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Understanding how precipitation is partitioned into evapotranspiration and streamflow is important for assessing
water availability. In the Budyko framework, this partitioning is quantified through the o parameter. Previous
studies have modeled the physical representation of ®; however, the spatial heterogeneity of the relationship
between o and the variables that it represents has not been investigated. This study uses a geographically

Keywords: weighted regression model to identify spatial variations in the factors that control the water balance in 126
Streamflow . o . . .
Budyko reference watersheds with minimal human disturbance and 765 non-reference watersheds in the continental

United States. Results show that snowfall and forest coverage are important predictors of ® in the reference
watersheds. Relative cumulative moisture surplus, dam storage, and developed land in riparian areas are
important predictors in non-reference watersheds. Climate is a primary control of the relative importance of
forest coverage. The importance of forest coverage is greater in arid watersheds than in humid watersheds.
Snowfall is more important than forest coverage in the Northeast and Midwest. This study demonstrates that dam
construction and urban sprawl have a significant impact in non-reference watersheds. Dam storage is the most
important predictor in 21% of the non-reference watersheds, and riparian developed land is more important in
13% of the non-reference watersheds. Overall, there are statistically significant relationships between climatic,
physiographic, and human-related factors and the o parameter. The spatial variations in the relationship
quantified in this study can help to improve regional watershed management.

Spatial heterogeneity
Geographically weighted regression
Ordinary least squares regression

1. Introduction

Understanding how precipitation is partitioned into evapotranspi-
ration and streamflow is important for understanding global and
regional water availability. Climate variability, watershed physio-
graphic characteristics, and anthropogenic activities can substantially
impact the surface water balance (Berghuijs et al., 2017; Gentine et al.,
2012). Quantification of the relative importance of these factors is
critical for improving water resources management and decision mak-
ing. Process-based hydrological models are one method of quantifying
the impacts of these factors (Dey and Mishra, 2017). However, it can be
time-consuming to apply these models across many watersheds due to
the labor-intensive model calibration process (Fatichi et al., 2016). In
the last decade, a conceptual hydrological framework known as the
Budyko framework has been successfully applied for many applications,
such as quantifying runoff sensitivity (Berghuijs et al., 2017; Gud-
mundsson et al., 2016; Renner et al., 2012; Sankarasubramanian et al.,
2001), unravelling the effects of climate and anthropogenic factors on
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streamflow (Jiang et al., 2015; Liang et al., 2015; Patterson et al., 2013;
Wang and Hejazi, 2011; Wang et al., 2020), modeling streamflow and
evapotranspiration (Abatzoglou and Ficklin, 2017; Chen et al., 2013;
Fang et al., 2016; Nayak et al., 2020), and improving the calibration of
global hydrological models (Greve et al., 2020). The advantages of the
Budyko framework are multifold. First, it is physically based. The
Budyko hypothesis relates the evaporative ratio (ET/P) to the aridity
index (PET/P). The relationship is constrained by the energy limit when
PET equals to ET and the water limit when ET equals to P. The second
advantage is that it has a low computational cost, making it more effi-
cient to apply over a large number of watersheds to examine spatial
variability (Abatzoglou and Ficklin, 2017; Padron et al., 2017; Xu et al.,
2013). Lastly, it has fewer data requirements than process-based hy-
drological models, making it preferable for applications over longer time
periods and larger spatial scales.

In the version of the Budyko framework that is known as Fu’s
equation (Fu, 1981), long-term streamflow is simulated using mean
annual precipitation (P), mean annual potential evapotranspiration
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(PET), and other factors that are represented by the shape parameter w.
The @ parameter is used to partition the water balance input (precipi-
tation) and output (evapotranspiration and streamflow); however, it
does not have a specific physical meaning (Abatzoglou and Ficklin,
2017). Previous studies have explored the meaning of ® and related it to
climatic factors such as seasonality, storminess, and snowfall conditions,
as well as watershed characteristics. For example, Potter et al. (2005)
found that for a given aridity index, the ratio of mean annual E to P was
larger when P and PET were in phase. When higher temperatures
coincide with higher moisture surplus, this can increase evapotranspi-
ration. Abatzoglou and Ficklin (2017) found a significant negative cor-
relation between o and the seasonal asynchronicity between P and PET.
The importance of seasonality or synchronicity in P and PET was also
emphasized by Milly (1994), Wolock and McCabe (1999), Shao et al.
(2012), and Xing et al. (2018). Snowfall is another climate-related
element that can affect the water balance. Using the Budyko frame-
work, Berghuijs et al. (2014) found that streamflow is likely to decrease
when precipitation shifts from snowfall to rainfall. This is consistent
with a negative correlation between o and the fraction of precipitation
falling as snow shown in Abatzoglou and Ficklin (2017). Finally,
storminess such as average storm depth and storm frequency has also
been shown to influence @ (Donohue et al., 2012; Shao et al., 2012; Xing
et al., 2018; Yang et al., 2009; Zhang et al., 2004).

Watershed characteristics such as vegetation, soil properties, and
topography can also influence w. Vegetation-related variables that can
change o include vegetation coverage and vegetation type (Abatzoglou
and Ficklin, 2017; Chen et al., 2020; Donohue et al., 2007, 2010; Li
et al., 2013; Shao et al., 2012; Sinha et al., 2019; Xu et al., 2013; Zhang
et al., 2016). For example, Yang et al. (2008a) found a significant cor-
relation between the curve parameter n (which is a shape parameter) of
Choudhury’s equation and the leaf area index. Forested watersheds have
a higher o than grassland-dominated watersheds because they typically
have greater evapotranspiration (Zhang et al., 2004). Soil-related vari-
ables such as saturated hydraulic conductivity and available water
holding capacity can also impact ® (Abatzoglou and Ficklin, 2017;
Donohue et al., 2012; Yang et al., 2007). For example, the ratio of
available water capacity to precipitation has been shown to have a
statistically significant positive correlation with o, as available plant
water regulates the available water for Q (Abatzoglou and Ficklin,
2017). Watershed topography variables such as slope, aspect, relief
ratio, and elevation have also been found to influence o (Abatzoglou and
Ficklin, 2017; Shao et al., 2012; Sinha et al., 2019; Xing et al., 2018; Xu
et al., 2013; Yang et al., 2007, 2009). For example, slope is negatively
correlated with o because watersheds with steeper slopes tend to have
higher runoff (Abatzoglou and Ficklin, 2017; Yang et al., 2007, 2009).

Human activities such as the modification of land use/land cover,
urbanization, and irrigation have been observed to alter the hydrologi-
cal cycle worldwide (Debbage and Shepherd, 2018; Destouni et al.,
2013; Rodell et al., 2018). Although the non-parametric Budyko
framework was initially developed for large-scale watersheds with
minimal human interference, the parametric Budyko framework, such
as the Fu’s equation (Fu, 1981), can be applied to human-impacted
watersheds (Liang et al., 2015; Patterson et al., 2013; Wang and
Hejazi, 2011). Some recent studies have attempted to directly relate o to
factors such as irrigated area, cultivated land area, percentage of farm-
land, and population (Bai et al., 2020; Bao et al., 2019; Han et al., 2011;
Jiang et al., 2015; Xing et al., 2018). A positive correlation between ®
and irrigated areas was found in 96 watersheds in China (Xing et al.,
2018). This is also found in sub-watersheds of the Yellow River Basin in
China (Bao et al., 2019; Jiang et al., 2015). In the United States, human
activities have been found to have greater impacts on streamflow than
climate change in the High Plains and western U.S. (Wang and Hejazi,
2011). However, it is unclear which specific human-related factors are
dominant and how they vary regionally. Abatzoglou and Ficklin (2017)
modeled ® in HDCN and MOPEX watersheds in the continental U.S. and
found that it was strongly influenced by -climate factors, soil
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characteristics, and watershed topography. They pointed out that their
model performed slightly worse in the MOPEX watersheds because the
watersheds are influenced by irrigation and land use changes (Abatzo-
glou and Ficklin, 2017). The impacts of human activities on the hy-
drological cycle have been observed in many regions in the continental
U.S. such as the Northeast (Hodgkins et al., 2019), Midwest (Kelly et al.,
2016), and Southeast (Debbage and Shepherd, 2018). Therefore, it is
important to identify how human disturbance influences ® in these
watersheds.

Previous studies have evaluated how multiple factors control
concurrently (Abatzoglou and Ficklin, 2017; Donohue et al., 2012; Li
et al., 2013; Xing et al., 2018; Xu et al., 2013). For example, Xu et al.
(2013) used a multiple linear regression model and a neural network
model in the MOPEX watersheds and 32 global watersheds. They found
that most of the variance in o can be explained by geographic locations,
Normalized Difference Vegetation Index (NDVI), slope, and elevation.
At the continental scale, Abatzoglou and Ficklin (2017) used a gener-
alized additive model to model  in 382 watersheds in the continental U.
S. They found that climate seasonality, snow fraction, the ratio of
available water capacity to precipitation, and slope can explain 81.2% of
the variability in 0. Xing et al. (2018) used a multivariate adaptive
regression spline model to simulate n in Choudhury’s equation in 96
watersheds in China. They found that the three most influential factors
were average storm depth, vegetation coverage, and precipitation sea-
sonality. They also found significant interaction effects from cultivated
land, irrigation, drought, and precipitation variability. Despite excellent
prior work modeling o in different locations around the world, the
spatial heterogeneity of the relationship between  and the independent
variables has not been studied. A negative correlation between o and
NDVI was found in a total of 211 HCDN watersheds in the U.S. (Abat-
zoglou and Ficklin, 2017) and 286 watersheds in China (Bai et al.,
2020). However, a positive correlation between @ and NDVI was found
in 224 MOPEX watersheds in the U.S. (Xu et al., 2013), 26 global wa-
tersheds (Li et al., 2013), and 96 watersheds in China (Xing et al., 2018).
The contrasting relationship between w and vegetation coverage was
also shown by Yang et al. (2009) in China and Sinha et al. (2019) in
India. Bao et al. (2019) found no significant correlation between ® and
forest coverage in a watershed in China. The findings of these previous
studies indicate that there may be spatial heterogeneity in the rela-
tionship between w and explanatory variables. A generalized model may
not be helpful for uncovering the relationship.

The lack of consideration of human-related factors and spatial het-
erogeneity of the relationship between w and environmental variables
may hinder our understanding of ®. Motivated by this research gap,
three research questions are answered in this study: (1) Do the factors
that influence o differ between watersheds with and without human
disturbance? (2) What are the most important factors that influence w in
watersheds with human disturbance? (3) How does the influence of
these factors vary spatially? To answer the three questions, a
geographically weighted regression model was used to investigate the
spatial heterogeneity in the relationship between w and 38 independent
variables in 891 watersheds (126 reference and 765 non-reference wa-
tersheds) from 1950 to 2009 water years in the continental U.S.

2. Data and methods
2.1. Study area

This study evaluates 891 watersheds covering a wide range of scales,
climate types, and topographic conditions in the contiguous U.S. The
watersheds consist of 126 reference watersheds and 765 non-reference
watersheds with continuous gauging records from 1950 to 2009 water
years. The reference and non-reference watersheds are classified by the
Geospatial Attributes of Gages for Evaluating Streamflow Version II
(GAGES 1I) dataset (Falcone et al., 2010a). The reference watersheds
have minimal human disturbance, while non-reference watersheds have
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been disturbed by human activities such as development, irrigation,
reservoirs, roadways, and fragmented land. The watersheds range in size
from 480 km? to 49592 km?. They also span a wide range of climate
regions with a range of the aridity index from 0.3 to 5.3. The slope of
these watersheds is also highly variable ranging from < 0.1% to 55.8%
(Table 1). Watersheds smaller than 480 km? were not included in the
study because of the possible inaccuracies of the representation of
meteorological conditions from using the 4-km PRISM dataset (Abat-
zoglou and Ficklin, 2017). The reference watersheds are generally
smaller than the non-reference watersheds and less variable in size
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2.2. Budyko framework

The Budyko framework is a conceptual hydrological framework for
estimating long-term water availability. Several parametric forms of the
Budyko framework have been developed, and they have similar abilities
in estimating streamflow and evapotranspiration (Jiang et al., 2015;
Yang et al., 2008a, 2008b). Fu’s version of the Budyko equation is used
in this study (Fu, 1981). In Fu’s equation, the evaporative ratio (ET/P) is
a function of the aridity index (PET/P) and the ® parameter. The
equation is expressed as:

(Table 1).

Table 1

Summary statistics for mean annual P, PET, PET/P, Q, w and the 38 independent variables in the reference and non-reference watersheds.

No.  Variables Description Reference (n = 126) Non-reference (n = 765)
Min Max Mean =+ SD Min Max Mean =+ SD
NA Mean annual P (mm) Precipitation 392.2 3072.0 1114.7 + 330.8 2702.8 1001.7 +
492.5 305.2
NA Mean annual PET (mm) Potential evapotranspiration 682.0 1844.3 1119.8 + 675.1 2297.1 1151.3 +
2239 220.1
NA  Mean annual PET/P Aridity index 0.3 47 1.2+£0.73 0.3 53 1.3+06
NA Mean annual Q (mm) Streamflow 2.2 2574.6 502.5 + 1.857 2131.9 380.1 +
486.8 265.1
NA o Budyko Fu’s equation parameter 1.1 40 22+05 1.3 41 22+04
1 rCMS Relative cumulative moisture surplus <0.1 0.8 0.3+0.2 <0.1 0.8 0.3+0.1
2 SF Snow fraction 0.1 0.7 18.1 £ 0.2 0.1 0.7 18.8 +15.2
3 AWC/P Ratio of available water capacity to precipitation 0.1 0.6 02+0.1 0.1 0.7 02+0.1
4 PERMAVE (inch/h) Average soil permeability 10.7 313.2 747 £59.4 11.0 309.1 73.5+51.7
5 Slope (%) Mean watershed slope <0.1 55.8 11.6 +12.0 <0.1 423 87+9.0
6 ASPECT N Aspect “northness”. Ranges from —1 (facing north) to -1.0 1.0 -03+06 -1.0 1.0 -03+06
1 (facing south).
7 TOPWET Topographic wetness index 9.2 149 11.9+1.2 9.7 15.0 122+1.2
8 COMPACT Watershed compactness ratio 0.3 28 15+05 0.5 28 13+04
9 ELEV_MEAN (m) Mean watershed elevation 33.2 2578.2 614.3 + 109 3318.1 642.0 +
556.0 693.7
10 ELEV_MAX (m) Max watershed elevation 57.0 3970.0 1052.2 + 25.0 4408.0 1197.0 +
922.3 1200.9
11 ELEV_MIN (m) Min watershed elevation 4.0 1553.0 331.7 + -15.0 2525.0 362.4 +
331.5 484.2
12 ELEV_MEDIAN (m) Median watershed elevation 34.0 2561.0 608.9 + 7.0 3353.0 627.9 +
560.8 689.1
13 ELEV_STD (m) Standard deviation of watershed elevation 6.0 529.7 1225+ 3.6 1100.8  140.1 £
118.7 152.6
14 ELEV_SITE (m) Elevation at gage location 6.0 1554.0 338.4 + 1.0 2525.0  365.0 +
334.1 477.6
15 RRMEAN Relief ratio; (ELEV_MEAN - ELEV_MIN)/(ELEV_MAX - 0.1 0.6 0.4 +0.1 0.1 0.7 0.4+0.1
ELEV_MIN)
16 RRMEDIAN Relief ratio; (ELEV_MEDIAN - ELEV_MIN)/ 0.1 0.7 0.4+ 0.1 0.1 0.8 0.4+£0.1
(ELEV_MAX - ELEV_MIN)
17 AREA (kmz) Watershed drainage area 485.4 25791.0 2149.5 + 480.4 49592.2 5908.2 +
2912.4 8485.6
18 FOREST (%) Watershed percent “forest” 0.0 93.7 49.5+29.7 0.0 923 39.3+27.2
19 MAINS100_FOREST (%) Mainstem 100 m buffer “forest” 0.1 92.1 41.0 £ 22.5 0.0 92.2 28.1 £19.1
20 RIP100_FOREST (%) Riparian 100 m buffer “forest” 0.1 89.4  49.1 +26.6 0.0 90.0 38.5+239
21 PCT_IRRIG_AG (%) Percent of watershed in irrigated agriculture 0.0 112 05+1.6 0.0 527 1.8+48
22 PLANT (%) Watershed percent “planted/cultivated” 0.0 93.0 24.9+27.0 0.0 93.3 30.3+28.8
23 MAINS100_PLANT Mainstem 100 m buffer “planted/cultivated” 0.0 69.1 18.8 £19.2 0.0 90.0 18.6 +18.0
24 RIP100_PLANT Riparian 100 m buffer “planted/cultivated” 0.0 88.6 21.2+223 0.0 93.0 26.5+25.4
25 NDAMS Number of dams in watershed 0.0 475.0 21.6 £60.8 0.0 1740.0  82.1 +168.9
26 DDENS (No./100 km?) Dam density 0.0 14.9 1.0+ 2.0 0.0 16.3 1.7 +£21
27 STOR_NID (megaliter/km?) Maximum dam storage in watershed 0.0 2269 89+27.0 0.0 1348.2  71.7 +£125.0
28 STOR_NOR (megaliter/km?) Nominal dam storage in watershed 0.0 120.7 4.7 +16.5 0.0 905.7  43.9 +£93.7
29 MAJ_NDAMS Number of “major” dams in watershed 0.0 120 1.0+20 0.0 155.0 9.0 +18.0
30 MAJ_DDENS (No./100 km?) Major dam density 0.0 06 01+0.1 0.0 9.0 0.2+0.5
31 FRESHW_WD (megaliters/ Freshwater withdrawal 0.5 1048.4 37.0 +£118.3 0.6 1214.4 52.0 + 85.1
(year*km?))
32 DEV (%) Watershed percent “developed” 0.0 9.7 36+20 0.0 77.1 8.0 +8.4
33 PDEN (persons/km?) Population density in the watershed 0.0 62.0 7.7+8.7 0.0 896.9  47.7 +£98.2
34 MAINS100_DEV (%) Mainstem 100 m buffer “developed” 0.0 259 55+5.2 0.0 670 82+7.9
35 RIP100_DEV (%) Riparian 100 m buffer “developed” 0.0 16.6 4.0+ 29 0.0 62.8 7.2+65
36 ROADS D (km/ km?) Road density 0.1 28 1.1+04 0.1 6.1 1.6+0.2
37 RD_STR_INTERS Number of road/stream intersections 0.0 1.2 04+0.2 0.0 1.8 06+0.2
38 IMP (%) Watershed percent impervious surfaces 0.0 1.7 05+04 0.0 30.7 1.8+29
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where ET represents evapotranspiration, P represents precipitation,
and PET represents potential evapotranspiration. All three variables are
at the mean annual timescale. The w controls partitioning of the water
balance into input (P) and output (ET and streamflow Q). The o repre-
sents the residual influence, other than PET and P, on water balance
(Greve et al., 2020). The w is calibrated by minimizing the mean abso-
lute difference between observed ET/P and simulated ET/P by using o
values ranging from 1 to 9. The Budyko framework assumes that the
water storage is negligible at long timescales. Therefore, the observed ET
is calculated from P minus Q. The residual influence represented by o is
then modeled by independent variables in Section 2.3 to quantify the
impacts of climatic, physiographic and anthropogenic factors on the
water balance. Previous studies have applied the Budyko framework in
reference and non-reference watersheds with varied study periods
(Jiang et al., 2015; Wang and Hejazi, 2011; Xing et al., 2018; Zhang
etal., 2019). The minimum study length was six years (Yang et al., 2007)
and the maximum length was 100 years (Berghuijs et al., 2017). We
believe our study period of 60 water years is long enough to assume that
water storage is negligible (/\S = 0). Only the watersheds that obey the
water balance assumption (P > Q and (P - Q) < PET) were used in this
study.

Precipitation data were obtained from the 4-km PRISM (Parameter-
elevation Regression on Independent Slopes Model) AN81m dataset
(PRISM Climate Group, 2014). Daily potential evapotranspiration was
estimated using the Hargreaves and Samani equation (Hargreaves and
Samani, 1982), which requires daily minimum and maximum temper-
ature that were obtained from the 800-m TopoWx gridded dataset
(Oyler et al., 2015). P and PET were aggregated for each watershed at
the annual timescale for the 1950 to 2009 water years. Streamflow data
were acquired from the United States Geological Survey.

2.3. Independent variables of ®

Based on an extensive review of previous studies, the m parameter in
the Budyko equation has been shown to be related to climatic, physio-
graphic, and human-related variables. The frequently identified vari-
ables are climate seasonality (Abatzoglou and Ficklin, 2017; Shao et al.,
2012; Xing et al., 2018; Zhang et al., 2004), vegetation coverage (Ning
et al., 2019; Shao et al., 2012; Xu et al., 2013; Yang et al., 2009; Zhang
et al., 2004), available water-holding capacity of the soil or hydraulic
conductivity (Abatzoglou and Ficklin, 2017; Yang et al., 2009), slope
(Abatzoglou and Ficklin, 2017; Sinha et al., 2019; Xu et al., 2013; Yang
et al.,, 2009), and human-related variables such as irrigated area or
agricultural area (Bai et al., 2020; Bao et al., 2019; Jiang et al., 2015;
Oliveira et al., 2019; Xing et al., 2018). Therefore, in this study, a total of
38 independent variables that represent various climatic, physiographic,
and human-related factors were considered in this study (Table 1).

There are two climate variables, relative cumulative moisture sur-
plus (rCMS; Abatzoglou and Ficklin, 2017) and fraction of precipitation
falling as snow (SF; Berghuijs et al., 2014). The rCMS represents climate

12(Dec.)
WWhenﬂ > PET;,
where P; and PET; are monthly precipitation and potential evapotrans-
piration, Pgn, is the annual precipitation. Monthly precipitation and
mean temperature were used to calculate SF using the method from Dai
(2008).

A total of 18 physiographic variables were evaluated, including: soil
properties, vegetation, topography, morphology, and drainage area
(Variables No. 3-18 in Table 1). The soil properties are the ratio of AWC
to mean annual precipitation (AWC/P; Abatzoglou and Ficklin, 2017)
and average soil permeability (PERMAVE). The soil permeability rep-
resents the ability of soil to transmit water and is related to the saturated
hydraulic conductivity used in Yang et al. (2009). The vegetation

seasonality, and it is calculated as rCMS =
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variables considered in this study are: percentage of forest coverage
(FOREST), mainstem 100 m buffer forest (MAINS100_FOREST), and
riparian 100 m buffer forest (RIP100_FOREST) in the watershed.
MAINS100_FOREST is the percent of forest coverage at the 100 m buffer
at each side of the centerline of the main course of a river. RIP100_-
FOREST is the percent of forest coverage at the 100 m buffer at each side
of the centerline of all streams in the watershed. MAINS100_FOREST
and RIP100_FOREST have not been used in previous modeling studies,
but they might be important since the spatial configuration of land use
has been shown to influence streamflow characteristics (Debbage and
Shepherd, 2018). The topographic variables include the mean,
maximum, minimum, median, and standard deviation of the watershed
elevation, elevation at the gage location, relief ratio for the watershed
(Shao etal., 2012; Xing et al., 2018; Zhang et al., 2004), mean watershed
slope (Abatzoglou and Ficklin, 2017; Xu et al., 2013; Yang et al., 2009),
mean watershed aspect (Sinha et al., 2019; Xu et al., 2013), and mean
topographic wetness index (Sinha et al., 2019; Xu et al., 2013). The
topographic wetness index is calculated from the natural logarithm of
the ratio of the watershed drainage area to the tangent of the slope
gradient (Wolock and McCabe, 1995). The watershed compactness ratio
is defined as the ratio of the drainage area and the square of the
watershed perimeter. The compactness ratio is used because it provides
a morphological representation of the watershed. Watershed shape is
shown to influence the concentration time of streamflow (Jung et al.,
2017).

There are also a total of 18 variables associated with human activities
in the watershed. These include variables related to irrigation, planted/
cultivated area, developed area, the number of dams in the watershed,
dam density in the watershed, total dam storage in the watershed,
freshwater withdrawal, and road density in the watershed (Variables
No. 21-38 in Table 1). The freshwater withdrawal includes surface-
water and groundwater (Maupin et al., 2014). These variables are
chosen because land-use change, water use, and dam construction can
directly impact water availability (Magilligan and Nislow, 2005; Wada
et al., 2014; Wang and Hejazi, 2011).

The physiographic variables and human-related factors are obtained
from the Geospatial Attributes of Gages for Evaluating Streamflow,
version II (GAGES-II) dataset (Falcone et al., 2010a; Falcone, 2011). The
GAGES-II dataset was published by the U.S. Geological Survey (USGS)
and developed as part of a national effort to characterize stream gauges
(Falcone et al., 2010a). These data were checked using standard USGS
review procedures. Classification of reference and non-reference wa-
tersheds were determined using multiple sources of information,
including a GIS-derived hydrologic disturbance index (Falcone et al.,
2010Db), local expert judgment, and a visual inspection of gauges using
high-resolution imageries and topographic maps (Falcone et al., 2010a,
2010b). Watershed characteristics were compiled from commonly used
quality-controlled national data sources such as the National Land Cover
Database, National Inventory of Dams, 100-m National Elevation
Dataset, and State Soil Geographic dataset. A potential source of un-
certainty could be the impacts of the spatial resolution of the elevation
dataset on the aggregated topographic variables at watershed levels.
However, considering the size of the watersheds (>480 km?) used in this
study, a resolution of 100-m should be adequate. Another potential
uncertainty may come from the accuracy of the land-use and land-cover
classification. The primary source of low accuracy of the classification is
from distinguishing the context of grass (Wickham et al., 2013). How-
ever, the land-use types considered in this study, forests, urban areas,
and agricultural areas, have accuracies around 80% (Wickham et al.,
2013). Watershed characteristics from the GAGES-II dataset have been
successfully employed in many hydrological applications, such as
analyzing runoff ratio (Chang et al., 2014), characterizing hydrologic
change (Sawicz et al., 2014), and evaluating streamflow trends (Rice
et al., 2015). Therefore, the GAGES-II dataset is considered to be reliable
and appropriate for this study.
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2.4. Ordinary least squares (OLS) regression

OLS is a global regression method that assumes the relationship be-
tween dependent and independent variables is spatially stationary (i.e.,
location independent). OLS assumes that the dependent variable and the
residual of the model are normally distributed, and no collinearity exists
between independent variables. Therefore, ® values were log-
transformed to adjust the skewed gamma distribution (Greve et al.,
2015). Pairwise Pearson correlation coefficients were calculated to
check for collinearity between independent variables and tested at p <
0.05 level. The independent variables are z-standardized by differencing
between the variable and the mean, then dividing by the standard de-
viation (Bring, 1994). The purpose of this standardization is to obtain
standardized beta coefficients in the OLS model to compare variable
importance. The Im function in R was used to model ®. The Variance
Inflation Factor (VIF) was used to evaluate the collinearity of indepen-
dent variables selected by the model. Variables that have VIF higher
than a threshold of 5 were removed (Menard, 2002). Both forward and
backward stepwise variable selections were conducted to obtain the
optimal model whose independent variables are all statistically signifi-
cant (p < 0.05) and that has the highest adjusted R? and the lowest mean
absolute error (MAE). The independent variables selected by the step-
wise regression model are used for further spatial analysis using
Geographically Weighted Regression.

2.5. Geographically weighted regression (GWR)

The GWR model is a local spatial regression model and assumes that
the relationship between dependent and independent variables is
spatially nonstationary or location specific. GWR has been used in pre-
vious hydrological studies at a continental scale to explore the spatial
controls of runoff variability (Chang et al., 2014), minimum river
discharge (Rennermalm et al., 2012), and hydrologic responses to ur-
banization (Li et al., 2020). GWR is an expanded form of simple multiple
regression equation and can be expressed as:

Y(x) = alus,vi)+ > By, vi)xe +e; (2)
k

where Y(x) is a matrix of the dependent variable as a function of a
matrix of independent variable x , a is the regression constant at the iz
location (w;,v:), (u;,v;) is the spatial location, f; is the coefficient for the
ks independent variable at the iy location (w;,v;), Xk is the kg, indepen-
dent variable, and e; is the residual at the iy location. Therefore, the
coefficients f;’s vary continuously as a function of the location. GWR
achieves the spatially varying coefficients by fitting equations for ob-
servations falling within a fixed or adaptive bandwidth. The adaptive
schemes can adjust the bandwidth according to the density of data.
Similar to Li et al. (2020), an adaptive bandwidth was used in this study
because the observations are not distributed evenly in the continental U.
S. The bandwidth can be determined by cross-validation (CV) minimi-
zation or corrected Akaike Information Criterion (AICc) minimization.
CV minimization is generally relevant to the accuracy of the model,
while the AICc takes model complexity into account. Within each
bandwidth, observations closer to a given location have greater weights
in estimating the coefficients than observations further away. The
weights matrices are created using a kernel estimator. Gaussian and bi-
square kernels are commonly used kernel estimators (Chang et al., 2014;
Mohammadinia et al., 2017; Yacim and Boshoff, 2019). The two
methods of determining bandwidth (CV and AICc minimization) and the
two kernel estimators (Gaussian and bi-square) were tested to determine
the optimal GWR model. The model whose bandwidth is determined by
CV minimization and weights matrices are determined by the bi-square
kernel has the highest adjusted R and lowest AIC in both reference and
non-reference watersheds (Fig. S1). This model is used in this paper. The
number of nearest neighbors in an adaptive bandwidth is 20 in reference
watersheds and 31 in non-reference watersheds.
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The GWR analysis was conducted using the GWmodel package in R
(Gollini et al., 2013). The global Moran’s I index was used to test the
statistical significance of the spatial autocorrelation of the » values and
the residuals of the OLS and the GWR model. A Monte Carlo test was
used to test the significance of the spatial variability of the model’s
coefficients. GWR coefficients may have local collinearity issues even if
the collinearity does not show up in the OLS model (Wheeler and Tie-
felsdorf, 2005). Thus, the VIF was used to evaluate local collinearity in
GWR. The variables that have VIF > 5 were removed to ensure that
variables are independent at a local scale, and the model form is the
simplest with the fewest independent variables (Fig. S2). Although GWR
allows the coefficients of the independent variables varied over space,
the set of independent variables is usually constant across space. Since it
is hypothesized that the water balance in reference watersheds has
different controls than in non-reference watersheds, the two sets of
watersheds are modeled separately. A flowchart showing an overview of
the research design of this study is shown in Fig. 1.

3. Results
3.1. Spatial patterns of @

High values of o (>3) are found in the Great Plains and Florida, and
low values of ® (<2) are in the Northeast and Northwest (Fig. 2). These
spatial patterns are consistent for both reference and non-reference
watersheds. Although the number of non-reference watersheds (765)
is much larger than the reference watersheds (126), the range and
variability of o values in the two sets of watersheds are similar. The ®
values in reference watersheds range from 1.1 to 4.0 with a mean and
standard deviation of 2.2 + 0.5. In non-reference watersheds, » values
range from 1.3 to 4.1 with a mean and standard deviation of 2.2 + 0.4
(Table 1). A Kolmogorov-Smirnov test showed that distributions of ®
values from the two sets of watersheds are not statistically significantly
different (p > 0.05). Moran’s I for ® is 0.19 (p < 0.05) in reference
watersheds and 0.57 (p < 0.05) in non-reference watersheds. This in-
dicates that the ® values of both sets of watersheds have statistically
significant spatial autocorrelation.

3.2. Exploratory data analysis

In reference watersheds, o values have the highest negative corre-
lation with rCMS (r = —0.74) and the highest positive correlation with
AWC/P (r = 0.71; Fig. 3). Other variables that are strongly correlated
with o (|r| > 0.7) are FOREST (r = —0.74) and RIP100_FOREST (r =
—0.73). In non-reference watersheds, rCMS has the highest negative
correlation with o (r = —0.64), and the topographic wetness index
(TOPWET) has the highest positive correlation (r = 0.41; Fig. 4). None of
the variables has a |r| > 0.7 in the non-reference watersheds. Generally,
variables that have statistically significant correlations with ® are
similar in the reference and non-reference watersheds, except for a few
variables such as average soil permeability (PERMAVE) and relief ratio
(RRMEAN). The o in the reference watersheds has a correlation of —0.21
with PERMAVE, but the correlation is not statistically significant in non-
reference watersheds. In contrast, ® in the non-reference watersheds has
a correlation of 0.17 with RRMEAN, but the relationship is not statisti-
cally significant in reference watersheds. The signs of the relationships
are generally consistent between reference and non-reference water-
sheds. The o is negatively correlated with rCMS, SF, Slope, elevation
(mean, max, median, and std), FOREST, MAINS100_FOREST, RIP100_-
FOREST, and MAINS100_DEV. The o is positively correlated with AWC/
P, TOPWET, AREA, planted/cultivated lands (PLANT, MAINS100 -
PLANT, and RIP100_PLANT), irrigation lands (PCT_IRRIG_AG), number
of dams (NDAMS), dam density (DDENS), and developed land (DEV).
Although the sign of the correlation is consistent between both sets of
watersheds, their magnitudes differ. For example, the correlation be-
tween ® and FOREST is —0.74 in reference watersheds and —0.58 in
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Fig. 1. Flowchart illustrating the research design of this study.

non-reference watersheds. This indicates the two types of watersheds
may have somewhat different relationships and therefore should be
modeled separately.

Statistically significant correlations also exist between some of the
exploratory variables. Variables that belong to the same category have a
high correlation, such as FOREST, MAINS100_FOREST, and RIP100_-
FOREST. The climatic variable rCMS has a positive correlation with
slope (r = 0.80 in ref. and r = 0.68 in non-ref.); SF has a positive cor-
relation with the median of watershed elevation (r = 0.68 inref. and r =
0.71 in non-ref.); PLANT has a positive correlation with topographic
wetness index (r = 0.55 in non-ref. and r = 0.70 in non-ref.). The
collinearity was removed by retaining only one variable from each pair
that are collinear. The variable was selected based on adjusted R2, AlCc,
and MAE.

3.3. Spatial pattern of the controls and variable importance of @

In reference watersheds, the OLS model shows that FOREST is the
most important exploratory variable, followed by SF (Table 2). Both SF
and FOREST have negative effects on ®. In non-reference watersheds,
the important exploratory variables are different from the reference
watersheds. Relative cumulative moisture surplus (rCMS) is the most
important exploratory variable of o, followed by dam storage (STOR -
NOR) and riparian 100 m buffer developed land (RIP100_DEV; Table 2).
This demonstrates that the controls of » vary between watersheds with
and without human disturbance. Human activities have a pronounced

impact on o in non-reference watersheds, especially those related to the
construction of dams and urban sprawl. However, even in non-reference
watersheds, @ represents more than just human activities. Climate var-
iables such as rCMS also influence . Increases in STOR_NOR tend to
increase o, while increases in rCMS and RIP100_DEV tend to decrease .
The OLS model for @ has an adjusted R? of 0.65 and an AICc value of
—127.08 in reference watersheds, and an adjusted R? of 0.50 and an
AICc value of —865.71 in non-reference watersheds. In comparison, the
GWR model has an adjusted R? of 0.85 in reference watersheds and 0.80
in non-reference watersheds. The AICc value decreases to —194.29 in
reference watersheds and —1367.57 in non-reference watersheds.

In GWR, the relationship between ® and independent variables
varies across space. In both types of watersheds, a Monte Carlo (MC) test
shows that all coefficients have statistically significant spatial non-
stationarity (p < 0.05; Table 2). In reference watersheds, the co-
efficients of SF are negative in most watersheds in the eastern half of the
country, but they are positive in the Northeast and several states such as
North Dakota, Nebraska, and Texas (Fig. 5a). For FOREST, negative
coefficients are found in most watersheds, especially in the Northern
Great Plains (Fig. 5b). In the Northeast and Northwest, coefficients of
FOREST are positive (Fig. 5b).

In non-reference watersheds, most watersheds have negative co-
efficients of rCMS, especially in Minnesota. In contrast, positive co-
efficients of rCMS are clustered in states such as Illinois, Mississippi,
Florida, and Maine (Fig. 5c¢). For STOR_NOR, positive coefficients are
found in most watersheds. They are distributed evenly across the
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Fig. 2. Spatial variation of ® in reference watersheds (top; 126 watersheds) and non-reference watersheds (bottom; 765 watersheds) in the continental United States.
The blue (yellow) colors indicate low (high) values of . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

country except in the Northwest, where most watersheds have negative
coefficients of STOR_NOR (Fig. 5d). For RIP100_DEV, the western part
mostly has positive coefficients, while in the eastern part, the number of
watersheds with positive and negative coefficients is evenly split
(Fig. 5e). About 80% of the watersheds (64 out of 80) in the Southwest
have negative coefficients of RIP100_DEV, especially in Colorado.

The GWR model shows that SF is the most important variable in most
reference watersheds, especially in the Northeast and Midwest. A total of
42 reference watersheds have FOREST as the most important variable.
Most of them are along the west coast (Fig. 6a). A total of 506 non-
reference watersheds have rCMS as the most important variable, and
they are primarily located in the eastern half of the country (Fig. 6b).
This is consistent with the OLS model in that rCMS is the most important
variable. STOR_NOR is the most important variable in 159 watersheds
(21%), and they are mostly located in the Midwest and Oregon. The
remaining (13%) non-reference watersheds have RIP100_DEV as the
most important variable, and they are in Colorado, Idaho, and parts of
California.

3.4. Spatial pattern of local R?

The local R? values of @ in reference watersheds are generally quite
high and have a mean value of 0.87. The relatively low R? values (<0.6)
are primarily found in Missouri (Fig. 7a). The modeled and observed ®
have a correlation value of 0.93 (p < 0.05), and the mean absolute error
is 0.12. As seen from the spatial pattern of the residuals (actual minus
predicted), larger residuals tend to occur in watersheds in North Dakota,
Nebraska, and California (Fig. 7b). Moran’s Index for the OLS model is
0.05 (p < 0.05) and for the GWR model it is 0.02 (p > 0.05). This

indicates that the residuals in the GWR model are randomly distributed
(Table 2). The modeled Q closely matches the observed Q with an MAE
of 26.38 mm and a MAPE of 9.59% (Fig. 8a).

In non-reference watersheds, the local R? values of ® are generally
high and have a mean value of 0.79, which is slightly lower than the
mean local R? in the reference watersheds. The locations with relatively
low local R? values (<0.5) are primarily found in Indiana, Nevada, and
parts of California (Fig. 7c). The modeled and observed o have a cor-
relation value of 0.92 (p < 0.05), and the mean absolute error is 0.11.
The high values of residual of w occur in several watersheds in California
and Florida (Fig. 7d). Moran’s Index for the OLS model is 0.49 (p < 0.05)
and decreases drastically to 0.04 (p > 0.05) in GWR model. This in-
dicates that the residuals in the GWR model do not exhibit spatial
autocorrelation (Table 2). The modeled Q matches the observed Q with
an MAE of 21.14 mm and a MAPE of 8.70% (Fig. 8b). While the mean
value of R? values of » in non-reference watersheds is slightly lower than
in reference watersheds, the error in Q is also lower. This may be
because the flow volume in reference watersheds is generally higher
than in non-reference watersheds (mean value of 502.5 mm in ref vs
380.1 mm in non-ref). The same absolute difference of ® in humid and
arid regions may not lead to the same absolute difference in streamflow.

4. Discussion
4.1. Spatial heterogeneity in the relationship between w and predictors
According to the Monte Carlo test, all the independent variables in

the GWR model have statistically significant spatial heterogeneity
(Table 2). In the reference watersheds, coefficients of FOREST are
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negatively correlated with aridity index (r = —0.79, p < 0.05; Fig. 9).
This indicates that climate is a major controlling factor of the effects of
forest coverage on streamflow. Arid watersheds generally have higher
absolute coefficients than humid watersheds. This is consistent with
Zhang et al. (2016), who found that the Budyko shape parameter is more
sensitive to vegetation change in dry watersheds. Watersheds with
positive coefficients of FOREST are mostly located in regions where the
aridity index < 1 (Fig. 9). This indicates that in humid regions, when
forest coverage increases, ® and the evaporative ratio increase and this
reduces Q/P. A positive correlation is also found in Li et al. (2013), Xu
et al. (2013), and Xing et al. (2018). However, most watersheds have
negative coefficients for the FOREST variable, especially when the
aridity index is >1.2. Yang et al. (2009) also found a negative correlation
between o and vegetation coverage in 30 basins with an aridity index
ranging from 1.12 to 2.60. The negative correlation suggests that de-
creases in o and in E/P tend to be associated with an increase in forest
coverage.

The physical mechanisms that are responsible for these relationships
are due to the interactions between vegetation coverage, climate types,
and water cycle (Gan et al., 2020). Changes in  can be due to changes in
PET/P or ET/P. When PET/P increases with an unchanged evaporative
ratio (ET/P), o decreases. This causes a horizontal shift in the Budyko
curves (Fig. 10a). Forest coverage also decreases with increases in PET/
P, as arid regions tend to have less forest (Fig. 10b). In this case, ® has a
positive correlation with forest coverage. When ET/P increases and the
evaporative ratio (PET/P) remains unchanged, o increases. This causes a
vertical shift in the Budyko curves (Fig. 10a). ET/P is negatively corre-
lated with forest coverage when PET/P > 1 and it is positively correlated
with forest coverage when PET/P < 1 (Fig. 10c). Therefore, in humid
regions, when PET/P remains unchanged, o tends to have a positive

correlation with forest coverage. In contrast, in arid regions,  tends to
have a negative correlation with forest coverage. In other words, in-
creases in forest coverage tend to increase ET/P and decrease Q/P in
humid regions, while in arid regions, the opposite is true. It should be
noted that the influences that are discussed here are specifically focused
on the variation in relationships over space. Since arid watersheds are
more widely dispersed in the contiguous United States than humid
watersheds, the influence of forest coverage on water balance in arid
watersheds may primarily be controlled by climate, while in humid
watersheds, the influence may primarily be controlled by land-use types.
Most reference watersheds in this study have PET/P > 1, and the
changes in ® are mainly due to a vertical shift in the Budyko curves.
Thus, the correlation between o and forest coverage in most reference
watersheds is negative, which is consistent with Bai et al. (2020) and
Abatzoglou and Ficklin (2017). The decreases in forest coverage with
increases in both the PET/P and ET/P was also found by Huo et al.
(2021).

The spatial heterogeneity of coefficients of SF in the reference wa-
tersheds may be related to the threshold of the fraction of precipitation
falling as snow. As seen from Fig. 9, most watersheds (85 out of 126)
have negative coefficients of SF. This is consistent with Berghuis et al.
(2014), who found a decrease in streamflow because of the precipitation
shift from snow towards rain. The findings in Berghuis et al. (2014) do
not apply to watersheds with marginal SF values (<15%). There are also
3 out of 97 watersheds used in Berghuis et al. (2014) that have opposite
sensitivity of Q/P to SF. The watersheds with relatively high positive
coefficients of SF (>0.1) in this study have SF values smaller than 17%.
Regions with relatively low SF values may have higher chances that the
increases in SF can lead to an increase in ® and E/P and a decrease in Q/
P. The mechanisms that determine the influence of SF on streamflow
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Table 2

Regression estimates and model goodness of fit of OLS and GWR. Moran’s I represents the spatial autocorrelation of the model residuals (* indicates significance at 0.05
level). Monte Carlo (MC) test shows the p-value of spatial heterogeneity. A p-value < 0.05 indicates significant spatial heterogeneity.

Reference watersheds (n = 126)

OLS Estimate GWR
Min Q1 Median Q3 Max MC test
(Intercept) 0.80 0.32 0.57 0.67 0.82 1.31 <0.01
SF —0.09 —0.54 —0.26 -0.11 <0.01 0.60 <0.01
FOREST -0.14 —0.48 —0.11 —0.03 0.01 0.08 <0.01
AlICc —-127.41 —194.29
Adj. R? 0.65 0.85
Moran’s I 0.05* 0.02
Non-reference watersheds (n = 765)
OLS Estimate GWR
Min Q1 Median Q3 Max MC test
(Intercept) 0.78 0.34 0.64 0.75 0.83 1.42 <0.01
rCMS -0.17 -0.82 —0.25 —0.14 —0.05 1.08 <0.01
STOR_NOR 0.06 —0.94 —0.04 0.02 0.08 0.99 0.01
RIP100_DEV —0.02 —0.50 —0.02 <0.01 0.03 0.52 <0.01
AlCc —865.71 —1367.57
Adj. R? 0.50 0.80
Moran’s I 0.49%* 0.04

may be a combination of vegetation and topography and vary from
watershed to watershed (Berghuijs et al., 2014). The decreases in
streamflow as a result of a reduction of SF may be associated with in-
creases in evapotranspiration due to declines in snow cover (Milly and
Dunne, 2020) or increases in atmospheric demand for water in a
warming climate (Neto et al., 2020).

In non-reference watersheds, coefficients of rCMS are negative in
most watersheds except in the regions around Wisconsin, Illinois, and
Indiana. This may be related to the climate region. As seen from Fig. 11,

watersheds that have relatively high positive coefficients of rCMS are
clustered around PET/P = 1. Results in the transitional areas where
PET/P = 1 may have greater uncertainties. This is because the calcula-
tion of the rCMS is based on the difference between PET and P, and the
two variables have similar values in the transitional areas. This may
explain the relatively low local R? in regions in Midwest around Great
Lakes. The negative coefficients of rCMS indicate that higher values of
rCMS influence water balance by lowering o values and increasing Q/P.
This is because high values of rCMS represent an out-of-phase
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Fig. 6. Spatial distribution of the most important variable for reference watersheds (a) and non-reference watersheds (b). The most important variable is identified as

the one with the highest absolute value of standardized beta coefficients.

relationship between PET and P (i.e., P is higher while PET is lower). In
this case, a greater fraction of P can be converted to Q instead of ET
(Wolock and McCabe, 1999).

STOR_NOR and RIP100_DEV are two human-related factors repre-
sented by ® in the GWR model in non-reference watersheds. The spatial
distributions of their coefficients are more varied, and the controlling
factors require further investigation. About 64% of the non-reference
watersheds have positive coefficients of STOR_NOR. This suggests that
an increase in dam storage can increase ® and E/P and decrease Q/P.
This is consistent with the discussion in Wang and Hejazi (2011) that
evaporation can be enhanced due to increases in the surface area of
water bodies. For RIP100_DEV, about half of the watersheds have
negative coefficients. The negative coefficients mean that increases in
developed land in the riparian zone can decrease ® and E/P, and in-
crease Q/P. The impacts of urban sprawl on increases in streamflow is
also observed in previous studies in regions that have negative

10

coefficients of RIP100_DEV, such as in Texas (Olivera and DeFee, 2007),
the Charlanta Megaregion (Debbage and Shepherd, 2018), and Colorado
(Bhaskar et al., 2020). The increasing impacts on streamflow are likely
due to increases in impervious areas and decreases in infiltration. The
positive coefficients may be associated with other processes during ur-
banization, such as cross-basin transfers of public and/or sewer water
(Oudin et al., 2018). Different signs of the coefficients of developed land
are also observed in Li et al. (2020), using the GWR model in exploring
the impacts of urbanization on hydrology. Elevation may be a control-
ling factor of the importance of RIP100_DEV. As shown in the rela-
tionship between absolute values of the coefficients of RIP100_DEV and
the mean elevation in the watershed, the importance of RIP100_DEV
increases with elevation (r = 0.71; Fig. 10). This indicates that there may
be a confounding effect between developed land and topography. Urban
expansion in high-elevation regions may have a greater impact on runoff
generation than in low-lying regions. Debbage and Shepherd (2018) also
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found that clustering impervious surfaces in source areas of the water-
shed played an important role in increasing high flow frequency.

4.2. Bivariate relationship

Low values of ® characterize conditions where precipitation is
quickly converted to runoff, while high values of w characterize a high
ratio of ET to P (Dingman, 2015). This section discusses the possible
physical mechanisms that are responsible for the relationship between ®
and the variables that are not discussed in Section 4.1.

Physiographic variables that have statistically significant negative
correlations with @ include slope, elevation, and watershed compactness
ratio. The slope has a negative correlation with o because P is quickly
converted to Q in steeply sloping watersheds, leading to a smaller value
of . This is consistent with Abatzoglou and Ficklin (2017) and Yang
et al. (2007). Elevation has a similar physical mechanism influencing o,
and the negative correlation we found is consistent with the results of Xu
et al. (2013). The watershed compactness ratio represents the watershed
shape, and its bivariate relationship with o was not explored in previous
studies. A high value of the compactness ratio means a more compact
and regular shape of a watershed, such as a circle or a rectangle (Bogaert
et al., 2000), which leads to a shorter concentration time of flow, a faster
conversion from P to Q, and a smaller value of w.

Physiographic variables that are positively correlated with o include
AWC/P, topographic wetness index, drainage area, and relief ratio. A
higher ratio of AWC/P characterizes greater subsurface storage, which
reduces the conversion from P to Q and increases the value of o
(Abatzoglou and Ficklin, 2017; Xing et al., 2018; Yang et al., 2007). The
topographic wetness index measures the long-term soil moisture avail-
ability (Kopecky and Cizkova, 2010) and thus as it increases, so does
potential ET and the value of . Drainage area has a similar physical
mechanism influencing o, and a positive correlation was also found in
Xu et al. (2013). High values of the relief ratio characterize broad and
level surfaces with several depressions (Pike and Wilson, 1971),
reducing Q potential and increasing the o value. A negative correlation
between relief ratio and ® was found in Xing et al. (2018), but their relief
ratio was calculated as the ratio of the difference between the maximum
and minimum elevations and the longest flow path. High values of the
relief ratio in Xing et al. (2018) represent a larger elevation change per
unit length of the river, which is the opposite topographic conditions
from the level surfaces indicated by the high relief ratio used in this
study. In this study, relief ratio is calculated as the ratio of the difference
between mean and minimum elevation and the difference between
maximum and minimum elevation (Table 1). Therefore, our results
agree with theirs.

Positive correlations were found between most human-related vari-
ables and o. For example, o is positively correlated with planted/culti-
vated land, which is consistent with previous studies (Bao et al., 2019;
Han et al., 2011; Jiang et al., 2015). The physical mechanism may be
because the irrigation in the planted/cultivated land leads to the
enhanced ET (Wang and Hejazi, 2011).

4.3. Implications, limitations, and future studies

This study has implications for integrated watershed management at
the local scale. Our study found that in reference watersheds, the im-
pacts of forest coverage is more important in dry regions than in wet
regions. This indicates that changes in forest coverage in water-limited
regions should be undertaken with caution because they can have a
dramatic impact on ET and Q. In non-reference watersheds, RIP100_DEV
is the most important human-related variable. This indicates that these
watersheds are particularly sensitive to development in riparian areas.
Local water resources managers should carefully consider the spatial
location and type of development that takes place in the watersheds,
especially development in proximity to streams. In addition, the
importance of RIP100_DEV increases with elevation. Watershed
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managers and city planners should be cautious about expanding urban
areas in high elevation areas. Expansion of impervious surfaces in re-
gions with high elevation can lead to a shorter concentration time and
greater streamflow. Since this study identifies the most important vari-
able in each watershed, this can be used to identify where water re-
sources management efforts should be focused. Overall, we
demonstrated that there are statistically significantly variations in terms
of which variable has the strongest influence on the water balance in the
contiguous United States. This indicates that effective water resources
management should consider the local climate, land-use types, and
topographic conditions and that a one-size-fits-all approach to water
management will not be effective.

Although this study considers a comprehensive list of climatic,
physiographic, and human-related independent variables, not all
possible independent variables are included. For example, the average
storm depth was found to be important for explaining  in previous
studies (Shao et al., 2012; Xing et al., 2018; Zhang et al., 2004), but it
was not considered in this study. Even though it is not included as an
independent variable, the performance of the current GWR model
(adjusted R? = 0.85 for reference and 0.80 for non-reference water-
sheds) is reasonable for analyzing the spatial heterogeneity in the con-
trols of streamflow. Storm depth is also likely correlated with other
climate variables such as rCMS. In addition, climate seasonality can be
represented by multiple variables such as Milly’s index (Milly, 1994),
the seasonality index developed by Walsh and Lawler (1981), precipi-
tation seasonality developed by Markham (1970), and relative cumu-
lative moisture surplus (Wolock and McCabe, 1999). This study only
uses rCMS because of its simple calculation and the strong correlation
with o reported by Abatzoglou and Ficklin (2017). Future studies could
consider other measures of seasonality.

GWR assumes no collinearity among the independent variables in the
model (Wheeler, 2019). Therefore, this study removed variables where
the local VIF > 5. For example, the original best global multiple
regression model of o in reference watersheds is ® = exp(—0.09*rCMS +
(—0.08)*SF + 0.08*ELEV_MEDIAN + (—0.10)*FOREST). The adjusted
R? is 0.76, and all the variables have VIF < 5. However, if all four var-
iables are used in the GWR model, many local observations have VIF >
5. This is because local collinearity effects can be present even when no
global collinearity is detected (Wheeler, 2007). The absence of collin-
earity in the global regression model is not a reliable indicator for the
absence of local collinearity (Wheeler, 2007). To deal with this issue, we
removed variables that lead to local VIF > 5 in both GWR and the
counterpart OLS model. The final GWR model has all the observations
with local VIF < 5 (Fig. S2) and the best set of model performance
measures (Rz, AIC, and MAE). Removing variables is a simple and
effective way to address local collinearity. This study provides reason-
ably good performance of the GWR model and uncovers the spatial
heterogeneity of the relationship between o and dominant independent
variables. Future studies may consider using penalized versions of GWR,
such as the geographically weighted ridge regression (GWRR), to retain
all the variables in the global regression model while properly
addressing local collinearity issues.

The GWR model can accurately predict o values, and it has an
adjusted R? of 0.85 in reference watersheds. This is higher than the R? of
0.812 obtained from a generalized additive model in 211 reference
watersheds in the continental U.S. (Abatzoglou and Ficklin, 2017).
Abatzoglou and Ficklin (2017) also validated their model in an inde-
pendent set of watersheds and had an R? of 0.65. This study does not
validate the GWR model because it focuses on exploring the spatial
heterogeneity of the relationship between ® and the environmental
predictors. Future studies can compare the accuracy of the GWR model
with other modeling methods using validation watersheds for prediction
purposes. Although the GWR model has good model accuracy, there are
regions with relatively low values of local R?, such as non-reference
watersheds in Indiana, Ohio, and Michigan. The regions may have
important independent variables in explaining ® other than rCMS,
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STOR_NOR, and RIP100_DEV identified in this study, such as irrigation
agriculture or planted/cultivated land percentage (Wang and Hejazi,
2011). Future studies can conduct separate modeling at regional scales
to improve the model accuracy.

5. Conclusions

This study improves our understanding of the controls of surface
water balance by uncovering the spatial heterogeneity of the relation-
ship between Budyko shape parameter o and environmental variables.
The spatial-varying relationships help to clarify the relative importance
of forest coverage as a function of climate. Human-related variables
were also considered. This is an improvement over previous studies that
only considered climatic and physiographic variables. A geographically
weighted regression model was used to identify the set of variables that
best explain the spatial variability of ® in 126 reference and 765 non-
reference watersheds in the contiguous U.S. An ordinary least squares
model was used to uncover the global relationship between the » and the
same set of environmental predictors. Our new findings are as follows:

(1) The representations of @ are different in reference and non-
reference watersheds. In reference watersheds, o is represented
by precipitation falling as snow and forest coverage. In non-
reference watersheds, o is represented by relative cumulative
moisture surplus, normal dam storage, and riparian developed
land. The GWR model explains 85% of the variability in o in
reference watersheds and 80% of the variability ® in non-
reference watersheds.

In non-reference watersheds, human disturbance primarily con-
sists of dam construction and urbanization. Dam storage is the
most important variable in 21% of non-reference watersheds.
Most of them are in parts of the Midwest and Oregon. Riparian
developed land is more important in 13% of non-reference wa-
tersheds, and they are mostly in Colorado, Idaho, and parts of
California.

There are statistically significant spatial variations in the rela-
tionship between w and the independent variables (p < 0.05). In
reference watersheds, climate is a dominant factor controlling the
spatial heterogeneity of coefficients of forest coverage. The
relative importance of forest coverage is higher in dry watersheds
than in humid watersheds. In non-reference watersheds, the
spatial patterns of coefficients of dam storage and riparian
developed land are more varied. The impact of riparian devel-
oped land on streamflow increases with elevation (r = 0.71).

(2

3

The spatially varying importance of environmental and anthropo-
genic predictors identified in this study can be used for guiding local
water resources management. Watershed managers and city planners
should be cautious about changing forest coverage in reference water-
sheds in dry regions and expanding riparian developed areas in non-
reference watersheds in high-elevation areas. This study identifies the
most important variables, other than precipitation, that control local
water availability. National watershed management strategies should be
adapted at the local scale to reflect these spatially varying relationships.
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