

Grand Challenges in Coevolution

Mónica Medina^{1*}, David M. Baker², David Baltrus³, Gordon M. Bennett⁴, Ulisse Cardini⁵, Adrienne M. Correa⁶, Sandie M. Degnan⁷, Gregor Christa⁸, Eunsoo Kim⁹, Jingchun Li¹⁰, David R. Nash¹¹, Ezequiel M. Marzinelli¹², Michele K. Nishiguchi¹³, Carlos Prada¹⁴, Melissa S. Roth¹⁵, Mahasweta Saha¹⁶, Christopher I. Smith¹⁷, Kevin R. Theis¹⁸, Jesse R. Zaneveld¹⁹

¹Department of Biology, The Pennsylvania State University (PSU), United States, ²School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR China, 3School of Plant Sciences, University of Arizona, United States, ⁴Department of Life and Environmental Sciences, University of California, Merced, United States, ⁵Department of Integrated Marine Ecology, Zoological Station Anton Dohrn, Department of Biology, Polytechnic and Basic Sciences School, University of Naples Federico II, Italy, 6 BioSciences Department, Rice University, United States, 7 School o Biological Sciences, The University of Queensland, Australia, ⁸Institute of Zoology, University of Propertal, Germany, ⁹Division of Invertebrate Zoology and Sackler Institute (f Comparation Generalises, American Museum of Natural History, United States, ¹⁰Depart nent ¹ Eccogy and Evolutionary Biology, University of Colorado Boulder, United Stars, 11 part ment c Biol. Liversity of Copenhagen, Denmark, 12 School of Life and F. i onmertar sciences, citute o agriculture, The University of Sydney, Australia, ¹³Department of Mole, Ilar ai, Cell Bology, University of California, Merced, United States, 14Department of Biological Sciences University of Rhode Island, United States, ¹⁵Department of Plant and Microbial Biology, University of California, Berkeley, United States, ¹⁶Marine Ecology and Biodiversity, Plymouth Marine Laboratory, United Kingdom, ¹⁷Department of Biology, Willamette University, United States, ¹⁸Department of Biochemistry, Microbiology & Immunology, Wayne State University, United States, ¹⁹Division of Biological Sciences, School of Science Technology Engineering and Math, University of Washington Bothell, United States

Submitted to Journal:

Frontiers in Ecology and Evolution

Specialty Section:

Coevolution

Article type:

Specialty Grand Challenge Article

Manuscript ID:

618251

Received on:

16 Oct 2020

Revised on:

27 May 2021

Journal website link:

www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

M. Medina outlined the manuscript and drafted the figures. All other authors contributed equally to the development of ideas and writing of the document.

Keywords

microbiome, Symbiosis, network, holobiont, Coevolution

Contribution to the field

This Grand Challenge highlights current topics, debates, and standing questions in the coll of evolution. Coevolutionary biology has experienced a major increase in interest due to the explosion of microbiome research across the Tree of Life. Thanks to advances in omics technologies, coevolution research has go e from focus macroorganismal to host-microbiome interactions opening avenues of intellectual public to coexclop new contemporary for the entire contributions to the section to address coexcitons dealing with both triditional two-partner interactions to coevolutionary networks.

1	
2	Grand Challenges in Coevolution
3	
4	Mónica Medina ^{1*} , David M. Baker ² , David A. Baltrus ³ , Gordon Bennett ⁴ , Ulisse Cardini ⁵ ,
5	Adrienne S. Correa ⁶ , Sandie M. Degnan ⁷ , Gregor Christa ⁸ , Eunsoo Kim ⁹ , Jingchun Li ¹⁰ , David
6	R. Nash ¹¹ , Ezequiel Marzinelli ¹² , Michele Nishiguchi ¹³ , Carlos Prada ¹⁴ , Melissa S. Roth ¹⁵ ,
7	Mahasweta Saha ¹⁶ , Christopher I. Smith ¹⁷ , Kevin Theis ¹⁸ , Jesse Zaneveld ¹⁹
8	
9	¹ Department of Biology, Pennsylvania State University, University Park PA, USA
10	² School of Biological Sciences & Swire Institute of Marine Science, The University of Hong
11	Kong, Pokfulam, Hong Kong, PRC
12	³ School of Plant Sciences, University of Arizona, Tucson AZ, USA
13	⁴ Department of Life and Environmental Sciences, University of California Merced, Merced CA,
14	USA
15	⁵ Integrative Marine Ecology Department, Stazione Zoologica Anton Dominio National Institute
16	of Marine Biology, Ecology and Biotechnology, Nap li, raly
17	⁶ BioSciences Department, Rice University, Yourton, X, Co.
18	⁷ School & Biological Science, Un versity of Queens' and, Brisbane QLD, Australia
19	⁸ Institute CZ6C ogy University of V. pertal, Wuppertal, Germany
20	⁹ Division c Inve tebr te Zoology and Sackler Institute of Comparative Genomics, American
21	Museum of Jaturai History, New York NY, USA
22	¹⁰ Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder,
23	CO, USA
24	¹¹ Department of Biology, University of Copenhagen, Copenhagen, Denmark
25	¹² The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006,
26	Australia
27	¹³ Department of Molecular and Cell Biology, University of California Merced, Merced, CA,
28	USA
29	¹⁴ Department of Biological Sciences University of Rhode Island, RI, USA
30	¹⁵ Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
31	¹⁶ Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Prospect Place, PL1 3DH,
32	Plymouth, United Kingdom.
33	¹⁷ Department of Biology, Willamette University, Salem OR, USA
34	¹⁸ Department of Biochemistry, Microbiology & Immunology, Wayne State University School of
35	Medicine, Detroit MI, USA
36	¹⁹ Division of Biological Sciences, School of Science Technology Engineering and Math,
37	University of Washington Bothell, Bothell WA, USA
38	
39	* Correspondence:

40 Mónica Medina

momedinamunoz@gmail.com

Keywords: coevolution, holobiont, network, symbiosis, microbiome

Coevolution – reciprocal evolutionary change between interacting lineages (Thompson 1994; see glossary) – is thought to have played a profound role in the evolution of Life on Earth. From similar patterns across the wings of unrelated lineages of butterflies (Hoyal Cuthill and Charleston 2015), egg mimicry of "cheating" brood parasites (Davies, 2010), to the role of animal pollinators in driving the diversification flowering plants (Kay and Sargent 2009), to the ubiquity of sexual reproduction (and sexual conflicts (Hamilton, 2002; Arnqvist and Rowe, 2005; King et al., 2009), the formation of the eukaryotic cell (Martin et al. 2015; Imachi et al. 2020), and even the origin of living organisms themselves (Mizuuchi and Ichihashi 2018), evolutionary changes among interacting lineages have played profound and important roles in the history of Life.

This Grand Challenges inaugural contribution en son asses eclectic binions of the editorial board as to what are the next frontiers c coe old tion is sea. In the 21st century. Coevolutionary biology in field that has gardered lot of attention in recent years, in part as a result of technical (van 's in nucleotic) seque long and bioinformatics in the burgeoning field of hostmicrobial i erac ons Many seminal studies of coevolution examined reciprocal evolutionary change between two or a few interacting macroscopic species that imposed selective pressures on one another (e.g., insect or bird pollinators and their flowering host plants). Understanding the contexts under which coevolution occurs, as opposed to scenarios in which each partner adapts independently to a particular environment (Darwin 1862; Stiles 1978) is important to elucidate coevolutionary processes. A whole spectrum of organismal interactions has been examined under the lens of coevolution, providing additional context and nuance to ecological strategies traditionally categorized as ranging from beneficial to detrimental for participating species (Figure 1). In particular, a coevolutionary perspective has revealed that even 'mutualisms' are not always fully beneficial or cooperative for the partners involved. Instead, the tendency to 'cheat' permeates across symbiotic partnerships (Perez-Lamarque et al. 2020). Conversely, recent evidence suggests that non-lethal predation by co-evolved predators, which has traditionally been assumed to be entirely antagonistic, may provide sessile prey with some indirect benefit through enhanced opportunities to acquire beneficial symbiotic microorganisms (Grupstra et al. 2020). Herein we discuss some of the recent areas of active research in coevolution, restricting our focus to coevolution between interacting species.

Coevolution and diversification

Among multicellular eukaryotes, an enduring question is whether interactions between organisms have played a role in promoting speciation and diversification over evolutionary time (Thompson 1989; Althoff et al. 2014; Hembry et al. 2014; Maron et al. 2019). Naturalists have argued since the 19th century that interactions with pollinators may have spurred the dramatic and rapid diversification of flowering plants (Grant 1949; Friedman 2009). Similarly, Ehrlich and Raven, who first coined the term "coevolution," argued that the origin of novel defensive chemicals in members of the Apiaceae (plants in the carrot family) may have served as 'key innovations' that allowed them to avoid plant-feeding insects and colonize new habitats. Herbivorous insects that evolved compensatory mechanisms to tolerate or neutralize these toxins could then have recolonized these plants and, freed from competition with other insects, themselves diversified (Ehrlich and Raven 1964). Patterns at a macroevolutionary scale offer multiple lines of evidence to support these conjectures. The diversification of flowering plants in the Jurassic and Cretaceous eras coincided with the diversification of pollinators (Grimaldi 1999), followed by the evolution of herbivorous insects that specialized on flowering plants (Farrell 1998). Further corroborating coevolution as a driver of drorsin at on, these insects that feed on flowering plants are vastly more diverse han ho e that are a quented by generalist pollinators (Mitter et al. 1988; Farrell 198), we what containing for time. Additionally, plants that rely a specialized pollin fors remore divirse than those with generalized pollinators (Dodd et a 195); Sa gent 200 ; Kay at Sargent 2009). Finally, species that have particularly strong or he hly pecil lized ecological interactions, such as hosts and parasites or plants and insects invo ed in obligate pollination mutualisms, often show patterns of 'phylogenetic congruence' – for example any particular species of parasite is often most closely related to parasites that feed on their host's nearest relatives (Page 1996; Paterson et al. 2000; Weiblen 2004).

However, connecting these broadscale patterns to evolutionary and ecological mechanisms, and specifically evaluating the role of coevolution at the microevolutionary scale in generating diversity at a macroevolutionary level remains a major challenge (Hembry et al. 2014). Theoretical treatments have made different predictions about the circumstances under which reciprocal natural selection may promote evolutionary divergence and reproductive isolation (Kiester et al. 1984; Yoder et al. 2010), and empirical studies have produced contradictory results. Whereas early work suggested that mutualistic interactions such as those between plants and their pollinators could prompt speciation, more recent modelling work suggests that mutualisms are more likely to promote evolutionary stasis (Yoder and Nuismer 2010). Predominantly antagonistic interactions on the other hand can promote evolutionary divergence at a population-level, depending on the factors that mediate the fitness of each player. In cases of escalating coevolution – in which predators and prey evolve ever stronger defenses and counter defenses – rapid divergence in phenotypes between populations may arise (Brodie et al. 2002; Brodie and Ridenhour 2003). For example, among brood parasites like cuckoos that lay their eggs in the nests of other birds, the cuckoos experience natural selection that more and more

closely matches the coloration and patterning of their eggs to those of their local hosts 120 121 (Spottiswoode and Stevens 2012). The birds whose nests are parasitized by cuckoos in turn 122 rapidly evolve more complex patterning in their own eggs (Yang et al. 2010; Spottiswoode and 123 Stevens 2012). Host birds may also experience enhanced capacity to recognize and expel the 124 eggs of their cuckoo parasites (Soler et al. 2001). However, populations that occur in regions where the cuckoo is absent fail to eject even grossly mismatched eggs (Soler and Møller 1990). 125 There is contradictory evidence, however, as to whether arms-race coevolution of this type 126 127 results in greater rates of diversification (Smith and Benkman 2007; Krüger et al. 2009; Fossøy 128 et al. 2016).

129 130

131

132

133

134

135

136

137138

139 140

141 142

143

144

To generate empirical evidence that coevolution per se is the causal mechanism of diversification, another challenge, and perhaps a more fundamental one, is ruling out alternative explanations of diversification (Althoff et al. 2014). Patterns suggestive of reciprocal adaptation can arise through adaptation by one of the two interacting species alor; (that is, natural selection without reciprocal adaptation), or even through neutral processes at at a not involve selection at all (Janzen 1980; Yoder and Nuismer 2010) Pauerns of phylogenetic congruence, for example, 2008; Alt off et al. 2012, 201) and the greater liversity of organisms that are involved in specialize interaction interactions themselves prompted higher rates of speciatic (Ar abru ter and Muchhala 2009). 'Phenotype matching' –correlations in the features of i teracting species such as floral structures that match features of their pollinators (Nilsson 1988) or defenses against predators that are met by equally strong counter defenses (Brodie and Ridenhour 2003) – although often taken as evidence for coevolution can arise due to extrinsic forces, or even through simple genetic drift (Nuismer et al. 2010). Finally, selection by climate, edaphic soil factors, and other extrinsic forces may be more important than coevolution per se in driving divergence between populations (Nuismer and Gandon 2008).

145146147

148

149

This difficulty in reconciling compelling macroevolutionary patterns that suggest coevolution drives speciation in eukaryotes with the paucity of evidence at the ecological and microevolutionary scale thus constitutes a 'grand challenge' in coevolution.

150 151

152

The complexity of the holobiont complicates coevolutionary analysis

153154

155

156

157

158

159

An additional, newer 'grand challenge' stems from the emerging realization that every macroorganism is actually a holobiont – a host organism together with all of the resident microorganisms living on or in it symbiotically. Thus, virtually every coevolutionary interaction has the potential to represent a diffuse or guild coevolution, in which a single species co-evolves with a **guild** and/or two guilds coevolve (e.g., Janzen 1980), rather than a two-partner interaction. Studying diffuse interactions is inherently more challenging than two-partner

interactions because of the higher number of entities (and their potential interactions) involved. Further, when many partners are involved (e.g. in a **holobiont**), each partner will have its own generation time, mutation rate and specific biology, adding additional complexity. Yet research effort directed towards diffuse interactions (e.g., (Matthews et al. 2020) has become common practice due to increased research in host-microbiome interactions across many taxa. As a consequence, there is a need to expand our conceptual coevolutionary framework, and we focus primarily on complex coevolutionary networks in this grand challenge paper. Given that such challenges increase exponentially in more complex coevolving assemblages, it is important to discriminate between interactions that represent outcomes of coevolution versus those that are outcomes simply of evolution. We therefore focus our grand challenge primarily on complex coevolutionary networks. Building such a framework will require integrating the jargon (e.g., microbiome) and concepts – such as the holobiont (Margulis and Fester 1991; Bordenstein and Theis 2015) and the **hologenome** (Collens et al. 2019) – of microbial ecology with those of the broader coevolutionary literature. It will further require the developm at of reliable tests for coevolution at multiple scales of biological organization (c.g., coe plum n at the gene, genome, metabolic and organismal levels). Holobionts car, therefore, be thought or as interacting community members that are best visua 'zea's complex norths highly specific to diffuse interactic s (Bascompte 2015 All partners may be genuinely coevolving, or each may be independe the a apting to (sha ed) so the average pressures in their own (shared) environments. Alternative 7, a lolob ont may be a mixture of both (Bordenstein and Theis 2015). The role of coevolution v research is to discriminate between independent evolution and coevolution, so that we can position core members versus transient members along a coevolutionary spectrum. The selective forces shaping coevolving organisms are different from those in independently evolving but codiversifying taxa. Coevolutionary networks are dynamic, and depending on the types of interactions nested within them, and the extent of external perturbations (e.g. climate change), they can lead to different diversification outcomes (Thompson 2006) (Figure 2).

160

161

162

163 164

165

166167

168

169

170

171

172

173

174

175

176

177178

179180

181

182

183 184

185

186 187

188 189

190

191

192

193

194

195

196

197

198

199

It is well established that microbes affect the physiology and development of most if not all eukaryotic organisms (Gilbert and Epel 2015; Gilbert et al. 2015; Peixoto et al. 2021). Although it is tantalizing to imagine if and how these microbes have coevolved with both unicellular and multicellular eukaryotic hosts, and to make assumptions about evolutionary processes underlying noticeable patterns in community structures, we still lack a basic framework for testing whether host-microbiome coevolution has occurred. One area that is worth exploring involves the ongoing endosymbiosis among eukaryotic or prokaryotic partners, where complimentary genomic and metabolic functional reductions can be assessed. For example, some diatoms have incorporated cyanobacterium that performs nitrogen fixation, and the cyanobacterium has since lost its photosynthetic ability (Nakayama et al. 2014). Similar processes have been repeatedly observed in lichens (Pogoda et al. 2018). Even in experimental evolution systems involving pairs of microbes, rigorous tests of coevolution (e.g. using time-shift pairings of ancestral vs. evolved partners) are major undertakings with many technical challenges (e.g., Hillesland and Stahl

2010). We propose a general consensus for coevolutionary theory that requires phenotypic changes in coevolving organisms (or guilds) to influence fitness in a reciprocal matter. The field will need to demand specific and sufficient evidence to demonstrate that host-microbiome coevolution is indeed happening. The nature of evidence sufficient to demonstrate such coevolution also still needs to be determined. The development of a standardized set of tools to evaluate the potential for coevolution across hosts, as well as the creation and elaboration of neutral models for microbiome community assembly and evolution in the absence of coevolution, will support the development of a framework for testing for host-microbiome coevolution. Detailing the nature of what constitutes sufficient evidence, and of a standardized tool set, is outside the scope of this opinion piece. Unravelling eco-evolutionary processes (Blasco-Costa et al., 2021) propose the use of interaction trait codependency as well as geographical network modularity to shed light in the mechanisms driving, or not, coevolutionary processes. We encourage the coevolution community to build new analytical tools that combine community assembly theory with cophylogenetic theory (e.g., Russe al., 2018).

214215216

217

218

219

220221

222

223

224

225226

227

228

229

230

231

232

233

234

235

236

237

238

200

201202

203

204

205

206

207208

209

210

211

212

213

Different spatio-temporal scales offer wa jety of perspectives on coevolution in holobionts

The define on c syn piosis across real chafields ranging from microbiology to ecology sometimes lifter reflecting the emphases on different types of interactions. Herein we use the original def. itio; of symbiosis (De Bary 1879; Oulhen et al. 2016), thus one should not assume a priori that all (or indeed any) symbiotic (i.e. coresident) partners in a holobiont are coevolving. In intimate interactions that require metabolic complementarity, understanding the dynamics of species coupling (e.g., horizontally vs. vertically transmitted symbionts) over ontogeny is paramount to be able to develop coevolutionary models that incorporate the molecular underpinnings of fitness in all partners (Roughgarden et al. 2018; Lloyd and Wade 2019; Correa et al. 2021). Ecological theory has developed concepts such as facilitation to describe predominantly positive species interactions (Bruno et al. 2003). Symbiotic organisms are often coevolving and can also be understood in a framework of the evolution of cooperation (Herre et al. 1999; Kiers and Van Der Heijden 2006). Other well-established ecological theories may be applicable where negative coevolutionary interactions are involved (e.g., host-parasite). The main idea is that coevolving groups may represent a single unit of selection. A healthy debate has been taking place in the literature, that moves beyond absolutist views of pure independence (e.g., no cooperation) or pure interdependence (e.g. the full holobiont as the unit of selection) in fitness, and instead increasingly asks to what degree, and in which direction (e.g., predominantly mutualism vs. commensalism vs. parasitism) and under what conditions holobiont members coevolve (Herre et al. 1999; Bordenstein and Theis 2015; Moran and Sloan 2015; Lloyd and Wade 2019). If a lineage of microbes has codiversified with its host over evolution, coevolutionary research should aim to determine whether those microbes are more likely to be

'keystone species' serving a set of 'core' functions or whether there is convergence in the set of microbial functions rather than organismal coevolution (Doolittle and Inkpen 2018).

240241242

243

244

245

246

247

248

249

250

251

252

253

254

255256

257

258

239

Stressors often alter the temporal or interindividual variability in the microbiome. The literature on how and why microbiomes vary with stress offers contrasting predictions for how these changes influence host health and fitness. On the one hand, if microbiomes are tightly regulated by their host (even during physiological stress), variability in the microbiome in the face of stress might represent 'fine-tuning' of the microbiome to better cope with that stress (e.g. the coral probiotic hypothesis) (Reshef et al. 2006). Conversely, physiological stress could produce microbiome variance by reducing the ability of the host to regulate its microbiome, a process coined as the Anna Karenina Principle (AKP) (Zaneveld et al. 2017). Under the AKP, microbiome variance during physiological stress may represent a loss of host control that could be neutral or harmful for host health. Another possibility is that microbial contributions to holobiont function could vary based on the holistic composition of mirrobes present, due to facilitative or competitive interactions (e.g., McIlroy et al 20 9) a sirg the to complementarity effects (Tilman et al. 1997; Loreau 1998; Fox 2015). Em trically tesing these contrasting predictions with diverse hosts, micropia grops (e.g., Claa. al. 2020; Howe-Kerr et al. 2020) and stress rs may paint a mor con plete pictur of what happens when stress perturbs holobiont dynamics, et s. cif. attentio need oe given to whether stress-driven outcomes are the result of co volving to a.

259260

261

262

263

264

265

266267

268269

270

271

272

273

274

275

276

277

278

A key concept investigated in evolution is adaptive **phenotypic plasticity** and how it can generate fixed traits through genetic assimilation of alternative phenotypes (Schlichting and Pigliucci 1998; West-Eberhard 2003; Pigluicci and Muller 2010). The subset of symbionts that organisms have at the present time may come from a much larger pool that was available to their ancestors and then later can become fixed (Waddington 1953; West-Eberhard 2003; Lande 2009). The ability to establish relationships with symbiotic partners could therefore be plastic, depending on lineage-specific environmental and historical factors; this can be tested by applying phylogenetic tools and sampling enough partners. Phylogenetic inference will also assist in understanding whether symbiotic interactions that often result in coevolutionary patterns can arise equally often from mutualistic, commensalistic and parasitic relationships (Thompson and Fernandez 2006). It is still uncertain under what conditions coevolving taxa act as mutualists and under what conditions they become parasitic (e.g., Baker et al. 2018) or pathogenic (Lesser et al. 2013; Correa et al. 2021). The driving pressures governing each type of interaction, and the plasticity to move between those types of interactions, remain unknown. Nonetheless, phenotypic plasticity provides a mechanism to understand 'fixed' relationships. The evolution of eusociality provides a good example. Once eusociality evolves, social and solitary behaviors can be fixed in species or populations back and forth by expressing preexisting alternative phenotypes via developmental switches that are turned on and off depending on the ecological/environmental context (Field et al., 2010). Developmental plasticity thus provides a

robust framework to understand the labile phylogenetic pattern of fixation of solitary and social behaviors and the traits that facilitate them (Wittwer et al., 2017) across species in many insect groups.

With respect to microbiomes, there is a considerable challenge in isolating individual species to ascertain their function (McIlroy et al. 2020). Metabolic versatility is accomplished in holobionts thanks to the simultaneous occurrence of disparate biochemical machineries of symbionts, whose roles within the host can convergently evolve (e.g., McCutcheon et al. 2009). However, we still lack an understanding of the biogeochemical and ecological functions, as well as the establishment and maintenance, of many of these relationships (Beinart 2019). This is despite these functional relationships likely contributing in an important way to the flows of energy and matter within their ecosystem (e.g., Thurber et al. 2017; Cardini et al. 2019; Zimmerman et al. 2020), and across spatial and organizational scales (Pita et al. 2018). It becomes important to investigate to what extent coevolution within and among holobionts: an agent of ecosystem reV1e change.

Molecul: coevolution

279 280

281

282 283

284

285

286

287

288

289

290

291

292

293

294 295 296

297

298 299

300

301

302

303

304 305

306

307

308

309

310

311

312

313

314

315

316

317

318

Organisms hat e gag in coevolutionary interactions impose reciprocal selection that should ave molecular signatures (e.g., horizontal gene transfer, natural selection) across their genomes. Until recently, it remained challenging to explicitly test questions of the genetic mechanisms that underlie coadapted organismal complexes, due to difficulties in identifying all interacting organisms and assaying entire genomes for signatures of selection. Advances in multi-omics technologies provide the capabilities to test specific hypotheses of how interacting organisms shape each other's genomes (e.g., Degnan 2014). For example, in obligate animalbacterial symbioses, full-genome sequencing has revealed that the genomes of bacterial symbionts are shaped by the host environment, often leading to metabolic specialization and extreme genome size reduction (reviewed in McCutcheon and Moran 2012). In order to manage and sustain these relationships, animal hosts are known to evolve specialized organs that deliver tailored support by reprogramming the expression of thousands of eukaryotic genes (Hansen and Moran 2011; Belcaid et al. 2019). Some of these support genes evolved from the duplication of existing host genes, the repurposing of genes that supported more ancient symbioses (e.g., mitochondria), or the horizontal transfer of bacterial genes to the host nuclear genomes (Husnik et al. 2013; Sloan et al. 2014; Mao et al. 2018). When different organisms live in close contact with each other, this can lead to molecular interactions (e.g., protein-protein, protein-nucleic acids) of different origins. Coevolutionary research should investigate the consequences of such interactions and whether they offer an opportunity for metabolic innovation (and not simply the transfer of a metabolic module) that may otherwise be difficult to attain by mutations or lateral transfer of individual genes (rather than simply the transfer of a metabolic module). Investigation into the metabolic aspects of eukaryogenesis, which involved interactions of two or more microbial species, as well as the evolution of eukaryotic photosynthesis, may provide a historical context for the re-wiring of interactome and regulatory networks in symbioses (e.g., Burns et al. 2018; Leitão et al. 2020)

323324

319

320

321

322

Recognizing Homology and Homoplasy in the Evolution of Symbiosis

325 326

327 In cases where coevolution is repeatable, one untested prediction is that phenotypic traits will 328 emerge when two or more organisms interact in an intricate matter. A classic example is the case 329 of photosymbiosis. Multiple photosynthetic microbial taxa (e.g., cyanobacteria, green algae, 330 dinoflagellate algae) established mainly endosymbiotic symbiosis with diverse heterotrophic 331 eukaryotic hosts including fungi (e.g., lichens), unicellular protists (e.g. Chlorella-bearing 332 ciliates, foraminifera, mixotrophic testate amoebae) (Hallock 1999; Presc iold et al. 2011; 333 Gomaa et al. 2014), and animals (e.g., reef-building corals, v. idis, imc), oup of Hydra) (Stanley 2006; Kawaida et al. 2013; van Oppen and Medi ia 2 20) Understan ing vhether the same 334 molecular machinery is involved in establishing and national ag photosymbiosis each time, 335 poses intesting questions at ut ween we should consider a trait as homologous versus 336 337 converger (Sto sker et al. 200); Me. Javijo et al. 2018; Li et al. 2020). Studying similar types 338 of symbios s across diverse organisms will lend itself not only to mechanistic discoveries, but 339 also to adva sing conceptual debates. In morphological evolution, shared traits that are 340 homologs often show important mechanistic similarities that are not shared in convergently 341 evolved traits (Scotland 2010). During holobiont evolution, animal-microbe or plant-microbe 342 symbioses may persist through evolution or may evolve convergently. A major goal in coevolutionary research will be to distinguish homologous symbioses from homoplasies to 343 elucidate if the same patterns extend to different underlying molecular mechanisms. Although 344 345 the molecular mechanisms regarding many symbioses still await elucidation, preliminary data show that convergently evolved symbiotic associations sometimes display the same molecular 346 347 level adaptations. For example, both corals (Cnidaria) and giant clams (Mollusca) are known to host algae from the family Symbiodiniaceae (Trench 1979), although the symbiosis is 348 349 intracellular for corals (Davy et al. 2012) and extracellular for the bivalves (Ip and Chew 2021). 350 However, these two distantly related animal lineages both utilize the vacuolar H + -ATPase gene 351 (VHA) to acidify their symbiont-containing environments, thereby facilitating the carbon 352 concentrating process, and promoting algal photosynthesis (Barott et al. 2015; Armstrong et al. 353 2018). VHA is a highly conserved gene in eukaryotes (Anraku et al. 1992), and neither host 354 lineages possesses "special" versions of VHA compared to their non-symbiotic relatives (Li et al. 355 2020). Therefore, adaptations to photosymbiosis appear to have occurred at the 356 regulatory/expression level, specifically by expressing VHA in the symbiont-containing 357 cells/tissues (Barott et al. 2015; Armstrong et al. 2018). This example indicates that molecular-358 level parallel evolution can occur in convergently evolved symbiosis. Future research efforts are

needed to examine this phenomenon, and special attention needs to be paid to gene regulatory mechanisms.

361 362

359

360

Microbiomes can influence the evolution of host behavioral traits

363 364 365

366

367

368

369

370

371

372

373

374

375

376377

378

379

380 381

382 383

384

385

386

Mounting evidence suggests that animal behavioral phenotypes can be influenced by the microbiome (Archie and Theis 2011; Ezenwa et al. 2012; Zhu et al. 2018; Vernier et al. 2020). Specifically, the microbiome can contribute to host anti-predator behaviors, increase host foraging efficiency and reproductive output, and mediate host communication (Theis et al. 2020). In some instances, for example in the bioluminescence-enabled camouflaged antipredator behavior of bobtail squids, a single microbial symbiont, Vibrio fischeri, contributes directly to a host behavioral phenotype that is under strong selective pressure. However, in other cases, such as mammals scent marking with secretions from specialized integume tal scent glands, a diverse suite of microbial symbionts appears to contribute behavioral '-re van components to the chemical signaling phenotypes of their hosts. Hy joth ses such as the are emple fodder for elucidating the intricacies of the proximate and ultimate read his his between hosts and their various and amon, the symbionts themselves in generating the complex per enot pes f holobi nts (coney et al., 2018). For instance, if the holobiotic hypothesis or at mal hemical communication is correct, then: 1) scent organs should harbor odor-producing rancrobes that exhibit phylosymbiosis across host clades; 2) both the microbial and odor profiles of these organs should vary with the host traits being signaled, and these profiles should covary; 3) experimental manipulation of scent organ microbiomes should alter organ odor profiles; and 4) doing so should result in altered receiver responses to those manipulated signals. These sorts of investigations are facilitated by current advances in omics technologies, which enable us to determine whether a specific microbial signature associates with a specific behavioral pattern within animal populations and across animal evolution or whether there are holobiont configurations that are favored if there is selective pressure for a certain behavioral trait (Theis et al. 2020).

387 388 389

Climate change

390391392

393

394

395

396

397

398

How organisms cope, acclimatize, and adapt in dynamic and changing environments, particularly within the context of global change, is critical to the future of our planet and its organisms. We must understand how host organisms live in association with microbial symbionts and how they will respond individually, together, or through changing associations, adding dimensions of complexity to the identification and study of coevolutionary relationships. Moreover, the biological diversity of phenotypes, genotypes, and organisms, which underlie the potential for differences and possibilities, has not been fully characterized (Pereira et al. 2012). There is a

need to assess how the mismatch in the rates at which microorganisms evolve versus the rates at which macroorganismal hosts evolve and respond to environmental changes, as this influences the condition and performance of holobionts (e.g., Kiers et al. 2010; Correa and Baker 2011; van Oppen et al. 2011). For instance, short-term experiments examining the effects of environmental changes on habitat-forming hosts (e.g., plants, corals, seaweeds) show a link between changes in host-associated microbes in response to environmental stressors (Buerger et al. 2020; Morella et al. 2020; Saha et al. 2020), which then translate into effects on the host. Changes in environmental parameters will be gradual (with the exception of extreme events like heat waves, floods and other anomalies) and may interact in complex ways (Qiu et al. 2019). This timeline may allow for microorganisms to evolve, leading to communities that could be resistant to those changes, potentially influencing holobiont resilience to climate change. Understanding the coevolutionary responses of host and their associated microbes to stressors is critical in order to better predict the effects of environmental changes on holobionts. In turn, this understanding will most effectively leverage microbial ecology to inform conservation efforts.

In the Anthropocene, new diseases and environmental extremes are all the rise (Egan and Gardiner 2016). A grand challenge will be to develop ynth holobionts with enhanced resistanc or resilience to stre sors Damjanovi et al. 2017; Wood et al. 2019). Synthetic holobionts can v of abstantia bene. So areas of environmental remediation, restoration, conservation or copi approvement (e.g., Coleman and Goold 2019). However, our exploration of the ethical is use and ecological implications of synthetic holobionts in the study and trajectories of coevolutionary relationships are in their infancy (e.g., Filbee-Dexter and Smajdor 2019). For example, symbiotic networks of microorganisms can affect the naturalization of invasive species in the introduced region and the ability of these organisms to outcompete native counterparts. Invasion mechanisms employed by some plants involve microbiome shifts between the native and invaded habitats, leading to enhanced resource acquisition and affecting the ability of these plants to outcompete native species (Coats and Rumpho 2014). In ants, symbiont communities can help their hosts by buffering behavioral changes caused by interspecies competition as a consequence of biological invasions (Cheng et al. 2019). These examples substantiate the need to understand the mechanisms underlying the success of invasive holobionts, highlighting the potential implications for conservation biology. Coevolutionary research should enable us to apply what we know to create cleaner solutions to reduce the human footprint on Earth and sustain diversity on our planet.

Glossary. One serious impediment to progress in coevolutionary research is the lack of consistency in the definition of the terms themselves. Since there are ongoing debates on concepts and terminology, we present a glossary with the definitions we are using throughout this manuscript. We call on future authors to state clear definitions that can be used to guide both the design and the interpretation of future research.

- 439 Antagonism: An association in which one organism typically benefits at the expense of its
- partner (e.g., parasitism).
- 441 *Coevolution:* Reciprocal evolutionary change between interacting lineages.
- 442 Commensalism: An association in which one partner benefits and other partners are not affected
- by the interaction. Although it is often difficult to prove empirically that some partners do not
- gain any net benefit or harm from the relationship.
- 445 Facilitation: Species interactions in which at least one species typically benefits from another.
- 446 *Guild:* A group of species that exploit the same resources.
- 447 *Holobiont:* A host and its associated microbiome.
- 448 *Hologenome*: Sum of interacting genomes of the host and its associated microbiome.
- 449 *Homology:* A trait in two organisms that shares common ancestry.
- 450 *Homoplasy*: A trait that has evolved through reversal, parallel or convergent evolution (not by
- shared common ancestry).
- 452 Host: An organism, often multicellular or larger in size in the case of nice Iular organisms, that
- 453 harbors one or more organisms in or on itself.
- 454 Interactome: A protein-protein interaction network.
- 455 Microbiome: Genetic material of all my obe residing in c. a host.
- 456 Mutualis: An association in vhic all partner, typically or predominantly benefit from
- associatin with one nother.
- 458 Phenotypic plast vity: Adaptive capacity of a genotype to develop different phenotypes in
- 459 response to virginmental variation.
- 460 Phylogenetic congruence: Reciprocal corroboration of phylogenetic trees inferred from
- independent sources of data.
- 462 *Symbiosis:* Intimate association between two or more species. The nature of the predominant
- outcome of the interaction (positive, neutral, negative) is not a property of the term (i.e.
- 464 symbiotic does not equate with mutualistic).
- 465 References

470

471 472

473

- Althoff D.M., Segraves K.A., Johnson M.T.J. 2014. Testing for coevolutionary diversification:
 Linking pattern with process. Trends Ecol. Evol. 29:82–89.
 Althoff D.M., Segraves K.A., Smith C.I., Leebens-Mack J., Pellmyr O. 2012. Geographic
 - Althoff D.M., Segraves K.A., Smith C.I., Leebens-Mack J., Pellmyr O. 2012. Geographic isolation trumps coevolution as a driver of yucca and yucca moth diversification. Mol. Phylogenet. Evol. 62:898–906.
 - Anraku Y., Umemoto N., Hirata R., Ohya Y. 1992. Genetic and cell biological aspects of the yeast vacuolar H+-ATPase. J. Bioenerg. Biomembr. 24:395–405.
 - Archie E.A., Theis K.R. 2011. Animal behaviour meets microbial ecology. Anim. Behav. 82:425–436.
- Armbruster W.S., Muchhala N. 2009. Associations between floral specialization and species diversity: Cause, effect, or correlation? Evol. Ecol. 23:159–179.
- Armstrong E.J., Roa J.N., Stillman J.H., Tresguerres M. 2018. Symbiont photosynthesis in giant clams is promoted by V-type H+-ATPase from host cells. J. Exp. Biol. 221:177220.

- 481 Arnqvist, G., and Rowe, L. (2005). *Sexual Conflict*. Princeton University Press.
- Baker D.M., Freeman C.J., Wong J.C.Y., Fogel M.L., Knowlton N. 2018. Climate change promotes parasitism in a coral symbiosis. ISME J. 12:921–930.
- Barott K.L., Venn A.A., Perez S.O., Tambutteeé S., Tresguerres M. 2015. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 112:607–612.
- Bascompte J. 2019. Mutualism and biodiversity. Curr. Biol. 29:R467–R470.

- Beinart R.A. 2019. The Significance of Microbial Symbionts in Ecosystem Processes. mSystems. 4:e00127-19.
- Belcaid M., Casaburi G., McAnulty S.J., Schmidbaur H., Suria A.M., Moriano-Gutierrez S., Sabrina Pankey M., Oakley T.H., Kremer N., Koch E.J., Collins A.J., Nguyen H., Lek S., Goncharenko-Foster I., Minx P., Sodergren E., Weinstock G., Rokhsar D.S., McFall-Ngai M., Simakov O., Foster J.S., Nyholm S. V. 2019. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proc. Natl. Acad. Sci. U. S. A. 116:3030–3035.
- Blasco-Costa, I., Hayward, A., Poulin, R., and Bolbuena, J. A. (2021). Next-generation cophylogeny: unravelling eco-evolutionary process. S. 1 2nds Fc ol. Evol. 36. doi:10.1016/j.tree.2021.06.006.Borden tei. S.I., Theis K.P. 20. 5. Host biology in light of the microbiome: Ten printiple of halot onts and hologenomes. PLoS Biol. 13:1–23.
- Brodie J.D., Rich hour B., 200. Rec proca, selection at the phenotypic interface of pevolition Integr. comp. Biol. 43:408–418.
- Brodie E. D., F. den our B.J., Brodie E.D. 2002. The evolutionary response of predators to de gerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution. 56:2067–2082.
- Bruno J.F., Stachowicz J.J., Bertness M.D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119–125.
- Buerger P., Alvarez-Roa C., Coppin C.W., Pearce S.L., Chakravarti L.J., Oakeshott J.G., Edwards O.R., van Oppen M.J.H. 2020. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6:eaba2498.
- Burns J.A., Pittis A.A., Kim E. 2018. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2:697–704.
- Cardini U., Bartoli M., Lücker S., Mooshammer M., Polzin J., Lee R.W., Micić V., Hofmann T., Weber M., Petersen J.M. 2019. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13:3131–3134.
- Carthey, A. J. R., Gillings, M. R., and Blumstein, D. T. (2018). The Extended Genotype: Microbially Mediated Olfactory Communication. *Trends Ecol. Evol.* 33, 885–894. doi:10.1016/J.TREE.2018.08.010.
- Cheng D., Chen S., Huang Y., Pierce N.E., Riegler M., Yang F., Zeng L., Lu Y., Liang G., Xu Y. 2019. Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathog. 15:e1007942.
- Claar D.C., McDevitt-Irwin J.M., Garren M., Vega Thurber R., Gates R.D., Baum J.K. 2020.
 Increased diversity and concordant shifts in community structure of coral-associated
 Symbiodiniaceae and bacteria subjected to chronic human disturbance. Mol. Ecol.
 29:2477–2491.

- Coats V.C., Rumpho M.E. 2014. The rhizosphere microbiota of plant invaders: An overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5:1–10.
- Coleman M.A., Goold H.D. 2019. Harnessing synthetic biology for kelp forest conservation1.
 J. Phycol. 55:745–751.
 - Collens A., Kelley E., Katz L.A. 2019. The concept of the hologenome, an epigenetic phenomenon, challenges aspects of the modern evolutionary synthesis. J. Exp. Zool. Part B Mol. Dev. Evol. 332:349–355.
 - Correa A.M.S., Baker A.C. 2011. Disaster taxa in microbially mediated metazoans: How endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals. Glob. Chang. Biol. 17:68–75.
 - Correa A.M.S., Howard-Varona C., Coy S.R., Buchan A., Sullivan M.B., Weitz J.S. 2021. Revisiting the rules of life for viruses of microorganisms. Nat. Rev. Microbiol.
 - Damjanovic K., Blackall L.L., Webster N.S., van Oppen M.J.H. 2017. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb. Biotechnol. 10:1236–1243.
 - Darwin C. 1862. On the various contrivances by which British and forei m orchids are fertilized by insects. London: John Murray.
 - Davies, N. B. (2010). Cuckoos, cowbirds and the ch as. First. You sbury Publishing.
 - Davy S.K., Allemand D., Weis V.M. 201 Cell Bi log of Cnidarian-Dinoflagellate Symbiosis. Microb 2. M. Diol. R. v. 76:22 2-261.
 - De Bai A. 187° De la syr bios. Rev Int Sci. III:301–309.

- Degnan V.M. 014 Think la erally. norizontal gene transfer from symbiotic microbes may e tend he p enotype of marine sessile hosts. Front. Microbiol. 5:1–5.
- Dodd M. Silvertown J., Chase M.M.W. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution. 53:732–744.
- Doolittle W.F., Inkpen S.A. 2018. Processes and patterns of interaction as units of selection: An introduction to ITSNTS thinking. Proc. Natl. Acad. Sci. 115:4006–4014.
- Egan S., Gardiner M. 2016. Microbial dysbiosis: Rethinking disease in marine ecosystems. Front. Microbiol. 7:1–8.
- Ehrlich P.R., Raven P.H. 1964. Butterflies and Plants: A Study in Coevolution. Evolution. 18:586–608.
- Ezenwa V.O., Gerardo N.M., Inouye D.W., Medina M., Xavier J.B. 2012. Animal behavior and the microbiome. Science. 338:198–199.
- Farrell B.D. 1998. Inordinate fondness explained: why are there so many beetles? Science. 281:555–559.
- Field, J., Paxton, R. J., Soro, A., and Bridge, C. (2010). Cryptic plasticity underlies a major evolutionary transition. *Curr. Biol.* 20. doi:10.1016/j.cub.2010.10.020.
- Filbee-Dexter K., Smajdor A. 2019. Ethics of assisted evolution in marine conservation. Front. Mar. Sci. 6:1–6.
- Fossøy F., Sorenson M.D., Liang W., Ekrem T., Moksnes A., Møller A.P., Rutila J., Røskaft E., Takasu F., Yang C., Stokke B.G. 2016. Ancient origin and maternal inheritance of blue cuckoo eggs. Nat. Commun. 7:10272.
- Fox J.W. 2005. Interpreting the "selection effect" of biodiversity on ecosystem function. Ecol. Lett. 8:846–856.
- 570 Friedman W.E. 2009. The meaning of Darwin's "abominable mystery." Am. J. Bot. 96:5–21.

571 Gilbert S.F., Bosch T.C.G., Ledón-Rettig C. 2015. Eco-Evo-Devo: Developmental symbiosis 572 and developmental plasticity as evolutionary agents. Nat. Rev. Genet. 16:611–622.

- Gilbert S.F., Epel D. 2015. Ecological developmental biology: The environmental regulation of development, health, and evolution. Sinauer Associates, Inc.
- Gomaa F., Kosakyan A., Heger T.J., Corsaro D., Mitchell E.A.D., Lara E. 2014. One Alga to Rule them All: Unrelated Mixotrophic Testate Amoebae (Amoebozoa, Rhizaria and Stramenopiles) Share the Same Symbiont (Trebouxiophyceae). Protist. 165:161–176.
- Grant V. 1949. Pollination Systems as Isolating Mechanisms in Angiosperms. Evolution. 3:82–97.
- Grimaldi D. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann. Missouri Bot. Gard. 86:373–406.
- Grupstra C.G.B., Rabbitt K.M., Howe-Kerr L.I., Correa A.M.S. 2020. Fish predation on corals promotes the dispersal of coral symbionts. bioRxiv.
- Hallock P. 1999. Symbiont-bearing foraminifera. In: Gupta B.K.S., editor. Modern Foraminifera. New York: Kluwer. p. 123–139.
- Hamilton, W. D. (2002). Narrow Roads of Gene Land: Evolution of Sex. Oxford University Press.
- Hansen A.K., Moran N.A. 2011. Aphid genome c. precion reveal nos symbiont cooperation in the production of amino mids. Proc. Natl. Ac. d. Sci. U. S. A. 108:2849–2854.
- Hembry D.H., Yoder J.B., Good pan K.R. 2014. Co volution and the diversification of life. m. Nat 184:425–38.
- Herre E. A., K. owi on N., M. teller G.G., Rehner S.A. 1999. The evolution of mutualisms:

 E. plor ug the paths between conflict and cooperation. Trends Ecol. Evol. 14:49–53.
- Hillesland K.L., Stahl D.A. 2010. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. U. S. A. 107:2124–2129.
- Howe-Kerr L.I., Bachelot B., Wright R.M., Kenkel C.D., Bay L.K., Correa A.M.S. 2020. Symbiont community diversity is more variable in corals that respond poorly to stress. Glob. Chang. Biol. 26:2220–2234.
- Hoyal Cuthill J.F., Charleston M. 2015. Wing patterning genes and coevolution of Müllerian mimicry in *Heliconius* butterflies: Support from phylogeography, cophylogeny, and divergence times. Evolution. 69:3082–3096.
- Husnik F., Nikoh N., Koga R., Ross L., Duncan R.P., Fujie M., Tanaka M., Satoh N., Bachtrog D., Wilson A.C.C., Von Dohlen C.D., Fukatsu T., McCutcheon J.P. 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 153:1567–1578.
- Imachi H., Nobu M.K., Nakahara N., Morono Y., Ogawara M., Takaki Y., Takano Y., Uematsu K., Ikuta T., Ito M. 2020. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature. 577:519–525.
- Ip Y.K., Chew S.F. 2021. Light-Dependent Phenomena and Related Molecular Mechanisms in Giant Clam-Dinoflagellate Associations: A Review. Front. Mar. Sci. 8:1–23.
- Janzen D.H. 1980. When is it Coevolution? Evolution. 34:611–612.
- Kawaida H., Ohba K., Koutake Y., Shimizu H., Tachida H., Kobayakawa Y. 2013. Symbiosis between hydra and chlorella: Molecular phylogenetic analysis and experimental study provide insight into its origin and evolution. Mol. Phylogenet. Evol. 66:906–914.
- Kay K.M., Sargent R.D. 2009. The Role of Animal Pollination in Plant Speciation: Integrating Ecology, Geography, and Genetics. Annu. Rev. Ecol. Evol. Syst. 40:637–656.

- King, K. C., Delph, L. F., Jokela, J., and Lively, C. M. (2009). The geographic mosaic of sex and the Red Queen. *Curr. Biol.* 19, 1438–1441.
- Kiers E.T., Van Der Heijden M.G.A. 2006. Mutualistic stability in the arbuscular mycorrhizal symbiosis: Exploring hypotheses of evolutionary cooperation. Ecology. 87:1627–1636.

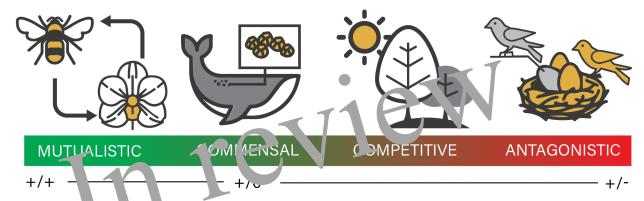
- Kiers E.T., Palmer T.M., Ives A.R., Bruno J.F., Bronstein J.L. 2010. Mutualisms in a changing world: An evolutionary perspective. Ecol. Lett. 13:1459–1474.
 - Kiester A., Lande R., Schemske D. 1984. Models of coevolution and speciation in plants and their pollinators. Am. Nat. 124:220–243.
 - King K.C., Delph L.F., Jokela J., Lively C.M. 2009. The geographic mosaic of sex and the Red Queen. Curr. Biol. 19:1438–1441.
 - Krüger O., Sorenson M.D., Davies N.B. 2009. Does coevolution promote species richness in parasitic cuckoos? Proc. R. Soc. B Biol. Sci. 276:3871–3879.
 - Lande R. 2009. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22:1435–1446.
 - Leitão A.L., Costa M.C., Gabriel A.F., Enguita F.J. 2020. Interspecies communication in holobionts by non-coding RNA exchange. Int. J. Mol. Sci. 27:2333.
 - Lesser M.P., Stat M., Gates R.D. 2013. The endosymbic in din dag dates (Symbiodinium sp.) of corals are parasites and mutualists. Cora Re £. 32:605 (11).
 - Li J., Lemer S., Kirkendale L., Bieler R., Favanaug C. Giribet G. 2020. Shedding light: A phylotranscriptomic pers sective illustrates be origin of photosymbiosis in marine ivalves FMC Evo Bio 20:50.
 - Lloyd E A., V ade 1.J. 2015 Criteria for Holobionts from Community Genetics. Biol. T eory 14: 51–170.
 - Loreau M. 1996. Biodiversity and ecosystem functioning: A mechanistic model. Proc. Natl. Acad. Sci. U. S. A.
 - Mao M., Yang X., Bennett G.M. 2018. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl. Acad. Sci. U. S. A. 115:e11691–e11700.
 - Margulis L., Fester R. 1991. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press.
 - Maron J.L., Agrawal A.A., Schemske D.W. 2019. Plant–herbivore coevolution and plant speciation. Ecology. 100:e02704.
 - Martin W.F., Garg S., Zimorski V. 2015. Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B Biol. Sci. 370:20140330.
 - Matthews J.L., Raina J.B., Kahlke T., Seymour J.R., van Oppen M.J.H., Suggett D.J. 2020. Symbiodiniaceae-bacteria interactions: rethinking metabolite exchange in reef-building corals as multi-partner metabolic networks. Environ. Microbiol. 22.
 - McCutcheon J.P., McDonald B.R., Moran N.A. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. U. S. A. 106:15394–15399.
 - McCutcheon J.P., Moran N.A. 2012. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26.
 - McIlroy S.E., Cunning R., Baker A.C., Coffroth M.A. 2019. Competition and succession among coral endosymbionts. Ecol. Evol. 9:12767–12778.
- McIlroy S.E., Wong J.C.Y., Baker D.M. 2020. Competitive traits of coral symbionts may alter the structure and function of the microbiome. ISME J. 14:2424–2432.

Melo Clavijo J., Donath A., Serôdio J., Christa G. 2018. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol. Rev. 93:2006–2020.

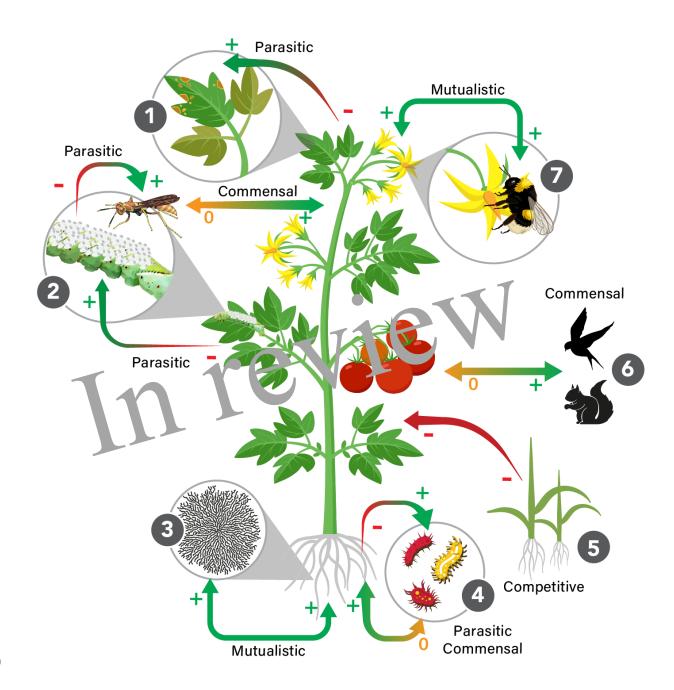
- Mitter C., Farrell B., Wiegmann B. 1988. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132:107–128.
- Mizuuchi R., Ichihashi N. 2018. Sustainable replication and coevolution of cooperative RNAs in an artificial cell-like system. Nat. Ecol. Evol. 2:1654–1660.
- Moran N.A., Sloan D.B. 2015. The Hologenome Concept: Helpful or Hollow? PLoS Biol. 13:1–10.
- Morella N.M., Weng F.C.H., Joubert P.M., Jessica C., Lindow S., Koskella B. 2020. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl. Acad. Sci. U. S. A. 117:1148–1159.
- Nakayama T., Kamikawa R., Tanifuji G., Kashiyama Y., Ohkouchi N., Archibald J.M., Inagaki Y. 2014. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc. Natl. Acad. Sci. U. S. A. 111.
- Nilsson L. 1988. The evolution of flowers with deep corolla tubes. Lature. 334:147–149.
- Nuismer S., Gomulkiewicz R., Ridenhour B. 2010. When Y Co relation Coevolution? Am. Nat. 175:525–537.
- Nuismer S.L., Gandon S. 2008. Moving a yor d common garden and transplant designs: insight into the cause of occar adapt ton in pecies interactions. Am. Nat. 171:658–68.
- van Opi n M (., N dina M. 2020. Coral evolutionary responses to microbial symbioses. Filos. Fran R. Soc. B. 375:20190591.
- van Oppe M...i., Souter P., Howells E.J., Heyward A., Berkelmans R. 2011. Novel genetic diversity through somatic mutations: Fuel for adaptation of reef corals? Diversity. 3:405–423.
- Oulhen N., Schulz B.J., Carrier T.J. 2016. English translation of Heinrich Anton de Bary's 1878 speech, 'Die Erscheinung der Symbiose' ('De la symbiose'). Symbiosis. 69:131–139.
- Page R.D.M. 1996. Temporal congruence revisited: Comparison of mitochondrial DNA sequence divergence in cospeciating pocket gophers and their chewing lice. Syst. Biol. 45:151–167.
- Paterson A.M., Wallis G.P., Wallis L.J., Gray R.D. 2000. Seabird and louse coevolution: Complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst. Biol. 49:383–399.
- Peixoto R.S., Harkins D.M., Nelson K.E. 2021. Advances in Microbiome Research for Animal Health. Annu. Rev. Anim. Biosci. 9:289–311.
- Pereira H.M., Navarro L.M., Martins I.S. 2012. Global biodiversity change: The Bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37:25–50.
- Perez-Lamarque B., Selosse M.A., Öpik M., Morlon H., Martos F. 2020. Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol. 226.
- Pigluicci M., Muller G.B. 2010. Evolution: The Extended Synthesis. MIT Press.
- Pita L., Rix L., Slaby B.M., Franke A., Hentschel U. 2018. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 6:46.

Pogoda C.S., Keepers K.G., Lendemer J.C., Kane N.C., Tripp E.A. 2018. Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol. Ecol. 27:1155–1169.

- Proeschold T., Darienko T., Silva P.C., Reisser W., Krienitz L. 2011. The systematics of Zoochlorella revisited employing an integrative approach. Environ. Microbiol. 13:350–364.
 - Qiu Z., Coleman M.A., Provost E., Campbell A.H., Kelaher B.P., Dalton S.J., Thomas T., Steinberg P.D., Marzinelli E.M. 2019. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc. R. Soc. B Biol. Sci. 286:20181887.
 - Reshef L., Koren O., Loya Y., Zilber-Rosenberg I., Rosenberg E. 2006. The coral probiotic hypothesis. Environ. Microbiol. 8:2068–2073.
 - Roughgarden J., Gilbert S.F., Rosenberg E., Zilber-Rosenberg I., Lloyd E.A. 2018. Holobionts as Units of Selection and a Model of Their Population Dynamics and Evolution. Biol. Theory. 13:44–65.
 - Russo, L., Miller, A. D., Tooker, J., Bjornstad, O. N., and Shea. K. (2011). Quantitative evolutionary patterns in bipartite networks: Vicaria, ee, hyl , er etic tracking or diffuse co-evolution? *Methods Ecol. Evol.* doi:10.1111/041-10X.12914.
 - Saha M., Ferguson R.M.W., Dove S. Ku, zel S., M. ich sner R., Neulinger S.C., Petersen F.O., Weinberger F. 2.20 Sannity & Time Can Alter Epibacterial Communities of n Invasis Seawee Fro. t. Microbiol. 10:1–16.
 - Sargent 1.D. 004 Floral symmetry affects speciation rates in angiosperms. Proc. R. Soc. I ndo. Ser. B. 271:603–608.
 - Schlichtii C.L., Pigliucci M. 1998. Phenotypic evolution: a reaction norm perspective. Sinauer.
 - Scotland R.W. 2010. Deep homology: A view from systematics. BioEssays. 32:438–349.
 - Sloan D.B., Nakabachi A., Richards S., Qu J., Murali S.C., Gibbs R.A., Moran N.A. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31:857–871.
 - Smith C.I., Godsoe W.K.W., Tank S., Yoder J.B., Pellmyr O. 2008. Distinguishing coevolution from covicariance in an obligate pollination mutualism: asynchronous divergence in Joshua tree and its pollinators. Evol. Int. J. Org. Evol. 62:2676–2687.
 - Smith J.W., Benkman C.W. 2007. A coevolutionary arms race causes ecological speciation in crossbills. Am. Nat. 169:455–465.
 - Soler J.J., Martínez J.G., Soler M., Møller A.P. 2001. Coevolutionary interactions in a host-parasite system. Ecol. Lett. 4:470–476.
 - Soler M., Møller A.P. 1990. Duration of sympatry and coevolution between the great spotted cuckoo and its magpie host. Nature. 343:748–750.
 - Spottiswoode C.N., Stevens M. 2012. Host-parasite arms races and rapid changes in bird egg appearance. Am. Nat. 179:632–648.
- Stanley G.D. 2006. Photosymbiosis and the evolution of modern coral reefs. 312:857–858.
- Stiles F.G. 1978. Ecological and evolutionary implications of bird pollination. Integr. Comp.
 Biol. 18:715–727.
- Stoecker D.K., Johnson M.D., De Vargas C., Not F. 2009. Acquired phototrophy in aquatic
 protists. Aquat. Microb. Ecol. 57:279–310.


- Theis K.R., Whittaker D.J., Rojas C.A. 2020. A Hologenomic Approach to Animal Behavior.
 In: Banzhaf W., Cheng B., Deb K., Holekamp K., Lenski R.E., Ofria C., Pennock R.,
 Punch B., Whittaker D., editors. Evolution in Action: Past, Present and Future. Genetic and Evolutionary Computation.
- Thompson J.N. 1989. Concepts of coevolution. Trends Ecol. Evol. 4:179–183.

- 757 Thompson J.N. 1994. The Coevolutionary Process. Chicago: University of Chicago Press.
- Thompson J.N. 2006. Mutualistic webs of species. Science (80-.). 312:372–373.
 - Thompson J.N., Fernandez C.C. 2006. Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology. 87:103–112.
 - Thurber R.V., Payet J.P., Thurber A.R., Correa A.M.S. 2017. Virus-host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15:205–216.
 - Tilman D., Naeem S., Knops J., Reich P., Siemann E., Wedin D., Ritchie M., Lawton J. 1997. Biodiversity and Ecosystem Properties. Science (80-.). 278:1865–1869.
 - Trench R.K. 1979. The cell biology of plant-animal symbiosis. Annu. Rev. Plant Physiol. 30:485–531.
 - Vernier C.L., Chin I.M., Adu-Oppong B., Krupp J.J., Levine J., De (as G., Ben-Shahar Y. 2020. The gut microbiome defines social group the tibe, hip to bee colonies. Sci. Adv. 6:eabd3431.
 - Voss J.D., Leon J.C., Dhurandhar M. V., Yobb F.T. 201 Paynobiome: Manipulation of the Hologenome within one lost generation and beyond. Front. Microbiol. 6:1–5.
 - Waddi ston C.P. 1953. Ge etic ssimilation of an Acquired Character. Evolution (N. Y). 118-126.
 - Weiblen 7.D. 004 Correlated evolution in fig pollination. Syst. Biol. 53:128–139.
 - West-Ebe hard M.J. 2003. Developmental Plasticity and Evolution. New York, NY: Oxford University Press.
 - Wittwer, B., Hefetz, A., Simon, T., Murphy, L. E. K., Elgar, M. A., Pierce, N. E., Kocher, S. D. (2017). Solitary bees reduce investment in communication compared with their social relatives. Proc. Natl. Acad. Sci. U. S. A. 114: 6569–6574.
 - Wood G., Marzinelli E.M., Coleman M.A., Campbell A.H., Santini N.S., Kajlich L., Verdura J., Wodak J., Steinberg P.D., Vergés A. 2019. Restoring subtidal marine macrophytes in the Anthropocene: Trajectories and future-proofing. Mar. Freshw. Res. 70:936–951.
 - Yang C., Liang W., Cai Y., Shi S., Takasu F., Møller A.P., Antonov A., Fossøy F., Moksnes A., Røskaft E., Stokke B.G. 2010. Coevolution in action: Disruptive selection on egg colour in an avian brood parasite and its host. PLoS One. 5:1–8.
 - Yoder J.B., Nuismer S.L. 2010. When does coevolution promote diversification? Am. Nat. 176:802–817.
 - Yoder J.B., Nuismer S.L., III A.E.E.D.B., Bronstein E.J.L. 2010. When Does Coevolution Promote Diversification? Am. Nat. 176:802–817.
 - Zaneveld J.R., McMinds R., Thurber R.V. 2017. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2:17121.
 - Zhu F., Cusumano A., Bloem J., Weldegergis B.T., Villela A., Fatouros N.E., van Loon J.J.A., Dicke M., Harvey J.A., Vogel H., Poelman E.H. 2018. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proc. Natl. Acad. Sci. U. S. A. 115.
 - Zimmerman A.E., Howard-Varona C., Needham D.M., John S.G., Worden A.Z., Sullivan M.B., Waldbauer J.R., Coleman M.L. 2020. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol.


Inteview

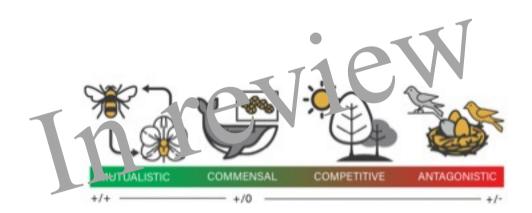

Figure Captions


Figure 1. Spectrum of species interactions range from mutualistic to antagonistic. Mutualistic: plants and their pollinators, such as orchids and orchid bees. Both members benefit from the interaction. Commensal: Barnacles benefit from settling on the whale's skin surface, but do not impact the whale. Competitive: plants competing for access to canopy light in a forest. Antagonistic: The cuckoo lays its egg in the nest of another species of (host) bird. The host bird incurs the cost of raising the cuckoo's young instead of its own (which the cuckoo hatchling destroys.

Figure 2. C evol tiorary networks, such as the vertebrates, invertebrates, plants and microorganisms that interact with tomato plants (*Solanum* spp.), result in species interactions with different levels of codependency. 1: common rust fungus can infect the tomato plant, leading to leaf mortality; 2: a wasp caterpillar parasite; 3: Arbuscular mycorrhyzal fungi (AMF) are plant symbionts; 4: invertebrates and microorganisms such as nematodes and bacteria can have detrimental effects on plant roots; 5: other plant species can compete with *Solanum* for nutrients and space crop fields; 6: frugivores benefit from consuming tomato fruits and disperse seeds; and 7: pollinators such as bees contribute to the plants reproductive output. **0** = neutral interaction, + = beneficial, - = detrimental.

