New Security Threats on FPGAs: From FPGA
Design Tools Perspective

Sandeep Sunkavilli, Zhiming Zhang, and Qiaoyan Yu
Dept. of Electrical and Computer Engineering
University of New Hampshire

Abstract—The growing market share of FPGAs motivates
the increasing number of attackers to tamper with FPGA
systems. The majority of existing research efforts on FPGA se-
curity focus on counterfeiting devices, hardware Trojans, reverse
engineering hardware designs via decomposing or decrypting
bitstream files, and side-channel analysis attacks. Those attacks
are typically limited to the FPGA systems implemented in
standalone FPGA devices. As more cloud-based FPGA providers,
third-party accelerator suppliers, and open-source FPGA design
tools are available for prototyping, hardware acceleration, and
high-performance computing, new FPGA utilization models are
gradually formed. The increasing number of entities involved in
the new FPGA use model leads to the emergence of new security
threats and attack surfaces. Although the security issues on
FPGA systems design and piracy have been widely investigated,
there is limited investigation available disclosing the security
threats from the FPGA design tools perspective. This work
conducts a comprehensive survey on the FPGA tool security
and proposes a thorough security threat landscape for the new
FPGA utilization model in the era of machine learning and cloud
computing.

Index Terms—FPGA security, hardware security, covert chan-
nel, hardware Trojan, multi-tenant FPGA, cloud computing.

I. INTRODUCTION

The growing market share of FPGAs motivates more and
more attackers to tamper with either standalone or cloud-based
FPGA systems. The majority of existing research efforts [1] on
FPGA security focus on counterfeiting devices [2], hardware
Trojans [3], [4], reverse engineering intellectual property (IP)
designs via decomposing or decrypting bitstream files [5],
and side-channel analysis attacks [6], [7]. Historically, the
investigation on FPGA security is limited to the FPGA system
implementations on standalone FPGA devices in the FPGA
utilization model shown in Fig. 1(a). In that model, FPGA
users have physical access to the FPGA device and its corre-
sponding design suite. The regulation policies employed in the
FPGA design flow are simple and easy to follow and track.

To facilitate computing-intensive applications such as ma-
chine learning, artificial intelligence, and cloud computing,
FPGA design and utilization enter a new era, where more
and more cloud-based FPGA providers [8] and third-party
accelerators are integrated into the development flow of FPGA
systems. A new FPGA utilization model shown in Fig. 1(b)
gradually becomes appealing for prototyping, hardware ac-
celeration, and high-performance computing. However, the
increasing number of entities involved in the new FPGA
utilization model leads to new potential attack surfaces. The

This work is partially supported by NSF award CNS-1652474.

FPGA CAD Tool

CUSTOMERS

(a)

FPGA Providers

Standalone
device

Accelerators

FPGA Users

Developers Tools

FPGA CAD Tools

CUSTOMERS

Third-party
CAD Tools

CUSTOMERS |

CUSTOMERS

Remote Access Control;
Regulation Rules Check;
Multi-tenant Policy

(b)
Fig. 1. FPGA utilization models. (a) Old model and (b) new model.

cloud FPGA providers enable FPGA users to perform compu-
tation remotely. As a result, some of the typical cybersecurity
attacks will also apply to the FPGA system development flow.
Sharing FPGA hardware in the cloud will further lead to
design piracy from one FPGA customer to another [9], [10].
Recent literature demonstrates the feasibility of Rowhammer
attack and power-based side-channel attack in the scenario
of multi-tenant FPGAs [11], [12]. To increase the flexibility
and compatibility, researchers start to explore open-source
FPGA Computer-Aided Design (CAD) tools [13]-[15]. Since
more developers for systems and third-party accelerators are
involved in the new FPGA design flow, it is more challenging
than before to ensure that all entities in the design flow
are trustworthy. Untrusted CAD tools can perform malicious
modifications to the FPGA configuration files [16], [17].
Moreover, the integration of third-party accelerators may need
the traditional FPGA design suite to provide new interfaces to
support verification and debugging. Attackers could leverage
such interfaces to breach the integrity of the design flow.

The emerging new FPGA utilization model urges us to
revisit the FPGA security. The recent surveys [18] provide
a thorough overview of the attacks from the FPGA devel-
opers/users. There is limited study available revealing the
potential risks induced by the tools for new FPGA system
design. The main contributions of this work are as below:

o To the best of our knowledge, this is the first work that
summarizes the potential security threats from commer-

cial and open-source FPGA CAD tools.

e A new security threat landscape is proposed for the
emerging new FPGA utilization model.

o We analyze the new security vulnerabilities induced by
the integration of countermeasures in FPGA CAD tools.

II. SURVEY ON SECURITY THREATS FROM FPGA TOOLS
A. Security Threats from Commercial FPGA CAD Tools

To corrupt the original designs, malicious software can
be embedded into the commonly used commercial CAD
tools. The work [16] provides two attack examples, where
the logic function of the original design is changed via the
intermediate configuration files in the Xilinx ISE and Altera
Quartus. Another work [19] indicates that the security of a
complex FPGA-based System-on-Chip (SoC) can be corrupted
by implanting malicious software to the FPGA CAD tools even
if the protection of ARM TrustZone is employed in the system.
The malicious CAD tools can attack the TrustZone by com-
promising the important communication signals, modifying the
Verilog codes or FPGA Lookup Table (LUT) configurations,
and changing the security status of IPs. By exploiting the
padding schemes and analyzing the syntax errors reported by
the target FPGA EDA tools, the work [20] demonstrates that
the plaintext of the encrypted IPs can be recovered by attackers
even if the IEEE P1735 standard is followed in the tools.
Furthermore, hardware Trojans can be inserted to the IPs once
the plaintext is extracted.

B. Security Threats from Open-Source FPGA CAD Tools

The investigation of security threats and mitigation methods
is typically tied with a specific FPGA chip and its design
suite. It is not easy or feasible to migrate the risk assess-
ment and defense methods to another system using other
FPGAs from different vendors. A recent work [13] reveals
the FPGA security threats from open-source FPGA CAD tools,
VTR [14] and Symbiflow [15]. The findings from that work are
valuable to promote the development of generalized methods
for attack-resilient FPGA designs. The work [21] shows that
a compromised design flow can insert a hardware Trojan,
which is triggered by the action of bitstream generation in
the design flow. This type of Trojans will not be detected
by the traditional Trojan detection methods. As open-source
FPGA CAD tools have gained increasing popularity due to
their transparency and flexibility, it is imperative to perform
more threat analyses and countermeasure development in an
open-source CAD environment.

We envision that more attack surfaces could be developed in
the open-source CAD tools than in the commercial FPGA de-
sign suites. Figure 2 summarizes the potential attack surfaces
and the aims of possible attacks. First, the open-source tools
often have a transparent flow for how the user constraints are
employed in synthesis and floor planning. Some constraints
defined by FPGA users could be tampered with or simply
muted such that the pre-defined protection mechanisms are
nullified. Second, more intermediate files in open-source CAD

Attack surfaces

Intermediate
files

User constraints| ‘ Interfaces

Error messages Tool flow ‘ Bitstream

Retrieve
plaintext IP*

Selectively
ignore
constraints* #

Trigger Trojan

encryption® insertion*:#

Add/remove I/O‘ Weaken
]

Trojan* #

Iter constraints|

iracy® #
for protection* | IP piracy

Modify LUT Leak
configuration™: | information*

Instantiate
malicious Ips*:*

* Applicable to commercial CAD tools

Applicable to open-source CAD tools

Fig. 2. Attack surfaces on commercial and open-source FPGA CAD tools.

Possible attackers
inFPGAdesign (mapS | Tool Vendor [MPY FPGA Provider [MERS FPGA User

flow

* Side-channel
analysis attack

* Bitstream reverse
engineering

* Fault attack

« IP piracy

* Device substitution

* Remote power
analysis attack

* Remote row

* Covert channel

* Additional
malicious module
insertion

* Performance
degradation

Wt third-party accelerators
Inauthorized accessing

* Weakened encryption
* Time-bomb malfunction/hardware Troj
* Accelerated device aging
* Crosstalk attack

Fig. 3. Proposed new security threat landscape.

« Counterfeit

* Aged device

* Hardware Trojan

* Malicious backdoor|

* Malicious backdoor|
* Hardware Trojan

« Covert channel

* IP piracy

Examples of
attacks on
FPGAs in old
model

* Accelerator IP
Examples of piracy
attacks on
FPGAs in new

model

* Insert Trojans in
accelerator

* New format of
covert channels

hammer/fault attack|
* Reverse engineering
accelerator IPs

tools (e.g., .blif, .net and .place used in VTR and Symbi-
flow) are readable and editable before bitstream generation.
The interfaces for third-party IP integration are more diverse
than those in the commercial tools. FPGA system developers
could leverage the interfaces to weaken the encryption on the
licensed IPs or build covert channels for information leaking.
Last but not least, the loosely protected toolchain will suffer
from Trojan insertion and bitstream tampering [17], [22].

III. PROPOSED NEW SECURITY THREAT LANDSCAPE

Due to the emergence of FPGA-as-a-service, more sectors
are involved in the development flow of FPGA systems
and thus the security threat landscape changes accordingly.
Figure 3 summarizes the threat models induced by old and
new FPGA utilization models. In the old FPGA utilization
scenarios, physical access to the FPGA devices or CAD tools
is required to execute the attack. Attacks are often localized
either in the device and design suite vendor or in the end
user. The most common attacks reported in the literature are
(1) hardware Trojan insertion to build a covert channel or
modify the original function at the developer end [4], [23], (2)
counterfeit FPGA devices [2], and (3) side-channel analysis
(SCA) attacks via power consumption or thermal observation
at the FPGA user end [6], [7]. Few works disclose that some
FPGA CAD tools can be tampered with to facilitate the
implementation of covert channels and Trojan insertion [16],
[17]. No matter which kind of attacks mentioned above is
performed, collaborative attacks are less likely to happen
because of the limited knowledge sharing among multiple
sectors in the FPGA design flow.

As compared in Fig. 1, the new FPGA use model involves
more entities than the old one. Thus, more security threats
could be brought into the design flow. This trend will become
severer as more and more open-source FPGA CAD tools are
employed in the design flow. In cloud-based FPGA computing,
the physical access to the CAD tools and FPGA devices
are often prohibited; now, the new attack format could be a
synergy effort deployed in the tools and devices. As a result,
the attack model is shifted. As shown in Fig. 3, the attacks
in the new FPGA utilization model from the tool vendors
and FPGA providers may be combined. Open-source FPGA
CAD tools are not customized for a particular FPGA chip,
the architecture information and essential characteristics of
the FPGA of interest should be available for the CAD tool.
As discussed in Section II-B, the accessibility of intermediate
files will further facilitate the occurrence of new attacks. For
example, more counterfeit third-party accelerators [24] could
be employed in the design flow. The diverse sources of IPs
will challenge the authorized access control. The security
strength provided by IP encryption will be weakened, as
well. Information leaking via crosstalk and thermal covert
channels [25], [26] could be more prevalent than those in
the old FPGA use model. In addition, when we enter the
era of FPGA-as-a-service, local SCA attacks are upgraded to
remote versions, such as remote power analysis [12], remote
rowhammer attack [11], and remote fault attack [27].

The new FPGA utilization model urges us to expand the
threat model for new FPGA development flow. Our summary
shown in Fig. 3 may not include all new attack examples
reported in the existing literature. We hope that our work can
inspire more engineers and researchers in the FPGA security
community to enhance the knowledge and foresee the potential
risks that we are facing in the new FPGA development
scenarios. On the other hand, there are new opportunities
for countermeasure design in open-source FPGA CAD tools.
Various security features could be added to the conventional
design flow by modifying and extending the vendor tools to
secure FPGA systems against the new threats.

IV. INTEGRATION OF DEFENSE METHODS INTO FPGA
DESIGN FLow

A. New Design Flow for FPGA Security

The existing defense methods against the security threats
mentioned in the previous sections will influence the tradi-
tional FPGA design flow, either revising the existing synthesis
and floorplanning algorithms or adding extra steps to perform
encryption or obfuscation. Figure 4 highlights the design
phases where different countermeasures can be integrated
into the existing FPGA configuration flow. Two kinds of
encryption, IP encryption and bitstream encryption, can be
supported. The latter one is commonly used to thwart reverse
engineering attacks. New constraints file scripts, synthesis
and floorplanning algorithms are effective to isolate design
modules, especially in multi-tenant FPGAs. To assure the
isolation being activated in the design, the step Design Rule
Check will reinforce the new policies for module isolation.

Generation
Bitstream
Encryption

Synthesis

Create a Project

Add Source Files

n IP Encryption

l Implementation

Add Constraints File

L

Floorplanning

Upload Key File to
FPGA device

Upload Bitstream to
FPGA device

a IP encryption key and access rights

Design Rule Check

il

l:l Design phases that are
influenced by encryption

|:| Design phases that are influenced a Bitstream key
by isolation or obfuscation

Fig. 4. New design flow after integrating countermeasures for FPGA security.

B. Existing Integration of Countermeasures in FPGA Tools

1) Bitstream Encryption: Bitstream encryption is one of
the popular countermeasures against hardware Trojan inser-
tion and bitstream reverse engineering or tampering attacks.
For instance, Xilinx 7-series FPGAs have an on-chip AES
decryption module to authenticate the bitstream file. A 128-
bit initial vector and a 256-bit key are provided to the Xilinx
Vivado, which performs bitstream encryption after the phase
of implementation [28]. Intel FPGAs are also equipped with
an AES decryption module. Similarly, the Intel Quartus prime
CAD tool uses a Qcrypt to encrypt bitstream [29].

2) IP Encryption: 1P encryption allows IP owners to pro-
hibit the unauthorized access to their IPs (i.e., determining
how various vendor tools interact with their IPs), but it does
not thwart any attacks performed after the bitstream file is
generated. In the context of hardware implementation, IP en-
cryption techniques are only applicable to the netlist described
in the format of Verilog, SystemVerilog and VHDL. It is not
suitable to perform IP encryption on the popular netlist format
EDIF. The IEEE-1735 standard [30] has been incorporated in
the commercial FPGA design suite, Xilinx Vivado, to support
IP encryption. Three types of rights—common rights, vendor-
specific rights and conditional rights—are defined along with
the IP encryption option. Common rights apply to all the
vendor tools specified by the IP owner; vendor specific rights
are only for a specific vendor; conditional rights decide the
level of access that will be given to the IP user. The IP user
will be provided with an encrypted IP file, which consists of
an encrypted public key and all the access rights defined by
the IP owner.

3) Design Isolation and Obfuscation: The work [31] pro-
poses to extend the routing algorithms in the FPGA CAD tools
to protect FPGA designs from the crosstalk-based side-channel
attacks. More specifically, the enhanced routing algorithm
ensures that the nets carrying sensitive information, such
as encryption keys, are never routed close to the untrusted
nets, thus prohibiting the crosstalk attack. Another work [32]
proposes a hardware isolation framework against information
leaking (HILL) in multi-tenant FPGA systems. To mitigate the
crosstalk attack, HILL reduces the usage of long wires for
security-critical instances, isolates security-critical instances
from other parts and tenants, and uses dummy long wires

to obfuscate the existing crosstalk side-channels. The authors
of the work [32] claim that HILL can be integrated into
any commodity FPGA CAD tools, such as Xilinx Vivado or
Intel Quartus. The work [33] introduces an isolated partial
reconfiguration design flow (IPRDF), which extends the Xilinx
isolation design flow (IDF) [34] and is compatible with Xilinx
vendor tools for bitstream generation. The partial reconfigura-
tion provided by IPRDF can act as an effective countermeasure
to single-event upsets (SEUs) and benefit the redundancy
needed for security-critical systems. To prevent and tolerate
the malicious tampering of critical functions, the work [35]
uses an obfuscated voting unit (OVU) to provide the critical
functions with multiple obfuscated variants, thus increasing
the attack effort of the ergodic alterations from attackers.
The work [36] proposes a logic obfuscation methodology for
FPGA bitstreams, which inserts key bits to LUTs, to defend
common bitstream attacks. That method is performed by a
custom CAD framework and it can be integrated into the
general FPGA design flow as an add-on step.

V. ANALYSIS OF NEW ATTACK SURFACES INDUCED BY
INTEGRATING COUNTERMEASURES IN FPGA CAD TooOLS

Since encryption and isolation are two general categories
of existing countermeasures, we analyze the potential risks of
integrating those techniques into the FPGA CAD tools and
demonstrate some case studies in this section.

A. Security Vulnerability in IP Encryption

IP encryption restricts the access to the IP, depending upon
the access rights defined by the IP owner. IP users only need
the encrypted IP file, which has the information regarding
the key and the access rights defined during encryption. IP
users can only learn the access rights from the key file. If the
encrypted IP will be used in a third-party tool, the public key
of that tool should be provided before encryption. Both the
keys are used in encryption. Any mismatch in the public key,
the encrypted IP cannot be used. If the trustworthiness of the
FPGA CAD tool is not guaranteed, there is a potential risk of
key leaking.

IP encryption still suffers from the risk of IP piracy due
to traceable pin names and schematic views. Even though
an IP is encrypted, its net and pin names are still visible
to the IP users. As shown in Fig. 5, the implementation of
the encrypted IP is not readable, but the number of I/O pins,
their width, and I/O names are observable. This fact leads to
a potential risk. IP users could leverage this fact to trace the
signals and precisely target the critical ones. When we zoom
in the instantiated encrypted IP, the schematic view of the
encrypted circuit will reveal the FPGA components used in the
physical implementation of that IP module. For instance, Fig. 5
indicates that the hidden component used in the encrypted
is a LUT. Moreover, it is possible to see the hierarchy of
the encrypted module. Figure 6 shows a partially encrypted
linear-feedback shift register (LFSR), where the encrypted
submodules d1, d2, d3 and d4 are described in the format
of encrypted netlist dff.vp. This example shows that we can

<hidden> <hidden>

- <hidden>
dk D> > 1 <hidden> > g Sef10]

<hidden>
<hidden> +
reset [>— -

Fig. 5. Diagram of an instantiated encrypted counter.

Top module Ifsr, which instantiates encrypted submodules

Design Sources (1

@ = Msr (Ifsry) (4
® d1:dff (dffvp)
® d2: dff (dffvp;
® d3:dff (dff.
® d4: dff (dffvp

Fig. 6. Hierarchical view of a partially encrypted LFSR.

trace down the relation between the encrypted IPs and other
submodules in the system design.

B. Security Vulnerability in Design Isolation

Fence is a dedicated empty FPGA area that prohibits any
logic from being implemented there. The purpose of fence
is to isolate modules, thus thwarting the crosstalk attack.
Figure 7(a) depicts an example of fence-based isolation. Xilinx
introduces a concept called Isolation Design Flow (IDF) to
physically and logically isolate modules with fence. The fence-
based isolation requires a slight modification on the conven-
tional FPGA design flow. As shown in Fig. 7(b), the two grey
steps are added to the RTL elaboration and design synthesis
phases. The property HD.ISOLATE directs the tool to create
an isolated region Pblock for each module with this property.
Xilinx Vivado Isolation Verifier (VIV) checks if the isolation
fence is implemented successfully. Six Design Rule Check
(DRC) rules [34] employed in Vivado can examine provenance
and violations on I/O banks, package pins, floorplanning,
placement and routing. However, the errors reported by DRC
do not stop the designer from deploying the design into the
FPGA device; instead, DRC only warns the designer to be
aware of the violations.

The isolation fence only prevents hardware Trojan insertion
in the fence area, but it cannot thwart malicious modification
on the design due to the following limitations.

1) Limitation 1: exception on global signals: The security
of fence-based isolation is originated from trusted routing,
which ensures that each input is driven by one source and
each output only drives one load. The IDF DRC will report

FPGA design flow Steps for building fence and isolation

R HDL
Module 1 {2
e RTL] Set
Elaboration HD.ISOLATE
Synthesis
1
Open Pblock,
Synthesis ----| Constraints
Design and fence

(@ (b)
Fig. 7. Isolation Design Flow (IDF) in FPGA design. (a) Fence implemen-
tation and (b) modified floorplanning in the design flow.

errors if there is any violation against trusted routing. However,
there is an exception. The global signals in the modules
requiring fence protection can be set with an isolation-exempt
property HD.ISOLATED EXEMPT to pass the DRC without
errors. This exempt property could be exploited by attackers
to disguise the interconnect for a Trojan as global signals.

2) Limitation 2: exception on non-isolated modules: The
fence-based isolation only prevents the illegal communica-
tion between isolated modules, not stopping the interaction
between isolated and non-isolated modules. According to the
IDF rules, a module without the HD.ISOLATE property will
not be protected by a fence and thus it can be placed in
any of the isolated regions (pblocks). In the design shown in
Fig. 8(a), only M1, M2 and M3 with the isolation property will
be configured in the three isolated FPGA regions, pblockl,
pblock2 and pblock3, respectively. The remaining logic in
the top module, including M4, can be placed in any of the
three pblocks above. We performed a case study in Vivado
to implement a covert channel, which aims for leaking key
information from an AES encryption module. The baseline is
a top module only carrying an AES unit. The isolation property
is set to the AES unit to form an isolated region (pblockl).
The output after implementation is shown in Fig. 8(b). Next,
we introduced a hardware Trojan to the top module for the
purpose of leaking the secret key from the AES unit. As
the Trojan is the circuit under protection, we did not set the
isolation property for the Trojan. Figure 8(c) indicates that
the Trojan is successfully placed in the isolated region for
AES. The center of the white interconnection is the Trojan.
We further increased the number of pblocks in the top module.
As shown in Fig. 8(d), we are able to insert the Trojan to the
pblock where the AES unit is located. For both cases shown
in Figs. 8(c) and (d), no IDF DRC error is reported to disclose
the occurrence of the Trojan even though the entire IDF for
the fence implementation is followed.

3) Limitation 3: no protection mechanism at routing:
The instructions for fence implementation, isolation region
creation, HD.ISOLATE property setting, and isolation region
assignment for specific modules are stored in the constraints
file. Figure 9 illustrates a snapshot for a constraints file, which
is used in the process of synthesis and implementation. To
place a Trojan in a design, modifying the constraints file is a
vital step. Any personal/tool who has access to the constraints

[[[
)]

Fig. 8. An example for exception on non-isolated modules. (a) Top module
overview of an IDF design, post-implementation device view for AES (b)
without Trojans, with (c) a hardware Trojan in a single isolation pblock, and
with (d) a hardware Trojan in one of the three pblocks.

set_property HD.ISOLATED true [get_cells AES] HD.ISOLATED set for AES module

create pblock pblock_1 Isolated region pblock_1 created
add_cells_to pblock [get pblocks pblock_1] [get cells -quiet [list AES]]
resize_pblock [get pblocks pblock_1] -add {SLICE_X0Y199:SLICE X85Y50}
resize pblock [get_pblocks pblock_1] -add {BSCAN_XOY0:BSCAN_X0¥3}
resize_pblock [get_pblocks pblock_1] -add {BUFGCTRL_XOY0:BUFGCTRL_X0Y31}
resize_pblock [get pblocks pblock_1] -add {BUFHCE_XOY12:BUFHCE X1Y47}

Range of the region
(few lines from actual
isolation block)
resize_pblock [get pblocks pblock_1] -add (BUFIO_X1Y4:BUFIO_X1Y11}

resize_pblock [get pblocks pblock_1] -add {BUFMRCE_X0Y7:BUFMRCE_X1Y2}

set_property PROHIBIT true
set_property PROHIBIT true

[get_sites TIEOFF_X52Y178]
[get_sites TIEOFF_X53Y178]
[get_sites TIEOFF_X54Y178]
[get_sites B9]

set_property PROHIBIT true

set_property PROHIBIT true Fence (few lines from actual fence

set_property PROHIBIT true [get sites C9] implementation)
set_property PROHIBIT true [get sites OLOGIC_X0Y177]
set_property PROHIBIT true [get_sites ILOGIC_X0Y177]
set_property PROHIBIT truc [get sites OLOGIC_X0Y178]

)

set_property PROHIBIT false [get_sites B9] Pin freed from Fence by changing prohibit value

Fig. 9. A snapshot of a constraints file in IDF.

file can make changes on the constraint setting, as there is no
integrity check available for the constraints file. To assure the
success of the Trojan insertion in the case study mentioned in
Section V-B2, we modified the pin prohibit values from true
to false by altering constraints shown in the last line in Fig. 9.

4) Limitation 4: unutilized resources: The FPGA resources
allocated for an isolation region are not only usable for the
module to be isolated, but also accessible for the remaining
logic without isolation property in the top module. As the
prediction on the size of the isolation region for the module
under protection is not always precise, there are unutilized
FPGA resources available for attackers to implement hardware
Trojans. We resume our case study mentioned in Section V-B2.
Table I reports the FPGA resources allocated for the AES
pblock without/with the Trojan. As shown, the hardware
Trojan only increases the LUT utilization, LUTRAM, and flip
flop (FF) by 0.02%, 0.03%, 0.03%, respectively. No changes
are observed in the utilization of BRAM and BUFG. Due to
the communication, the Trojan indeed increases the number
of I/0. From this comparison, we also conclude that the fence
implementation is very likely to result in significant FPGA
resource wasting.

TABLE I
RESOURCE UTILIZATION IN OUR CASE STUDY OF TROJAN INSERTION.

P Resource e . Resource
Utilization e Utilization e
. . utilization rate . utilization rate

Resource | Available without . with .
. without . with

Trojan . Trojan .
Trojan Trojan
LUT 47000 1128 2.40% 1137 2.42%
LUTRAM | 14400 0 0% 4 0.03%
FF 94000 1169 1.24% 1193 1.27%
BRAM 105 68 64.76% 68 64.76%
1/0 2/14 2 100% 14 100%
BUFG 32 1 3.13% 1 3.13%

VI. CONCLUSION

The prevalent cloud-based FPGA services and open-source
FPGA CAD tools gradually change the traditional FPGA
design and use model. More and more entities are involved in
the development flow of FPGA systems. The newly emerged
FPGA use model poses new and unique challenges to FPGA
security. This work complements the existing surveys on the
attacks from FPGA developers and users by investigating the
potential security threats from the commercial and open-source
FPGA CAD tools. A comprehensive landscape for the new
security threats is proposed in this work. Furthermore, this
work analyzes the new security vulnerabilities induced by the
integration of defense methods into the typical FPGA design
flow. Several case studies are provided accordingly to inspire
researchers to reconsider the new security issues that may
occur in the deployment of countermeasures into FPGA CAD
tools, especially when we implement more FPGA applications
in the new FPGA utilization model.

REFERENCES

[1] S. M. Trimberger and J. J. Moore, “FPGA Security: Motivations,
Features, and Applications,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1248-1265, 2014.

[2] H. Dogan, D. Forte, and M. M. Tehranipoor, “Aging Analysis for
Recycled FPGA Detection,” in Proc. DFT’14, pp. 171-176, 2014.

[3] J. Zhang and G. Qu, “Recent Attacks and Defenses on FPGA-Based

Systems,” ACM Trans. Reconfigurable Technol. Syst., vol. 12, Aug. 2019.

S. Gundabolu and X. Wang, “On-chip Data Security Against Untrust-

worthy Software and Hardware IPs in Embedded Systems,” in Proc.

ISVLSI'18, pp. 644-649, 2018.

[5] T. Zhang, J. Wang, S. Guo, and Z. Chen, “A Comprehensive FPGA

Reverse Engineering Tool-Chain: From Bitstream to RTL Code,” IEEE

Access, vol. 7, pp. 38379-38389, 2019.

L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I Know What You See: Power

Side-Channel Attack on Convolutional Neural Network Accelerators,”

in Proc. ACSAC’18, pp. 393-406, 2018.

[71 M. Thoonen, “Hardening FPGA-based AES implementations against

side channel attacks based on power analysis,” B.S. thesis, University
of Twente, 2019.

[8] S. Narula, A. Jain, and Prachi, “Cloud Computing Security: Amazon

Web Service,” in Proc. ICACCT’15, pp. 501-505, 2015.

J. Krautter, D. R. E. Gnad, and M. B. Tahoori, “Mitigating Electrical-

Level Attacks towards Secure Multi-Tenant FPGAs in the Cloud,” ACM

Trans. Reconfigurable Technol. Syst., vol. 12, Aug. 2019.

[10] I. Giechaskiel, K. Eguro, and K. B. Rasmussen, “Leakier Wires: Ex-
ploiting FPGA Long Wires for Covert- and Side-Channel Attacks,” ACM
Trans. Reconfigurable Technol. Syst., vol. 12, Aug. 2019.

[11] J. Krautter, D. R. Gnad, and M. B. Tahoori, “FPGAhammer: Remote
Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES,”
TCHES, pp. 44-68, 2018.

[12] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An Inside
Job: Remote Power Analysis Attacks on FPGAs,” in Proc. DATE’1S,
pp. 1111-1116, 2018.

[4

=

[6

=

[9

—

[13] S. Sunkavilli, Z. Zhang, and Q. Yu, “Analysis of Attack Surfaces and
Practical Attack Examples in Open Source FPGA CAD Tools,” in 2021
22nd International Symposium on Quality Electronic Design (ISQED),
pp. 504-509, 2021.

[14] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-Performance
CAD and Customizable FPGA Architecture Modelling,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, May 2020.

[15] K. E. Murray, M. A. Elgammal, V. Betz, T. Ansell, K. Rothman, and
A. Comodi, “SymbiFlow and VPR: An Open-Source Design Flow for
Commercial and Novel FPGAs,” IEEE Micro, vol. 40, p. 49-57, July
2020.

[16] Z. Zhang, L. Njilla, C. A. Kamhoua, and Q. Yu, “Thwarting Security
Threats from Malicious FPGA Tools with Novel FPGA-Oriented Mov-
ing Target Defense,” TVLSI, vol. 27, no. 3, pp. 665-678, 2019.

[17] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hard-
ware Trojan Insertion by Direct Modification of FPGA Configuration
Bitstream,” IEEE Design Test, vol. 30, no. 2, pp. 45-54, 2013.

[18] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of Cloud FPGAs:
A Survey,” arXiv preprint arXiv:2005.04867, 2020.

[19] E. M. Benhani, L. Bossuet, and A. Aubert, “The Security of ARM
TrustZone in a FPGA-Based SoC,” IEEE Transactions on Computers,
vol. 68, no. 8, pp. 1238-1248, 2019.

[20] A. Chhotaray, A. Nahiyan, T. Shrimpton, D. Forte, and M. Tehranipoor,
“Standardizing Bad Cryptographic Practice: A Teardown of the IEEE
Standard for Protecting Electronic-Design Intellectual Property,” in Proc.
CCS’17, p. 1533-1546, 2017.

[21] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT: A Stealthy FPGA
Trojan Injected and Triggered by the Design Flow,” in Proc. ICCAD’16,
2016.

[22] A. Moradi and T. Schneider, “Improved Side-Channel Analysis Attacks
on Xilinx Bitstream Encryption of 5, 6, and 7 Series,” in Proc.
COSADE’16, pp. 71-87, 2016.

[23] S. Mal-Sarkar, A. Krishna, A. Ghosh, and S. Bhunia, “Hardware Trojan
Attacks in FPGA Devices: Threat Analysis and Effective Countermea-
sures,” in Proc. GLSVLSI’14, pp. 287-292, 2014.

[24] F. Turan and I. Verbauwhede, “Trust in FPGA-accelerated Cloud Com-
puting,” CSUR, vol. 53, no. 6, pp. 1-28, 2020.

[25] G. Provelengios, C. Ramesh, S. B. Patil, K. Eguro, R. Tessier, and
D. Holcomb, “Characterization of Long Wire Data Leakage in Deep
Submicron FPGAS,” in Proc. FPGA’19, pp. 292-297, 2019.

[26] S. Tian and J. Szefer, “Temporal Thermal Covert Channels in Cloud
FPGAs,” in Proc. FPGA’19, p. 298-303, 2019.

[27] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte, “RAM-
Jam: Remote Temperature and Voltage Fault Attack on FPGAs using
Memory Collisions,” in Proc. FDTC’19, pp. 48-55, 2019.

[28] Xilinx, “Using Encryption to Secure a 7 Series FPGA Bitstream,”
https://www.xilinx.com/support/documentation/ application_notes/
xapp1239-fpga-bitstream-encryption.pdf,, vol. v1.2, 2021.

[29] Intel, “AN 556: Using the Design Security Features in Intel FP-
GAs,” https://www.intel.com/content/dam/www/programmable/us/en/
pdfs/literature/an/an556.pdf, vol. 11.12, 2019.

[30] “IEEE Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP),” IEEE Std 1735-2014
(Incorporates IEEE Std 1735-2014/Cor 1-2015), pp. 1-90, 2015.

[31] Z. Seifoori, S. S. Mirzargar, and M. Stojilovi¢, “Closing Leaks:
Routing Against Crosstalk Side-Channel Attacks,” in Proc. FPGA’20,
p. 197-203, 2020.

[32] Y. Luo and X. Xu, “HILL: A Hardware Isolation Framework Against
Information Leakage on Multi-Tenant FPGA Long-Wires,” in Proc.
ICFPT’19, pp. 331-334, 2019.

[33] K. Pham, E. Horta, D. Koch, A. Vaishnav, and T. Kuhn, “IPRDF: An
Isolated Partial Reconfiguration Design Flow for Xilinx FPGAs,” in
Proc. MCSoC’18, pp. 36-43, 2018.

[34] S. Pitaka, “Isolation Design Flow for Xilinx 7 Series FPGAs or Zyng-
7000 SoCs (Vivado Tools),” Xilinx XAPP1222, 2020.

[35] T. Hoque, K. Yang, R. Karam, S. Tajik, D. Forte, M. Tehranipoor, and
S. Bhunia, “Hidden in Plaintext: An Obfuscation-Based Countermeasure
against FPGA Bitstream Tampering Attacks,” ACM Trans. Des. Autom.
Electron. Syst., vol. 25, Nov. 2019.

[36] B. Olney and R. Karam, “Tunable FPGA Bitstream Obfuscation with
Boolean Satisfiability Attack Countermeasure,” ACM Trans. Des. Autom.
Electron. Syst., vol. 25, Feb. 2020.

