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1 | INTRODUCTION

The climatological annual cycle of rainfall across the
Greater Horn of Africa exhibits considerable spatial vari-
ation, however, for much of the region, it is bimodal,
featuring the long rains of March-May (MAM; other

Abstract

Climatological rainfall across much of the Greater Horn of Africa has a
bimodal annual cycle characterized by the short rains from October to
December and the long rains from March to May. Previous generations of cli-
mate models from the Coupled Model Intercomparison Project (CMIP3 and
CMIP5) generally misrepresented the bimodal rainfall distribution in this
region by generating too much rainfall during the short rains and too little dur-
ing the long rains. The peak of the long rains in these models also typically
showed a pronounced 1-month lag relative to observations. Here, the ability of
21 CMIP6 models to properly simulate the observed, climatological annual
cycle of Greater Horn rainfall is examined, comparing results with CMIP5 and
CMIP3. As previous work has shown a connection between Greater Horn cli-
matological rainfall biases and model biases in sea surface temperatures
(SSTs), pattern correlations of climatological SST biases are also analysed. For
the multi-model mean, it is found that the earlier biases in Greater Horn rain-
fall and associated SSTs persist in CMIP6. Examining only the three best per-
forming models in each CMIP group reveals the CMIP6 models outperform
those in CMIP3, with mixed results regarding improvements over CMIP5. For
the best performing CMIP6 models, the SST and 850 hPa wind biases are
reduced over the Indian Ocean relative to the other CMIP6 models examined.
No statistically significant relationship was identified between CMIP6 model
performance and the horizontal resolution of the model. Combined, these
results indicate the importance of properly simulating the annual cycle of SSTs
in order to successfully model the observed rainfall annual cycle in the
Greater Horn.
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seasons denoted similarly) and the short rains of OND.
The seasonality of regional rainfall is integral to societal
activities, ranging from agricultural practices (Hansen,
2005) to water resources and energy management
(Conway et al., 2017) and it shapes environmental condi-
tions necessary for the transmission of vector-borne
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diseases such as malaria and yellow fever (Thomson
et al., 2017; Hamlet et al., 2018). Reliable modelling of
the region's climate, including observed linkages to the
large-scale climate system, thus has substantial practical
implications and scientific value. A well-documented fea-
ture of most global climate models participating in both
the third and the fifth phases of the Coupled Model
Intercomparison Project (CMIP3 and CMIP5, respec-
tively) is their inability to property capture the climato-
logical annual cycle of rainfall in the Greater Horn of
Africa. These earlier generations of models tended to gen-
erate too little (too much) rainfall during the long rains
(short rains) and typically exhibited a 1-month lag in the
timing of the peak of the long rains relative to observa-
tions (Anyah and Qiu, 2011; Otieno and Anyah, 2013;
Yang et al., 2015; Koutroulis et al., 2016; Dunning et al.,
2017; Lyon and Vigaud, 2017; Lyon, 2020, among others).

For CMIP5, Lyon (2020) linked the multi-model
mean (MMM) biases in the annual cycle of rainfall in the
Greater Horn to biases in the monthly climatological
sea surface temperatures (SST) in those models. The
study found that an atmospheric general circulation
model (AGCM) showed good fidelity in reproducing the
observed annual cycle in the Greater Horn when the
model was forced with observed SSTs (1979-2005). When
the AGCM was forced with observed SSTs plus the
monthly, MMM CMIP5 SST bias, the atmospheric
model's annual cycle in Greater Horn rainfall displayed
very similar biases as those seen in the CMIP5 models.
The main motivation for this study is to examine whether
the biases in the annual cycle of Greater Horn rainfall
seen in earlier generations of CMIP models are identified
in the latest generation of coupled climate models in
CMIP6. Given the importance of CMIP5 SST bias pat-
terns to biases in Greater Horn rainfall, CMIP6 SST bias
patterns are also compared to those identified in CMIP5.
Model performance as a function of model horizontal
spatial resolution is also evaluated across all models
within each CMIP group. In addition to examining
MMM results, the comparative behaviour of the top three
performing models within each CMIP group is consid-
ered to test for incremental improvements in the CMIP6
model capability to properly capture the observed annual
cycle of Greater Horn rainfall relative to CMIP5 and
CMIP3.

2 | DATA AND METHODOLOGY

2.1 | Coupled model data

Monthly average rainfall, surface temperature (consid-
ered SST for ocean areas) and the horizontal components

of the 850 hPa wind were obtained from historical runs
of coupled ocean/atmosphere/land surface global climate
models, including 21 CMIP6 models (Eyring et al., 2016),
with rainfall and surface temperature also obtained for
31 CMIP5 models (Taylor et al., 2012) and 20 CMIP3
models (Meehl et al., 2007). A summary of all the models
used is provided in the Supplemental Information
(Tables S1-S3). Using bilinear interpolation, all CMIP3,
CMIP5, and CMIP6 model variables were regridded to a
common 1.0° lat./lon. grid before analysing. This spatial
resolution is finer than the native grid resolution used in
all but two of the CMIP6 models. Results using the two
highest resolution CMIP6 models at their native resolu-
tion (not shown) where very similar to those regridded to
the 1.0° resolution. Monthly climatologies were com-
puted for all model variables using a base period of 1981-
2010 for CMIP6, 1979-2005 for CMIP5, and 1971-2000
for CMIP3 using a single ensemble member from each
model.

2.2 | Observational data

Monthly precipitation analyses utilized included the gauge-
based Global Precipitation Climatology Center (GPCC v7)
data gridded to 1.0° lat./lon. resolution (Becker et al.,
2013); the gauge-based version TS 4.01 of monthly precipi-
tation over global land areas from the Climatic Research
Unit at the University of East Anglia (CRU; Harris and
Jones, 2017) gridded to 0.5° lat./lon. resolution; version 1.1
of the satellite-based Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN; Ashouri et al., 2015) gridded to a 0.25°
lat./lon. spatial resolution; version 2.0 of the Climate Haz-
ards Group Infrared Precipitation with Station data
(CHIRPS; Funk et al., 2015) gridded to a 0.05° lat./lon. res-
olution and version 2.3 of the Global Precipitation Clima-
tology Project (GPCP) merged gauge and satellite estimate
product (Huffman et al., 2009) at 2.5° lat./lon. resolution.
Monthly climatologies were generated for these precipita-
tion datasets using a 1981-2010 base period, with the
exception of PERSIANN, where a 1983-2010 base period
was used owing to data availability.

Monthly SST analyses from the Extended Reconstructed
SST v4 dataset (ERSST; Huang et al., 2015) at 2.0° lat./lon.
resolution and the 1.0° lat./lon. optimum interpolation of
SST v2 (OIv2; Reynolds et al., 2002) were employed. The
horizontal components of the 850 hPa wind field from the
ERA-Interim reanalysis product (Dee et al., 2011) were uti-
lized and regridded to a common 1.0° lat./lon. grid.
Monthly climatologies for a 1981-2010 base period were
computed for ERSST and OIv2, with a 1971-2000 monthly
climatology also constructed for ERSST.
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2.3 | Methodological approach

Locations in the Greater Horn having a bimodal rainfall
annual cycle were identified following the method
detailed in the study by Lyon (2020) and are shown by
the shaded area in the inset in Figure 1la. Observational
and model rainfall data are projected onto this area in
the analysis. Coupled model biases in SST are identified
by subtracting the observed monthly SST climatology
from the model climatology, using OIv2 (1981-2010) for
CMIP6 and ERSST (1971-2000) for CMIP3 and CMIPS5.
Similarly, model biases in climatological rainfall and
850 hPa horizontal wind are computed by subtracting
observed monthly climatological values from the model
climatology, using GPCP for observed rainfall (Lyon and
DeWitt (2012) found similar results to GPCP using other
merged rainfall datasets for this region) and ERA-Interim
for ‘observed’ wind. Statistically significant differences
for all variables were determined using a two-tailed t-test
at the 95% confidence level unless otherwise noted. For
the 850 hPa wind, at least one component needed to be
significant with both components shown on plots.

3 | RESULTS
3.1 | MMM biases in the annual cycle
of Greater Horn rainfall

The climatological annual cycle of rainfall for four obser-
vational datasets and the 21 CMIP6 models is shown in
Figure 1a, with the difference between the MMM values
and the mean of observed datasets shown in Figure 1b.
In addition to obvious monthly amplitude biases, the
MMM of the CMIP6 models displays the same major
biases identified in CMIP3 and CMIP5, with the OND
short rains being too wet relative to observations, the
MAM long rains being too dry, and there is a 1-month
lag in the peak of the long rains in CMIP6 relative to
observations. In 19 of the 21 CMIP6 models (90%), OND
rainfall exceeds that in MAM and 16 of the 21 models
(76%) show climatological May rainfall greater than that
in April. Figure 1c shows the annual cycle for the mean
of the four observational datasets along with the MMM
values for CMIP3, CMIP5, and CMIP6. The temporal cor-
relation of the annual cycle between observations and
the MMM is r = .70 for CMIP3, r = .54 for CMIP5, and
r = .70 for CMIP6. The correlation of the MMM annual
cycles is r = .96 between CMIP3 and CMIP5, r = .96
between CMIP5 and CMIP6, and r = .99 between CMIP3
and CMIP6. The CMIP MMM annual cycles are thus in
very close agreement with each other but much less so
with observations. The MMM root-mean-square error
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FIGURE 1 (a) Monthly climatological rainfall (mm day ) for
shaded study domain of the Greater Horn (inset) for four
observational datasets and the CMIP6 multi-model mean (solid
black line), with boxes showing the interquartile range and
whiskers indicating overall model range. (b) Difference between the
CMIP6 mutli-model mean and mean of the observational datasets
(mm day ™) shown as the solid red line with box and whiskers
again showing model ranges. (c) Rainfall annual cycle (mm day )
for the mean of the four observational datasets (black line) and the
multi-model mean of 20 CMIP3 models (red line), 31 CMIP5
models (green line) and 21 CMIP6 models (gold line) [Colour figure
can be viewed at wileyonlinelibrary.com]

(RMSE) in the monthly climatologies (in mm day™") is
1.12 for CMIP3, 1.11 for CMIP5, and 0.97 for CMIP6.
Thus, in the MMM, the CMIP6 models show some
marginal improvement in simulating the annual cycle
over CMIP3 and CMIP5 (although the CMIP5 models
showed little improvement over CMIP3, as also found by
Koutroulis et al., 2016).

As seen in Figure 1b, the largest differences between
the CMIP6 MMM annual cycle and observations occur
in the months of March and April (MA) during the
long rains and October and November (ON) during the
short rains. These two periods were therefore examined
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in greater detail. Figure 2a,b shows the regional bias in  annual cycle, as was shown in earlier studies of the
the MMM climatological rainfall and 850 hPa vector = CMIP5 annual cycle bias for the Greater Horn
wind for MA and ON, respectively. For MA (Figure 2a), (e.g., Yang et al.,, 2015; Lyon, 2020). Figure 2b shows
the MMM of the CMIP6 models show a north-south that the MMM, positive rainfall bias over the Greater
oriented rainfall bias pattern, with generally too little Horn for ON is part of a larger, zonally elongated
(too much) rainfall north (south) of the equator. The  region of enhanced rainfall centred roughly along the
associated 850 hPa wind bias pattern generally opposes equator. The bias in the 850 hPa wind field acts to
the observed climatological flow (not shown) over the enhance the climatological flow (not shown) into the
Greater Horn and western Indian Ocean, with an asso- Greater Horn in ON, consistent with the wetter than
ciated easterly wind bias north of the equator over the observed conditions there. Similar biases were identified
Indian Ocean. This is consistent with a delay in the in the CMIP5 rainfall and wind fields (e.g., Lyon, 2020).
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FIGURE 2 (a) CMIP6 multi-model mean climatological rainfall bias (shaded, mm day™"), along with bias in vector wind at 850 hPa
(representative vector in lower-right, units are m s™") for the months of March and April (MA). Only statistically significant (p < .05) biases
are plotted (at least one component for wind). (b) As in (a) except for the months of October and November (ON). (c) Corresponding multi-
model mean sea surface temperature (SST) bias for March and April (°C). (d) As in (c) but for the months of October and November [Colour
figure can be viewed at wileyonlinelibrary.com]
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The CMIP6 MMM SST biases for MA and ON are
shown in Figure 2c,d, respectively. Again, similar to
CMIP5, the CMIP6 models exhibit a cold SST bias in the
northern Indian Ocean during MA, with an east-west
dipole SST bias pattern seen for ON (Figure 2d), reminis-
cent of the Indian Ocean Dipole mode (IOD; Saji et al.,
1999) which Cai and Cowan (2013) show is too strong in
CMIP5 relative to observations. These SST bias patterns
are generally consistent with the rainfall bias patterns. As
mentioned in the Introduction, Lyon (2020) linked the
MMM SST bias pattern in CMIP5 models to biases in
Greater Horn annual cycle based on model experiments
with an AGCM. For the domain shown in Figure 2, the
pattern correlation between the MMM SST bias pattern
in CMIP6 with that in CMIPS5 is rp,. = .86 for the MA sea-
son and r,. = .78 for ON. For the CMIP5 MMM, Lyon
(2020) showed a close association between the annual
cycle of the bias in Greater Horn rainfall and the IOD
index computed from climatological SST. For CMIP6, the
temporal correlation between the two is r = .64, which is
statistically significant (p < .01). For the global domain
(40°S-40°N), the pattern correlation of the MMM SST
biases in CMIP6 and CMIPS5 is r,. = .92 for the MA sea-
son and rp. = .93 for ON.

3.2 |
models

Examination of the best performing

The MMM results presented in the previous subsection may
mask the behaviour of the best performing models within
the three CMIP phases. As such, the three best performing
models were identified for CMIP3, CMIP5, and CMIP6
based on the combination of highest correlation and lowest
RMSE when compared with the observed climatological
annual cycle of Greater Horn rainfall. As a first step,
Figure 3 shows the correlation versus the RMSE for each
model analysed from CMIP3, CMIP5, and CMIP6 (median
values for each model group are also plotted). Note that
there is not a clear separation in model behaviour across
the three CMIP classes. In fact, based on Kolmogorov-
Smirnov tests applied separately to correlation and RMSE,
when all models are considered within each CMIP group,
there is not a statistically significant difference in CMIP6
model performance over CMIP5 or CMIP3. However,
based on this analysis, the three best performing models in
each CMIP group (data points in the upper-left of Figure 3)
were selected for further analysis.

The mean annual cycles for the three best performing
models within each CMIP group are plotted in Figure 4a,
along with the monthly mean values from the observa-
tional datasets. The correlations between the modelled
and observed annual cycles for the three best performing
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FIGURE 3 Correlation versus root-mean-square error (RMSE)

(mm day™") of the modelled climatological annual cycle of Greater
Horn rainfall for all models used in the study from CMIP3 (red
symbols), CMIP5 (green) and CMIP6 (gold). The larger symbols
indicate the median values for each CMIP group [Colour figure can
be viewed at wileyonlinelibrary.com]|

models are r = .84 for CMIP3, r = .96 for CMIP5, and
r = .92 for CMIP6. The corresponding RMSE values
(in mm day_l) are 0.53 for CMIP3, 0.49 for CMIP5, and
0.35 for CMIP6. As mentioned in Section 3.1, in the
MMM, the CMIP models tend to generate too much rain-
fall in OND relative to MAM and there is typically a
1-month delay in the peak of the long rains relative to
observations. For the three best performing models, both
of these model biases were still observed for CMIP3,
while only the first (OND > MAM rainfall) bias was
observed for the three best performing CMIP5 and
CMIP6 models. By these measures, the three best CMIP6
models show incremental improvements in performance
relative to CMIP3, with mixed results in terms of
improvements over CMIP5. It is interesting to note that
the best performing models are not necessarily those with
the highest spatial resolution. Figure 4b shows the mean
annual cycles for the three highest resolution models
within each CMIP group. The correlations with the
observed annual cycle are r = .75 for CMIP3, r = .45 for
CMIP5, and r = .79 for CMIP6. The associated RMSE
values (in mm day™') are 0.96 for CMIP3, 1.00 for
CMIP5, and 0.59 for CMIP6. Thus, while the three
CMIP6 models with the highest spatial resolution out-
perform their CMIP5 and CMIP3 counterparts, they are
not the best performing models overall. This result is
found to be more general, as shown in Supplemental
Figure S1, where no statistically significant relationship
is found between model performance (correlation,
RMSE) and model spatial resolution when the Greater
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FIGURE 4 (a) Climatological annual cycles of Greater Horn
rainfall (mm day™") for the mean of the four observational datasets
(black line) and the mean of the three best performing models from
CMIP3 (red line), CMIP5 (green line) and CMIP6 (gold line). (b) As
in (a), but for the three models with the highest spatial resolution
from each CMIP group [Colour figure can be viewed at
wileyonlinelibrary.com|

Horn climatological annual cycle is examined for each
model within the three CMIP groups.

Since model resolution is not a reliable predictor of
model performance in simulating the climatological
annual cycle of Greater Horn rainfall, previous results
suggest that improved model performance may instead be
tied to a more realistic simulation of the SST annual cycle.
As an initial step towards investigating this possibility, dif-
ferences in climatological SST and 850 hPa vector wind
were computed between the three best performing CMIP6
models and the mean of the 18 remaining CMIP6 models
for the spatial domain used in Figure 2. These differences
were computed for the MA and ON seasons when the
CMIP6 MMM biases in Greater Horn rainfall are largest
(c.f. Figure 1). The results are shown in Figure 5. For the
MA season (Figure 5a), the difference in SST features a
warmer (cooler) northern (southern) Indian Ocean in the
three best performing models, generally opposing the
MMM biases shown in Figure 2c. The 850 hPa wind dif-
ferences show an enhanced southwesterly flow across
the eastern Greater Horn and western Indian Ocean, gen-
erally opposing the MMM wind bias pattern seen in
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FIGURE 5 (a) Difference in climatological sea surface

temperature (SST) (shading) and 850 hPa wind (representative
vector at lower-right in m s™) between the three best performing
CMIP6 models and the 18 remaining models for the months of
March and April. (b) As in (a), but for the months of October and
November [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2a. For the ON season, SSTs in the equatorial
eastern (western) Indian Ocean are warmer (cooler) in
the three best performing models, generally opposite of
the MMM SST bias pattern seen in Figure 2d. The
850 hPA wind differences for ON feature westerlies across
the equatorial Indian Ocean and southwesterlies across
the eastern Greater Horn, both generally opposite of the
MMM biases (Figure 2b). The pattern correlation in
Indian Ocean SST for the three best CMIP6 models
and the remaining CMIP6 models is r,. = .57 for MA and
Fpe = .70 for ON. The corresponding pattern correlations
for the three highest resolution models and the remaining
models (excluding the three best performing) are r,. = .82
for MA and r,. = .82 for ON. While preliminary, these
findings support the earlier conclusion based on the
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analysis of CMIP5 models, that properly simulating the
annual cycle of SSTs is key to capturing the observed
annual cycle of Greater Horn climatological rainfall.

4 | SUMMARY AND
CONCLUSIONS

A fundamental problem, common to most CMIP3 and
CMIP5 coupled climate models, was their inability to
properly capture the bimodal rainfall annual cycle across
the Greater Horn of Africa. Here, the climatological rain-
fall annual cycle was examined in 21 CMIP6 models,
with the MMM results showing that the biases seen in
the previous two CMIP model phases persist in the latest
generation of coupled models, with the short rains (long
rains) of OND (MAM) being much too wet (too dry) rela-
tive to observational datasets. In the MMM, there also
continues to be a distinct, 1-month lag in the peak of the
long rains relative to observations in CMIP6 (rainfall
peaks in May rather than in April as observed).

Lyon (2020) showed that CMIP5 climatological SST
biases were directly linked to biases in the annual cycle
of rainfall in the Greater Horn. Over the global domain
(40°S-40°N), the pattern correlation between the MMM
SST bias patterns in the CMIP6 and CMIP5 historical
runs is 7, = .92 for MA and r,. = .93 for ON, the two
periods showing the largest model biases in Greater Horn
rainfall. Over the Indian Ocean, the pattern correlation
between the MMM SST bias patterns in CMIP6 and
CMIP5 is rp. = .86 for MA and r,c = .78 for ON. As with
CMIP5, CMIP6 models again have historical SST biases
that map onto the positive phase of the 10D, a mode of
variability known to influence Greater Horn rainfall
(Black et al., 2003), with McKenna et al. (2020) finding
generally modest changes in the historical behaviour of
the IOD in CMIP6 compared with CMIP5. The temporal
correlation between the monthly biases in the climatolog-
ical annual cycles of Greater Horn rainfall bias and
MMM IOD in the CMIP6 MMM is r = .64, which is statis-
tically significant at p < .01.

To examine whether the MMM results obscure incre-
mental improvements in the top performing CMIP6
models, the three best performing models (based on RMSE
and correlation with observations) within each CMIP
group were examined in greater detail. The mean annual
cycle for the three best performing CMIP6 models
exhibited a lower RMSE than the CMIP3 or CMIP5 coun-
terparts and a correlation with observations that was
higher than CMIP3 but slightly lower than that for the top
CMIP5 models. There was not a 1-month delay in the peak
of the MAM long rains for the top CMIP6 models, but
OND rainfall remained slightly more than MAM, contrary
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to observations. Overall, for the best performing models,
CMIP6 shows improvement over CMIP3, with mixed
results in terms of improvements over CMIP5. Interest-
ingly, the top three performing CMIP6 models were not
necessarily those with the highest spatial resolution (this
was also a general finding when all models within CMIP3,
CMIP5, and CMIP6 were evaluated). Rather, the enhanced
performance of the CMIP6 models was found to be related
to reduced climatological biases in Indian Ocean SST and
850 hPa wind. This result suggests that improved simula-
tion of the climatological annual cycle in Greater Horn
rainfall depends fundamentally on the model's ability to
properly capture the climatological annual cycle of SSTs.
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