Theorem 15.8]. Since any element in ξ · K is equal to

its initial form, the S-polynomial of any two such elements is 0. It remains to compute

the S-polynomial of uξ (with u ∈ K) and fA(ξ), which is

S(fA(ξ), uξ) = u(ξn + a1ξn−1 + · · · + an−1ξ + λτ ) − uξ · ξn−1 = ua1ξn−1 + · · · + uan−1ξ
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Cohomological Blowups of Graded AG Algebras 55

since K · λτ = 0 by Lemma 2.2. Since S(fA(ξ), uξ) ∈ (ξ · K), this polynomial reduces to 0

modulo the set {ξ · K, fA(ξ)}, concluding the proof that this is a Gröbner basis. It follows

that in<(I) = (in<(ξ · K), in<(fA(ξ))) = (ξ · K, ξn). !

The relationship between Ã = A[ξ ]/I and its initial algebra in<(Ã) := A[ξ ]/in<(I)

is established by means of the following well-known construction; see [12, p. 343]. Given

a parameter z, one considers an ideal I of A[ξ , z] given by

I =
(
ξ · K, ξn + a1zξn−1 + · · · + an−1ξzn−1 + λτzn

)
.

Note that setting z = 1 in I recovers I while setting z = 0 gives in<(I). We recall some

key properties of this construction; cf. [12, Theorem 15.17].

Theorem 8.3. The following ring A is free and hence flat as a F[z]-algebra:

A = A[ξ , z]
I

= A[ξ , z]
(ξ · K, ξn + a1ξn−1z + · · · + an−1ξzn−1 + anzn)

. (46)

Thus, A can be viewed as a flat family of algebras with fibers Ac = A ⊗F[z] F[z]/(z − c)

given by

Ac
∼=





A[ξ ]/I = A[ξ ]/(ξ · K, fA(ξ)) = Ã if c ∈ F×

A[ξ ]/in<(I) = A[ξ ]/(ξ · K, ξn) = in<(Ã) if c = 0

In the literature, flat families in which the general fibers are isomorphic are

sometimes called jump deformations. We remark that Theorem 8.3 remains true if we

replace Ã with any Â from Construction 3.1 but recall that Â is Gorenstein if and only if

Â = Ã by Theorem 3.6.

Since Ã is Gorenstein, Theorem 8.3 implies that the general fibers of the family A
are Gorenstein. However, Theorem 3.6 implies that the special fiber A0 is not Gorenstein

but is boundary-Gorenstein (Remark 3.8). Moreover, Corollary 3.7 implies that all the

fibers have the same Hilbert function given by

H(Ac) = H(A) + H(T)[1] + · · · + H(T)[n − 1] for all c ∈ F.
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56 A. Iarrobino et al.

We now consider the SLP for the special fiber. The ring in<(Ã) can thus be

recognized as a fibered product

in<(Ã) = A ×T B with B = T[ξ ]
(ξn)

with respect to the projections πA = π : A → T and πB : B → T = B/(ξ), where πB is the

canonical projection. Our proof of Lemma 8.4 below closely resembles the proof of [30,

Theorem 5.12], where the SLP is established for fibered products of certain AG algebras

of the same socle degree. This is not the case here as soc. deg(A) = soc. deg(B) + 1.

Lemma 8.4. Let π : A → T be a surjective homomorphism of graded AG F-algebras of

socle degrees d > k, respectively, such that both A and T have SLP. Assume that F has

characteristic zero, or characteristic p > d > k. Then the initial algebra of Ã, A[ξ ]/in<(I)

has SLP as well.

Proof. Recall from Lemma 8.2 that

in<(Ã) = A[ξ ]
in<(I)

= A[ξ ]
(ξ · K, ξn)

.

This algebra admits a decomposition

in<(Ã) = A ⊕ J, where J = Tξ ⊕ · · · ⊕ Tξn−1 = ξ · T[ξ ]
(ξn−2)

.

The important point here is that in the algebra in<(Ã), the vector space J is actually an

ideal, and thus multiplication by a linear form 1 = 1A + ξ with 1A ∈ A1 is represented

with respect to the above decomposition by a block matrix

(
1A 0

∗ 1|J

)

, (47)

where 1A stands for the map given by multiplication by 1A on A and 1|J denotes the

restriction of multiplication by 1 to J. Since A and T have SLP, one can pick 1A so that

both 1A and its image 1T = 1A in T are strong Lefschetz elements. Then, by [20, Theorem

6.1] if characteristic F is zero, or [28, Theorem 2.6] in general, 1 = 1T + ξ is also a

strong Lefschetz element on the free extension T[ξ ]/(ξn−2) of T and hence on J. Since

the Hilbert functions of A and J are both symmetric around d/2 (due to both being AG)

and unimodal (due to both having SLP) we conclude that 1
j
A : Ai → Ai+j and 1|jJ : Ji → Ji+j
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are simultaneously injective or simultaneously surjective. It follows from (47) that 1 is a

strong Lefschetz element on in<(Ã). !

We are now ready to prove that cohomological blow-up algebras have SLP.

Theorem 8.5. Let F be an infinite field, and let π : A → T be a surjective

homomorphism of graded AG F-algebras of socle degrees d > k, respectively, such that

both A and T have SLP. Assume that characteristic F is zero or characteristic F is p > d.

Then every cohomological blow-up algebra of A along T satisfies SLP.

Proof. We have seen that A is a flat family. By Lemma 8.4, the special fiber A0 has SLP.

Therefore, by semicontinuity of Jordan type [26, Corollary 2.44], and since F is infinite,

we deduce that there is some c ,= 0 for which the general fiber Ac has SLP. By Theorem

8.3, it follows that the cohomological blowup Ã = A1 has SLP as well. !

The following example shows that our assumptions on the characteristic of the

field in Theorem 8.5 are necessary.

Example 8.6. Let d and k be integers satisfying 2k < d, and, following the usual

notation, write n = d − k. Let F be a field of characteristic p, and suppose there is an

integer m ≥ 1 such that n < pm ≤ d − 2. Consider the AG algebras

A = F[x, y]
Ann(Xd + Yd)

= F[x, y](
xy, xd − yd

) and T = F[x, y]
Ann(Xk)

= F[x, y](
y, xk+1

) ∼= F[x](
xk+1

) .

The Thom class of the natural surjection π : A → T is τ = xn, and choosing

fR(ξ) = ξn − xn and hR(ξ) = 1 as in Construction 4.2, we get a cohomological blow-up

algebra

Ã = F[x, y, ξ ]
Ann(Xd + Yd + Xk'n)

= F[x, y, ξ ](
xy, xd − yd, yξ , xk+1ξ , ξn − xn

) .

We can easily check that 1A = x + y and 1T = x are Lefschetz elements in A and T, respec-

tively. We also know that the Hilbert function of Ã satisfies H
(
Ã

)
1 = H

(
Ã

)
d−1 = 3. This

means that if Ã satisfies the SLP, multiplication by 1d−2, for a general 1 ∈ Ã1 must have

rank 3. However, writing 1 = ax + by + cξ , we have 1pm = apm
xpm + bpm

ypm + cpm
ξpm =

apm
xpm + bpm

ypm
, because ξpm

is zero in Ã. Therefore, 1pm
ξ = 0 (note that pm > k),
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meaning that multiplication by 1pm
has rank less than 3; hence so does multiplication

by 1d−2. Therefore, Ã does not satisfy the SLP.

Theorem 8.5 once again singles out cohomological blow-up algebras among

connected sums. Connected sums A#FB over a field F of two strong or weak Lefschetz

algebras A, B are strong or weak Lefschetz, respectively; however, taking connected

sum A#TB over an arbitrary AG algebra T may not in general preserve SLP or WLP

[30, Section 5.2].

The following example shows that the converse of Theorem 8.5 is not true: if

the cohomological blowup Ã has SLP, it does not follow that A has SLP. In other words,

while the process of blowing up preserves SLP, the process of blowing down does not

preserve SLP, or even WLP.

Example 8.7. The following example, originally due to U. Perazzo but re-examined

more recently by Gondim and Russo [15], is an AG algebra with unimodal Hilbert

function that does not have SLP or WLP:

A = F[x, y, z, u, v]
Ann(XU2 + YUV + ZV2)

= F[x, y, z, u, v](
x2, xy, y2, xz, yz, z2, u3, u2v, uv2, v3, xv, zu, xu − yv, zv − yu

) .

Taking the quotient T of A given by the Thom class τ = u2 yields

T = F[x, y, z, u, v]
Ann(X)

= F[x, y, z, u, v](
x2, y, z, u, v

) ∼= F[x]
(x2)

.

Fix a parameter λ ∈ F, and define polynomials fT(ξ) ∈ T[ξ ] and fA(ξ) ∈ A[ξ ] by

fT(ξ) = ξ2 − λxξ andfA(ξ) = ξ2 − λxξ + u2.

Denoting the ideal of relations of A by I, we obtain the cohomological blowup

Ã = F[x, y, z, u, v, ξ ]
I + ξ(y, z, u, v) + (fA(ξ))

,
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which has Hilbert function H(Ã) = H(A) + H(T)[1] = (1, 6, 6, 1). Fix F-bases

Ã1 = spanF {x, y, z, u, v, ξ} , and Ã2 = spanF
{
u2, uv, v2, yv, yu, −xξ

}
,

and let 1 ∈ Â1 be a general linear form

1 = ax + by + cz + du + ev + f ξ .

Then the matrix for the Lefschetz map ×1 : Ã1 → Ã2 and its determinant are given by

M =





0 0 0 d 0 −f

0 0 0 e d 0

0 0 0 0 e 0

d e 0 a b 0

0 d e b c 0

−f 0 0 0 0 −(a + λf )





⇒ det(M) = f 2e4.

Thus, 1 is a strong Lefschetz element for Ã if and only if e·f ,= 0. In particular, Ã satisfies

SLP and also WLP.

Surprisingly, the analogous result to Theorem 8.5 does not hold for the WLP. The

obstruction to establishing such a result via an analogue of Lemma 8.4 is that the tensor

product of two weak Lefschetz algebras need not be weak Lefschetz. Examples of non-

AG quadratic algebras that demonstrate this are given in [40, Section 4.1]. Here, we point

out an AG example. The AG algebra T in Example 8.8 below is an example of R. Gondim,

quoted as [26, Example 3.4]. Using the Clebsch–Gordan theorem [19, Theorem 3.29],

one can see that if char F = 0 or char F ≥ 7, then the tensor product T ⊗ B, where

B = F[ξ ]/(ξ2), has Jordan type (for generic linear form) the tensor product of PT =
(5, 3, 3, 3, 2, 2) and PB = (2), which is (6, 44, 32, 23, 12) with 12 parts; on the other hand,

H(T ⊗ B) = (1, 6, 11, 11, 6, 1); hence, H(T ⊗ B)∨ = (6, 45, 25) has 11 parts, so T ⊗ B is not

weak Lefschetz.

Building upon this, we give an example illustrating that blowing up does not

preserve WLP.
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Example 8.8. Consider the following algebra:

A = F[x, y, z, u, v]
Ann(XU6 + YU4V2 + ZU5V)

= F[x, y, z, u, v](
yz, xz, xy, vy − uz, vx, ux − vz, u5y, u5v2, u6v, u7, v3, x2, y2, z2

)

with H(A) = (1, 5, 6, 6, 6, 6, 5, 1) and its quotient corresponding to the Thom class τ = u3

T = F[x, y, z, u, v]
Ann(XU3 + YUV2 + ZU2V)

= F[x, y, z, u, v](
z2, yz, xz, y2, xy, vy − uz, x2, vx, ux − vz, u2y, v3, u2v2, u3v, u4

)

with H(T) = (1, 5, 6, 5, 1). Both A and T satisfy WLP, but not SLP: for a generic 1, the

Jordan types are PA,1 = (8, 6, 6, 6, 5, 5) and PT,1 = (5, 3, 3, 3, 2, 2). Denoting the ideal of

relations of A by I and the ideal of relations of T by K, consider the cohomological

blow-up algebra

Ã = F[x, y, z, u, v, ξ ]
I + ξ · K + (ξ3 − u3)

,

which has Hilbert function H(Ã) = H(A)+H(T)[1]+H(T)[2] = (1, 6, 12, 17, 17, 12, 6, 1) and

dual Macaulay generator F̃ = '3G + '6X + F, here λ = −1 in the Construction 4.2. Fix

the following bases for the seventeen dimensional vector spaces

Ã3 = spanF
{
xξ2, yu2, yuv, yuξ , yv2, yvξ , yξ2, zvξ , zξ2, u2v, u2ξ , uv2, uvξ , uξ2, v2ξ , vξ2, ξ3

}

Ã4 = spanF
{
xξ3, yuvξ , yuξ2, yv2ξ , yvξ2, yξ3, zvξ2, zξ3, u2v2, u2vξ , u2ξ2, uv2ξ , uvξ2, uξ3,

v2ξ2, vξ3, ξ4
}

Taking a general linear form 1 ∈ Ã1 as 1 = ax + by + cz + du + ev + f ξ , we compute the

matrix for the Lefschetz map ×1 : Ã3 → Ã4 and its determinant, which shows Ã does not
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satisfy WLP

M =





f 0 e 0 d 0 0 0 0 c 0 b 0 0 0 0 a
0 0 f e 0 d 0 0 0 0 c 0 b 0 0 0 0
0 0 0 f 0 0 d 0 0 0 0 0 0 b 0 0 0
0 0 0 0 f e 0 d 0 0 a 0 c 0 b 0 0
0 0 0 0 0 f e 0 d 0 0 0 0 c 0 b 0
0 d 0 0 0 0 f 0 0 0 0 0 0 0 0 0 b
d 0 0 0 0 0 0 f e 0 0 0 0 a 0 c 0
0 e d 0 0 0 0 0 f b 0 0 0 0 0 0 c
0 0 0 0 0 0 0 0 0 e 0 d 0 0 0 0 0
0 0 0 0 0 0 0 0 0 f e 0 d 0 0 0 0
0 0 0 0 0 0 0 0 0 0 f 0 0 d 0 0 0
0 0 0 0 0 0 0 0 0 0 0 f e 0 d 0 0
0 0 0 0 0 0 0 0 0 0 0 0 f e 0 d 0
0 0 0 0 0 0 0 0 0 0 0 0 0 f 0 0 d
0 0 0 0 0 0 0 0 0 0 0 0 0 0 f e 0
0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 f e
0 0 0 0 0 0 0 0 0 0 d 0 0 0 0 0 f





⇒ det(M) = 0.

A Macaulay2 [18] calculation gives the generic Jordan type PÃ = (8, 65, 46, 24, 12) with 18

parts, whereas the conjugate partition of the Hilbert function is H(Ã)∨ = (8, 65, 46, 25)

with 17 parts, which implies that Ã has neither SLP nor WLP.

In Example 8.8, the Thom class of the map A → T has degree 3. This is the

minimal possible value for such an example based on the following result.

Theorem 8.9. Let F be an infinite field, and let π : A → T be a surjective

homomorphism of graded AG F-algebras such that the difference between the socle

degrees of A and T is at most 2 and A and T both satisfy WLP. Then every cohomological

blow-up algebra of A along π satisfies WLP.

Proof. The hypothesis on the socle degrees of A and T translates into n ≤ 2. The proofs

of Lemma 8.4 in the spacial cases J = 0 (for n = 1) or J = T (for n = 2) and Theorem 8.5

go through upon replacing SLP by WLP throughout. !

9 Geometric View and Examples

As in the Introduction, our motivation for studying the cohomological blow-up algebras

stems from the blow-up construction in algebraic geometry. That the cohomology ring

of the blowup of a compact complex manifold along a closed complex submanifold

satisfies the conditions of Theorem 3.14 can be pieced together from results in the

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac002/6528492 by guest on 10 M

arch 2022



62 A. Iarrobino et al.

book of Griffiths and Harris [17, Chapter 4, Section 6]; see also the paper of McDuff

[37, Proposition 2.4] for the statements in the symplectic category. The cohomology

of the blowup was also studied by S. Gitler who has obtained a presentation, as in

Equation (5), of the cohomology of the blowup of a complex manifold along a complex

submanifold in the case of a surjective restriction map as in Equation (5) [14, Theorem

3.11]. An analogous presentation for the Chow ring of the blowup of an algebraic variety

along a regularly embedded subvariety with a surjective restriction map also appears

in the paper of Keel [32, Appendix, Theorem 1].

Blowing up and blowing down are fundamental building blocks in birational

geometry. For example, in the theory of algebraic surfaces, a classical result states that

every birational map between algebraic surfaces (smooth complex projective variety

of dimension two) admits a strong factorization, meaning it factors as a sequence

of blowups followed by a sequence of blowdowns [6, Corollary II.12]. More recently,

Abramovich et al. have proved the weak factorization conjecture, a higher-dimensional

analogue that states that every birational map between complete non-singular algebraic

varieties over an algebraically closed field of characteristic zero factors as a product

of blowups and blowdowns (in no specific order) [1, Theorem 0.1.1]. In the theory of

(smooth, projective) toric varieties, one can be quite explicit with these factorizations

by working with the associated (simplicial, polytopal) fan, where blowing up along a

toric subvariety corresponds to subdividing a cone of the fan [11, Proposition 3.3.15]. As

we have seen in Section 8 concerning the SLP and will show in a sequel [34] concerning

the Hodge-Riemann bilinear relations (HRR), factorizations in terms of blowups and

blowdowns can be useful in establishing these properties.

McMullen [38] in his proof of SLP and HRR for the polytope algebra, an AG

algebra that he shows is isomorphic to a certain Artinian reduction of the Stanley–

Reisner ring of the corresponding simplicial polytopal fan, has given an explicit formula

for a (weak) factorization of the birational map Pn ⊃ (C∗)n → X where X is a smooth

projective toric variety of dimension n; see also Timorin [44] for an exposition from the

point of view of Macaulay duality. Karu [31] used similar arguments in his proof of SLP

and HRR for non-simplicial polytopal fans; see also [5, 9]. More recently Ardila et al. [2]

have exploited blow-up factorizations to prove SLP and HRR for the Chow ring of the

Bergman fan associated with a matroid. Especially important in their work is the special

case of blowups that correspond to edge subdivisions in these Bergman fans, and in

fact, they factor any blowup as a sequence of successive edge subdivision blowups

and blowdowns. Geometrically, these edge subdivisions correspond to cohomological

blowups with n = 2. Theorem 8.9 indicates that this n = 2 scenario is particularly
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favorable in terms of ascent of the WLP to the cohomological blow-up algebra, but

it does not necessarily guarantee the descent of WLP or SLP to the blowdown; see

Example 8.7.

Algebraically, one might say that two oriented graded AG algebras A and A′

are birationally equivalent if there is a sequence of oriented graded AG algebras

(A0, A1, . . . , Am) of some fixed socle degree d, where A0 = A and Am = A′ and for each i,

Ai is either a cohomological blowup or a cohomological blowdown of Ai−1. We give an

example below of several birationally equivalent AG algebras using fans corresponding

to smooth projective toric surfaces; in fact, we derive a (strong) factorization of the

birational map P2 ""# P1 × P1. First, we recall a few fundamental facts on toric varieties

and their associated fans; for further details, we refer the reader to the book [11]. In

these geometric examples, as in the Introduction, we take cohomology with coefficients

over the rationals F = Q.

A presentation for the cohomology ring of a complete simplicial toric variety

can be obtained from the associated fan in the following explicit manner. Let 2 be a

complete simplicial fan, and let X be the corresponding toric variety. Let ρ1, . . . , ρr be

the rays of 2, each ρi having minimal generator ui. Introduce a variable xi for each ρi.

In the ring Q[x1, . . . , xr], let I be the square-free monomial ideal

I = (xi1 · · · xis | i1 < · · · < is and ρi1 , . . . , ρis are not part of the same cone of 2).

We call I the Stanley–Reisner ideal of 2. Let J be the ideal generated by the linear forms

J =
( r∑

i=1

〈m, ui〉xi | m ∈
r∑

i=1

uiZ
)

.

By [11, Theorem 12.4.1], the singular cohomology ring of X can be presented as

H2•(X, Q) ∼= Q[x1, . . . , xr]
I + J

. (48)

The following example shows that the oriented graded AG algebras A1 =
Q[x]/(x3), A2 = Q[y, z]/(y2, z2 − yz), A3 = Q[r, s, t]/(rt, st, r2, s2, t2 + rs) = A4, and

A5 = Q[u, v]/(u2, v2) are all birationally equivalent to one another. This corresponds

to the well-known fact from algebraic geometry that if P2 is blown up at two points

and the proper transform of the line joining the two points is blown down, the resulting

surface is isomorphic to P1 × P1. We work through the details of this example from the

perspective of cohomological blowups.
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Example 9.1. The algebraic varieties featured in this example correspond to the

following fans

As a toric variety, X1 = P2 is defined by the fan 2 with ray generators

u1 = e1, u1 = e2, u3 = −e1 − e2, where e1 = (1, 0) and e2 = (0, 1) are the standard

basis vectors; see [11, Example 12.4.2]. According to the formula above, its cohomology

algebra is

A1 = H2•(X1) ∼= Q[x1, x2, x3]
(x1x2x3, x1 − x3, x2 − x3)

∼= Q[x]
(x3)

.

The blowup X2 = X̃1 of X1 = P2 at a point is obtained by subdividing a cone of 2

by adding the ray generated by u4 = −e2. Then,

A2 = H2•(X2) ∼= Q[x1, x2, x3, x4]
(x1x3, x2x4, x1 − x3, x2 − x3 − x4)

= Q[x1, x2]

(x2
1, x2

2 − x2x1)
. (49)

In terms of cohomological blowups, take T1 = Q, and let π : A1 → T1 be the

natural projection, with Thom class τ1 = x2 and kernel K1 = (x). The normal bundle of

a point in P2 has total Chern class c = 1, and hence fT1
(ξ) = ξ2 and fA1

(ξ) = ξ2 + x2, and

hence the cohomological blowup of A along π1 is

Ã1 = Q[x, ξ ]
(x3, xξ , ξ2 + x2)

= Q[x, ξ ]
(xξ , ξ2 + x2)

∼= Q[x1, x2]

(x2
1, x2

2 − x1x2)
= A2, (50)

where the last isomorphism sends x +→ x2 and ξ +→ x1 − x2.

Next, define X3 = X̃2 as the blowup of X2 obtained by adding the ray generated

by u5 = −e1. Then its cohomology algebra is given by

A3 = H2•(X3) = Q[x1, x2, x3, x4, x5]
(x1x3, x1x5, x2x3, x2x4, x4x5, x1 − x3 − x5, x2 − x3 − x4)

= Q[x1, x2, x3]

(x1x3, x2
1, x2x3, x2

2, x2
3 + x1x2)

.
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Again, let T2 = Q and π2 : A2 → T2 be the canonical projection, with Thom class τ2 = x1x2

and kernel K = (x1, x2). Then we have fA2
(ξ) = ξ2 + x1x2 and the cohomological blowup

of A2 along π2 is

Ã2 = Q[x1, x2, ξ ]

(x2
1, x2

2 − x2x1, ξx1, ξx2, ξ2 + x1x2)
∼= Q[x1, x2, x3]

(x1x3, x2
1, x2x3, x2

2, x2
3 + x1x2)

= A3,

where the last isomorphism sends x1 +→ x1, x2 +→ x2 − x3 and ξ +→ x3.

Finally, let X5 = P1 × P1, defined by the fan 2′ with ray generators u1 = e1,

u2 = e2, u4 = −e2, and u5 = −e1, and let X4 = X̃5 be the blowup at a point obtained by

adding the ray to 2′ u3 = −e1 − e2. Since the fans for X4 and X3 are identical, it follows

that the toric varieties coincide as well. Hence, their cohomology algebras are

A5 = H2•(P1 × P1) = Q[x1, x2, x4, x5]
(x1x5, x2x4, x1 − x5, x2 − x4)

= Q[x1, x2]

(x2
1, x2

2)

and

A4 = A3 = H2•(X4) = H2•(X3) = Q[x1, x2, x3]

(x1x3, x2
1, x2x3, x2

2, x2
3 + x1x2)

∼= Q[x1, x2, ξ ]

(x2
1, x2

2, x1ξ , x2ξ , ξ2 + x1x2)
= Ã5,

where the last isomorphism is the obvious x1 +→ x1, x2 +→ x2, and x3 +→ ξ .

It follows that the oriented graded AG algebras A1, A2, A3 = A4, and A5 are all

birationally equivalent, corresponding to the (strong) factorization of the birational map

Remark 9.2. The cohomology algebra of the blowup of a smooth toric variety X along

a smooth torus invariant subvariety Y ⊂ X will always agree with the Constructions 3.1,

4.2, or 6.2 of this paper since in that case the restriction map π∗ : H2•(X) → H2•(Y) is

always surjective. Indeed, in that case, the associated fan of Y corresponds to a subfan

of X, and the surjectivity follows from the combinatorial presentation of cohomology

algebras as in (48). The following examples show what can happen in cases where that

restriction map is not surjective.
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Example 9.3. Let π : Y = P1 × P2 ↪→ P5 = X be the Segre embedding. Then we have a

short exact sequence of vector bundles on Y:

where TY is the tangent bundle of Y, π∗TX is the restriction of the tangent bundle of X to

π(Y) and NY/X is the normal bundle to π(Y) ⊂ X. If we identity the cohomology algebras

as the oriented graded AG algebras

A = H2•(X) ∼= Q[x]
(x6)

, T = H2•(P1 × P2) ∼= Q[y, z]
(y2, z3)

,

where x, y, and z are the classes of a hyperplane in H2(P5), and the factors H2(P1), and

H2(P2) of H2•(P1 × P2) ∼= H2•(P1) ⊗Q H2•(P2), then the induced map π∗ : A → T satisfies

π∗(x) = y + z. Note that π∗ is not surjective here. From the Euler sequence, we compute

the total Chern classes c(π∗TX) = (1 + π∗(x))6 and c(TY) = (1 + y)2 · (1 + z)3. It follows

from the Whitney product formula that the total Chern class for the normal bundle is

c(NY/X) = c(π∗TX)

c(TY)
= (1+y+z)6

(1+y)2·(1+z)3 = (1 + y + z)6 · (1 − y)2 ·
(
1 − z + z2

)3

= (6yz + 3z2) + (4y + 3z) + 1

and hence the Chern classes are





c1(NY/X) = 4y + 3z

c2(NY/X) = 6yz + 3z2.

Hence, if we blow up X along Y then, according to Equation (2), the cohomology

algebra of the exceptional divisor Ỹ is given by

T̃ = Q[y, z, ξ ]
(y2, z3, ξ2 − (4y + 3z)ξ + (6yz + 3z2))

∼= H2•(Ỹ).

Moreover, using the conditions of Theorem 3.14, we can derive a presentation of the

cohomology algebra of the blow-up manifold X̃:

Ã = Q[x, ξ ](
ξ3 − 6xξ2 + 12x2ξ − 8x3, 3ξ4 − 9xξ3 + 6x2ξ2 + 4x3ξ

) ∼= H2•(X̃), (51)
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where the restriction map π̃ : Ã → T̃ defined by π̃(x) = y + z and π̃(ξ) = ξ has Thom

class τ̃ = −ξ , the blow-up map β : A → Ã defined by β(x) = x is injective with β(asoc) =
ãsoc = x5, and the Hilbert function satisfies H(Ã) = H(A) + H(T)[1] = (1, 2, 3, 3, 2, 1). Fur-

thermore, a Macaulay2 [18] calculation computes the Macaulay dual generator of Ã as

F̃ = X5 − 3X3'2 − 10X2'3 − 24X'4 − 48'5.

Note that Ã in (51) does not fit the model described by our Construction 3.1; in particular,

the defining ideal of Ã does not contain any monic polynomial of degree n = 2.

Remark 9.4. The algebra Ã computed in Equation (51) might be termed a cohomolog-

ical blowup along the non-surjective map π . In that case, A and T are both standard

graded, and Ã is, too, but this need not hold in general. For example, if we blow up

X = P8 along the Segre embedding of Y = P2 × P2, then again we have a non-surjective

restriction map

π : A = H2•(X) = Q[x]/(x9) → Q[y, z]/(y3, z3) = H2•(Y) = T

but the cohomology of the blowup of X along Y, Ã ∼= H2•(X̃) has Hilbert function

H(Ã) = H(A) + H(T)[1] + H(T)[2] + H(T)[3] = (1, 2, 4, 7, 8, 7, 4, 2, 1),

which implies that Ã cannot be standard graded.

Motivated by these examples, we pose some problems for further research.

Problem 9.5. Generalize Example 9.1, and find other algebras that are birationally

equivalent to A0 = F[x]/(xd+1). Can one classify them?

Problem 9.6. Generalize Example 9.3, and find a construction, similar in spirit to

Construction 3.1, for a cohomological blowup of an AG algebra A along any (i.e.,

possibly non-surjective) restriction map π : A → T. Does it have similar properties as

the cohomological blowup along a surjective map, that is, flat family, strong Lefschetz,

connected sum, minimal generators?
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1 A Guide to Our Examples

Given below is a list of the examples in this paper together with a brief description of

the idea that example is attempting to illustrate.

1. Example 3.3 shows that without further qualifications, Construction 3.1 can

produce non-Gorenstein, Gorenstein, or boundary-Gorenstein algebras, that

is, non-Gorenstein algebras in the closure of the Gorenstein locus of the

Hilbert scheme of that Hilbert function.

2. Example 3.12 shows that over non-algebraically closed fields, distinct

parameter values λ can produce non-isomorphic cohomological blow-up

algebras.

3. Example 4.5 shows that T̃ = R[ξ ]/ Ann
(
hR(ξ) ◦

(
'd−1 · G

))
is not necessarily

a free extension over T = R/ Ann(G) for any choice of hR(ξ) ∈ R[ξ ].

4. Example 4.7 provides an algebra ÂMD from Construction 4.2 that is not a

cohomological blowup.

5. Example 5.3 shows a cohomological blowup as a connected sum.

6. Example 5.7 shows a cohomological blowdown of Hilbert function H(A) =
(1, 3, 6, 3, 1) as a connected sum.

7. Example 5.8 shows that the cohomological blowup Ã may be standard

graded even if A is not.

8. Example 6.1 gives a cohomological blowup that is a CI.

9. Example 6.7 gives ideals I and (I : τ ) with homology groups H and H ′ equal to

zero, but where the cohomogical blow-up ideal Ĩ is not generated by a regular

sequence.

10. Example 6.9 gives examples of exact pairs of zero divisors.

11. Example 6.14 gives a CI with exact zero divisors, which is not a BUG.

12. Example 7.3 shows a compressed AG algebra of socle degree 5 and embed-

ding dimension 3 can be a cohomological blowup of a standard graded AG

algebra.

13. Example 8.6 shows if A and T have SLP over Fp, then Ã may fail SLP.

14. Example 8.7 gives algebras in which Ã and T̃ both have SLP, but the

cohomological blowdown A does not have SLP.

15. Example 8.8 shows that if A and T both have WLP (but fail SLP), then Ã may

fail WLP.

16. Example 9.1 gives a geometric example of a strong factorization of a bira-

tional map between toric varieties, which yields several birationally equiv-
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alent AG algebras, that is, a sequence of AG algebras in which each one is

either a cohomological blowup or blowdown of the previous.

17. Example 9.3 computes a presentation of the blowup of P5 along the Segre

embedding P1 ×P2 ↪→ P5 in which case the restriction map on cohomology is

not surjective.
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