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Abstract— We examine the effect of malicious attacks in dis-
rupting optimal routing algorithms for transportation networks.
We model traffic networks using the cell transmission model,
which is a spatiotemporal discretization of kinematic wave
equations. Here, vehicles are modeled as masses and roads
as cells, and traffic flow is subject to conservation of mass
and capacity constraints. At time zero a resource-constrained
malicious agent reduces the capacities of cells so as to maximize
the amount of time mass spends in the network. For the
resulting set of capacities the network router then solves a linear
program to determine the flow configuration that minimizes the
amount of time mass spends in the network. Our model allows
for the outright or partial failure of road cells at time zero, the
effects of which can cause cascading failure in the network due
to irreversible blockages resulting from congestion. This two-
player problem is written as a max-min optimization and is
reformulated to an equivalent nonconvex optimization problem
with a bilinear objective and linear constraints. Linearization
techniques are applied to the optimization problem to find local
solutions. Analyzing illustrative examples shows that attackers
with relatively small resource budgets can cause widespread
failure in a traffic network.

Index Terms— Traffic network, cascading failures, flow net-
works, network interdiction

I. INTRODUCTION

Flow networks are ones in which materials are introduced
at source cells and, after being routed through the network,
are removed at sink cells. Flow networks are described
by directed graphs subject to (i) conservation of mass
constraints, and (ii) capacity constraints on the amount of
flow that can travel through each link. Highway networks,
disaster evacuation plans, water supply networks, and
(routing of data packets in) computer networks are all
examples of flow networks. While our treatment of flow
networks in this paper is general, we will focus on highway
transportation networks to motivate the development.

Intriguingly, in transportation networks conservation of
mass can lead to failures that are distant [1], [2], whereas
failures spread from neighbor to neighbor in many models
of failure propagation (e.g., networks governed by threshold
dynamics in which a component fails if at least a certain
fraction of its neighbors have failed [3]–[8]). By way of
example, consider a transportation network in which a link
experiences failure due to malicious activity or an accident;
this increases the flow on alternate routes, which may result
in the failure of a link (possibly far removed from the
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first) whose capacity does not allow for the increased flow
of traffic, and so on. In this context, herein we adopt the
point of view of a malicious adversary seeking to identify
those few links whose failure maximally disrupts traffic flow.

The cell transmission model was developed by Daganzo
in two seminal papers [9], [10] via a spatiotemporal
discretization of the hydrodynamic model of traffic flow.
The cell transmission model captures complex traffic
behavior and congestion effects, including transient
phenomena and the propagation of shocks. Reference [11]
exploited the piecewise-linear relationships between vehicle
flow and density, inherent in the cell transmission model,
to formulate the optimal traffic assignment problem as a
linear program. In a highly influential body of work [1],
[2], [12], [13], Como et al. recently investigated questions
of resilience, throughput maximization, and decentralized
routing in transportation networks. An important result in
[2], [14] was the uncovering of distributed routing policies
that depend on local information, maximize throughput,
and maximally delay congestion effects under adversarial
perturbations to the links’ capacities.

In this paper we study transportation networks that model
the flow of vehicles on a network of highways. Our goal
is to find a small set of roadways to attack at time zero
such that the resulting vehicle congestion will be amplified
and propagated by the network’s natural dynamics in order
to maximally disrupt the flow of traffic. This problem is
combinatorial in nature and intractable in general.

In Section II we summarize a model, which is an
adaptation of Ziliaskopoulos [11], as a starting point for our
analysis. Our formulation is based on this established model
and that of Como et al., however we increase the severity
of congestion effects by allowing blockages from traffic
accumulation to persist indefinitely. We further extend the
framework discussed in Section II in order to model the
effects of an attack by a resource-constrained malicious
agent. The resource constraints of the malicious agent limit
the scale and severity of permissible attacks which are used
to disrupt the network. In our framework, the malicious
agent and traffic router are treated as players engaged in
a two-player game and the resulting augmented model is
formulated as a max-min program.

In Section III we utilize the dual reformulation of the
problem to represent the max-min program as a nonconvex
quadratic program. In Section IV we apply our work to
illustrative examples which permit an exhaustive search for
globally optimal solutions in order to validate our results.
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Finally, we include directions and motivation for future work
on transportation networks in Section V.

II. PROBLEM FORMULATION

In order to provide physical motivation to support
the problem formulation we restrict our focus to traffic
networks, but our models can be generalized to larger
classes of transportation and flow networks with appropriate
constraint modifications.

A. Preliminaries

We assume that the traffic network under consideration
contains N cells and that a single stretch of roadway can
be modeled as a series of consecutive cells [11]. In this
model we represent cells and junctions as the nodes and
edges of a graph, respectively. We also assume that the
on-ramp topology is represented by the nonzero entries of
the vector v(t) such that vi(t) represents the incoming mass
to node i at time t from outside the network. Similarly, the
off-ramp topology is also specified and represented by the
non-zero entries of a vector w(t) such that wi(t) represents
the maximum allowable traffic which can exit the network
from node i at time t.

We take xi(t) to be the mass occupying node i, yi(t) to
be the incoming mass to node i, and zi(t) to represent the
outgoing mass from node i, all at time t. We denote the
mass flow from node i to node j at time t as fij(t), and we
associate each node of the network with two parameters:
φi and κi, which represent the maximum mass-capacity
and maximum flow-capacity of node i, respectively. Finally,
in order to restrict the scale of attacks on the network
we introduce two additional parameters: a vector c with
ci quantifying the cost to fully fail node i, and a scalar
parameter b representing the resource budget available to
the attacker.

It is convenient to introduce two additional nodes besides
those contained in the network: a source and a sink node.
The sum of the incoming on-ramp mass is first generated at
the source node at each time step. The mass is then routed
into the network from the source node based on the on-ramp
topology. Similarly, all traffic mass leaving the network
based on the off-ramps is collected at the sink node. These
nodes will be indexed with 0 and N + 1, respectively.

We proceed by discussing the routing scheme which
governs the passsage of traffic through the network. We
assume that the routing protocol prescribes traffic patterns
by minimizing an objective function of the form:

t̂∑
t=1

pTx(t)

where we choose a penalty vector p such that the mini-
mization of the objective results in the optimal routing of
mass from the source node to the sink node; optimal routing
of mass is problem specific and thus selection of p should

be done on a case-by-case basis. Furthermore, mass transfer
between nodes of the network is governed by [15]:

yi(t) = vi(t) +
∑
j

fji(t),

zi(t) = wi(t) +
∑
j

fij(t),

and
xi(t) = xi(t− 1) + yi(t− 1)− zi(t− 1).

In order to respect the network topology, we require that
fij(t) be zero if there is no link from node i to node j.

We next describe the constraints that capture mass conser-
vation, network limitations, and the effect of traffic conges-
tion: we restrict that all flows be non-negative, fij(t) ≥ 0,
and that the amount of mass present at a node does not
exceed the capacity of that node at any time

x(t) ≤ φ.

We further maintain that no more mass leaves a node than
what is present at any time

z(t) ≤ x(t),

and we include additional constraints to model congestion at
a node as it approaches its maximum capacity

y(t) ≤ αy(φ− x(t)),

with αy a scalar used to represent how acute the effects of
congestion are. Unlike the work of [2], we include a similar
congestion constraint on the outflow of nodes

z(t) ≤ αz(φ− x(t)).

This constraint causes congestion-based road failures in our
model to be irreversible, by locking mass in place once a
node has become fully congested. Finally, we require that no
node allows inflows or outflows which exceed the associated
maximum flow-capacity

y(t) ≤ κ, z(t) ≤ κ.

xi xi

Fig. 1: Plots depicting feasible mass flow supply y and mass
flow demand z as functions of cell mass x, respectively
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B. Optimal Routing

For convenience we encapsulate all network optimization
variables in the vector u such that

u =


x
y
z
f

 and x =


x(1)
x(2)
.
.
.

x(t̂)


where the entries of y, z, and f are defined in a similar
manner to x. It is standard to construct a vector g such that
the objective above is written as gTu in order to absorb the
summation over time; thus we consider the routing program
to be of the form

minimize
u

gTu

subject to Au ≤ Hκ+ b

Gu = h

u ≥ 0

(1)

where the constraint matrices and vectors are constructed
using the physical flow limitations discussed in the above
preliminaries.

C. Optimal Attacking

We extend the routing model (1) to allow for attacks on
the road network. We do this by allowing the malicious agent
to reduce the flow-capacity κ of roads within the network at
time t = 0, and we restrict the magnitude of the network
attacks by modeling resource constraints. For instance, if an
attacker seeks to block the roads of a city, then they would
be limited by the number of barricades available to them. In
doing this we suppose that κ̂ is the flow-capacity vector of
the network without disruption and κ will thus be treated as
a vector of continuous variables which satisfy

0 ≤ κ ≤ κ̂.

We define a cost vector c with ci being defined as the
resource cost to reduce κi to zero. γ is defined as the
maximum budget available to the attacker. Therefore, we
write the resulting resource constraint as

cT (1− κ

κ̂
) ≤ γ =⇒ dTκ ≤ β,

where d = − c
κ̂
T , β = γ − cT1, and division by vectors is

performed entry-wise. Thus, the problem formulation with
the inclusion of optimal attacks takes the form

maximize
κ

minimize
u

gTu

subject to Au ≤ Hκ+ b

Gu = h

u ≥ 0

dTκ ≤ β
0 ≤ κ ≤ κ̂

(2)

In the next section we provide a strategy for finding locally
optimal solutions to (2).

A solution of (2) can be considered as rendering a lower-
bound on what a malicious attacker can achieve, in the sense
that the attacker can impede traffic and cause cascading fail-
ures more severely than what (2) uncovers. This is because
in reality there is no optimal centralized router with full
knowledge of the mass and failures in the network and with
full actuation capacity of the mass.

III. DUAL REFORMULATION AND NUMERICAL
ALGORITHM

We analyze (2) using the dual reformulation which is
briefly reviewed. After performing such a transformation we
arrive at a bilinear objective for which we find locally optimal
points using linearization methods.

A. Dual Reformulation

Theorem 3.1: If the feasible set specified by the con-
straints of a linear program is non-empty and bounded, then

minimize
x

fTx

subject to Ax ≥ b

Gx = c

x ≥ 0

(P)

is equivalent to

maximize
µ,υ

bTµ+ cTυ

subject to ATµ+GTυ ≤ f

µ ≥ 0

(D)

We omit a proof of Theorem 3.1 for brevity, and the details
can be found in [16]. Theorem 3.1 requires that the feasible
set be bounded which we next prove for (2).

Proposition 3.2: The feasible set of (2) is bounded.
Proof: It is sufficient to show that the optimization

variables contained in u are bounded from above and below.
By construction we have that u ≥ 0 thus we need only show
that u is bounded above.

We have x(t) ≤ φ, by construction, and since z(t) ≤ x(t)
then we immediately conclude that z(t) ≤ φ. In addition to
this, y(t) ≤ αy(φ−x(t)) = αyφ−αyx(t) and since x(t) ≥ 0
then −αyx(t) ≤ 0 so that we conclude y(t) ≤ αyφ. Finally,
observe that fij(t) ≤

∑
j fij(t) + wi(t) = zi(t) ≤ φi. Thus

fij(t) is bounded above for all i, j implying that f(t) is
bounded above for all t. Since x(t), y(t), z(t), and f(t) are
bounded above, then u is as well, which completes the proof.

We utilize Theorem 3.1 to rewrite (2), as in the following
Proposition.

Proposition 3.3: Problem (2) is equivalent to
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maximize
κ,λ,ν

−κTHTλ− bTλ+ hT ν

subject to −ATλ+GT ν ≤ g
λ ≥ 0

dTκ ≤ β
0 ≤ κ ≤ κ̂

(3)

Proof: For any value of κ we may reformulate the inner
minimization of (2) using Theorem 3.1, since the feasible set
is bounded by Proposition 3.2, to write

maximize
λ,ν

−κTHTλ− bTλ+ hT ν

subject to −ATλ+GT ν ≤ g
λ ≥ 0

This maximization problem can then be absorbed into the
exterior maximization with respect to κ [16].

In the formulation (3) the variables λ, and ν are the dual
variables induced by the constraints on u in (2). Computing
the global maximum of a constrained nonconcave bilinear
objective is computationally intractable in general. In what
follows, we utilize numerical techniques to compute locally
optimal solutions of (3).

B. Linearization Method for Solving (3)

We describe the method used for iteratively linearizing
the objective of (3) in order to compute solutions to the
quadratic program. The objective is linearized about an
initial set of feasible variables, and the resulting linear
program is solved for an optimal variable update. The
linearization point is then updated using the solution of
the linear program and this procedure is repeated until
the algorithm converges. Numerical investigations such as
the examples contained in the following section provide
promising results, but the solution of the proposed scheme
is not guaranteed to be globally optimal in general.

Let

−κTHTλ =
1

2
vTQv

with

Q =

 0 0 −H
0 0 0
−HT 0 0

 , v =

λν
κ


and the 0’s of Q representing zero block matrices of the
appropriate dimensions. We denote the objective with J(v)
and write

J(v) = (
1

2
vTQv + qT v) with q =

−bh
0


and consider our problem as one in the variable v by
recasting the constraints in a similar manner. Thus we treat
the problem as one of the form

maximize J(v)

subject to Mv ≤ r
(4)

where M and r are a matrix and vector derived from the
linear inequality constraints of (3). The gradient of the
objective is ∇J(v) = Qv+ q, and we linearize the problem
by taking v = v + ṽ. Treating v in such a way allows us to
approximate J by Taylor series about the point v using the
first order term and we take ṽ to be the running variable of
the optimization. Doing this results in

maximize [∇J(v)]T ṽ
subject to Mṽ ≤ r −Mv

(5)

Problem (5) is a linear program and is solved for ṽ. The
vector v is then updated using this optimal solution, and
the linear program is solved again using the updated v.
This procedure is iterated until ṽ is sufficiently small. The
process is summarized in Algorithm 1.

Algorithm 1 Solution of (4)

1: given Q, q, M , and r
2: set 0 < µ, δ � 1
3: initialize v
4: while ‖ṽ‖2 > δ do
5: Compute ṽ by solving (5)
6: Set v := v + µṽ
7: Update objective and constraints of (5) with new v
8: end while
9: output v

The algorithm converges if µ is set sufficiently small. The
value of v to which the algorithm converges contains the
dual variables and the modified flow-capacity vector. The
primal variables can be recovered using the dual variables,
or by solving the linear program (1) while setting κ to the
modified values contained in the output v. For the purposes
of our traffic investigation, solving (1) is less susceptible to
numerical error since recovering the primal variables from
the dual solution directly involves the inversion of poorly
conditioned matrices recovered from the complimentary
slack condition.

The solution of the algorithm does depend on the choice
of initialization point. Different strategies for initialization
point selection are numerically investigated in the examples
in Section IV, and we provide a brief description of the two
techniques employed before proceeding. The techniques
are utilized to initialize the vector κ, while the vector λ
is initialized to the dual variables which result from the
solution of the dual problem of (1) using κ = κ̂. We denote
the initialized value of κ for the iterative linearization as κ0.

1) Uniform Reduced Initialization: As the name suggests,
in this method we initialize κ by scaling the nominal flow
capacities such that κ0 = εκ̂ where ε is a scalar chosen
from the interval [0, 1]. For the purposes of the following
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examples we select ε such that the attacker budget constraint
is satisfied, but (5) can be initialized using other values of ε.

2) Biased Reduced Initialization: The biased reduced
initialization is a slight modification to the previous uniform
reduction. In this method we select a subset of the network
nodes denoted by K. We then proportionally reduce the
flow capacities for nodes in K, and initialize κ to the
nominal flow capacities for nodes not in K. If i ∈ K
(κ0)i = εκ̂i and (κ0)i = κ̂i if i 6∈ K where ε is taken
from the interval [0, 1]. For the purposes of the following
examples K is selected to contain any nodes which satisfy
the condition ci ≤ γ, and ε is selected to respect the attacker
budget constraint. This condition is equivalent to reducing
the initialized flow capacities of all nodes which could be
fully failed proportionally to the prescribed attacker budget.

IV. EXAMPLES

A. Example 1

The first example is the 10 node traffic network shown in
Figure 2 which is based on a network presented in [17]. This
network was selected because it exhibits intuitive solutions
and is sufficiently small to allow the use of exhaustive
methods to show that the solutions computed using our
scheme are globally optimal.

Fig. 2: A 10 node network based on [17].

As described in Section II, we introduce source and sink
nodes represented by cells 0 and 11, respectively. Further-
more, we prescribe that 2 units of traffic mass enter nodes 1
and 9 at each time step. The cost and nominal flow-capacity
vector are given by:

c =
[
3, 2, 1, 2, 2, 1, 2, 1, 3, 2

]T
κ̂ =

[
4, 3, 1.5, 3, 3, 1.5, 3, 1.5, 4, 3

]T
and we focus the examination on three scenarios
corresponding to attacker budgets of γ = 1, 3, and 5.
The resulting attacker strategy for each case is presented
in Table I. The column headed with URI depicts the results
using the uniform reduced initialization. The column headed
with BRI depicts the results using the biased reduced
initialization, and the column headed with GO depicts
the global optimal found using an exhaustive search. The
exhaustive search was carried out over all permissible
full-node failures given the prescribed attacker budget;

partial road failures were not scanned exhaustively. In
the case where the solution of our exhaustive search is
non-unique, we choose the one which most closely matches
the result of our numerical algorithm.

For each of these scenarios we set t̂ = 12, and we fix the
penalty vector such that

p =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1

]T
.

This choice of penalty vector will maximize the mass which
successfully passes through the network to the sink node.
We set the initial mass distribution to the final-time t̂ mass
distribution given by the solution of (1),

x(0) =
[
2, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 2, 2

]T
.

When solving (1) to compute this mass distribution, we
assume that the network starts with zero initial mass.

URI BRI GO
γ Failures J Failures J Failures J
1 3 -127 3 -127 3 -127
3 3,6,8 -55 3,6,8 -55 3,6,8 -55
5 3,6,8,10 0 3,6,8,10 0 3,6,8,10 0

TABLE I: Failure targets and resulting objective values for
the network in Figure 2.

In each of the three cases our approach correctly identifies
a globally optimal solution. The cell failures prescribed by
our algorithm are non-fractional due in part the values of γ,
but in the next example we demonstrate that the algorithm
will prescribe fractional failures even if γ is selected to
support full failures.

B. Example 2

In the second example we examine a traffic network
adapted from [6] and depicted in Figure 3. We use node
0 to represent the source and node 18 to represent the sink.
While it is impractical to perform a full exhaustive search,
this network is small enough to permit a limited exhaustive
search. In this case, we limit the exhaustive search to scan
over all modified flow-capacity configurations with no more
than 3 failures.

In this example we prescribe that at each time step 2 units
of traffic mass enter nodes 1 and 4, and 1 unit of traffic mass
enters node 3. The cost and nominal flow-capacity vector are
given by:

c =
[
3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 1, 3, 2

]T
κ̂ =

[
6, 3, 3, 6, 3, 3, 5, 5, 3, 3, 3, 3, 5, 5, 2, 5, 3

]T
and in the same style as the first example we examine three
scenarios corresponding to attacker budgets of γ = 3, 4,
and 6. The resulting attacker strategies are presented in the
same way as the previous example in Table II. It should
be noted that because of the larger size of this network a
full exhaustive search is computationally prohibitive so the
column headed ES includes the results of a search over all
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Fig. 3: A 17 node network based on [6, Chap. 19].

failure configurations of cardinality less than or equal to 3.
We set t̂ = 12,

p =
[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1

]T
,

and x(0) to the steady state mass distribution as described
in the previous example.

URI BRI GO
γ Failures J Failures J Failures J
3 15,(16) -278 15,(16) -278 15,17 -156
4 15,16 -211 15,16 -211 15,17 -156
6 15,16,17 0 15,16,17 0 15,16,17 0

TABLE II: Failure targets and resulting objective values
of the network shown in Figure 3. Failures listed within
parentheses indicate a fractional failure.

In the case of the second example the algorithm computes
sub-optimal solutions in the cases γ = 3 and γ = 4.
However, when γ = 6 the globally optimal solution is
computed.

V. CONCLUSIONS AND FUTURE WORK

We develop a framework to search for optimal attacks
that trigger cascading failures in traffic networks. We do
this by modifying the well-known cell transmission model.
We demonstrate that the resulting optimization problem
naturally can be viewed as a two player max-min problem.
We employ duality theory to equivalently reformulate this as
a maximization problem with a bilinear objective and linear
constraints. Globally optimal solutions of this problem
are generally intractable to find, and therefore we utilize
iterative linearization techniques to obtain locally optimal
solutions. Each iteration of our algorithm involves solving a
linear program, which scales gracefully with network size.

In the small scale examples discussed in Section IV we
obtained globally optimal solutions in the case of Example
1 when the algorithm is initialized using the two methods
discussed in Section III. On the other hand, in Example 2 we
observed that the algorithm computed sub-optimal solutions

using the same two initialization techniques. We expect that
the application of this work to large, complex networks will
require implementing more sophisticated initialization and
linearization techniques.
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