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A B S T R A C T   

Understanding how precipitation is partitioned into evapotranspiration and streamflow is important for assessing 
water availability. In the Budyko framework, this partitioning is quantified through the ω parameter. Previous 
studies have modeled the physical representation of ω; however, the spatial heterogeneity of the relationship 
between ω and the variables that it represents has not been investigated. This study uses a geographically 
weighted regression model to identify spatial variations in the factors that control the water balance in 126 
reference watersheds with minimal human disturbance and 765 non-reference watersheds in the continental 
United States. Results show that snowfall and forest coverage are important predictors of ω in the reference 
watersheds. Relative cumulative moisture surplus, dam storage, and developed land in riparian areas are 
important predictors in non-reference watersheds. Climate is a primary control of the relative importance of 
forest coverage. The importance of forest coverage is greater in arid watersheds than in humid watersheds. 
Snowfall is more important than forest coverage in the Northeast and Midwest. This study demonstrates that dam 
construction and urban sprawl have a significant impact in non-reference watersheds. Dam storage is the most 
important predictor in 21% of the non-reference watersheds, and riparian developed land is more important in 
13% of the non-reference watersheds. Overall, there are statistically significant relationships between climatic, 
physiographic, and human-related factors and the ω parameter. The spatial variations in the relationship 
quantified in this study can help to improve regional watershed management.   

1. Introduction 

Understanding how precipitation is partitioned into evapotranspi
ration and streamflow is important for understanding global and 
regional water availability. Climate variability, watershed physio
graphic characteristics, and anthropogenic activities can substantially 
impact the surface water balance (Berghuijs et al., 2017; Gentine et al., 
2012). Quantification of the relative importance of these factors is 
critical for improving water resources management and decision mak
ing. Process-based hydrological models are one method of quantifying 
the impacts of these factors (Dey and Mishra, 2017). However, it can be 
time-consuming to apply these models across many watersheds due to 
the labor-intensive model calibration process (Fatichi et al., 2016). In 
the last decade, a conceptual hydrological framework known as the 
Budyko framework has been successfully applied for many applications, 
such as quantifying runoff sensitivity (Berghuijs et al., 2017; Gud
mundsson et al., 2016; Renner et al., 2012; Sankarasubramanian et al., 
2001), unravelling the effects of climate and anthropogenic factors on 

streamflow (Jiang et al., 2015; Liang et al., 2015; Patterson et al., 2013; 
Wang and Hejazi, 2011; Wang et al., 2020), modeling streamflow and 
evapotranspiration (Abatzoglou and Ficklin, 2017; Chen et al., 2013; 
Fang et al., 2016; Nayak et al., 2020), and improving the calibration of 
global hydrological models (Greve et al., 2020). The advantages of the 
Budyko framework are multifold. First, it is physically based. The 
Budyko hypothesis relates the evaporative ratio (ET/P) to the aridity 
index (PET/P). The relationship is constrained by the energy limit when 
PET equals to ET and the water limit when ET equals to P. The second 
advantage is that it has a low computational cost, making it more effi
cient to apply over a large number of watersheds to examine spatial 
variability (Abatzoglou and Ficklin, 2017; Padrón et al., 2017; Xu et al., 
2013). Lastly, it has fewer data requirements than process-based hy
drological models, making it preferable for applications over longer time 
periods and larger spatial scales. 

In the version of the Budyko framework that is known as Fu’s 
equation (Fu, 1981), long-term streamflow is simulated using mean 
annual precipitation (P), mean annual potential evapotranspiration 
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(PET), and other factors that are represented by the shape parameter ω. 
The ω parameter is used to partition the water balance input (precipi
tation) and output (evapotranspiration and streamflow); however, it 
does not have a specific physical meaning (Abatzoglou and Ficklin, 
2017). Previous studies have explored the meaning of ω and related it to 
climatic factors such as seasonality, storminess, and snowfall conditions, 
as well as watershed characteristics. For example, Potter et al. (2005) 
found that for a given aridity index, the ratio of mean annual E to P was 
larger when P and PET were in phase. When higher temperatures 
coincide with higher moisture surplus, this can increase evapotranspi
ration. Abatzoglou and Ficklin (2017) found a significant negative cor
relation between ω and the seasonal asynchronicity between P and PET. 
The importance of seasonality or synchronicity in P and PET was also 
emphasized by Milly (1994), Wolock and McCabe (1999), Shao et al. 
(2012), and Xing et al. (2018). Snowfall is another climate-related 
element that can affect the water balance. Using the Budyko frame
work, Berghuijs et al. (2014) found that streamflow is likely to decrease 
when precipitation shifts from snowfall to rainfall. This is consistent 
with a negative correlation between ω and the fraction of precipitation 
falling as snow shown in Abatzoglou and Ficklin (2017). Finally, 
storminess such as average storm depth and storm frequency has also 
been shown to influence ω (Donohue et al., 2012; Shao et al., 2012; Xing 
et al., 2018; Yang et al., 2009; Zhang et al., 2004). 

Watershed characteristics such as vegetation, soil properties, and 
topography can also influence ω. Vegetation-related variables that can 
change ω include vegetation coverage and vegetation type (Abatzoglou 
and Ficklin, 2017; Chen et al., 2020; Donohue et al., 2007, 2010; Li 
et al., 2013; Shao et al., 2012; Sinha et al., 2019; Xu et al., 2013; Zhang 
et al., 2016). For example, Yang et al. (2008a) found a significant cor
relation between the curve parameter η (which is a shape parameter) of 
Choudhury’s equation and the leaf area index. Forested watersheds have 
a higher ω than grassland-dominated watersheds because they typically 
have greater evapotranspiration (Zhang et al., 2004). Soil-related vari
ables such as saturated hydraulic conductivity and available water 
holding capacity can also impact ω (Abatzoglou and Ficklin, 2017; 
Donohue et al., 2012; Yang et al., 2007). For example, the ratio of 
available water capacity to precipitation has been shown to have a 
statistically significant positive correlation with ω, as available plant 
water regulates the available water for Q (Abatzoglou and Ficklin, 
2017). Watershed topography variables such as slope, aspect, relief 
ratio, and elevation have also been found to influence ω (Abatzoglou and 
Ficklin, 2017; Shao et al., 2012; Sinha et al., 2019; Xing et al., 2018; Xu 
et al., 2013; Yang et al., 2007, 2009). For example, slope is negatively 
correlated with ω because watersheds with steeper slopes tend to have 
higher runoff (Abatzoglou and Ficklin, 2017; Yang et al., 2007, 2009). 

Human activities such as the modification of land use/land cover, 
urbanization, and irrigation have been observed to alter the hydrologi
cal cycle worldwide (Debbage and Shepherd, 2018; Destouni et al., 
2013; Rodell et al., 2018). Although the non-parametric Budyko 
framework was initially developed for large-scale watersheds with 
minimal human interference, the parametric Budyko framework, such 
as the Fu’s equation (Fu, 1981), can be applied to human-impacted 
watersheds (Liang et al., 2015; Patterson et al., 2013; Wang and 
Hejazi, 2011). Some recent studies have attempted to directly relate ω to 
factors such as irrigated area, cultivated land area, percentage of farm
land, and population (Bai et al., 2020; Bao et al., 2019; Han et al., 2011; 
Jiang et al., 2015; Xing et al., 2018). A positive correlation between ω 
and irrigated areas was found in 96 watersheds in China (Xing et al., 
2018). This is also found in sub-watersheds of the Yellow River Basin in 
China (Bao et al., 2019; Jiang et al., 2015). In the United States, human 
activities have been found to have greater impacts on streamflow than 
climate change in the High Plains and western U.S. (Wang and Hejazi, 
2011). However, it is unclear which specific human-related factors are 
dominant and how they vary regionally. Abatzoglou and Ficklin (2017) 
modeled ω in HDCN and MOPEX watersheds in the continental U.S. and 
found that it was strongly influenced by climate factors, soil 

characteristics, and watershed topography. They pointed out that their 
model performed slightly worse in the MOPEX watersheds because the 
watersheds are influenced by irrigation and land use changes (Abatzo
glou and Ficklin, 2017). The impacts of human activities on the hy
drological cycle have been observed in many regions in the continental 
U.S. such as the Northeast (Hodgkins et al., 2019), Midwest (Kelly et al., 
2016), and Southeast (Debbage and Shepherd, 2018). Therefore, it is 
important to identify how human disturbance influences ω in these 
watersheds. 

Previous studies have evaluated how multiple factors control ω 
concurrently (Abatzoglou and Ficklin, 2017; Donohue et al., 2012; Li 
et al., 2013; Xing et al., 2018; Xu et al., 2013). For example, Xu et al. 
(2013) used a multiple linear regression model and a neural network 
model in the MOPEX watersheds and 32 global watersheds. They found 
that most of the variance in ω can be explained by geographic locations, 
Normalized Difference Vegetation Index (NDVI), slope, and elevation. 
At the continental scale, Abatzoglou and Ficklin (2017) used a gener
alized additive model to model ω in 382 watersheds in the continental U. 
S. They found that climate seasonality, snow fraction, the ratio of 
available water capacity to precipitation, and slope can explain 81.2% of 
the variability in ω. Xing et al. (2018) used a multivariate adaptive 
regression spline model to simulate η in Choudhury’s equation in 96 
watersheds in China. They found that the three most influential factors 
were average storm depth, vegetation coverage, and precipitation sea
sonality. They also found significant interaction effects from cultivated 
land, irrigation, drought, and precipitation variability. Despite excellent 
prior work modeling ω in different locations around the world, the 
spatial heterogeneity of the relationship between ω and the independent 
variables has not been studied. A negative correlation between ω and 
NDVI was found in a total of 211 HCDN watersheds in the U.S. (Abat
zoglou and Ficklin, 2017) and 286 watersheds in China (Bai et al., 
2020). However, a positive correlation between ω and NDVI was found 
in 224 MOPEX watersheds in the U.S. (Xu et al., 2013), 26 global wa
tersheds (Li et al., 2013), and 96 watersheds in China (Xing et al., 2018). 
The contrasting relationship between ω and vegetation coverage was 
also shown by Yang et al. (2009) in China and Sinha et al. (2019) in 
India. Bao et al. (2019) found no significant correlation between ω and 
forest coverage in a watershed in China. The findings of these previous 
studies indicate that there may be spatial heterogeneity in the rela
tionship between ω and explanatory variables. A generalized model may 
not be helpful for uncovering the relationship. 

The lack of consideration of human-related factors and spatial het
erogeneity of the relationship between ω and environmental variables 
may hinder our understanding of ω. Motivated by this research gap, 
three research questions are answered in this study: (1) Do the factors 
that influence ω differ between watersheds with and without human 
disturbance? (2) What are the most important factors that influence ω in 
watersheds with human disturbance? (3) How does the influence of 
these factors vary spatially? To answer the three questions, a 
geographically weighted regression model was used to investigate the 
spatial heterogeneity in the relationship between ω and 38 independent 
variables in 891 watersheds (126 reference and 765 non-reference wa
tersheds) from 1950 to 2009 water years in the continental U.S. 

2. Data and methods 

2.1. Study area 

This study evaluates 891 watersheds covering a wide range of scales, 
climate types, and topographic conditions in the contiguous U.S. The 
watersheds consist of 126 reference watersheds and 765 non-reference 
watersheds with continuous gauging records from 1950 to 2009 water 
years. The reference and non-reference watersheds are classified by the 
Geospatial Attributes of Gages for Evaluating Streamflow Version II 
(GAGES II) dataset (Falcone et al., 2010a). The reference watersheds 
have minimal human disturbance, while non-reference watersheds have 
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been disturbed by human activities such as development, irrigation, 
reservoirs, roadways, and fragmented land. The watersheds range in size 
from 480 km2 to 49592 km2. They also span a wide range of climate 
regions with a range of the aridity index from 0.3 to 5.3. The slope of 
these watersheds is also highly variable ranging from < 0.1% to 55.8% 
(Table 1). Watersheds smaller than 480 km2 were not included in the 
study because of the possible inaccuracies of the representation of 
meteorological conditions from using the 4-km PRISM dataset (Abat
zoglou and Ficklin, 2017). The reference watersheds are generally 
smaller than the non-reference watersheds and less variable in size 
(Table 1). 

2.2. Budyko framework 

The Budyko framework is a conceptual hydrological framework for 
estimating long-term water availability. Several parametric forms of the 
Budyko framework have been developed, and they have similar abilities 
in estimating streamflow and evapotranspiration (Jiang et al., 2015; 
Yang et al., 2008a, 2008b). Fu’s version of the Budyko equation is used 
in this study (Fu, 1981). In Fu’s equation, the evaporative ratio (ET/P) is 
a function of the aridity index (PET/P) and the ω parameter. The 
equation is expressed as: 

Table 1 
Summary statistics for mean annual P, PET, PET/P, Q, ω and the 38 independent variables in the reference and non-reference watersheds.  

No. Variables Description Reference (n = 126) Non-reference (n = 765) 

Min Max Mean ± SD Min Max Mean ± SD 

NA Mean annual P (mm) Precipitation  392.2  3072.0 1114.7 ±
492.5  

330.8  2702.8 1001.7 ±
305.2 

NA Mean annual PET (mm) Potential evapotranspiration  682.0  1844.3 1119.8 ±
223.9  

675.1  2297.1 1151.3 ±
220.1 

NA Mean annual PET/P Aridity index  0.3  4.7 1.2 ± 0.73  0.3  5.3 1.3 ± 0.6 
NA Mean annual Q (mm) Streamflow  2.2  2574.6 502.5 ±

486.8  
1.857  2131.9 380.1 ±

265.1 
NA ω Budyko Fu’s equation parameter  1.1  4.0 2.2 ± 0.5  1.3  4.1 2.2 ± 0.4 
1 rCMS Relative cumulative moisture surplus  <0.1  0.8 0.3 ± 0.2  <0.1  0.8 0.3 ± 0.1 
2 SF Snow fraction  0.1  0.7 18.1 ± 0.2  0.1  0.7 18.8 ± 15.2 
3 AWC/P Ratio of available water capacity to precipitation  0.1  0.6 0.2 ± 0.1  0.1  0.7 0.2 ± 0.1 
4 PERMAVE (inch/h) Average soil permeability  10.7  313.2 74.7 ± 59.4  11.0  309.1 73.5 ± 51.7 
5 Slope (%) Mean watershed slope  <0.1  55.8 11.6 ± 12.0  <0.1  42.3 8.7 ± 9.0 
6 ASPECT_N Aspect “northness”. Ranges from −1 (facing north) to 

1 (facing south).  
−1.0  1.0 −0.3 ± 0.6  −1.0  1.0 −0.3 ± 0.6 

7 TOPWET Topographic wetness index  9.2  14.9 11.9 ± 1.2  9.7  15.0 12.2 ± 1.2 
8 COMPACT Watershed compactness ratio  0.3  2.8 1.5 ± 0.5  0.5  2.8 1.3 ± 0.4 
9 ELEV_MEAN (m) Mean watershed elevation  33.2  2578.2 614.3 ±

556.0  
10.9  3318.1 642.0 ±

693.7 
10 ELEV_MAX (m) Max watershed elevation  57.0  3970.0 1052.2 ±

922.3  
25.0  4408.0 1197.0 ±

1200.9 
11 ELEV_MIN (m) Min watershed elevation  4.0  1553.0 331.7 ±

331.5  
−15.0  2525.0 362.4 ±

484.2 
12 ELEV_MEDIAN (m) Median watershed elevation  34.0  2561.0 608.9 ±

560.8  
7.0  3353.0 627.9 ±

689.1 
13 ELEV_STD (m) Standard deviation of watershed elevation  6.0  529.7 122.5 ±

118.7  
3.6  1100.8 140.1 ±

152.6 
14 ELEV_SITE (m) Elevation at gage location  6.0  1554.0 338.4 ±

334.1  
1.0  2525.0 365.0 ±

477.6 
15 RRMEAN Relief ratio; (ELEV_MEAN - ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN)  
0.1  0.6 0.4 ± 0.1  0.1  0.7 0.4 ± 0.1 

16 RRMEDIAN Relief ratio; (ELEV_MEDIAN - ELEV_MIN)/ 
(ELEV_MAX - ELEV_MIN)  

0.1  0.7 0.4 ± 0.1  0.1  0.8 0.4 ± 0.1 

17 AREA (km2) Watershed drainage area  485.4  25791.0 2149.5 ±
2912.4  

480.4  49592.2 5908.2 ±
8485.6 

18 FOREST (%) Watershed percent “forest”  0.0  93.7 49.5 ± 29.7  0.0  92.3 39.3 ± 27.2 
19 MAINS100_FOREST (%) Mainstem 100 m buffer “forest”  0.1  92.1 41.0 ± 22.5  0.0  92.2 28.1 ± 19.1 
20 RIP100_FOREST (%) Riparian 100 m buffer “forest”  0.1  89.4 49.1 ± 26.6  0.0  90.0 38.5 ± 23.9 
21 PCT_IRRIG_AG (%) Percent of watershed in irrigated agriculture  0.0  11.2 0.5 ± 1.6  0.0  52.7 1.8 ± 4.8 
22 PLANT (%) Watershed percent “planted/cultivated”  0.0  93.0 24.9 ± 27.0  0.0  93.3 30.3 ± 28.8 
23 MAINS100_PLANT Mainstem 100 m buffer “planted/cultivated”  0.0  69.1 18.8 ± 19.2  0.0  90.0 18.6 ± 18.0 
24 RIP100_PLANT Riparian 100 m buffer “planted/cultivated”  0.0  88.6 21.2 ± 22.3  0.0  93.0 26.5 ± 25.4 
25 NDAMS Number of dams in watershed  0.0  475.0 21.6 ± 60.8  0.0  1740.0 82.1 ± 168.9 
26 DDENS (No./100 km2) Dam density  0.0  14.9 1.0 ± 2.0  0.0  16.3 1.7 ± 2.1 
27 STOR_NID (megaliter/km2) Maximum dam storage in watershed  0.0  226.9 8.9 ± 27.0  0.0  1348.2 71.7 ± 125.0 
28 STOR_NOR (megaliter/km2) Nominal dam storage in watershed  0.0  120.7 4.7 ± 16.5  0.0  905.7 43.9 ± 93.7 
29 MAJ_NDAMS Number of “major” dams in watershed  0.0  12.0 1.0 ± 2.0  0.0  155.0 9.0 ± 18.0 
30 MAJ_DDENS (No./100 km2) Major dam density  0.0  0.6 0.1 ± 0.1  0.0  9.0 0.2 ± 0.5 
31 FRESHW_WD (megaliters/ 

(year*km2)) 
Freshwater withdrawal  0.5  1048.4 37.0 ± 118.3  0.6  1214.4 52.0 ± 85.1 

32 DEV (%) Watershed percent “developed”  0.0  9.7 3.6 ± 2.0  0.0  77.1 8.0 ± 8.4 
33 PDEN (persons/km2) Population density in the watershed  0.0  62.0 7.7 ± 8.7  0.0  896.9 47.7 ± 98.2 
34 MAINS100_DEV (%) Mainstem 100 m buffer “developed”  0.0  25.9 5.5 ± 5.2  0.0  67.0 8.2 ± 7.9 
35 RIP100_DEV (%) Riparian 100 m buffer “developed”  0.0  16.6 4.0 ± 2.9  0.0  62.8 7.2 ± 6.5 
36 ROADS_D (km/ km2) Road density  0.1  2.8 1.1 ± 0.4  0.1  6.1 1.6 ± 0.2 
37 RD_STR_INTERS Number of road/stream intersections  0.0  1.2 0.4 ± 0.2  0.0  1.8 0.6 ± 0.2 
38 IMP (%) Watershed percent impervious surfaces  0.0  1.7 0.5 ± 0.4  0.0  30.7 1.8 ± 2.9  
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where ET represents evapotranspiration, P represents precipitation, 
and PET represents potential evapotranspiration. All three variables are 
at the mean annual timescale. The ω controls partitioning of the water 
balance into input (P) and output (ET and streamflow Q). The ω repre
sents the residual influence, other than PET and P, on water balance 
(Greve et al., 2020). The ω is calibrated by minimizing the mean abso
lute difference between observed ET/P and simulated ET/P by using ω 
values ranging from 1 to 9. The Budyko framework assumes that the 
water storage is negligible at long timescales. Therefore, the observed ET 
is calculated from P minus Q. The residual influence represented by ω is 
then modeled by independent variables in Section 2.3 to quantify the 
impacts of climatic, physiographic and anthropogenic factors on the 
water balance. Previous studies have applied the Budyko framework in 
reference and non-reference watersheds with varied study periods 
(Jiang et al., 2015; Wang and Hejazi, 2011; Xing et al., 2018; Zhang 
et al., 2019). The minimum study length was six years (Yang et al., 2007) 
and the maximum length was 100 years (Berghuijs et al., 2017). We 
believe our study period of 60 water years is long enough to assume that 
water storage is negligible (△S = 0). Only the watersheds that obey the 
water balance assumption (P > Q and (P - Q) < PET) were used in this 
study. 

Precipitation data were obtained from the 4-km PRISM (Parameter- 
elevation Regression on Independent Slopes Model) AN81m dataset 
(PRISM Climate Group, 2014). Daily potential evapotranspiration was 
estimated using the Hargreaves and Samani equation (Hargreaves and 
Samani, 1982), which requires daily minimum and maximum temper
ature that were obtained from the 800-m TopoWx gridded dataset 
(Oyler et al., 2015). P and PET were aggregated for each watershed at 
the annual timescale for the 1950 to 2009 water years. Streamflow data 
were acquired from the United States Geological Survey. 

2.3. Independent variables of ω 

Based on an extensive review of previous studies, the ω parameter in 
the Budyko equation has been shown to be related to climatic, physio
graphic, and human-related variables. The frequently identified vari
ables are climate seasonality (Abatzoglou and Ficklin, 2017; Shao et al., 
2012; Xing et al., 2018; Zhang et al., 2004), vegetation coverage (Ning 
et al., 2019; Shao et al., 2012; Xu et al., 2013; Yang et al., 2009; Zhang 
et al., 2004), available water-holding capacity of the soil or hydraulic 
conductivity (Abatzoglou and Ficklin, 2017; Yang et al., 2009), slope 
(Abatzoglou and Ficklin, 2017; Sinha et al., 2019; Xu et al., 2013; Yang 
et al., 2009), and human-related variables such as irrigated area or 
agricultural area (Bai et al., 2020; Bao et al., 2019; Jiang et al., 2015; 
Oliveira et al., 2019; Xing et al., 2018). Therefore, in this study, a total of 
38 independent variables that represent various climatic, physiographic, 
and human-related factors were considered in this study (Table 1). 

There are two climate variables, relative cumulative moisture sur
plus (rCMS; Abatzoglou and Ficklin, 2017) and fraction of precipitation 
falling as snow (SF; Berghuijs et al., 2014). The rCMS represents climate 

seasonality, and it is calculated as rCMS =

∑12(Dec.)
i=1(Jan.)

Pi−PETi

Pann
whenPi > PETi, 

where Pi and PETi are monthly precipitation and potential evapotrans
piration, Pann is the annual precipitation. Monthly precipitation and 
mean temperature were used to calculate SF using the method from Dai 
(2008). 

A total of 18 physiographic variables were evaluated, including: soil 
properties, vegetation, topography, morphology, and drainage area 
(Variables No. 3–18 in Table 1). The soil properties are the ratio of AWC 
to mean annual precipitation (AWC/P; Abatzoglou and Ficklin, 2017) 
and average soil permeability (PERMAVE). The soil permeability rep
resents the ability of soil to transmit water and is related to the saturated 
hydraulic conductivity used in Yang et al. (2009). The vegetation 

variables considered in this study are: percentage of forest coverage 
(FOREST), mainstem 100 m buffer forest (MAINS100_FOREST), and 
riparian 100 m buffer forest (RIP100_FOREST) in the watershed. 
MAINS100_FOREST is the percent of forest coverage at the 100 m buffer 
at each side of the centerline of the main course of a river. RIP100_
FOREST is the percent of forest coverage at the 100 m buffer at each side 
of the centerline of all streams in the watershed. MAINS100_FOREST 
and RIP100_FOREST have not been used in previous modeling studies, 
but they might be important since the spatial configuration of land use 
has been shown to influence streamflow characteristics (Debbage and 
Shepherd, 2018). The topographic variables include the mean, 
maximum, minimum, median, and standard deviation of the watershed 
elevation, elevation at the gage location, relief ratio for the watershed 
(Shao et al., 2012; Xing et al., 2018; Zhang et al., 2004), mean watershed 
slope (Abatzoglou and Ficklin, 2017; Xu et al., 2013; Yang et al., 2009), 
mean watershed aspect (Sinha et al., 2019; Xu et al., 2013), and mean 
topographic wetness index (Sinha et al., 2019; Xu et al., 2013). The 
topographic wetness index is calculated from the natural logarithm of 
the ratio of the watershed drainage area to the tangent of the slope 
gradient (Wolock and McCabe, 1995). The watershed compactness ratio 
is defined as the ratio of the drainage area and the square of the 
watershed perimeter. The compactness ratio is used because it provides 
a morphological representation of the watershed. Watershed shape is 
shown to influence the concentration time of streamflow (Jung et al., 
2017). 

There are also a total of 18 variables associated with human activities 
in the watershed. These include variables related to irrigation, planted/ 
cultivated area, developed area, the number of dams in the watershed, 
dam density in the watershed, total dam storage in the watershed, 
freshwater withdrawal, and road density in the watershed (Variables 
No. 21–38 in Table 1). The freshwater withdrawal includes surface- 
water and groundwater (Maupin et al., 2014). These variables are 
chosen because land-use change, water use, and dam construction can 
directly impact water availability (Magilligan and Nislow, 2005; Wada 
et al., 2014; Wang and Hejazi, 2011). 

The physiographic variables and human-related factors are obtained 
from the Geospatial Attributes of Gages for Evaluating Streamflow, 
version II (GAGES-II) dataset (Falcone et al., 2010a; Falcone, 2011). The 
GAGES-II dataset was published by the U.S. Geological Survey (USGS) 
and developed as part of a national effort to characterize stream gauges 
(Falcone et al., 2010a). These data were checked using standard USGS 
review procedures. Classification of reference and non-reference wa
tersheds were determined using multiple sources of information, 
including a GIS-derived hydrologic disturbance index (Falcone et al., 
2010b), local expert judgment, and a visual inspection of gauges using 
high-resolution imageries and topographic maps (Falcone et al., 2010a, 
2010b). Watershed characteristics were compiled from commonly used 
quality-controlled national data sources such as the National Land Cover 
Database, National Inventory of Dams, 100-m National Elevation 
Dataset, and State Soil Geographic dataset. A potential source of un
certainty could be the impacts of the spatial resolution of the elevation 
dataset on the aggregated topographic variables at watershed levels. 
However, considering the size of the watersheds (>480 km2) used in this 
study, a resolution of 100-m should be adequate. Another potential 
uncertainty may come from the accuracy of the land-use and land-cover 
classification. The primary source of low accuracy of the classification is 
from distinguishing the context of grass (Wickham et al., 2013). How
ever, the land-use types considered in this study, forests, urban areas, 
and agricultural areas, have accuracies around 80% (Wickham et al., 
2013). Watershed characteristics from the GAGES-II dataset have been 
successfully employed in many hydrological applications, such as 
analyzing runoff ratio (Chang et al., 2014), characterizing hydrologic 
change (Sawicz et al., 2014), and evaluating streamflow trends (Rice 
et al., 2015). Therefore, the GAGES-II dataset is considered to be reliable 
and appropriate for this study. 
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2.4. Ordinary least squares (OLS) regression 

OLS is a global regression method that assumes the relationship be
tween dependent and independent variables is spatially stationary (i.e., 
location independent). OLS assumes that the dependent variable and the 
residual of the model are normally distributed, and no collinearity exists 
between independent variables. Therefore, ω values were log- 
transformed to adjust the skewed gamma distribution (Greve et al., 
2015). Pairwise Pearson correlation coefficients were calculated to 
check for collinearity between independent variables and tested at p <
0.05 level. The independent variables are z-standardized by differencing 
between the variable and the mean, then dividing by the standard de
viation (Bring, 1994). The purpose of this standardization is to obtain 
standardized beta coefficients in the OLS model to compare variable 
importance. The lm function in R was used to model ω. The Variance 
Inflation Factor (VIF) was used to evaluate the collinearity of indepen
dent variables selected by the model. Variables that have VIF higher 
than a threshold of 5 were removed (Menard, 2002). Both forward and 
backward stepwise variable selections were conducted to obtain the 
optimal model whose independent variables are all statistically signifi
cant (p < 0.05) and that has the highest adjusted R2 and the lowest mean 
absolute error (MAE). The independent variables selected by the step
wise regression model are used for further spatial analysis using 
Geographically Weighted Regression. 

2.5. Geographically weighted regression (GWR) 

The GWR model is a local spatial regression model and assumes that 
the relationship between dependent and independent variables is 
spatially nonstationary or location specific. GWR has been used in pre
vious hydrological studies at a continental scale to explore the spatial 
controls of runoff variability (Chang et al., 2014), minimum river 
discharge (Rennermalm et al., 2012), and hydrologic responses to ur
banization (Li et al., 2020). GWR is an expanded form of simple multiple 
regression equation and can be expressed as: 

Y(x) = α(ui, vi)+
∑

k
βi(ui, vi)xk + ei (2) 

where Y(x) is a matrix of the dependent variable as a function of a 
matrix of independent variable × , α is the regression constant at the ith 
location (ui,vi), (ui,vi) is the spatial location, βi is the coefficient for the 
kth independent variable at the ith location (ui,vi), xk is the kth indepen
dent variable, and ei is the residual at the ith location. Therefore, the 
coefficients βi’s vary continuously as a function of the location. GWR 
achieves the spatially varying coefficients by fitting equations for ob
servations falling within a fixed or adaptive bandwidth. The adaptive 
schemes can adjust the bandwidth according to the density of data. 
Similar to Li et al. (2020), an adaptive bandwidth was used in this study 
because the observations are not distributed evenly in the continental U. 
S. The bandwidth can be determined by cross-validation (CV) minimi
zation or corrected Akaike Information Criterion (AICc) minimization. 
CV minimization is generally relevant to the accuracy of the model, 
while the AICc takes model complexity into account. Within each 
bandwidth, observations closer to a given location have greater weights 
in estimating the coefficients than observations further away. The 
weights matrices are created using a kernel estimator. Gaussian and bi- 
square kernels are commonly used kernel estimators (Chang et al., 2014; 
Mohammadinia et al., 2017; Yacim and Boshoff, 2019). The two 
methods of determining bandwidth (CV and AICc minimization) and the 
two kernel estimators (Gaussian and bi-square) were tested to determine 
the optimal GWR model. The model whose bandwidth is determined by 
CV minimization and weights matrices are determined by the bi-square 
kernel has the highest adjusted R2 and lowest AIC in both reference and 
non-reference watersheds (Fig. S1). This model is used in this paper. The 
number of nearest neighbors in an adaptive bandwidth is 20 in reference 
watersheds and 31 in non-reference watersheds. 

The GWR analysis was conducted using the GWmodel package in R 
(Gollini et al., 2013). The global Moran’s I index was used to test the 
statistical significance of the spatial autocorrelation of the ω values and 
the residuals of the OLS and the GWR model. A Monte Carlo test was 
used to test the significance of the spatial variability of the model’s 
coefficients. GWR coefficients may have local collinearity issues even if 
the collinearity does not show up in the OLS model (Wheeler and Tie
felsdorf, 2005). Thus, the VIF was used to evaluate local collinearity in 
GWR. The variables that have VIF > 5 were removed to ensure that 
variables are independent at a local scale, and the model form is the 
simplest with the fewest independent variables (Fig. S2). Although GWR 
allows the coefficients of the independent variables varied over space, 
the set of independent variables is usually constant across space. Since it 
is hypothesized that the water balance in reference watersheds has 
different controls than in non-reference watersheds, the two sets of 
watersheds are modeled separately. A flowchart showing an overview of 
the research design of this study is shown in Fig. 1. 

3. Results 

3.1. Spatial patterns of ω 

High values of ω (>3) are found in the Great Plains and Florida, and 
low values of ω (<2) are in the Northeast and Northwest (Fig. 2). These 
spatial patterns are consistent for both reference and non-reference 
watersheds. Although the number of non-reference watersheds (765) 
is much larger than the reference watersheds (126), the range and 
variability of ω values in the two sets of watersheds are similar. The ω 
values in reference watersheds range from 1.1 to 4.0 with a mean and 
standard deviation of 2.2 ± 0.5. In non-reference watersheds, ω values 
range from 1.3 to 4.1 with a mean and standard deviation of 2.2 ± 0.4 
(Table 1). A Kolmogorov-Smirnov test showed that distributions of ω 
values from the two sets of watersheds are not statistically significantly 
different (p > 0.05). Moran’s I for ω is 0.19 (p < 0.05) in reference 
watersheds and 0.57 (p < 0.05) in non-reference watersheds. This in
dicates that the ω values of both sets of watersheds have statistically 
significant spatial autocorrelation. 

3.2. Exploratory data analysis 

In reference watersheds, ω values have the highest negative corre
lation with rCMS (r = −0.74) and the highest positive correlation with 
AWC/P (r = 0.71; Fig. 3). Other variables that are strongly correlated 
with ω (|r| > 0.7) are FOREST (r = −0.74) and RIP100_FOREST (r =
−0.73). In non-reference watersheds, rCMS has the highest negative 
correlation with ω (r = −0.64), and the topographic wetness index 
(TOPWET) has the highest positive correlation (r = 0.41; Fig. 4). None of 
the variables has a |r| > 0.7 in the non-reference watersheds. Generally, 
variables that have statistically significant correlations with ω are 
similar in the reference and non-reference watersheds, except for a few 
variables such as average soil permeability (PERMAVE) and relief ratio 
(RRMEAN). The ω in the reference watersheds has a correlation of −0.21 
with PERMAVE, but the correlation is not statistically significant in non- 
reference watersheds. In contrast, ω in the non-reference watersheds has 
a correlation of 0.17 with RRMEAN, but the relationship is not statisti
cally significant in reference watersheds. The signs of the relationships 
are generally consistent between reference and non-reference water
sheds. The ω is negatively correlated with rCMS, SF, Slope, elevation 
(mean, max, median, and std), FOREST, MAINS100_FOREST, RIP100_
FOREST, and MAINS100_DEV. The ω is positively correlated with AWC/ 
P, TOPWET, AREA, planted/cultivated lands (PLANT, MAINS100_
PLANT, and RIP100_PLANT), irrigation lands (PCT_IRRIG_AG), number 
of dams (NDAMS), dam density (DDENS), and developed land (DEV). 
Although the sign of the correlation is consistent between both sets of 
watersheds, their magnitudes differ. For example, the correlation be
tween ω and FOREST is −0.74 in reference watersheds and −0.58 in 
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non-reference watersheds. This indicates the two types of watersheds 
may have somewhat different relationships and therefore should be 
modeled separately. 

Statistically significant correlations also exist between some of the 
exploratory variables. Variables that belong to the same category have a 
high correlation, such as FOREST, MAINS100_FOREST, and RIP100_
FOREST. The climatic variable rCMS has a positive correlation with 
slope (r = 0.80 in ref. and r = 0.68 in non-ref.); SF has a positive cor
relation with the median of watershed elevation (r = 0.68 in ref. and r =
0.71 in non-ref.); PLANT has a positive correlation with topographic 
wetness index (r = 0.55 in non-ref. and r = 0.70 in non-ref.). The 
collinearity was removed by retaining only one variable from each pair 
that are collinear. The variable was selected based on adjusted R2, AICc, 
and MAE. 

3.3. Spatial pattern of the controls and variable importance of ω 

In reference watersheds, the OLS model shows that FOREST is the 
most important exploratory variable, followed by SF (Table 2). Both SF 
and FOREST have negative effects on ω. In non-reference watersheds, 
the important exploratory variables are different from the reference 
watersheds. Relative cumulative moisture surplus (rCMS) is the most 
important exploratory variable of ω, followed by dam storage (STOR_
NOR) and riparian 100 m buffer developed land (RIP100_DEV; Table 2). 
This demonstrates that the controls of ω vary between watersheds with 
and without human disturbance. Human activities have a pronounced 

impact on ω in non-reference watersheds, especially those related to the 
construction of dams and urban sprawl. However, even in non-reference 
watersheds, ω represents more than just human activities. Climate var
iables such as rCMS also influence ω. Increases in STOR_NOR tend to 
increase ω, while increases in rCMS and RIP100_DEV tend to decrease ω. 
The OLS model for ω has an adjusted R2 of 0.65 and an AICc value of 
−127.08 in reference watersheds, and an adjusted R2 of 0.50 and an 
AICc value of −865.71 in non-reference watersheds. In comparison, the 
GWR model has an adjusted R2 of 0.85 in reference watersheds and 0.80 
in non-reference watersheds. The AICc value decreases to −194.29 in 
reference watersheds and −1367.57 in non-reference watersheds. 

In GWR, the relationship between ω and independent variables 
varies across space. In both types of watersheds, a Monte Carlo (MC) test 
shows that all coefficients have statistically significant spatial non- 
stationarity (p < 0.05; Table 2). In reference watersheds, the co
efficients of SF are negative in most watersheds in the eastern half of the 
country, but they are positive in the Northeast and several states such as 
North Dakota, Nebraska, and Texas (Fig. 5a). For FOREST, negative 
coefficients are found in most watersheds, especially in the Northern 
Great Plains (Fig. 5b). In the Northeast and Northwest, coefficients of 
FOREST are positive (Fig. 5b). 

In non-reference watersheds, most watersheds have negative co
efficients of rCMS, especially in Minnesota. In contrast, positive co
efficients of rCMS are clustered in states such as Illinois, Mississippi, 
Florida, and Maine (Fig. 5c). For STOR_NOR, positive coefficients are 
found in most watersheds. They are distributed evenly across the 

Fig. 1. Flowchart illustrating the research design of this study.  
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country except in the Northwest, where most watersheds have negative 
coefficients of STOR_NOR (Fig. 5d). For RIP100_DEV, the western part 
mostly has positive coefficients, while in the eastern part, the number of 
watersheds with positive and negative coefficients is evenly split 
(Fig. 5e). About 80% of the watersheds (64 out of 80) in the Southwest 
have negative coefficients of RIP100_DEV, especially in Colorado. 

The GWR model shows that SF is the most important variable in most 
reference watersheds, especially in the Northeast and Midwest. A total of 
42 reference watersheds have FOREST as the most important variable. 
Most of them are along the west coast (Fig. 6a). A total of 506 non- 
reference watersheds have rCMS as the most important variable, and 
they are primarily located in the eastern half of the country (Fig. 6b). 
This is consistent with the OLS model in that rCMS is the most important 
variable. STOR_NOR is the most important variable in 159 watersheds 
(21%), and they are mostly located in the Midwest and Oregon. The 
remaining (13%) non-reference watersheds have RIP100_DEV as the 
most important variable, and they are in Colorado, Idaho, and parts of 
California. 

3.4. Spatial pattern of local R2 

The local R2 values of ω in reference watersheds are generally quite 
high and have a mean value of 0.87. The relatively low R2 values (<0.6) 
are primarily found in Missouri (Fig. 7a). The modeled and observed ω 
have a correlation value of 0.93 (p < 0.05), and the mean absolute error 
is 0.12. As seen from the spatial pattern of the residuals (actual minus 
predicted), larger residuals tend to occur in watersheds in North Dakota, 
Nebraska, and California (Fig. 7b). Moran’s Index for the OLS model is 
0.05 (p < 0.05) and for the GWR model it is 0.02 (p > 0.05). This 

indicates that the residuals in the GWR model are randomly distributed 
(Table 2). The modeled Q closely matches the observed Q with an MAE 
of 26.38 mm and a MAPE of 9.59% (Fig. 8a). 

In non-reference watersheds, the local R2 values of ω are generally 
high and have a mean value of 0.79, which is slightly lower than the 
mean local R2 in the reference watersheds. The locations with relatively 
low local R2 values (<0.5) are primarily found in Indiana, Nevada, and 
parts of California (Fig. 7c). The modeled and observed ω have a cor
relation value of 0.92 (p < 0.05), and the mean absolute error is 0.11. 
The high values of residual of ω occur in several watersheds in California 
and Florida (Fig. 7d). Moran’s Index for the OLS model is 0.49 (p < 0.05) 
and decreases drastically to 0.04 (p > 0.05) in GWR model. This in
dicates that the residuals in the GWR model do not exhibit spatial 
autocorrelation (Table 2). The modeled Q matches the observed Q with 
an MAE of 21.14 mm and a MAPE of 8.70% (Fig. 8b). While the mean 
value of R2 values of ω in non-reference watersheds is slightly lower than 
in reference watersheds, the error in Q is also lower. This may be 
because the flow volume in reference watersheds is generally higher 
than in non-reference watersheds (mean value of 502.5 mm in ref vs 
380.1 mm in non-ref). The same absolute difference of ω in humid and 
arid regions may not lead to the same absolute difference in streamflow. 

4. Discussion 

4.1. Spatial heterogeneity in the relationship between ω and predictors 

According to the Monte Carlo test, all the independent variables in 
the GWR model have statistically significant spatial heterogeneity 
(Table 2). In the reference watersheds, coefficients of FOREST are 

Fig. 2. Spatial variation of ω in reference watersheds (top; 126 watersheds) and non-reference watersheds (bottom; 765 watersheds) in the continental United States. 
The blue (yellow) colors indicate low (high) values of ω. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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negatively correlated with aridity index (r = −0.79, p < 0.05; Fig. 9). 
This indicates that climate is a major controlling factor of the effects of 
forest coverage on streamflow. Arid watersheds generally have higher 
absolute coefficients than humid watersheds. This is consistent with 
Zhang et al. (2016), who found that the Budyko shape parameter is more 
sensitive to vegetation change in dry watersheds. Watersheds with 
positive coefficients of FOREST are mostly located in regions where the 
aridity index < 1 (Fig. 9). This indicates that in humid regions, when 
forest coverage increases, ω and the evaporative ratio increase and this 
reduces Q/P. A positive correlation is also found in Li et al. (2013), Xu 
et al. (2013), and Xing et al. (2018). However, most watersheds have 
negative coefficients for the FOREST variable, especially when the 
aridity index is >1.2. Yang et al. (2009) also found a negative correlation 
between ω and vegetation coverage in 30 basins with an aridity index 
ranging from 1.12 to 2.60. The negative correlation suggests that de
creases in ω and in E/P tend to be associated with an increase in forest 
coverage. 

The physical mechanisms that are responsible for these relationships 
are due to the interactions between vegetation coverage, climate types, 
and water cycle (Gan et al., 2020). Changes in ω can be due to changes in 
PET/P or ET/P. When PET/P increases with an unchanged evaporative 
ratio (ET/P), ω decreases. This causes a horizontal shift in the Budyko 
curves (Fig. 10a). Forest coverage also decreases with increases in PET/ 
P, as arid regions tend to have less forest (Fig. 10b). In this case, ω has a 
positive correlation with forest coverage. When ET/P increases and the 
evaporative ratio (PET/P) remains unchanged, ω increases. This causes a 
vertical shift in the Budyko curves (Fig. 10a). ET/P is negatively corre
lated with forest coverage when PET/P > 1 and it is positively correlated 
with forest coverage when PET/P < 1 (Fig. 10c). Therefore, in humid 
regions, when PET/P remains unchanged, ω tends to have a positive 

correlation with forest coverage. In contrast, in arid regions, ω tends to 
have a negative correlation with forest coverage. In other words, in
creases in forest coverage tend to increase ET/P and decrease Q/P in 
humid regions, while in arid regions, the opposite is true. It should be 
noted that the influences that are discussed here are specifically focused 
on the variation in relationships over space. Since arid watersheds are 
more widely dispersed in the contiguous United States than humid 
watersheds, the influence of forest coverage on water balance in arid 
watersheds may primarily be controlled by climate, while in humid 
watersheds, the influence may primarily be controlled by land-use types. 
Most reference watersheds in this study have PET/P > 1, and the 
changes in ω are mainly due to a vertical shift in the Budyko curves. 
Thus, the correlation between ω and forest coverage in most reference 
watersheds is negative, which is consistent with Bai et al. (2020) and 
Abatzoglou and Ficklin (2017). The decreases in forest coverage with 
increases in both the PET/P and ET/P was also found by Huo et al. 
(2021). 

The spatial heterogeneity of coefficients of SF in the reference wa
tersheds may be related to the threshold of the fraction of precipitation 
falling as snow. As seen from Fig. 9, most watersheds (85 out of 126) 
have negative coefficients of SF. This is consistent with Berghuis et al. 
(2014), who found a decrease in streamflow because of the precipitation 
shift from snow towards rain. The findings in Berghuis et al. (2014) do 
not apply to watersheds with marginal SF values (<15%). There are also 
3 out of 97 watersheds used in Berghuis et al. (2014) that have opposite 
sensitivity of Q/P to SF. The watersheds with relatively high positive 
coefficients of SF (>0.1) in this study have SF values smaller than 17%. 
Regions with relatively low SF values may have higher chances that the 
increases in SF can lead to an increase in ω and E/P and a decrease in Q/ 
P. The mechanisms that determine the influence of SF on streamflow 

Fig. 3. Correlation matrix showing the correlation between ω and the independent variables in reference watersheds (n = 126). The red (blue) colors represent 
positive (negative) correlations. Correlations that are not statistically significant (p > 0.05) are shown in white. Descriptions of the variables are provided in Table 1. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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may be a combination of vegetation and topography and vary from 
watershed to watershed (Berghuijs et al., 2014). The decreases in 
streamflow as a result of a reduction of SF may be associated with in
creases in evapotranspiration due to declines in snow cover (Milly and 
Dunne, 2020) or increases in atmospheric demand for water in a 
warming climate (Neto et al., 2020). 

In non-reference watersheds, coefficients of rCMS are negative in 
most watersheds except in the regions around Wisconsin, Illinois, and 
Indiana. This may be related to the climate region. As seen from Fig. 11, 

watersheds that have relatively high positive coefficients of rCMS are 
clustered around PET/P = 1. Results in the transitional areas where 
PET/P = 1 may have greater uncertainties. This is because the calcula
tion of the rCMS is based on the difference between PET and P, and the 
two variables have similar values in the transitional areas. This may 
explain the relatively low local R2 in regions in Midwest around Great 
Lakes. The negative coefficients of rCMS indicate that higher values of 
rCMS influence water balance by lowering ω values and increasing Q/P. 
This is because high values of rCMS represent an out-of-phase 

Fig. 4. Same as Fig. 3, but for non-reference watersheds (n = 765).  

Table 2 
Regression estimates and model goodness of fit of OLS and GWR. Moran’s I represents the spatial autocorrelation of the model residuals (* indicates significance at 0.05 
level). Monte Carlo (MC) test shows the p-value of spatial heterogeneity. A p-value < 0.05 indicates significant spatial heterogeneity.  

Reference watersheds (n = 126)  

OLS Estimate GWR 

Min Q1 Median Q3 Max MC test 

(Intercept) 0.80 0.32 0.57 0.67 0.82 1.31 <0.01 
SF −0.09 −0.54 −0.26 −0.11 <0.01 0.60 <0.01 
FOREST −0.14 −0.48 −0.11 −0.03 0.01 0.08 <0.01 
AICc −127.41      −194.29 
Adj. R2 0.65      0.85 
Moran’s I 0.05*      0.02  

Non-reference watersheds (n = 765)  
OLS Estimate GWR 

Min Q1 Median Q3 Max MC test 
(Intercept) 0.78 0.34 0.64 0.75 0.83 1.42 <0.01 
rCMS −0.17 −0.82 −0.25 −0.14 −0.05 1.08 <0.01 
STOR_NOR 0.06 −0.94 −0.04 0.02 0.08 0.99 0.01 
RIP100_DEV −0.02 −0.50 −0.02 <0.01 0.03 0.52 <0.01 
AICc −865.71      −1367.57 
Adj. R2 0.50      0.80 
Moran’s I 0.49**      0.04  
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relationship between PET and P (i.e., P is higher while PET is lower). In 
this case, a greater fraction of P can be converted to Q instead of ET 
(Wolock and McCabe, 1999). 

STOR_NOR and RIP100_DEV are two human-related factors repre
sented by ω in the GWR model in non-reference watersheds. The spatial 
distributions of their coefficients are more varied, and the controlling 
factors require further investigation. About 64% of the non-reference 
watersheds have positive coefficients of STOR_NOR. This suggests that 
an increase in dam storage can increase ω and E/P and decrease Q/P. 
This is consistent with the discussion in Wang and Hejazi (2011) that 
evaporation can be enhanced due to increases in the surface area of 
water bodies. For RIP100_DEV, about half of the watersheds have 
negative coefficients. The negative coefficients mean that increases in 
developed land in the riparian zone can decrease ω and E/P, and in
crease Q/P. The impacts of urban sprawl on increases in streamflow is 
also observed in previous studies in regions that have negative 

coefficients of RIP100_DEV, such as in Texas (Olivera and DeFee, 2007), 
the Charlanta Megaregion (Debbage and Shepherd, 2018), and Colorado 
(Bhaskar et al., 2020). The increasing impacts on streamflow are likely 
due to increases in impervious areas and decreases in infiltration. The 
positive coefficients may be associated with other processes during ur
banization, such as cross-basin transfers of public and/or sewer water 
(Oudin et al., 2018). Different signs of the coefficients of developed land 
are also observed in Li et al. (2020), using the GWR model in exploring 
the impacts of urbanization on hydrology. Elevation may be a control
ling factor of the importance of RIP100_DEV. As shown in the rela
tionship between absolute values of the coefficients of RIP100_DEV and 
the mean elevation in the watershed, the importance of RIP100_DEV 
increases with elevation (r = 0.71; Fig. 10). This indicates that there may 
be a confounding effect between developed land and topography. Urban 
expansion in high-elevation regions may have a greater impact on runoff 
generation than in low-lying regions. Debbage and Shepherd (2018) also 

Fig. 5. Spatial variation of coefficients of GWR model of SF (a), FOREST (b) in the reference watersheds, and rCMS (c), STOR_NOR (d), RIP100_DEV (e) in non- 
reference watersheds. The red (blue) colors indicate positive (negative) coefficients. Note that the scale used in the reference watersheds (a and b; −0.6 to 0.6) 
is different from the scale used in the non-reference watersheds (c to e; −1 to 1). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. Spatial distribution of the most important variable for reference watersheds (a) and non-reference watersheds (b). The most important variable is identified as 
the one with the highest absolute value of standardized beta coefficients. 
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Fig. 7. Spatial pattern of local R2 values and residuals of omega in reference watersheds (a and b) and non-reference watersheds (c and d). For local R2 values, the 
darkest colors represent the highest value. For residuals of omega, the red (blue) colors represent positive (negative) residuals, which are calculated using the actual 
values minus the modeled values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Scatter plot of modeled and observed Q in reference watersheds (n = 126; a) and non-reference watersheds (n = 765; b).  

Fig. 9. Scatter plot of coefficients of FOREST against PET/P (left) and coefficients of SF against SF (right) in reference watersheds.  
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b) c)

Fig. 10. a) Distribution of the forest 
coverage of reference watersheds (n 
= 126) on the Budyko curves (ω =
1.5, 1.8, 3). The yellow (blue) colors 
indicate lower (higher) values of the 
forest coverage. b) Scatterplot be
tween PET/P and forest coverage in 
reference watersheds. “r” represents 
Pearson correlation coefficient. c) 
Group scatterplot between ET/P and 
forest coverage in reference water
sheds. Red (blue) colors represent 
watersheds with PET/P > 1 (<0.5), 
and the green colors represent water
sheds with 0.5 =< PET/P < 1. (For 
interpretation of the references to 
colour in this figure legend, the reader 
is referred to the web version of this 
article.)   

Fig. 11. Scatter plot of coefficients of rCMS against PET/P (left) and absolute coefficients of RIP100_DEV against mean watershed elevation (right) in non- 
reference watersheds. 
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found that clustering impervious surfaces in source areas of the water
shed played an important role in increasing high flow frequency. 

4.2. Bivariate relationship 

Low values of ω characterize conditions where precipitation is 
quickly converted to runoff, while high values of ω characterize a high 
ratio of ET to P (Dingman, 2015). This section discusses the possible 
physical mechanisms that are responsible for the relationship between ω 
and the variables that are not discussed in Section 4.1. 

Physiographic variables that have statistically significant negative 
correlations with ω include slope, elevation, and watershed compactness 
ratio. The slope has a negative correlation with ω because P is quickly 
converted to Q in steeply sloping watersheds, leading to a smaller value 
of ω. This is consistent with Abatzoglou and Ficklin (2017) and Yang 
et al. (2007). Elevation has a similar physical mechanism influencing ω, 
and the negative correlation we found is consistent with the results of Xu 
et al. (2013). The watershed compactness ratio represents the watershed 
shape, and its bivariate relationship with ω was not explored in previous 
studies. A high value of the compactness ratio means a more compact 
and regular shape of a watershed, such as a circle or a rectangle (Bogaert 
et al., 2000), which leads to a shorter concentration time of flow, a faster 
conversion from P to Q, and a smaller value of ω. 

Physiographic variables that are positively correlated with ω include 
AWC/P, topographic wetness index, drainage area, and relief ratio. A 
higher ratio of AWC/P characterizes greater subsurface storage, which 
reduces the conversion from P to Q and increases the value of ω 
(Abatzoglou and Ficklin, 2017; Xing et al., 2018; Yang et al., 2007). The 
topographic wetness index measures the long-term soil moisture avail
ability (Kopecký and Čížková, 2010) and thus as it increases, so does 
potential ET and the value of ω. Drainage area has a similar physical 
mechanism influencing ω, and a positive correlation was also found in 
Xu et al. (2013). High values of the relief ratio characterize broad and 
level surfaces with several depressions (Pike and Wilson, 1971), 
reducing Q potential and increasing the ω value. A negative correlation 
between relief ratio and ω was found in Xing et al. (2018), but their relief 
ratio was calculated as the ratio of the difference between the maximum 
and minimum elevations and the longest flow path. High values of the 
relief ratio in Xing et al. (2018) represent a larger elevation change per 
unit length of the river, which is the opposite topographic conditions 
from the level surfaces indicated by the high relief ratio used in this 
study. In this study, relief ratio is calculated as the ratio of the difference 
between mean and minimum elevation and the difference between 
maximum and minimum elevation (Table 1). Therefore, our results 
agree with theirs. 

Positive correlations were found between most human-related vari
ables and ω. For example, ω is positively correlated with planted/culti
vated land, which is consistent with previous studies (Bao et al., 2019; 
Han et al., 2011; Jiang et al., 2015). The physical mechanism may be 
because the irrigation in the planted/cultivated land leads to the 
enhanced ET (Wang and Hejazi, 2011). 

4.3. Implications, limitations, and future studies 

This study has implications for integrated watershed management at 
the local scale. Our study found that in reference watersheds, the im
pacts of forest coverage is more important in dry regions than in wet 
regions. This indicates that changes in forest coverage in water-limited 
regions should be undertaken with caution because they can have a 
dramatic impact on ET and Q. In non-reference watersheds, RIP100_DEV 
is the most important human-related variable. This indicates that these 
watersheds are particularly sensitive to development in riparian areas. 
Local water resources managers should carefully consider the spatial 
location and type of development that takes place in the watersheds, 
especially development in proximity to streams. In addition, the 
importance of RIP100_DEV increases with elevation. Watershed 

managers and city planners should be cautious about expanding urban 
areas in high elevation areas. Expansion of impervious surfaces in re
gions with high elevation can lead to a shorter concentration time and 
greater streamflow. Since this study identifies the most important vari
able in each watershed, this can be used to identify where water re
sources management efforts should be focused. Overall, we 
demonstrated that there are statistically significantly variations in terms 
of which variable has the strongest influence on the water balance in the 
contiguous United States. This indicates that effective water resources 
management should consider the local climate, land-use types, and 
topographic conditions and that a one-size-fits-all approach to water 
management will not be effective. 

Although this study considers a comprehensive list of climatic, 
physiographic, and human-related independent variables, not all 
possible independent variables are included. For example, the average 
storm depth was found to be important for explaining ω in previous 
studies (Shao et al., 2012; Xing et al., 2018; Zhang et al., 2004), but it 
was not considered in this study. Even though it is not included as an 
independent variable, the performance of the current GWR model 
(adjusted R2 = 0.85 for reference and 0.80 for non-reference water
sheds) is reasonable for analyzing the spatial heterogeneity in the con
trols of streamflow. Storm depth is also likely correlated with other 
climate variables such as rCMS. In addition, climate seasonality can be 
represented by multiple variables such as Milly’s index (Milly, 1994), 
the seasonality index developed by Walsh and Lawler (1981), precipi
tation seasonality developed by Markham (1970), and relative cumu
lative moisture surplus (Wolock and McCabe, 1999). This study only 
uses rCMS because of its simple calculation and the strong correlation 
with ω reported by Abatzoglou and Ficklin (2017). Future studies could 
consider other measures of seasonality. 

GWR assumes no collinearity among the independent variables in the 
model (Wheeler, 2019). Therefore, this study removed variables where 
the local VIF > 5. For example, the original best global multiple 
regression model of ω in reference watersheds is ω = exp(−0.09*rCMS +
(−0.08)*SF + 0.08*ELEV_MEDIAN + (−0.10)*FOREST). The adjusted 
R2 is 0.76, and all the variables have VIF < 5. However, if all four var
iables are used in the GWR model, many local observations have VIF >
5. This is because local collinearity effects can be present even when no 
global collinearity is detected (Wheeler, 2007). The absence of collin
earity in the global regression model is not a reliable indicator for the 
absence of local collinearity (Wheeler, 2007). To deal with this issue, we 
removed variables that lead to local VIF > 5 in both GWR and the 
counterpart OLS model. The final GWR model has all the observations 
with local VIF < 5 (Fig. S2) and the best set of model performance 
measures (R2, AIC, and MAE). Removing variables is a simple and 
effective way to address local collinearity. This study provides reason
ably good performance of the GWR model and uncovers the spatial 
heterogeneity of the relationship between ω and dominant independent 
variables. Future studies may consider using penalized versions of GWR, 
such as the geographically weighted ridge regression (GWRR), to retain 
all the variables in the global regression model while properly 
addressing local collinearity issues. 

The GWR model can accurately predict ω values, and it has an 
adjusted R2 of 0.85 in reference watersheds. This is higher than the R2 of 
0.812 obtained from a generalized additive model in 211 reference 
watersheds in the continental U.S. (Abatzoglou and Ficklin, 2017). 
Abatzoglou and Ficklin (2017) also validated their model in an inde
pendent set of watersheds and had an R2 of 0.65. This study does not 
validate the GWR model because it focuses on exploring the spatial 
heterogeneity of the relationship between ω and the environmental 
predictors. Future studies can compare the accuracy of the GWR model 
with other modeling methods using validation watersheds for prediction 
purposes. Although the GWR model has good model accuracy, there are 
regions with relatively low values of local R2, such as non-reference 
watersheds in Indiana, Ohio, and Michigan. The regions may have 
important independent variables in explaining ω other than rCMS, 
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STOR_NOR, and RIP100_DEV identified in this study, such as irrigation 
agriculture or planted/cultivated land percentage (Wang and Hejazi, 
2011). Future studies can conduct separate modeling at regional scales 
to improve the model accuracy. 

5. Conclusions 

This study improves our understanding of the controls of surface 
water balance by uncovering the spatial heterogeneity of the relation
ship between Budyko shape parameter ω and environmental variables. 
The spatial-varying relationships help to clarify the relative importance 
of forest coverage as a function of climate. Human-related variables 
were also considered. This is an improvement over previous studies that 
only considered climatic and physiographic variables. A geographically 
weighted regression model was used to identify the set of variables that 
best explain the spatial variability of ω in 126 reference and 765 non- 
reference watersheds in the contiguous U.S. An ordinary least squares 
model was used to uncover the global relationship between the ω and the 
same set of environmental predictors. Our new findings are as follows:  

(1) The representations of ω are different in reference and non- 
reference watersheds. In reference watersheds, ω is represented 
by precipitation falling as snow and forest coverage. In non- 
reference watersheds, ω is represented by relative cumulative 
moisture surplus, normal dam storage, and riparian developed 
land. The GWR model explains 85% of the variability in ω in 
reference watersheds and 80% of the variability ω in non- 
reference watersheds. 

(2) In non-reference watersheds, human disturbance primarily con
sists of dam construction and urbanization. Dam storage is the 
most important variable in 21% of non-reference watersheds. 
Most of them are in parts of the Midwest and Oregon. Riparian 
developed land is more important in 13% of non-reference wa
tersheds, and they are mostly in Colorado, Idaho, and parts of 
California. 

(3) There are statistically significant spatial variations in the rela
tionship between ω and the independent variables (p < 0.05). In 
reference watersheds, climate is a dominant factor controlling the 
spatial heterogeneity of coefficients of forest coverage. The 
relative importance of forest coverage is higher in dry watersheds 
than in humid watersheds. In non-reference watersheds, the 
spatial patterns of coefficients of dam storage and riparian 
developed land are more varied. The impact of riparian devel
oped land on streamflow increases with elevation (r = 0.71). 

The spatially varying importance of environmental and anthropo
genic predictors identified in this study can be used for guiding local 
water resources management. Watershed managers and city planners 
should be cautious about changing forest coverage in reference water
sheds in dry regions and expanding riparian developed areas in non- 
reference watersheds in high-elevation areas. This study identifies the 
most important variables, other than precipitation, that control local 
water availability. National watershed management strategies should be 
adapted at the local scale to reflect these spatially varying relationships. 
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