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In this work, structural resiliency is revisited as a composite term which consists of three interrelated capacities.
A computational platform for quantitatively assessing the disaster-resilience of earthen structures is introduced
with the use of a coupled plasticity-damage constitutive model. This numerical framework addresses the collapse
resistance, damage sequences, strength residual state as well as resilience metrics. In particular, the plasticity
model is furnished with combined isotropic-kinematic hardening internal variables accounting for the adaptive

capacity of structural resilience. To simulate the transformative capacity at structural level, the model adopts the
enhanced strain finite element method capturing the propagating fracture through the structural elements.
Localized failure is detected by a bifurcation analysis. A cohesive based failure criterion is also incorporated to
accurately represent the constitutive softening response in the case of progressive failure. Finally, we analyzed
the factors that shape the structural resilience of earthen wall in the face of lateral loading. The performance of
the structural system is examined for two conditions, namely fully intact structure and pre-damaged state.

1. Introduction

Earth-based materials have been used for millennia in construction.
Some earthen structures built centuries ago are still performing sa-
tisfactorily. For instance, The Great Wall of China was built nearly 2000
years ago using local materials: rammed earth, stones, baked bricks and
wood. As far as strength is concerned, it is well known that natural soil,
with no reinforcement or stabilizer, may not be suited for the con-
struction of very tall structures. Nevertheless, it has been vastly used for
load-bearing structures with 1-3 stories high in Australia, Brazil,
Europe, USA, India, China and many other countries Foster et al. [22],
Silva et al. [50], Reddy and Kumar [41], and Zami and Lee [64]. Tra-
ditional rammed earth houses in France is a good example which were
built more than 100 years ago and are still in good condition today Bui
et al. [12]. Over the last decade, earth has been garnering increased
attention as a revival structural material for a modern construction
technique. Compared to conventional mineral building materials, earth
possesses particularly positive ecological qualities such as having low
carbon content, low embodied energy, highly efficient hygric-thermal
behavior and inherent recyclability Schroeder [49]. Not only are these
aspects driving the resurgence of the earthen buildings, but the fact that
in locations with relatively cheap labor and high material costs, these
structures are the most cost-effective option.

However, earthen buildings are particularly vulnerable to lateral
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loading induced by natural hazards such as floods and earthquakes
Silva et al. [50]. The presence of cracks is a type of damage often
present in these constructions, which has particular influence on the
structural performance. Cracks constitute preferential paths for rainfall
infiltration, directly moistening the internal structural elements, sub-
stantially reducing its mechanical properties. The presence of structural
cracks in earthen walls decreases their bearing capacity and stiffness,
and disrupts the overall monolithic behavior of the structure (see Fig. 1)
Foster et al. [22] and Tennant et al. [56].

Numerical simulation of earthen structures, especially in the plat-
form of the finite element (FE) method, has attracted much research
interest with the advent of modern computational resources. One cru-
cial part of an FE simulation is the selection of an appropriate con-
stitutive material model, since earth-based materials can exhibit many
complex and interacting behaviors Qi et al. [40], Tonge and Ramesh
[58], Motamedi and Foster [35], Lou et al. [31], Wong and Baud [61],
Xie and Shao [63,62]. At low confining pressure, localized deformation
in the form of shear and/or dilation bands or fractures may occur due to
the growth and coalescence of micro-cracks and pores. At high con-
fining pressure, on the contrary, delocalized irreversible deformation
may occur in the form of shear-enhanced compaction. The latter re-
sponse, generally accompanied by material hardening, is the result of
pore collapse, grain crushing, internal locking and other microphysical
mechanisms.
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Fig. 1. Damages, in form of cracks, observed in earthen buildings due to hazard-related lateral loading.

The remainder of this paper is organized as follows: Section 2 re-
views the idea of resiliency and its growing application as a metric to
evaluate the performance of structural systems. Section 3 briefly de-
monstrates a recently modified cap plasticity model for analyzing
geomaterials behavior. In Section 4 first, the kinematics of a strong
discontinuity are outlined. Second, to capture the initiation of the crack
and its orientation, bifurcation theory is introduced. Section 5 sum-
marizes a mixed-mode cohesive fracture model which is suitable to
represent damage evolution and softening behavior of monolithic
earthen structure. In Section 6, the finite element approximation using
assumed enhanced strain (AES) method is briefly discussed.

Finally in Section 7, the structural performance of an earthen wall
for two case scenarios, namely being structurally intact or having some
level of initial damages, when is subjected to lateral load has been
examined. In addition to the metric available in the literature (in-
cluding maximum capacity differentiation and residual strength ratio),
the proposed multi-stage structural resiliency measure has been utilized
to describe the full-range nonlinear response of the structure.

2. Resilience: from conceptual frameworks to quantitative
assessment

The concept of resilience has recently been widely promoted in many
fields such as urbanization, social protection, ecosystems analysis as well
as structural engineering. Resilience harbors different meanings in dif-
ferent contexts. Some authors trace back the first ‘scientific’ application
to the concept of modulus of resilience adopted in the context of 19th
century warship design. This idea became progressively apparent in the
1970s, where resilience was then formally defined as “the capacity of a
material to absorb energy when it is deformed elastically and then, upon
unloading to have this energy recovered.” Callister and Rethwisch [13].
However, in the last decade, a more elaborate conceptualization emerged
where resilience is no longer simply about resistance to change and
conservation of existing structures, but instead viewed as a characteristic
that includes also two other dimensions: (1) the adaptive capacity of the
system components, that is leading to incremental adjustments/changes
in response to increasing external impact to continue operating and (2)
transformative capacity leading to transformational responses. The latter
response can be regarded as a process which results from insufficient
adaptive resilience. These responses are said to be transformative be-
cause they aim at altering fundamentally the systems performance such
that it makes the initial system untenable. These three different types of
responses can be linked (at least conceptually) to different intensities of
external load or impact, as shown in Fig. 2a.

The transition from conceptual frameworks to quantitative assess-
ment of structural resilience remains controversial due to its integrative
nature. In this work, structural resiliency associated with damages in-
duced by severe loadings is revisited as a composite term which consists
of three interrelated capacities (absorptive, adaptive and transforma-
tive.) Therefore, a computational platform for quantitatively assessing
the disaster-resilience of earthen structures has been developed using a
coupled plasticity-damage constitutive model.
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3. Three-invariant cap plasticity model

In this section, the formulation and numerical implementation of a
nonassociated, three-invariant cap plasticity model are briefly de-
scribed. The model comprises of a pressure-dependent shear yield sur-
face, hardening compaction cap and newly added elliptical tension cap
accounting for the tensile yielding as shown in Fig. 3. This modified
model allows us to better replicate complex mechanical behaviors of
earthen materials under various loading conditions. For more details
and motivation of the model, the reader is referred to Motamedi and
Foster [35] and the references therein.

3.1. Non-associated plastic flow rule

The generalized Hooke’s law for linear isotropic elasticity can be
written as:

G=C=€; C°=11Q 1+ 2ul (3.1)

where 1 is the second order identity tensor, I is the fourth-order sym-
metric identity tensor, 4 and u are the Lamé parameters and C°¢ is the
fourth-order isotropic elasticity tensor. The hypothesis of small de-
formations and rotations allows an additive decomposition of the total
strain rate € into the elastic and plastic parts:

€ = €&° 4 €P (32)

For geomaterials, nonassociated plasticity is usually needed to
realistically describe volumetric deformation Borja [8] and Collins
[16]. As pointed out by McDowell [33], non-associativity in geological
materials is attributed to the procedure of structural rearrangement.
This physical phenomenon has been observed in conjunction with
growth of microcracks, propagation of shear bands, and frictional shear
resistance of geological materials. Moreover, Borja [6] demonstrates
that non-associative flow rule enhances liquefaction instability in fluid-
saturated granular soils. This imperative feature also allows for bi-
furcation (onset of strain localization) in the material from a compu-
tational standpoint Motamedi et al. [34] and Regueiro and Foster [43].
Hence, a non-associative flow rule is introduced for plastic flow as
below

e = ;8@ D

do 3.3)

where g stands for a plastic potential function and q represents the
stress-like plastic internal variables characterizing the hardening re-
sponse of the material. y is a plastic consistency parameter satisfying
the Kuhn-Tucker complementary conditions Borja [8]. In addition, the
continuum elasto-plastic tangent C% can be derived as the following

G=C® €&; C?®= (Ce—lCe: % ® i: Ce)
x 0do = do 3.9
in which
of % of of
=—:C% =——: h"——h*
oo 00 Oa ox (3.5)
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Fig. 2. Structural resilience: (a) Conceptual view as the result of absorptive (ABC), adaptive (AC), and transformative (TC) capacities, (b) proposed quantitative
model: Qges = Espc U Exc U Erc; Qmax denotes maximum bearing capacity of the structure beyond which the global softening response begins; Q, is the maximum

level of the applied load for which the whole structure is still undamaged.
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Fig. 3. Cap plasticity model: (a) three dimensional view of the yield surface (the
exterior free mesh surface) and plastic potential surface (the interior gry solid)
in principal stress space; (b) octahedral view, which corresponds to looking
down the hydrostatic axis (lines of triaxial compression (TXC), triaxial exten-
sion (TXE) marked).

3.2. Yield surfaces

Assuming that the yielding behavior is isotropic, the yield surfaces
can be expressed in terms of stress invariants (e.g. I, J, and J;). In the
case of kinematic hardening, a deviatoric backstress tensor « is pre-
sented to capture the Bauschinger effect, such that the relative stress
tensor can be defined as £ = o—a. Given a back stress with an appro-
priate translation rule, the yielding of the material may be expressed in
terms of invariants of the relative stress (I, ]2§ and ]3§ ).

Many cap plasticity models have been proposed, for example
Spiezia et al. [53], Lu and Fall [32], Kohler and Hofstetter [30], Vor-
obiev [59], and Grueschow and Rudnicki [27]. In this work, we follow a
smooth cap formulation initially proposed by Fossum and Brannon [19]
and modified by Motamedi and Foster [35] thereafter. The yield
function f and conjugated plastic potential g take the following form:

F=TEHE-JEE-N)

g = T(E)I5—FE (F§-N)

where the material parameter N indicates the maximum allowed

(3.6)

3.7)
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translation of the initial yield surface during kinematic hardening and I’
accounts for the difference in triaxial extension vs. compression
strength. The Lode angle ¢ is the function of second and third in-
variants of the deviatoric relative stress devé. The exponential shear
failure function Fy and the corresponding plastic potential surface Ff
are given as

F; () = A—Cexp(BL)—6]L (3.8)

Ff(h) = A—Cexp(LL)—¢h (3.9)

The shear failure surface F; captures the pressure dependence of the
shear strength of the material where A, B, C and 6 are all non-negative
material parameters determined from peak stress experimental data,
using a procedure described in Fossum and Brannon [19]. L and ¢ are
determined from experimental measurements of volumetric plastic
deformation. The cap function F, generates two smooth elliptical caps
to the yield function in both tensile and compressive stress zones. This
function couples hydrostatic and deviatoric stress-induced deformation
of the material. The cap function F. and the corresponding one for
plastic potential F# are formulated as

E(l, %) = 1-H (e—1)| 225 Z—H(I—IT) i)’

Vb B = YN X (o)~ e Y (3.10)
NN I 2 e (5 0 A

FE(h, ) = 1-H (¢ a)( o) 0 g .

where x stands for the branch point in which combined porous/mi-
crocracked yield surface deviates from the nonporous profile for full
dense bodies. The function X (x) is the intersection of the cap surface
with the I axis in the \/J, versus I plane and signifies the position at
which pressure under pure hydrostatic loading would be sufficient to
prompt grain crushing and pore collapse mechanisms (see Fig. 4).
Furthermore, this plasticity model contains two internal variables, &
and x. The translational back stress tensor « is adopted to capture ki-
nematic hardening. Additionally, on the cap surface, x is a scalar iso-
tropic hardening parameter, which allows the yield surface to iso-
tropically expand. The combined isotropic/kinematic hardening of the
cap model is visualized by the schematic diagram in Fig. 5. The de-
scription of evolution laws for isotropic/kinematic hardening para-
meters and their correspondence with microstructural deformations are
discussed in Motamedi and Foster [35]. It should be mentioned that,
although the softening behavior is also of importance in many
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Fig. 4. Two-dimensional representation of yield (solid curve) and potential
(dash curve) surfaces in meridional stress space; deviatoric stress JTZ versus
mean stress 1.

(a) I b) —oy

Fig. 5. Three dimensional view of initial yield surface (the interior gray solid)
evolution in principal stress space for: (a) isotropic hardening (blue mesh sur-
face) and (b) mixed isotropic-kinematic hardening (red mesh surface). (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

structural engineering problems, this plasticity model is only able to
capture the hardening zone of responses. Hence, as we discussed in
Section 5, to represent the fracture propagation and associated soft-
ening behavior, an appropriate traction-separation model needs to be
added to the current plasticity model.

3.3. Numerical implementation

Numerical integration of the constitutive models plays a key role in
successfully modeling boundary value problems in engineering. Herein,
a well-established integration technique called the implicit return
mapping algorithm is invoked Foster et al. [20]. This algorithm affords

(a)
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first-order accuracy while satisfying the conditions for unconditional
stability. To solve the non-linear material model, we employ the well-
known Newton-Raphson (N-R) iterative method. This method basically
constructs the residual vector R as a function of the unknown variables
X ={o, a, x, Ay}. The implicit stress-integration algorithm is sum-
marized in Box 1 for a given strain increment, A €.

Box 1. Implicit stress-point algorithm for cap plasticity model.

Step 1: Compute trial state variables: o, = g, + ¢% A €41,
A1 = Cny Ky = Ko
Step 2: Check the yielding condition: f, > 0?

If no, set 6,41 = G141, Xni1 = A, Knp1 = X, and exit.

If yes, Go to step 3
Step 3: Apply particular mathematical treatments to reduce the
number of unknowns and hence improve the computational
efficiency (see Motamedi and Foster [35]):
Step 4: Initialize X, = 0 and use N-R scheme to solve for con-
verged solution:

85X+ = [DR/DX]'R(X¥)

XU+ = x00 4 sxU+D)

Until IRG)II/IIR(Xo)Il < toly

where k + 1 refers to the current iteration.
Step 5: Update state variables o;41, @n41, kn41 and consistency
parameter ,,, then exit.

4. Strong discontinuity
4.1. Kinematics and governing equations

For strong discontinuities, the displacement field experiences a
spatial jump [u] = u*—u~ across the material surface Sseparating the
subdomains Q™ and Q* of an otherwise continuous body Q, see Fig. 6.
The continuous displacements are distributed throughout the volume
while the spatial jump vector is contained on the discontinuity surface

S.
ulx,t):= ulx,t)

continuous part

+ [u(®)]Hs (x)
-7 2 7
Jjump discontinuity (41)

in which Hg(x) is the Heaviside function across the discontinuity sur-
face.

In this study, it is assumed that the jump discontinuity [u] is pie-
cewise constant along surface S (i.e. independent of x) so that the
gradient V[u] is ignored. The total strain rate tensor resulting from this

L

{0’

()

Fig. 6. (a) Body Q with planar strong discontinuity S fixed at the reference configuration (Q = Q* U Q- U S, T =TI U I¥) (b) S" and S" for a given set of localized
elements; black circles indicate active nodes and white-filled circles represent inactive ones. Vectors n and [ indicate the normal and tangential separations across the
S¢, respectively; Superscript h corresponds to the finite element discretization of body Q.
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field is the symmetric component of the displacement gradient tensor,
which can be derived in compact form as below

& := sym(ViD) + sym([1] ® n)ds
sym{lull @ n)os

regular part (4~2)

singular part

where n is the unit normal vector to the surface S and pointing in the
direction of Q*. The Dirac delta distribution & indicates unbounded
strain at the discontinuity interface.

The local form of quasi-static, isothermal equilibrium for a body
with strong discontinuity leads to the following set of governing
equations

Vio+b=0 inQ (4.3a)
ocv=t° onl* (4.3b)
u=u; onl% (4.3¢)
[e]l-n =0 across S (4.3d)

where o is the Cauchy stress tensor, b the body force vector, v the
outward unit normal vector to I, t° the traction on I', u, the pre-
scribed displacement on I'!, and [o] is the jump in stress across S.

4.2. Bifurcation theory: onset of localization

Given the above kinematics, it is possible to derive the conditions
for localization from principles of continuum mechanics. Here, the lo-
calization condition is detected in terms of bifurcation analysis Akpama
et al. [1], Chemenda and Mas [15], Motamedi et al. [34], Tjioe and
Borja [57], Borja et al. [11], Regueiro and Foster [43], and Foster et al.
[21]. This theory is originated in Hill [28] work which explores the
onset of inelastic behavior in solids using the physics of wave propa-
gation through the matter. In Rudnicki and Rice [46] used this work to
develop a rigorous mathematical framework for detecting shear band
localization. Later, Ortiz and coworkers [37] integrated this into a finite
element form which has been used widely since.

To form or propagate a discontinuity, the traction must be con-
tinuous across the discontinuity surface. For continuous bifurcation,
given the plasticity constitutive model proposed earlier in Section 2, the
stress rate on the discontinuity surface ¢! and outside that 6° can be
written as below

6l = (C”—lC“: j—i ® %: cc): 04

X
c® (4.4a)
e. 98 af .
co S ® 5 C (L1 )6,
af 3g - Sym u]] ® n S
1 Ch =
oo oo
~ep
60 = T &0 (4.4b)
OA
n
2
c 1T

corresponding loading-unloading paths. ¢,
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where C? is recognized as the elastic-perfectly plastic tangent modulus.

Imposing the traction continuity requirement (¢'-n = ¢%n) con-
cludes the classical condition on the localization tensor A already
identified in [43].

(n-C-n)[1]és = 0
Nl
A

=>detd =0 for [i] # 0 (4.5)

in which n indicates the most critical orientation of the discontinuity
surface in the localized element. The above equation states that a
nontrivial solution for the traction continuity condition is, of course,
possible only when A is singular.

Following Foster et al. [21], we use a numerical algorithm to solve
detA = 0 for the band normal n and then 4 [1i] = 0 for the deformation
directions at the inception of localization. Note that the algorithm is
modified somewhat from the original form, as plasticity models for
geomaterials often have non-associative or kinematically hardening
components. These features destroy the major symmetry of the tangent
modulus. Fortunately, the patch is relatively simple and can be ac-
complished simply by symmetrizing the matrix referred to as J in Ortiz
et al. [37].

5. Softening response
5.1. Traction-separation model

In this section, a post-localization model is introduced to describe
the softening response of the material after localization detection. In
particular, a novel cohesive traction-separation law recently presented
in Weed et al. [60] is utilized to characterize the macro-crack evolution
in terms of the displacement jump on the slip surface S. Therefore, si-
milar to the concept of cohesive zone models for quasi-brittle materials
(see Parvaneh and Foster [39], Remmers et al. [44], de Borst et al. [17],
Sancho et al. [47], Camacho and Ortiz [14], among others), a damage-
like function F is proposed in two forms of the tensile and compressive
regime, (5.1a) and (5.1b). Schematic Fig. 7 demonstrates how the el-
liptical damage surface F = 0 shrinks to the origin while c.q decreases
linearly toward zero as the equivalent displacement jump increases. In
addition, for the compressive case (i.e., crack closure), the frictional
resistance always operates on the crack surface independently of the
softening process. Once the cohesion strength completely degrades
(&,0x = &), the cohesive crack surface evolves to a Coulomb friction
surface with friction coefficient x4 = tang’.

Fension = V(Ts ) + (as0,)> —Ceq
- -
g (5.1a)
Féompression = |Ts_ceq'Sign(§s)|_ﬂ_Un (5.1b)

where the normal traction 0, =n ® n:o and tangential traction
%, =n ® l: o attribute to the slip surface. The notation * represents the

* >

“ G,

C

Fig. 7. Cohesive fracture law: (a) isotropic softening of the damage-like surface F = 0 in traction (o, 7;) space (b) equivalent traction-separation relationship with

C’max,n max,n+1

indicates the maximum attained equivalent separation.
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Macaulay brackets, taking into account the positive portion, o, is a
normal stress weighting factor and u = tang’ is a static coefficient of
friction on the slip surface. Moreover, the non-negative parameters oeq
and c, indicate the equivalent traction and equivalent cohesive
strength of the band, respectively. Notably, the term sign(¢,) devised in
Eq. (5.1b) would imply that the cohesion on the slip surface operates as
a restoring force, i.e. the force c.q always acts in the opposite direction
of the displacement jump (or separation) vector. Note that the initial
cohesion ¢, must be computed in a manner to be balanced with the bulk
stress state at the moment of localization. In other words, initial co-
hesion is assumed as a non-constant parameter whose value depends on
a loading history of the material before localization. For our particular
formulation, the damage model follows the spirit of localized damage
mechanics, so that the crack surface softens with the increase of dis-
placement, but unloads/reloads elastically.

In previous studies, various cohesion softening laws have been
proposed for a wide range of materials, such as trapezoidal function for
a high-strength-low-alloy (HSLA) steel [48]; exponential function for a
steel [38]; linear softening function for a polycrystalline brittle mate-
rials [18,4]; and linear, bilinear, and exponential softening functions for
concrete [24,3]. In this work, as shown in Eq. (5.2), a linear softening
curve is utilized given that for earthen materials, it has been shown a
linear softening model fits experimental data well [45,29].

Ceq = Co (1—%—6‘“)

where ¢, denotes to the characteristic slip (or separation) distance,
beyond which complete failure occurs in the sense that the crack sur-
face entirely loses its cohesive strength. The scalar ¢, indicates the
equivalent jump magnitude and takes the form of

geq =4 C«SZ + (a{{n)z

in which the variables ¢, and ¢, are normal opening and tangential (in-
plane sliding) slip on the localization band. The parameter a; is a
coefficient weighing the relative contribution of the opening and sliding
modes in the damage process. Following the spirit of damage mechanics
in the unloading/reloading case, we assume c.q unloads elastically to
the origin. Likewise, the reloading path is also considered elastic until
the point of maximum equivalent separation ¢, attained up until the
current time. Beyond this point the softening process will resume. The
slope of the unloading-reloading curve can be thought of as the stiffness
of the cohesion force and derived as

_e
e (gm s:)

Subsequently, the equivalent stress on the band can be rewritten as

(5.2)

(5.3)

5.4

oe‘l = kc eq (5.5)

5.2. Model’s relationship to fracture energy

The specific fracture energy G is the amount of external energy
required to form a unit surface area of the fully-separated (or damaged)
crack. This softening property can be simply computed from the area
under the traction-separation function in Fig. 7b. In view of this fact, we
can assign different specific fracture energies to each of the respective
failure modes (I and II) by assigning o, a; # 1.

azar = S
TG (5.6)
In this work, we will assume a, = a¢, hence
2
ene(®)
Gy (5.7)
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5.3. Numerical implementation

As discussed in detail by [36], if material failure propagates through
the solids, the tangent constitutive operator C%, progressively loses its
positive definite character which is eventually accompanied by the loss
of positive definiteness of the global stiffness matrix. Hence, we adopt
the implicit/explicit (Impl-Ex) integration technique to solve the slip
values. Strictly speaking, seeking solution at time step t,,; for a given
localized element, the displacement jump (slip values) ¢= (¢,, {,) are
explicitly approximated based on their implicitly updated values from
prior time steps t, and f,_;.

~

Atn-%—l

§n+1 = gn + Atn (gn_gn—l) (58)
The semi-implicit stress is then calculated
Gr1 = o + €% Mg = (G, ® VMY (5.9)

~
since ¢, is postulated as a predetermined vector, we can easily derive
the effective algorithmic operator CST, as below
~
off _ O%n+1
Cini=——

n

=ce

0g,41 (5.10)

As can be seen above, for linear elasticity, the tangent modulus is
constant. This approach, at minor cost of accuracy, improved the effi-
ciency of the simulation by creating a linear solution in this part. In the
end, once the convergent solution of the global displacements is as-
sured, the internal variables can be updated implicitly at time step f,1
using Newton-Raphson method:

k+1 _ sk _(ar;nh(gfﬂ)
n+1 n+1 9 k

n+1

-1
] reenh( yﬁrl) (5 11)

where k + 1 refers to the current iteration. Recall Eq. (5.1), the local
. [0 . .
residual vector ry,;, = { cpl} can be defined based on traction balances
2

on the discontinuity surface as below

@, = 0,—k.§, =0 (5.12a)

@, = Ity—k §l-u—0, =0

(5.12b)

To avoid repetition, the explicit representations of derivatives are not
derived here. We refer to Weed et al. [60] for complete details.

6. Finite element implementation
6.1. Enhanced finite element formulation

In order to incorporate strong discontinuity analysis into the plat-
form of finite element simulation, the assumed enhanced strain (AES)
method based on the Hu-Washizu principle is invoked [6,21,51]. Fig. 8
demonstrates the underlying idea behind the enhanced finite element
implementation for a constant strain triangle (CST) element. In this
approach, the displacement discontinuity is conceptualized as an ap-
propriate incompatible mode and added to the standard FE solutions. It
is worth noting that the AES method is numerically appealing technique
since the enhancements for discontinuities are condensed out locally
and hence no additional global degrees of freedom are added to the
calculations. The standard static condensation algorithm is considered
accordingly to confine the enhancement within the element level.

The strain rate tensor for infinitesimal deformation is written as

e=vi= VI +(CLl® VY + @il ® n)d
conforming enhanced (6.1

which can be regularized in a form of
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(c) total displacement w/jump (d) conforming displacement

Fig. 8. Enhancing a CST finite element: (a) corresponds to an undeformed
element, in (b) the element has undergone an arbitrary displacement i (x, t)
and (c) is the total displacement after experiencing a displacement jump [u(t)]
and finally (d) is the conforming displacement of the element i (x, t).

Table 1
Material parameters for Salem limestone rock adopted in this simulation.

Parameter Value

22,547 (MPa)

0.2524 (dimensionless)
—8.05 (MPa)

689.2 (MPa)

3.94e—4 (1/MPa)

1.0e —4 (1/MPa)

Young’s modulus (E)

Poisson’s ratio (v)

Compression cap parameter (k)
Shear yield surface parameter (A)
Shear yield surface parameter (B)
Shear yield surface parameter (L)

Shear yield surface parameter (C) 675.2 (MPa)

Shear yield surface parameter (6, ¢) 0.0 (rad)

Aspect ratios (R, Q) 28.0 (dimensionless)
Tension cap parameter (I]) 0.0 (MPa)

Isotropic tensile strength (T) 5 (MPa)

Isotropic tensile strength (T%) 10 (MPa)

0.08 (dimensionless)
1.47e -3 (1/MPa)

Isotropic hardening parameter (W)
Isotropic hardening parameter (D1)

Isotropic hardening parameter (D5) 0.0 (1/MPa?)
Kinematic hardening parameter (c%) 1le5 (MPa)
Kinematic hardening parameter (N) 6.0 (MPa)

0.8 (dimensionless)
30° (degree)

0.4* (mm)

4.8** (dimensionless)

Stress triaxiality parameter (1)
Localized friction angle (¢')
Characteristic slip distance (¢,)
Specific fracture energy ratio (Gir/Gr)

* An experimental value calculated for a limestone rock tested under cracked
Brazilian disc configuration Al-Shayea [2]. x* An empirical value given in Borja
and Foster [9].

€=Vi= Vi + (—[ul ® VFY + ([ul ® n)'s

&8

(6.2)

singular

The function f"(x) is a smooth blending function for localized ele-
ments that can be conveniently defined as the sum of the shape func-
tions attributed to the active nodes.

Nen

fr= Z N 4H 5(x4)

A=1

(6.3)

where n,, is the number of nodes for a localized element, and N, are the
standard finite element shape functions. Using such a kinematic de-
scription affords the formulation the ability to allow the essential
boundary conditions, I'¥ in Fig. 6, to be applied exclusively on the
conforming displacement term I (x, t). As a result, the nodal displace-
ments calculated at the global level can be realized as the final
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- ———
3.5m

Fig. 9. Geometry and boundary conditions of an earthen wall subjected to in-
plane lateral (shear) loading. Spheres stand for roller supports. As a con-
sequence, the boundary nodes on the top edge will tend to translate only along
the surface upon which the roller rests.

displacements. Eventually, the finite element stress for localized ele-
ments can be obtained from the regular part of the strain €. The re-
levant mathematical background is discussed in [10]. Thus, for elastic
unloading we have

o‘. = Ce: éreg (6.4)

For further details of the AES method, including its variational and
matrix formulation, the reader is referred to Borja [7] and the refer-
ences therein.

6.2. Stiffness matrix

For the strong discontinuity approach, the resulting stiffness matrix
from this formulation, assuming elastic unloading in the bulk material
can be derived. We begin with two sets of equations that must be
solved: the standard balance of linear momentum (here taken to be
quasi-static and small strain) and the traction continuity across the
discontinuity surface. In the weak form, they become Regueiro and
Borja [42] and Foster et al. [21]

R = [ B:odo- [ N'bdQ- [, Ndl =0

(6.5)

Tonh =0 (6.6)
Taking variations on these, we arrive at

OR® = Kg46d°® + K3, 6¢¢ (6.7)

Otep = deéde + Kéage (6.8)

where Kj; is the standard element stiffness matrix, and the others can
be shown to have the following forms:

de
Kg{ = - ot B c% gdg (69)
org, org,
Kg = —oth = Zenh. ce: pe
fi= g = o (6.10)
ory
K§ = =20 — (38,1006 Oreul0CeIT
4 a;e [ enh/ {n enh/ gs] (6.11)

The tensor B is the third-order, symmetric gradient of the nodal dis-
placement interpolation functions, commonly referred to as the strain-
displacement tensor, i.e. Bjxdy = ;. The last equation is convenient
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(a) Coarse mesh consists of 516 elements
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.5

(b) Fine mesh consists of 1952 elements

Fig. 10. Spatial discretization of a wall of an earthen structure. In the case of pre-existing damage condition, initial cracks (marked by the red lines) are inserted into

the finite element model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Schematic representation of the localized cracked zone in the material under triaxial loading condition. The sample is subjected to a compressive axial
loading (g, < 0). Inset shows numerous microcracks including the ones (marked by red color) whose faces are under pressure, and hence grow in a frictional sliding
mode. Growth mechanism of microcracking is modeled via deviatoric Back-stress tensor « (a; = 0). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

6 - 4
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Fig. 12. Structural response to the lateral loading: Force-displacement curve of
wall, with and without pre-existing damages and for different mesh sizes.
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Table 2
Structural performance measurement.

Criterion Mesh 1 Mesh 2
Residual strength ratio (dimensionless) 0.741 0.718
Robustness AQ (MN) 1.455 1.481
Intact structural Wall

Absorptive capacity ABC (KJ) 1.42 1.18
Adaptive capacity AC (KJ) 5.16 5.46
Transformative capacity TC (KJ) 0.19 0.13
Structural Wall with pre-existing damage

Absorptive capacity ABC (KJ) 1.04 1.04
Adaptive capacity AC (KJ) 2.49 1.73
Transformative capacity TC (KJ) 0.148 0.17

because it is identical to the tangent stiffness used in the local N-R for
determining the slip, and the same code can be reused. Finally, the local
degrees of freedom which correspond to the deformation band may be
condensed out at the element level in the standard way, resulting in the

final element stiffness matrix.

K{ = Ki—KiKg 'K

(6.12)
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(a) Horizontal displacement contour, dz(m)  (b) Shear strain contour (e12)

Fig. 13. Deformed mesh with enhanced solution of an intact wall using the mesh 1.
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- i -
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(a) Horizontal displacement contour, daz(m) (b) Shear strain contour (e;2)

Fig. 14. Deformed mesh with enhanced solution of an intact wall using the mesh 2.
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(a) Horizontal displacement contour, dz(m)  (b) Shear strain contour (€12)

Fig. 15. Deformed mesh with enhanced solution of a wall with pre-existing damage shown in Fig. 10a using the mesh 1.

Considering Kj; as the standard stiffness matrix for a non-localized 7. Numerical example

element, Eq. (6.12) reveals how the material stiffness degrades for a

localized (i.e. damaged) element via a softening component In this study, the material properties listed in Table 1 were fit to
K K& 'K reflecting primarily the development of jump displacement Salem limestone rock by Fossum and Brannon [19] and frequently re-
across the discontinuity surface S. ported in Regueiro and Foster [43], Sun et al. [55] and Motamedi and

Foster [35]. For the specific fracture energy ratio G;/Gj, varied values
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Fig. 16. Deformed mesh with enhanced solution of a wall with pre-existing damage shown in Fig. 10b using the mesh 2.

are calculated experimentally dependent on the specific material of the
interest and the fracture test chosen. In this paper, we use the empirical
value of Gj;/G; = 4.8 taken from Al-Shayea [2] for a Saudi Arabian
limestone rock tested under the ambient condition using CBD config-
uration. For the characteristic slip distance ¢, the value 0.4 (mm) is
assumed [9].

As an example, the shear behavior of an earthen wall for two case
scenarios has been investigated. The first scenario is labeled originally
intact condition presuming that the wall was not previously subjected
to any damaging load or event using a nonlinear pushover or pushdown
analysis. In the second one, the wall has sustained some level of damage
or the brittle failure in the beginning. The geometry and boundary
conditions of the problem are depicted in Fig. 9. The wall has openings
for a door and a window. As shown by arrows, a shear displacement,
representing a strong hazard-related force, is applied from the left. To
analyze the problem under plane strain condition, two mesh sizes with
516 and 1952 CST elements have been chosen, Fig. 10. For the case of
pre-damaged condition, the initial cracks are introduced in the FE
model as a fully damaged part of the structure using the specific em-
bedded discontinuity surfaces inside the elements as graphically shown
in the figure by red-colored solid lines. This interface includes zero
initial cohesive strength so that the pre-cracked elements immediately
fail when loaded in tension, shear or any of their combinations. These
elements can, however, still sustain compressive loads.

In the simulation, we assume that the material obeys the non-as-
sociative plastic flow rule, which its parameters are given in Box 2 and
set stress triaxiality parameter ) = 0.8 to trigger Strength Differential
(SD) effect of the model (J§ dependence). This feature is very common
of geological materials and allows the bulk to withstand more loads
when its most critical surface undergoes higher compression. This be-
havior has been seen mainly because of pressure-induced friction acting
on faces of flaws, microcracks and grain boundaries embodied with in
the geomaterials, see Fig. 11.

The force-displacement curve is plotted in Fig. 12 which shows the
pre-damaged condition comparing to the originally intact case, there is
only a modest amount of plasticity before a brittle drop in strength and
it can be quantitatively measured based on adaptive capacity. More-
over, for both cases, the residual strength remains at the end of load-
carrying capacity curve (i.e. structural softening response). This is most
likely due to friction effects on the discontinuity surface which indeed
represents the frictional locking phenomenon once the crack closure
becomes more pronounced. As for quantitative evaluation of structural
robustness, the residual strength ratio RSR = Qgamase/Qiniact cap be de-
fined according to Ghosn [25]. Sorensen and Christensen [52] pre-
sented the value of RSR = 0.8 as an acceptable structural safety limit
based on the probability and consequences of failure. In addition,
Bontempi et al. [5] performed a conceptual comparison between the
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performance of an originally intact system and that of the system with a
pre-existing damage using the difference between maximum load-car-
rying capacities AQ = Q[Ma¢'_Qdamege pather than ratios. This metric has
been adopted as a measure of robustness by other researchers such as
Frangopol and Curley [23], Starossek and Haberland [54,26] and
Giuliani [26]. Furthermore, the proposed structural resilience for dif-
ferent stages (i.e. absorptive, adaptive and transformative phases) can
be calculated by integrating the load-carrying capacity curve over the
displacement for each corresponding response, namely reversible
(elastic), nonlinear hardening and softening, respectively. The com-
puted values of aforementioned criteria are listed in Table 2. As is
evident from Table 2, the major difference between the performance of
intact and pre-damaged structures is related to their adaptive capa-
cities. The existence of initial cracks not only reduces the maximum
load-carrying capacity but also leads to about 50% loss of the adaptive
capacity of the system. In other words, the predamaged earthen wall in
part loses its original ductility performance.

Additional insights can be gained by comparing the kinematics of
deformation. Accordingly, the deformed meshes generated by the AES
solution are displayed in Figs. 13-16. The plot indicates that once the
intact structure is laterally loaded enough, the fracture initiates from
the corners of the window. Subsequently, the crack growth continues
diagonally through the structure. In the pre-damaged condition, how-
ever, the cracks initiated and continued to propagate from the ends of
the initially inserted discontinuity surfaces. For both cases, the track of
shear bands can be clearly observed in shear strain contours depicted in
Figs. 13b-16b.

8. Conclusion

The proposed numerical framework in this study successfully ad-
dresses the structural performance indicators including maximum col-
lapse resistance, damage sequences, structural robustness, and struc-
tural resilience of monolithic earthen buildings. For the nonlinear finite
element simulation, localized damage is detected by a loss of ellipticity
condition, and subsequent crack growth is modeled in the framework of
an enhanced strain finite element schema. In particular, a mixed iso-
tropic-kinematic hardening plasticity model was utilized to account for
the adaptive capacity of structural resilience. According to the shear
resistance response, the existence of pre-damages in the system pro-
foundly reduces the global ductility of the structure and results in more
brittle structural behavior. In addition to an evident reduction in
maximum load carrying capacity of the system, it has been found that
the major difference between the resilience performance of intact and
initially damaged structures is related to their adaptive capacities.
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