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Gaussian Approximation of Quantization Error for
Estimation From Compressed Data

Alon Kipnis , Member, IEEE, and Galen Reeves , Member, IEEE

Abstract— We consider the distributional connection between
the lossy compressed representation of a high-dimensional signal
X using a random spherical code and the observation of X
under an additive white Gaussian noise (AWGN). We show that
the Wasserstein distance between a bitrate-R compressed version
of X and its observation under an AWGN-channel of signal-
to-noise ratio 22R − 1 is bounded in the problem dimension.
We utilize this fact to connect the risk of an estimator based
on the compressed version of X to the risk attained by the
same estimator when fed the AWGN-corrupted version of X .
We demonstrate the usefulness of this connection by deriving
various novel results for inference problems under compression
constraints, including minimax estimation, sparse regression,
compressed sensing, and universality of linear estimation in
remote source coding.

Index Terms— Lossy source coding, spherical coding, Gaussian
noise, parameter estimation, indirect source coding, sparse
regression, approximate message passing.

I. INTRODUCTION

DUE to the disproportionate size of modern datasets
compared to available computing and communication

resources, many inference techniques are applied to a com-
pressed representation of the data rather than the data itself
(Figure 1). In the attempt to develop and analyze inference
techniques based on a degraded version of the data, it is
conceptually appealing to model inaccuracies resulting from
lossy compression as additive noise. Indeed, there exists a
rich literature devoted to the characterization of this “noise”,
i.e., the difference between the original data and its com-
pressed representation [2]. Nevertheless, because of the dif-
ficulty of analyzing non-linear compression operations, this
characterization is generally limited to the high-bit compres-
sion regime and other restrictions on the distribution of the
data [3]–[7].
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Fig. 1. Inference about the latent signal θ is based on degraded observations
Y of the data X.

Fig. 2. The effect of a bitrate constraint is compared to the effect of additive
Gaussian noise by studying the Wasserstein distance between PY and PZ .
Under random spherical encoding, we show that this distance is bounded in the
problem dimension n, hence estimating θ from Y is equivalent to estimating
it from Z .

In this paper, we establish a strong and relatively simple
characterization of the distribution of quantization error cor-
responding to a random spherical code. Specifically, we show
that, in the sense of the Wasserstein distance, this error can
be approximated by additive white Gaussian noise (AWGN)
whose variance σ2 is inversely proportional to 22R− 1 where
R is the bitrate of the code (Figure 2). This approximation
implies that the expected error of an estimator applied to
the compressed representation of the data is asymptotically
equivalent to the expected error of the same estimator applied
to a Gaussian noise-corrupted version of the data. The benefit
from such approximation is twofold: (1) inference techniques
from observations corrupted by Gaussian noise can now
be applied directly to the compressed representation; and
(2) it provides a mechanism to characterize the performance
of inference using such techniques.

A. Overview of Main Contributions

The equivalence illustrated in Figure 2 allows us to derive
various novel results for two closely related inference settings,
both of which are performed on a lossy compressed represen-
tation of the observed data X = (X1, . . . , Xn).
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• Parameter Estimation: (Section III) The data are drawn
according to a distribution indexed by an unknown
d-dimensional parameter vector θ and the goal is to
estimate the parameter vector under the squared error
loss. In the high-dimensional setting, the number of
parameters d is possibly much larger than the number of
observations n. This problem is also related to learning
distributions under communication constraints [8]–[17].

• Indirect Source Coding: (Section IV) The data are
distributed jointly with an unknown random (source)
vector U = (U1, . . . , Un) and the goal is to recon-
struct this vector from the compressed representation
of X [18]–[21].

At a high level, the main difference between these inference
tasks is that the source coding problem assumes a joint
distribution over the data and the quantities of interest. Beyond
these settings, one may also consider minimax and universal
source coding formulation [22], [23] as well as hypotheses
testing [8], [10].

In the parameter estimation setting, we consider the mini-
max mean-squared error (MSE)

M∗
n := inf

φ,ψ
sup
θ∈Θn

1
dn

E
[�θ − ψ(φ(X))�2

]
,

where the infimum is over all encoding functions φ : R
n →

{1, . . . ,M} and decoding functions ψ : {1, . . . ,M} → R
d

with M = �2nR�. Zhu and Lafferty [24] provided an
asymptotic expression for M∗

n in the special case of the
Gaussian location model X ∼ N (θ, �2 In) where the para-
meter space Θn is an n-dimensional ball. Under a similar
setting, our main results yield a non-asymptotic upper bound
to M∗

n. Furthermore, under the additional assumption that
θ is k-sparse, our main results implies that M∗

n is upper
bounded by a univariate function describing the minimax risk
of soft-thresholding in sparse estimation [25], [26]. Finally,
we consider the case where the data X and the parameter
θ are described by the model X ∼ N (Aθ, �2 I), where
A ∈ R

d×n is a random matrix with i.i.d. Gaussian entries. This
setting with θ sparse and dn much larger than n was studied
in the context of the compressed sensing signal acquisition
frameworks [27]. By applying our main results to estimation
with the approximate message passing (AMP) algorithm [28],
we provide an exact asymptotic characterization of the MSE
in recovering θ from a lossy compressed version of X
obtained using bitrate-R random spherical coding. Versions
of this compression and estimation problem for other type
of lossy compression codes and estimators were considered
in [29]–[32].

The indirect source coding setting (other names are
remote or noisy source coding and rate-constrained denoising)
corresponds to the case where {(Ui, Xi)}∞i=1 is an ergodic
process with a finite second moment. A bitrate-R spherical
code is applied to X = {Xi}ni=1 while the goal is to estimate
{Un}ni=1 from the output Y of this code [18], [20] [19, Ch 3.5]
[21]. For data normalized as E

[�X�2
]

= n, our main results
imply that the MSE attained by any sequence of Lipschtiz
estimators converges to the MSE attained by these estimators

when applied to {Zi}ni=1, where

Zi = Xi + σWi, σ2 =
1

22R − 1
, (1)

Specialized to the case Xi | Ui ∼ N (Ui, �2), our result
implies an interesting universality property of spherical coding
followed by linear estimation: the resulting MSE equals the
minimal MSE, over all encoding and estimation schemes,
when a Gaussian source of the same second moment is
estimated from a bitrate-R encoded version of its observations
under AWGN. This fact can be seen as a direct extension of
the saddle point property of the Gaussian distribution in the
standard (direct) source coding setting discussed in [33]–[36].

B. Background and Related Works

Spherical codes have multiple theoretical and practical uses
in numerous fields [37]. In the context of information theory,
Sakrison [33] and Wyner [34] provided a geometric under-
standing of random spherical coding in a Gaussian setting;
our main result extends their insights. Specifically, consider the
representation of an n-dimensional standard Gaussian vector
X using M = �2nR� codewords uniformly distributed over
the sphere of radius r =

√
n(1 − 2−2R). The left side of

Fig. 3, adapted from [33], shows a conceptual relation between
X and its nearest codeword X̂: As n increases, the angle α∗

between the two concentrates so that sin(α∗) converges to 2−R

in probability, hence the quantized representation of X and
the error X − X̂ become orthogonal. Consequently, the MSE
between X and its quantized representation, averaged over all
random codebooks, converges to the Gaussian distortion-rate
function 2−2R. In fact, as noted in [35], this Gaussian coding
scheme1 achieves the Gaussian DRF when X is generated
by any ergodic information source of unit variance, implying
that the second moments of X − X̂ are independent of the
distribution of X as the problem dimension n goes to infinity.

In this paper, we show that a much stronger statement
holds for a properly scaled version of the quantized rep-
resentation (Y in Fig. 3): in the limit of high dimension,
the distribution of Y − X is independent of the distribu-
tion of X and is approximately Gaussian. This property of
Y −X suggests that the underlying quantities of interest (e.g.,
the parameter vector θ or the sequence {Un}∞n=1) can now
be estimated as if X is observed under additive Gaussian
noise. This paper formalizes this intuition by showing that
estimators from the Gaussian-noise corrupted version of X (Z
in Fig. 3) attain similar performances if applied to the scaled
representation Y .

In general, the radius of the codebook under which the
distribution of Y and Z are close depends on the magnitude
of X . This magnitude is only needed at the decoder, while the
encoder can represent its input X using codewords living, say,
on the unit sphere. In particular, such an encoder is agnostic to
the relationship between X and θ. This situation is in contrast
to optimal quantization schemes in indirect source coding [18],
[19] and in problems involving estimation from compressed

1We denote this scheme as Gaussian since r is chosen according to the
distribution attaining the Gaussian DRF [38, Ch. 10.5].
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Fig. 3. Conceptual 3D illustration of random spherical coding in high-
dimension. The norm of the input vector X concentrates around the input
sphere. Left Sphere: Geometric interpretation of standard source coding
from [33], [34]. The representation sphere is chosen such that the error
vector X̂ − X is orthogonal to the reconstruction vector X̂. Right Sphere:
Geometric description of the quantization error considered in this paper. The
representation sphere is chosen such that Y − X is orthogonal to X.

data [9], [10], [13], [14], [39], [40], where the specification of
the model θ → X is crucial for designing the compression and
estimation schemes. As a result, the random spherical coding
scheme we rely on is sub-optimal in general, although it can
be applied in situations where the model θ → X is unknown at
the compressor. Coding schemes with similar properties were
studied in the context of indirect source coding under the name
compress-and-estimate in [41], [42].

The equivalence between quantization noise and AWGN
we provide in this paper is given in terms of the Wasser-
stein distance between the distributions of these vectors.
We refer to [43]–[45] for properties, applications, and the
long list of alternative names of the Wasserstein distance. In
the context of information theory, the Wasserstein distance
has been used to establish consistency of some quantization
procedures [46], [47] and to define a class of channels over
which communication is possible without assuming synchro-
nization [48], [49]. One of the core results of this paper
is a novel coupling of the distributions of Y and Z given
X , leading to a bound on the Wasserstein distance between
them. This bound, in combination with the fact that the Lp
risk of a Lipschitz estimator is continuous with respect to
the Wasserstein distance, implies that the risk of such an
estimator, when used at the output of a random spherical code,
converges to the risk when used at the output of a Gaussian
channel.

Our work is similar in spirit to the work of Zamir and Feder
[50, Section III], who provide a Gaussian approximation for
the quantization error of a random dithered lattice quantizer.
In the setting of their paper, the quantization error is indepen-
dent of the input and distributed uniformly over the basic cell
of the lattice. They show that as the dimension n increases,
there exists a sequence of lattice quantizers such that the
relative entropy between the distribution of the quantization
noise and the isotropic Gaussian distribution with matched
power is bounded from above by c · log(n) where c is a
positive constant. Normalizing by n, they conclude that the

relative entropy per dimension converges to zero in the large-
n limit. To interpret their results in the setting of this paper,
we can use the Gaussian transportation inequality [51], which
leads to an upper bound on the 2-Wasserstein distance that is
order σ

√
log n where σ2 is the variance of the additive noise.

By contrast, for quantization using a random spherical code,
our results provide an upper bound on p-Wasserstein distance
that is order σp. Namely, both bounds are proportional to σ but
the bound following from [50] is unbounded in the problem
dimension.

Another related setting is the problem of channel simulation,
the goal of which is to design a random code that induces a
particular target distribution between the data and the com-
pressed representation [52]–[54].

The rest of this paper is organized as follows. In Section II
we provide our main results on the distributional connection
between spherical coding and AWGN. In Sections III and IV
we apply these results to parameter estimation and source
coding, respectively. Section V provides the proofs of the main
results. Concluding remark are provided in Section VI.

II. MAIN RESULTS

The main result of this paper is a comparison between
the quantization error under random spherical coding and
independent Gaussian noise.

Definition 1 (Random Spherical Code): An (n,M) ran-
dom spherical code is a collection of M codewords C =
{C(1), . . . , C(M)} drawn independently from the uniform
distribution on the unit sphere in R

n. The encoder maps an
input vector x ∈ R

n \ {0} to the index i∗ ∈ {1, . . . ,M} of a
codeword that maximizes the cosine similarity

i∗ ∈ arg max
1≤i≤M

	C(i), x
. (2)

Given the index i∗ and knowledge of the codebook C,
the decoder outputs the compressed representation

Y := ρC(i∗), (3)

where ρ ≥ 0 is a scaling parameter.
Our results focus on the distribution of the compressed

representation Y induced by the randomness in the codebook.
Note that this distribution is parameterized by the input x and
has a density with respect to the surface measure on the sphere
of radius ρ. We also define the maximal cosine similarity
according to

cos(α∗) :=
	x,C(i∗)


�x� , α∗ ∈ [0, π]. (4)

It is well known (see e.g., [55]) that the distribution of α∗

does not depend on x and is given by

P [(cos(α∗) ≤ s)] = (1 −Qn(s))
M
, (5)

where

Qn(s) :=
Γ(n+1

2 )√
πΓ(n2 )

∫ 1

s

(1 − t2)
n−3

2 dt, (6)

and where Γ(z) =
∫∞
0
xz−1 exp(−z) dz is the Gamma

function.
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Fig. 4. Conceptual 2D description of the coupling in Theorem 1 when
the representation sphere is matched to ‖x‖. The quantization error Y − x
(Left) is compared to the standard n-dimensional Gaussian noise vector
W (Right). The random variable Y is the nearest codeword to x in the
random codebook ensemble. The standard Gaussian random variable A is the
normalized component of W in the direction of x. The random variable B
describes the magnitude of the projection of W onto the (n−1)-dimensional
space orthogonal to x.

A. Approximation Using AWGN

The fundamental question we address is the extent to which
the quantization error Y − x can be approximated by an
isotropic zero-mean Gaussian noise. To answer this question
we introduce the AWGN-corrupted observation model

Z = x+ σW, W ∼ N (0, In). (7)

Our main results are based on a coupling argument. Specif-
ically, we show that there exists a joint distribution on the
pair (Y, Z) under which the distribution of �Y − Z� can be
described exactly in terms of the tuple (ρ, σ, n,M) and the
magnitude of the input. The proof of the following result is
in Section V.

Theorem 1: For any x ∈ R
n\{0}, positive integer M , and

real numbers ρ, σ > 0, there exists a joint distribution on
(Y, Z) such that Y has the distribution of the compressed rep-
resentation of magnitude ρ obtained from an (n,M) random
spherical code with input x, Z ∼ N (x, σ2), and

�Y − Z�2 =(ρ cos(α∗)−�x�−σA)2 + (ρ sin(α∗) − σB)2 ,
(8)

where:

• A,B, α∗ are independent,
• A ∼ N (0, 1),
• B has a chi distribution with n− 1 degrees of freedom.

Figure 4 provides a conceptual illustration of α∗, A,
and B in the comparison between Y and Z provided in
Theorem 1. The proof of this theorem in Section V pro-
vides the exact description of these random variables and
vectors.

The coupling described in Theorem 1 holds for any choice
of the parameters (ρ, σ). The next step is to show that the term
�Y − Z� in (8) is negligible compared to the magnitude of
the quantization error under a proper specification of these
parameters. To provide a sense of scale, observe that the
error due to AWGN satisfies �Z − x� = σ�W� where �W�
concentrates about

√
n in the large-n limit. For comparison,

we consider the upper bound given by

�Y − Z� ≤ |�x� − γ| + σΔ (9)

where γ is an estimate of �x� and the normalized error term

Δ :=
1
σ

√
(ρ cos(α∗) − γ − σA)2 + (ρ sin(α∗) − σB)2

(10)

does not depend on x. In the following we show that (ρ, σ) can
be chosen as a function of (n,M, γ) such that the distribution
of Δ is bounded independently of the dimension n.

First we consider the setting where the number of codewords
is given by M = �2nR� for a fixed bitrate R > 0. For a given
γ ≥ 0 we use the specification

ρ =
γ√

1 − 2−2R
, σ =

γ√
n
√

22R − 1
. (11)

Theorem 2: Suppose that M = �2nR� for a fixed bitrate
R > 0. Under the specification given in (11), the normalized
error term Δ defined in (10) has a sub-Gaussian distribution
with parameters that depend only on the bitrate R. In partic-
ular, there exists a positive number CR such that

E [Δp]1/p ≤ CR
√
p, p ≥ 1. (12)

The significance of Theorem 2 is that the distribution of
Δ is bounded uniformly with respect to n and thus the term
σΔ in (9) is order one. By comparison, the magnitude of the
additive noise σ�W� scales at rate n1/2. This means that if
the estimate of �x� is accurate in the sense that �x�/γ → 1
as n→ ∞, then the relative difference between the mismatch
�Y −Z� and the quantization error �Y −x� converges to zero.

Next, we provide a result that holds in the high-rate setting
where 1

n logM diverges. This regime requires a more precise
estimate of the max-cosine similarity and we use the specifi-
cation

ρ̃ =
γ√

1 − 2−2R̃
, σ̃ =

γ
√
n
√

22R̃ − 1
, R̃ =

1
n− 1

log2M.

(13)

Note that R̃ is normalized by (n− 1) instead of n. Further,
we will require that the number of codewords is bounded from
below by

Mβ(n) :=
√
n(csc β)n−1, (14)

for some fixed constant β ∈ (0, π/2).
Theorem 3: Suppose that M ≥ Mβ(n) for some con-

stant β ∈ (0, π/2). Under the specification given in (13),
the normalized error term Δ defined in (10) has a sub-
exponential distribution with parameters that depend only on
β. In particular, there exists a positive number Cβ such that

E [Δp]1/p ≤ Cβ p, p ≥ 1. (15)

Theorem 3 is stronger than Theorem 2 in the sense that the
bound holds uniformly for all (n,M) satisfying the constraint
M ≥ Mβ(n). This is important for the high-bitrate setting
where σ converges to zero. The price that is paid is that
the sub-Gaussian tail condition is replaced with the weaker
sub-exponential condition. An explicit value for the constant
Cβ and its dependence on β can be found in the proof of
Theorem 3, which is given in Appendix A.
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B. Bounds on Wasserstein Distance

Our results can also be stated in terms of the Wasserstein
distance on distributions. The p-Wasserstein distance between
distributions P and Q on R

n is defined by

Wp(P,Q) := inf (E [�U − V �p])1/p ,
where the infimum is over all joint distributions on (U, V )
satisfying the marginal constraints U ∼ P and V ∼ Q. For
p ≥ 1, the p-Wasserstein distance is a metric on the space of
distributions with finite p-th moments.

Theorems 2 and 3 imply upper bounds on the Wasserstein
distance between the distribution of the compressed repre-
sentation obtained using a random spherical code and the
distribution of the AWGN-corrupted version of the input.

Theorem 4: Let X be a random vector in R
n with

E [�X�p] <∞ for some p ≥ 1. Let PY be the distribution of
the compressed representation of magnitude ρ obtained from
an (n,M) random spherical code with input X and let PZ be
the distribution of Z = X + σW where W is an independent
standard Gaussian vector.
(i) If (ρ, σ) are defined as in (11), then

Wp(PY , PZ) ≤ (E [|�X� − γ|p])1/p + σCR
√
p, (16)

where CR is a positive number that depends only on R.
(ii) If M ≥ Mn(β) for some β ∈ (0, π/2) and (ρ, σ) are

defined as in (13), then

Wp(PY , PZ) ≤ (E [|�X� − γ|p])1/p + σCβp, (17)

where Cβ is a positive number that depends only on β.
Proof: The p-th power of the Wasserstein distance is

convex in the pair (P,Q) [45, Theorem 4.8], and thus

W p
p (PY , PZ) ≤

∫
W p
p (PY |X=x, PZ|X=x) dPX(x), (18)

where PY |X=x and PZ|X=x denote the conditional distrib-
utions of Y and Z , respectively. In view of (9) and (12),
it follows that

Wp(PY |X=x, PZ|X=x) ≤ |�x� − γ| + σCR
√
p. (19)

Combining these displays with Minkowski’s inequality
leads to (16). Inequality (17) is obtained in a similar manner
from (14). �

A useful property of the Wasserstein distance is that it
controls the expectations of Lipschitz continuous functions.
Recall that a mapping f : R

n → R
m is Lipschitz continuous

if there exists a constant L such that

�f(u) − f(v)� ≤ L�u− v�, for all u, v ∈ R
n. (20)

The infimum over all L is call the Lipschitz constant and
is denoted by �f�Lip. The 1-Wasserstein distance, which is
also known as the Kantorovich-Rubinstein distance, can be
expressed equivalently as

W1(P,Q) = sup {E [f(U)] − E [f(V )] | �f�Lip ≤ 1} ,
(21)

where U ∼ P and V ∼ Q. More generally, the p-Wasserstein
can be used to bound the difference between p-th moments.

Proposition 5: Let U ∼ P and V ∼ Q be random vectors
on R

n. For any Lipschitz function f : R
n → R

m,∣∣∣(E [�f(U)�p])1/p − (E [�f(V )�p])1/p
∣∣∣ ≤ �f�LipWp(P,Q),

(22)

provided that the expectations exist.
Proof: For any coupling of (U, V ), Minkowski’s inequal-

ity and the Lipschitz assumption on f yield

(E [�f(U)�p])1/p≤(E [�f(V )�p])1/p+(E [�f(U)−f(V )�p])1/p

≤(E [�f(V )�p])1/p+�f�Lip(E [�U−V �p])1/p.

Taking the infimum over all possible couplings leads to one
side of the inequality. Interchanging the role of U and V and
repeating the same steps gives the other side. �

C. Concentration of the Norm

The bounds in Theorems 2 and 3 simplify further when the
parameter γ in (10) is matched to the magnitude of the input.
As a specific example, suppose that the data is known to lie
on the sphere of radius

√
n and that M = �2nR�. By setting

γ =
√
n, we see that there exists a coupling of Y and Z

under which the quantization error �Y −Z� is bounded by a
sub-Gaussian random variables that is independent of n.

For many applications, however, the assumption that the
data lay on a sphere of known radius is too restrictive.
Therefore, in this paper, we assume that the data at the input to
the compressor is a random vector X in R

n whose magnitude
�X� concentrates about a known value γ. This assumption is
reasonable for high-dimensional settings where the entries of
X are weakly correlated. More generally, there are a number
of other approaches that can be used to deal with the fact that
�X� is unknown. One approach is to use additional bits to
encode the magnitude of X , as is done in [24]. For example,
if �X� ≤ κ

√
n almost surely where κ is a known constant,

then log2

√
n bits are sufficient to encode �X� with absolute

error less than κ, such that

(E [|�X� − γ|p])1/p ≤ κ.

When n is large, the logarithmic number of bits used to
encode the magnitude of X is negligible compared to the nR
bits used to encode its direction. An alternative approach is to
compare the compressed representation with a noisy version
of X after it has been projected onto the unit sphere in R

n.
This can be achieved, by setting γ = 1 and redefining the
input to be X̃ = X/�X� such that the magnitude is equal to
one almost surely. In both of the approaches described above,
the noise variance σ2 is scaled in such a way that the signal-to-
noise ratio in the AWGN observation model (7) depends only
on (n,R) and is given by (ρ/σ)2. One may also consider a
variable-length coding strategy that adapts the number of bits
to the magnitude of X such that the effective noise power is
constant and the signal-to-noise ratio is proportional to �X�2.
We leave this as a direction for future work.
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III. APPLICATION TO PARAMETER ESTIMATION

In this section, we apply our main results to the problem of
estimating an unknown parameter vector θ from a compressed
representation of the data X . For each integer n, let Pn =
{Pn,θ : θ ∈ Θn} be a family of distributions on R

n with
index set Θn ⊆ R

dn . For the purposes of exposition we will
focus on the squared error loss. Our approach is quite general,
however, and can be extended to other loss functions.

An important performance benchmark in estimating θ from
a bitrate-R compressed representation of X is the minimax
MSE:

M∗
n := inf

φ,ψ
sup
θ∈Θn

1
dn

EPn,θ

[�θ − ψ(φ(X))�2
]
, (23)

where the minimum is over all encoding functions φ : R
n →

{1, . . . ,M} and decoding functions ψ : {1, . . . ,M} → R
d

with M = �2nR�.
Zhu and Lafferty [24] studied the asymptotic minimax MSE

for the Gaussian location model X ∼ N (θ, �2 In) with Θn

the n-dimensional Euclidean ball of radius κ
√
n, and showed

that

lim sup
n→∞

M∗
n =

κ2�2

κ2 + �2
+

κ4

�2 + κ2
2−2R. (24)

Their achievability result is based on random spherical
coding while devoting a number of bits sublinear in n to
encode the magnitude of the X , as discussed in Section II-
C above.

The comparison between quantization error and Gaussian
noise in Theorem 4 provides a straightforward method for
obtaining non-asymptotic upper bounds on the minimax MSE
that can be applied to a large class of models. The basic
idea is to study the MSE of Lipschitz estimators applied to
the AWGN-corrupted data. We use the following assumption,
which says that Pn,θ concentrates on a spherical shell whose
radius does not depend on θ.

Assumption 1 (Concentration of Magnitude): There exists
a sequence of positive numbers {(γn, τn)}n∈N such that

sup
θ∈Θn

EPn,θ

[
|�X� − γn|2

]
≤ τ2

n (25)

Assumption 1 provides a way to formulate many cases of
interest in terms of the radius of the shell γn and its width τn.

The next result uses this assumption to bound the dif-
ference in root MSE between an estimator applied to the
compressed representation Y and the same estimator applied
to the AWGN-corrupted version Z .

Theorem 6: Let {Pn,θ}n∈N be a sequence of models that
satisfies Assumption 1. Given X ∼ Pn,θ , let Y be the output
of an (n, �2nR�) random spherical code with input X and
output scaling ρ and let Z = X+σW where W ∼ N (0, In) is
independent of X and ρ is according to (11). For any Lipschitz
estimator θ̂ : R

n → R
dn , the root MSE satisfies∣∣∣∣∣

√
E

[
�θ̂(Y ) − θ�2

]
−
√

E

[
�θ̂(Z) − θ�2

]∣∣∣∣∣ ≤ C �θ̂�Lip βn

(26)

where C is a constant that depends only on the bitrate R and
βn = τn ∨ (γn/

√
n). Furthermore, for all t > 0, the minimax

MSE satisfies

M∗
n ≤ 1

n
E

[
�θ̂(Y ) − θ�2

]
≤ (1 + t)

1
dn

E

[
�θ̂(Z) − θ�2

]
(27)

+
(

1 +
1
t

)
C2

�θ̂�2
Lipβ

2
n

dn
.

Proof: For each θ ∈ Θn, let Qn,θ and Q′
n,θ denote

the corresponding distributions of Y and Z . Proposition 5
evaluated with f(u) = �θ̂(u) − θ� gives,∣∣∣∣(E

[
�θ̂(Y ) − θ�2

])1/2

−
(
E

[
�θ̂(Z) − θ�2

])1/2
∣∣∣∣

≤ �θ̂�LipW2(Qn,θ, Q′
n,θ),

where we have used the fact that f is the composition of θ̂ with
the 1-Lipschitz function � · −θ�, and thus �f�Lip = �θ̂�Lip.
By Theorem 4 and Assumption 1, the Wasserstein distance is
upper bounded by τn + σ

√
2CR, where σ is given in (11).

It follows that

1
n

E

[
�θ̂(Y )−θ�2

]
≤
(

1
dn

E

[
�θ̂(Z)−θ�2

]
+C′ γ√

n
�θ̂�Lip

)2

,

where C′ only depends on R. The upper bound on the
minimax MSE follows from the inequality (a+ b)2 ≤ a2(1 +
t) + b2(1 + 1/t) for all t > 0. �

One takeaway from Theorem 6 is that the MSE obtained
from the compressed representation is asymptotically equiva-
lent to that of the AWGN-corrupted observation, provided that
the Lipschitz constant of the estimator is small enough. To gain
insight into the interplay between the Lipschitz constant of
the estimator, the magnitude of the data, and the typical size
of the squared error, it is useful to consider some concrete
examples.

A. Gaussian Location Model

For our first example, we consider the Gaussian location
model X ∼ N (θ, �2 In). Assume that the parameter set Θn

is a subset of the spherical shell:

Sn := {θ ∈ R
n : κ

√
n− ωn ≤ �θ� ≤ κ

√
n+ ωn}. (28)

As an intuition for this notation, one may think about
√
nκ

as an estimate for the magnitude of θ and ωn as the uncertainty
in this estimate. For example, if the entries of θ are sampled
independently from a sub-Gaussian distribution with a second
moment κ2, then �θ�−√

nκ is sub-Gaussian [56, Thm 3.1.1].
In this case, there exists a constant C independent of n such
that θ ∈ Sn for ωn = C

√
2 logn with probability at least

1 − 1/n.
The next statement says that under a Gaussian location

model, X concentrates whenever θ is restricted.
Proposition 7: Consider the model X ∼ N (θ, �2 In) with

Θn ⊆ Sn. Assumption 1 is satisfied with γn =
√
n(κ2 + �2)

and τn = ωn + 2�.

Authorized licensed use limited to: Duke University. Downloaded on December 26,2021 at 14:21:41 UTC from IEEE Xplore.  Restrictions apply. 



5568 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 8, AUGUST 2021

Proof: Let μ = E
[�X�2

]
= �θ�2 + n�2. By the triangle

inequality,√
E

[
|�X� − γn|2

]
≤
√

E

[
|�X� − √

μ|2
]

+ |√μ− γn| .
(29)

The assumption Θn ⊆ Sn implies

|√μ− γn| = |
√

�θ�2 + n�2 −
√
n(κ2 + �2)|

=
∣∣�θ� − κ

√
n
∣∣ �θ� +

√
nκ√�θ�2 + n�2 +
√
n(κ2 + �2)

≤ ∣∣�θ� − κ
√
n
∣∣ ≤ ωn.

Consequently, the second term on the right-hand side of (29)
is upper bounded by ωn. For the first term, we write

E

[
|�X� − √

μ|2
]
≤ E

[
|�X� − √

μ|2
(

1 +
�X�√
μ

)2
]

=
Var(�X�2)

μ
=

2�2(2�θ�2 + n�2)
�θ�2 + n�2

≤ 4�2,

where we have used the fact that �X�2/�2 has a non-central
chi-squared distribution with n degrees of freedom and non-
centrality parameter �θ�2/�2 �

In this setting, the AWGN-corrupted data Z , corresponding
to a bitrate R and magnitude γn, is drawn according to the
Gaussian location model whose noise variance depends on the
original noise level �2 and the bitrate R:

Z ∼ N (θ, (�2 + σ2)In), σ2 =
κ2 + �2

22R − 1
. (30)

The MSE in the Gaussian location model has been studied
extensively. If we restrict our attention to linear estimators of
the form θ̂(z) = λz then a standard calculation (see e.g., [26,
Ch. 4.8]) gives

inf
λ≥0

sup
θ : ‖θ‖≤κ√n

1
n

E
[�θ − λZ�2

]
=

κ2(�2 + σ2)
κ2 + �2 + σ2

, (31)

where the minimum over λ is attained at λ∗ = k2/(κ2 + �2 +
σ2). By expressing the right-hand side as a function of R and
combining with Theorem 6, we obtain a non-asymptotic upper
bound on the minimax MSE.

Proposition 8: Consider the model X ∼ N (θ, �2 In)
with Θn ⊆ Sn. Let Y be the output of a bitrate-R ran-
dom spherical code applied to X and scaled to the radius√
n(κ2 + �2)/(1 − 2−2R). Then

1
n

E

[
�θ − λ∗Y �2

]
≤ κ2�2

κ2 + �2
+

κ4

�2 + κ2
2−2R + C

1 ∨ ωn√
n

,

(32)

where C is a constant that depends on (κ, �, R) but not n.
Proof: We have γn/

√
n =

√
κ2 + �2, and �θ̂�Lip ≤ 1

for the linear estimator θ̂(z) = λ∗z. Following Proposition 7,
Assumption 1 is satisfied with τn = ωn + 2�. We use Theo-
rem 6 with t = (1∨ωn)/√n and βn = (ωn+2�)∨√

κ2 + �2.

It follows that there exists a constant c such that

1
n

E

[
�θ−λ∗Y �2

]
≤
(
1+

1 ∨ ωn√
n

)(
κ2�2

κ2+�2
+

κ4

�2+κ2
2−2R

)

+
(
1+

√
n

1 ∨ ωn

)
c2

(κ2+�2) ∨ (ωn+2�)2

n
.

Grouping 1/
√
n factors leads to (32). �

Since

M∗
n ≤ 1

n
E

[
�θ − λ∗Y �2

]
,

Proposition 8 recovers parts of the results in [24] by showing
that there exists a bitrate-R coding scheme with minimax risk
approaching (24). Furthermore, Proposition 8 shows that the
minimax risk under such scheme converges at rate 1/

√
n,

which is faster than the convergence rate established in [24]
by a factor of 1/

√
logn.

More generally, we can also provide bounds for non-linear
estimators. The case of a k-sparse parameter vector can be
modeled as

Θn = Sn ∩ {θ ∈ R
n : �θ�0 ≤ k}

where �θ�0 denotes the number of nonzero entries in θ.
A great deal of work has studied the MSE of the soft-
thresholding estimator

θ̂λ(z) :=

⎧⎪⎨
⎪⎩
z − λ, z > λ,

0, |z| ≤ λ,

z + λ, z < λ.

(33)

in the model (30) [25], [26]. Specifically, we have

inf
λ≥0

sup
θ : ‖θ‖0≤k

1
n

E

[
�θ − θ̂λ(Z)�2

]
≤ (�2 + σ2)β0

(
k

n

)
,

(34)

where, for ν > 0,

β0(ν)=inf
λ≥0

{
(1−ν)[2(1+λ2)Φ(−λ)−2λφ(λ)]+ν(1+λ2)

}
(35)

where Φ(z) and φ(z) are the cumulative and density functions
of the standard Gaussian distribution, respectively. Let λ∗ be
the minimizer in (34).

Proposition 9: Let X ∼ (θ, �2 In) where θ ∈ Sn ∩ {θ ∈
R
n : �θ�0 ≤ k}. Let Y be the output of a bitrate-R

random spherical code applied to X and scaled to the radius√
n(κ2 + �2)/(1 − 2−2R). Then

1
n

E

[∥∥∥θ−θ̂λ∗(Y )
∥∥∥2
]
≤
(
�2+

κ2+�2

22R − 1

)
β0

(
k

n

)
+C

1 ∨ ωn√
n

,

(36)

where C is a constant that depends on (κ, �, R) but neither
k or n.

Proof: For any λ > 0 we have �θ̂λ�Lip = 1. Equation (36)
follows from Theorem 6 by using t = (1 ∨ ωn)/

√
n and

grouping 1/
√
n factors. �
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Corollary 10: Assume that X ∼ (θ, �2 In). The bitrate-R
constrained minimax risk over θ ∈ Sn∩{θ ∈ R

n : �θ�0 ≤ k},
with ωn/

√
n→ 0, satisfies

M∗
n ≤

(
�2 +

κ2 + �2

22R − 1

)
β0

(
k

n

)
.

B. Linear Model With IID Matrix

For the next example, we consider the linear model

X ∼ N (Aθ, �2In), (37)

where A is a known n × d matrix, θ is an unknown d-
dimensional vector, and �2 a known noise variance. In this
setting, the AWGN-corrupted version of X given by Z =
X+�W with W ∼ N (0, σ2 In) corresponds to a linear model
with larger noise variance, that is

Z ∼ N (Aθ, ξ2In), ξ2 = �2 + σ2. (38)

We study the approximate message passing (AMP) algo-
rithm [28] to estimate θ from Z . AMP is an iterative algo-
rithm that can be defined by a sequence of scalar denoising
functions {ηt}t≥1 with ηt : R → R that are assumed
to be Lipschitz continuous, and hence differentiable almost
everywhere. Starting with an initial points θ̂0 = 0d×1 and
r0 = 0n×1, a sequence of estimates θ̂t is generated according
to

θ̂t+1 = ηt

(
A�rt + θ̂t

)
, (39)

rt = Z −Aθ̂t +
d

n
rt−1 div

(
ηt(A�rt−1 + θ̂t−1)

)
(40)

where ηt(·) is applied comopontwise and div(ηt(z)) =
1
n

∑n
i=1 η

′
t(zi) with η′t(z) = d

dzηt(z).
The main result of [28], [57] says that the MSE of

each iteration of AMP can be characterized precisely in
the high-dimensional limit when A is a realization of a
random matrix with i.i.d. zero-mean Gaussian entries. To
formally state and use this result, we need to the following
assumptions:

Assumption 2: {θ(n)}n∈N is a sequence of dn-dimensional
vectors such that n/dn → δ ∈ (0,∞) as n goes to infinity. The
empirical distributions of θ(1), θ(2), . . . , i.e., the probability
distribution that puts a point mass 1/dn at each of the dn
entries of θ(n), converges weakly to a distribution π on R with
finite second moment κ2. Furthermore, �θ(n)�2/n converges
to κ2 as n→ ∞.

Assumption 3: {Pθ(n),n}n∈N is a sequence of models
defined by X ∼ (Aθ(n), �2 In), where the entries of A are
i.i.d. N (0, 1/n).

For a fixed n, we further consider a sequence of estimators
for θ(n) defined as follows:

Assumption 4: {ηt}t∈N is a sequence of scalar, Lipschitz
continuous, and differentiable denoisers ηt : R → R. For
every n, dn ∈ N, the approximate message-passing (AMP)
estimator θtAMP(z) is defined as the results of t iterations
of (39) and (40).

The characterization of the MSE of the estimator θtAMP

in the high-dimensional limit is given by the state evolution

recursion. This recursion is defined in terms of a distribution
π on R, sampling ratio δ ∈ (0,∞), and initial noise level τ0,
as

τ2
t+1 = ξ2 +

1
δ

E

[
(ηt (θ0 + τtW ) − θ0)

2
]
, t = 1, 2, . . . ,

(41)

where θ0 ∼ π and W ∼ N (0, 1). Finally, define

Mt
AMP(ξ2) := E

[
(ηt (θ0 + τtW ) − θ0)

2
]
,

where τt is given by t iterations of (41). Under assumptions
2-4 above, [57, Thm. 1] implies that

lim
n→∞

1
dn

∥∥θ(n) − θtAMP(Z)
∥∥2 = Mt

AMP(ξ2). (42)

Combining this result with Theorem 6, we conclude the
following:

Theorem 11: Consider a sequence of problems satisfying
Assumptions 2 and 3. Let Y be the output of an (n, �2nR�)
random spherical code applied to X with radius ρ for some
R > 0. Let θtAMP be an estimator satisfying Assumption 4.
Then

lim
n→∞

1
dn

E

[∥∥θ(n) − θTAMP(Y )
∥∥2 | A

]
= Mt

AMP(ξ2R), (43)

almost surely, where

ξ2R = �2 +
�2 + κ2/δ

22R − 1
.

Proof: Set γ2
n = n(�2+κ2/δ) and σ2 = γn/(n(22R−1)).

We first show that X and γn satisfy Assumption 1. Since A has
i.i.d. entries N (0, 1/n), then X ∼ N (

0, ( 1
n�θ(n)�2 + �2)In

)
.

Using similar arguments as in Proposition 7, we get(
E
[|�X� − γn|2

])1/2
≤
(

E

[∣∣∣�X� −
√
�Aθ(n)�2 + n�2

∣∣∣2])1/2

+ ωn.

Assumption 2 implies that θ = θ(n) ∈ Sdn with ωn =
o(
√
dn). We conclude that

E

[∣∣∣�X� −
√
�Aθ(n)�2 + n�2

∣∣∣2]

≤ E

[(�X�2 − �Aθ(n)�2 + n�2
)2

�Aθ�2 + n�2

]

≤ Var(�X�2)
n�2

=
2n( 1

n�θ(n)�2 + �2)2

n�2

≤ 2( (ωn+
√
dnκ)2

n + �2)2

�2
= O(1),

and thus Assumption 1 is satisfied for some τn = o(
√
n). Let

Ln,t := �θtAMP�Lip. In Appendix E we show that supn Ln,t <
∞ almost surely.

Applied to our setting, (42) says that∣∣∣∣∣
(

1
dn

∥∥θ(n) − θtAMP(Z)
∥∥2
)1/2

−
√
Mt

AMP(ξ2R)

∣∣∣∣∣ = o(1).
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Using the triangle inequality once with the last display,
Theorem 6 implies that there exists C, that depends only on
R and κ2/δ + �2, such that∣∣∣∣∣

(
1
dn

E
[�θ(n) − θtAMP(Y )�2

])1/2

−
√
Mt

AMP(ξ2R)

∣∣∣∣∣
≤ C �θtAMP�Lipβn√

dn
,

with βn = o(
√
dn). �

IV. APPLICATION TO INDIRECT SOURCE CODING

For the second application, we consider an indirect source
coding setting where the observed data is a degraded version
of the realization of an information source. The goal is to
compress this version at bitrate R and recover the source
realization. Traditionally, both the encoder and decoder are
designed with full knowledge of the joint distribution of the
source and the data [19]. In this section, we study an encoding-
decoding scheme where the encoder uses a random spherical
code and the decoder is described by a Lipschitz estimator,
which may be designed with partial or full knowledge of the
distribution of the source and the data. Leveraging the results
in Section II, we show that the asymptotic performance can
be described in terms of an AWGN model.

Throughout this section, the source and the data are modeled
as a stochastic process {(Un, Xn)}n∈N. The first n terms
in this sequence are denoted by Un = (U1, . . . , Un) and
Xn = (X1, . . . , Xn). We focus on the squared error loss (or
distortion function)

d(un, ûn) =
1
n

n∑
i=1

(ui − ûi)2, (44)

and assume the following regularity condition:
Assumption 5: The process {(Un, Xn)}n∈N is stationary

and second-order ergodic with finite second moments. In par-
ticular, this means that the empirical second moments converge
in mean:

1
n

n∑
i=1

(
Ui
Xi

)(
Ui
Xi

)T
→ E

[(
U1

X1

)(
U1

X1

)T]
. (45)

A. The Indirect Distortion-Rate Function

We begin by reviewing some basic properties of the indi-
rect distortion-rate function, which describes the fundamental
tradeoff between the bitrate R and the expected distortion
in our source coding setting. For each problem of size n,
the indirect distortion-rate function is given by

Dn(R) := min
φ,ψ

E [d (Un, ψ(φ(Xn)))] , (46)

where the minimum is over all encoding functions φ : R
n →

{1, . . . ,M} and decoding functions ψ : {1, . . . ,M} → R
n

with M = �2nR�. The standard source coding setting corre-
sponds to the special case where the source equals the data.

When the source and data are stationary, as we assume in this
paper, nDn(R) is sub-additive in n, and the limit

D(R) := lim
n→∞Dn(R) (47)

is well-defined [58, Lem. 10.6.2].
For some classes of processes, D(R) can be expressed

equivalently in terms of an optimization problem over a family
of probability distributions subject to a mutual information
constraint [18], [19]. Specifically, we have

D(R) = lim
n→∞ min

I(Xn;Ûn)≤nR
E

[
d
(
Un, Ûn

)]
, (48)

where the minimum is over all joint distributions on
(Un, Xn, Ûn) such that (Un, Xn) satisfy their marginal con-
straints, Un → Xn → Ûn forms a Markov chain, and
I(Xn; Ûn) ≤ nR. For example, a representation of the
form (48) exists for memoryless processes [19], [59] and in
cases where the direct (standard) distortion-rate function of
the sequence of random vectors Ũn = E [Xn | Un] has a
representation of the form (48) by setting Xn = Un = Ũn

[60, Ch. 3.2].
There are a few cases where the distortion-rate function has

simple closed-form expressions. For example if {(Un, Xn)}
are i.i.d. from bivariate Gaussian distribution with zero mean,
then the distortion-rate function is given by D(R) = DG(R)
where

DG(R) := E
[|U1|2

]− E [U1X1]
2

E [|X1|2]
(
1 − 2−2R

)
. (49)

This characterization was obtained in [18] and also [20].
Note that the limiting case R → ∞ corresponds to the
minimum MSE in estimating Un from Xn. Moreover, for the
direct source coding problem where Un is equal to Xn, this
expression reduces to the standard distortion-rate function for
an i.i.d. Gaussian source, E

[|X1|2
]
2−2R.

B. Achievability Using Spherical Coding

We now consider the distortion that can be achieved when
Xn is compressed using a random spherical code. For each
problem of size n, let Y n be the output of a bitrate-R
random spherical code with input Xn and squared magnitude
nE
[
X2

1

]
/(1− 2−2R). The distortion-rate function associated

with random spherical coding and estimator f : R
n → R

n is
defined as

Dsp
n (R, f) := E [d (Un, f(Y n))] , (50)

where the expectation is with respect to the joint distribution
of (Un, Y n). Under the squared error distortion, the minimum
with respect to f is achieved by the conditional expectation
f(y) = E [Un | Y n = y]. We note that this formulation of
the distortion-rate function does not necessarily describe the
optimal performance that is possible using a random spherical
code, because the estimation stage is based only on the
compressed representation Y n and does not use any other
information about the realization of the codebook.
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Following the central theme of this paper, our results are
described in terms of an AWGN counterpart to the distortion-
rate function. Given noise variance σ2, define the sequence
{Zn}n∈N by

Zn = Xn + σWn, (51)

where Wn is an independent standard Gaussian noise. The
MSE associated with an estimator f : R

n → R
n is defined by

Mn(σ2, f) := E [d (Un, f(Zn))] , (52)

The minimum over f is attained by the conditional expec-
tation f(z) = E [Un | Zn = z] and is denoted by Mn(σ2) :=
minf Mn(σ2, f). Stationarity of the sequence {(Un, Zn)}
implies that nMn(σ2) is sub-additive in n, and thus the
following limit is well-defined

M(σ2) := lim
n→∞Mn(σ2). (53)

We refer to M(σ2) as the minimum MSE function asso-
ciated with the AWGN model. The next result establishes
the formal equivalence between the distortion-rate function
associated with random spherical coding and M(σ2). The
proof is based on the Gaussian approximation of quantization
error in Theorem 4 as well as some further properties of the
AWGN model.

Theorem 12: Suppose that {(Un, Xn)} is a random process
satisfying Assumption 5. Let {fn}n∈N be a sequence of
estimators fn : R

n → R
n satisfying �fn�Lip ≤ L and

�fn(0)� ≤ √
nC for all n where L,C are positive constants.

Then, for each R > 0,

lim
n→∞

∣∣Dsp
n (R, fn) −Mn(σ2

R, fn)
∣∣ = 0, (54)

where σ2
R = E

[|X1|2
]
/(22R − 1). Furthermore, there exists

a sequence of estimators {fn}n∈N such that

lim
n→∞

1
n
Dsp(R, fn) = lim

n→∞
1
n
M(σ2

R, fn) = M(σ2
R). (55)

Proof: Set γ =
√
n
√

E [|X1|2], M = �2nR�, and (ρ, σ)
as in (11). Note that σ2 = σ2

R. Following the same steps as
in the proof of Proposition 5, we have∣∣∣∣
√
Dsp
n (R, fn) −

√
Mn(σ2

R, fn)
∣∣∣∣ ≤ L ·W2(PY n , PZn)√

n
.

(56)

By Theorem 4, the normalized Wasserstein distance can be
upper bound as

W2(PY n , PZn)√
n

≤
(

E

[∣∣∣∣ 1√
n
�Xn� −

√
E [|X1|2]

∣∣∣∣
2
])1/2

+
√

2CR√
22R − 1

√
E [|X1|2]√

n
,

where CR is a constant that depends only on R. The sec-
ond term in this bound converges to zero at a rate 1/

√
n.

Combining the inequality |√a − √
b| ≤ √|a− b| with the

assumption that {Xn} is second order ergodic, one finds

that the first term also converges to zero. Putting everything
together, we conclude that

lim
n→∞

∣∣∣∣
√
Dsp
n (R, fn) −

√
Mn(σ2

R, fn)
∣∣∣∣ = 0. (57)

To prove that this comparison holds without the square
roots, it is sufficient to show that Dsp

n (R, fn) and Mn(R, fn)
are bounded uniformly with respect to n. To this end, we can
use the triangle inequality and the assumptions on fn to
write:

�Un − fn(Y n)� ≤ �Un − fn(0)� + �fn(0)� + �f(Y n)�
≤ �Un� +

√
nC + L�Y n�.

Combining this bound with the assumptions on Un and
Y n establishes that Dsp

n (R, fn) is bounded uniformly, and the
same approach also works for Mn(σ2

R, fn).
To prove the second part, we will show that for each

� > 0, there exists a sequence of estimators fn satisfying
supn �fn�Lip <∞ and lim supn→∞ M(σ2, fn) ≤ M(σ2) +
�. The existence of the limit in the definition of M(σ2) means
that for each � > 0, there exists an integer N such that
|Mn(σ2) − M(σ2)| ≤ � for all n ≥ N . By Lemma 21 in
the Appendix, there exists a Lipschitz continuous function
g : R

N → R
N such that |Mn(σ2) − Mn(σ2, g)| ≤ �. For

n ≥ N , let fn : R
n → R

n be defined by applying g to the
first �n/N� successive length-N blocks of Zn and setting any
remaining entries to zero. Then, we have �fn�Lip = �g�Lip

and

Mn(σ2, fn)

=
1
n
�n/N�Mn(σ2, g) +

1
n

(n− �n/N�)E
[|U1|2

]
.

Putting everything together, we have |Mn(σ2, fn) −
M(σ2)| ≤ 3� for all n large enough. As � can be chosen
arbitrarily small, the proof is complete. �

The significance Theorem 12 is that it provides a
link between the problem of estimation from compressed
data, which is often difficult to study directly, and the
better-understood problem of estimation in Gaussian noise.
We emphasize that the assumptions on the source and data
are quite general, particularly in comparison to many of the
existing results in the literature.

Compared to optimal encoding schemes that attain the indi-
rect distortion-rate functionD(R), a useful property of random
spherical coding is that it can be implemented without any
knowledge of the underlying source distribution. Therefore,
the coding scheme described in this paper can be employed
in typical data acquisition situations where the distribution of
the data and the source of interest is learned after the data are
collected and quantized.

C. Universality of Linear Estimation

We now consider the performance of linear estimators.
Given a bitrate R > 0, define the scalar

αR =
(
1 − 2−2R

) E [U1X1]
E [|X1|2] . (58)
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A standard calculation reveals that under the AWGN model,
the MSE of the linear estimator f(y) = αRy is independent
of the problem dimension and is given by

Mn(σ2
R, f) =

1
n

E
[�Un − αRZ

n�2
]

= DG(R), (59)

where we recall that DG(R) of (49) is the distortion-rate
function associated with a zero-mean Gaussian source. In view
of Theorem 12, this correspondence between the Gaussian
distortion-rate function and the MSE of linear estimators in
the AWGN model implies an achievable result for random
spherical codinig.

Proposition 13: Let {(Un, Xn)} be a process satisfying
Assumption 5. For each integer n, let Y n be the output of
a bitrate-R random spherical code with input Xn and squared
magnitude nE

[|X1|2
]
/(22R − 1). Then,

lim
n→∞

1
n

E
[�Un − αRY

n�2
]

= DG(R), (60)

where αR is given by (58).
Applied to the special case of direct source coding Xn =

Un, Proposition 13 recovers the results in [33] and [35],
which showed that squared error distortion of a (properly
scaled) random spherical code depends only on the second-
order statistics of the source and is equal to the Gaussian
distortion-rate function. The contribution of Proposition 13 is
to show that this result carries over naturally to the indirect
source coding setting. Moreover, if {(Un, Xn)} are i.i.d. zero-
mean Gaussian, then we have the equivalence:

D(R) = M(σ2
R) = DG(R). (61)

We note that, in general, codebooks approaching the optimal
trade-off between bitrate and MSE described by D(R) depend
on the joint distribution of {(Un, Xn)}. This is because
such codebooks essentially encode the sequence obtained by
estimating Un from Xn [21], [41], i.e., estimation precedes
encoding in this case. When Un and Xn are i.i.d. and jointly
Gaussian, this estimation is obtained by multiplying Xn by
αR, and there is essentially no difference if this multiplication
is performed pre- or post-encoding. To summarize, for i.i.d.
Gaussian and zero mean {(Un, Xn)}, the equality D(R) =
M(σ2

R) is due to two factors: (1) The optimal estimator is a
scalar multiple of the data, and (2) random spherical coding
is optimal for encoding Gaussian sources.

D. Non-Linear Estimation

Next, we consider the performance of non-linear estimators
when the source and the data are non-Gaussian. Suppose that
the source and the data are memoryless, that is the pairs
(Un, Xn) are i.i.d. from a distribution PU,X with finite second
moments. Under this assumption, the indirect distortion-rate
function D(R) can be expressed as [18], [19]

D(R) = min
I(X;Û)≤R

E

[
(U − Û)2

]
, (62)

where the minimum is over all distributions on (X, Û) such
that X ∼ PX , and I(X ; Û) ≤ R. Noting that

min
I(X;Û)≤R

E

[
(U − Û)2

]
= min
I(X;X̂)≤R

E

[
d(X, X̂)

]
,

where d(x, x̂) := E

[
(U − Û)2 | X = x, Û = x̂

]
, D(R) can

be approximated numerically using [61].
In the setting of the AWGN model, the memoryless assump-

tion means that the problem of estimating Un from Zn

decouples into n independent estimation problems, and the
minimum MSE function is given by

M(σ2) = E
[
(U − E [U | Z])2

]
, Z = X + σW, (63)

where (U,X) ∼ PU,X and W ∼ N (0, 1) are independent.
This expression can be approximated numerically using stan-
dard techniques.

An interesting special case of the indirect source coding
problem occurs when the data is an AWGN corrupted version
of the source, that is

X = U + �W ′, (64)

with U ∼ PU independent of W ′ ∼ N (0, 1). In this case,
the Gaussian noise in the data can be combined with the
independent Gaussian noise in the AWGN model such that

Z = U +
√
�2 + σ2W ′′, (65)

where U ∼ PU independent of W ′′ ∼ N (0, 1). In Fig-
ure 5, we provide a comparison of the indirect distortion-
rate function D(R) and the upper bound on the distortion
obtained using random spherical coding M(σ2

R) in the setting
where U is uniform on {−1, 1} and X is drawn according
to (64). For comparison, we also plot the upper bound DG(R)
corresponding to linear estimation, as well as the asymptotes
of all MSE functions as the noise variance � vanishes.

V. PROOF OF MAIN RESULT

The proof of Theorem 1 requires several lemmas.
Lemma 14: Suppose that V is distributed uniformly on

the unit sphere in R
n with n ≥ 2. For any x ∈ R

n\{0},
the distribution on V can be decomposed as

V = G
x

�x� +
√

1 −G2H (66)

where G = 	x, V 
/�x� is a random variable supported on
[−1, 1] with complementary cumulative distribution function
P [G ≥ g] = Qn(g) of (6), and H is an independent random
vector distributed uniformly on the set {h ∈ R

n : �h� =
1 and 	x, h
 = 0}.

Proof: By the orthogonal invariance of the distribution
on V , we may assume without loss of generality that x is
a unit vector of the form x = (1, 0, . . . 0). Then, G = V1

and H = (0, V2, . . . , Vn)/
√∑n

i=2 V
2
i . The joint distribution

of (G,H) follows from the joint distribution on the entries of
a random spherical vector [55, Eq. (3)]. �

Lemma 15: For n ≥ 2, let Y be the output of an (n,M)-
random spherical code with input x ∈ R

n\{0} and magnitude
ρ. The distribution of Y can be decomposed as

Y = ρ

(
x

�x� cos(α∗) +
√

1 − S2H

)
(67)

where cos(α∗) has the cumulative distribution function (5),
and H is an independent random vector distributed uniformly
on the set {h ∈ R

n : �h� = 1, and 	x, h
 = 0}.
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Fig. 5. Mean square error (MSE) in estimating an i.i.d. signal equiprobable on {−1, 1} from a bitrate-R encoding of its AWGN-corrupted version. Left
Panel: MSE versus noise variance �2 with a fixed encoding bitrate R = 1. Right Panel: MSE versus bitrate R with noise variance �2 = 1/3. M(σ2

R) is
achievable using a random spherical code followed by a scalar Bayes estimator. DG(R) is achievable using random spherical coding followed by a scalar
linear estimator. D(R) is the indirect distortion-rate function corresponding to the optimal encoding scheme. The dashed lines indicate the asymptotic MSE
as � → 0. Also shown is M(U1|X1), which is the minimal MSE in estimating the signal from its corrupted version corresponding to the limit R → ∞.

Proof: For each code word C(i) we apply the decompo-
sition in Lemma 14 to obtain

C(i) = G(i) +
√

1 −G(i)2H(i),

where G(i) = 	x,C(i)
/�x��C(i)� is the cosine similarity
of the i-th codeword. Recall that the index i∗ corresponds to
the code word that maximizes the cosine similarity cos(α∗) =
G(i∗) := max {G(1), . . . G(M)}. Therefore, the distribution
of S follows from the fact that G(1), . . . G(M) are i.i.d.
with complementary cumulative distribution function given
by (6). Furthermore, because i∗ depends only on the terms
G(1), . . . G(M), it follows from Lemma 14 that H := H(i∗)
is independent of α∗ and uniform on the subset of the unit
sphere that is orthogonal to x. Noting that Y = ρC(i∗)
completes the proof. �

Lemma 16: Suppose that W is a standard Gaussian vector
on R

n with n ≥ 2. For any x ∈ R
n\{0} the random vector

Z = x+ σW can be decomposed as

Z = x+ σA
x

�x� + σBH (68)

where (A,B,H) are independent,A ∼ N (0, 1) has a standard
Gaussian distribution, B ∼ χn−1 has a chi distribution with
n− 1 degrees of freedom, and H is distributed uniformly on
the set {h ∈ R

n : �h� = 1, and 	x, h
 = 0}.
Proof: By the orthogonal invariance of the Gaussian

distribution on W , we may assume without loss of generality
that x is a unit vector of the form x = (1, 0, . . . , 0). Letting
A = W1, B =

√∑n
i=2W

2
i , and H = (0,W2, . . . ,Wn)/B

yields W = Ax/�x�+ BH . By construction, A is a standard
Gaussian variable that is independent of W2, . . . ,Wn. The dis-
tribution of (B,H) follows from the fact that B(H2, . . . , Hn)
is the polar decomposition of the (n−1)-dimensional standard
Gaussian vector (W2, . . .Wn). �

Using the characterizations of Y and Z given in
Lemma 15 and Lemma 16, respectively, we see that for every

x ∈ R
n\{0}, there exists a coupling on (Y, Z) such that

Y = x+ (ρ cos(α∗) − �x�) x

�x� + ρ sin(α∗)H,

Z = x+ σA
x

�x� + σBH,

where (A,B,H, α∗) are independent. By the orthogonality of
x and H , the magnitude of the difference between Y and Z
depends only on the tuple (A,B, α∗) and is given by (8).

VI. CONCLUSION

We considered the problem of estimating an underlying sig-
nal or parameter from the lossy compressed version of another
high dimensional signal. For compression codes defined by
a random spherical code of bitrate R, we showed that the
distribution of the output codeword is close in Wasserstein
distance to the conditional distribution of the output of an
AWGN channel with SNR 22R−1. This equivalence between
the noise associated with lossy compression and an AWGN
channel allows us to adapt existing techniques for inference
from AWGN-corrupted measurements to estimate the under-
lying signal from the compressed measurements, as well as to
characterize their asymptotic performance.

We demonstrated the usefulness of this equivalence by
deriving novel expressions for the achievable risk in vari-
ous source coding and parameter estimation settings. These
include bitrate-constrained sparse parameter estimation using
soft thresholding, bitrate-constrained parameter estimation in
high-dimensional linear models, and indirect source coding
with linear and non-linear decoders. In each of these settings,
our results yielded achievable MSE and provided the equiv-
alent noise level required to tune the estimator to attain this
MSE.

We believe that the characterization of lossy compression
error developed in this paper can be useful in numerous impor-
tant cases aside from the ones we explored. Examples of such
cases include hypothesis testing based on compressed data,
signal estimation in distributed lossy compression settings, and
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the study of convergence rates and accuracies of first-order
optimization procedures employing gradient compression.

APPENDIX A
PROOFS OF THEOREM 2 AND 3

The proof of Theorems 2 and 3 require a characterization
of the moments of the random variable

Δ :=
1
σ

√
(ρ cos(α∗) − γ − σA)2 + (ρ sin(α∗) − σB)2

(69)

where (ρ, σ, γ) are deterministic parameters and (α∗, A,B)
are independent random variables whose distributions are
described in Theorem 1.

Given α ∈ (0, π/2) let

ρ = γ secα, σ =
γ tanα√

n
. (70)

Evaluating Δ with these values and then using the triangle
inequality as well as basic trigonometric identities leads to

Δ ≤ Δ1 + Δ2, (71)

where

Δ1 := 2
√
n csc(α)

∣∣∣∣sin
(
α∗ − α

2

)∣∣∣∣ , (72)

Δ2 :=
√
A2 + (B −√

n)2. (73)

The term Δ2 is sub-Gaussian with mean and variance
parameter independent of n. An estimate for its sub-Gaussian
constant is provided in Lemma 20. For the term, Δ1, we use
the following result, which is proved in Appendix B.

Lemma 17: Suppose that M = Mα(n) :=
√
n(cscα)n−1

for α ∈ (0, π/2). Then, for p ≥ 1,

E

[∣∣∣∣sin
(
α∗ − α

2

)∣∣∣∣
p]1/p

(74)

≤ C
tan(α)[log(n ∧ sec(α)) + p]

n
+ 2−M/p (75)

where C is a numerical constant.
Proof of Theorem 2: In view of (71) and the fact that Δ2

is sub-Gaussian with a constant that does not depend on n all
that remains is to establish the desired upper bound on the
moments of Δ1. Note that if p ≥ n then this term is bounded
almost surely according to

Δ1 ≤ 2 csc(α)
√
n ≤ 2 csc(α)

√
p,

where 2 csc(α) depends only on R. The remainder of the proof
focuses on the case 1 ≤ p ≤ n.

Recall that the specification in (11) corresponds to the
choice α = arcsin(2−R). Define

NR = min
{
n ∈ N : 2R+1 ≤ √

n ≤ 2
n+1
2 R

}
(76)

For n ≥ NR it can be verified that there exists a unique
value αn ∈ [α, π/2) such that M =

√
n csc(αn)(n−1) and

sin(αn) ≤
√

sin(α). Noting the sin function is Lipschitz and
non-decreasing on [0, π/2] we can write∣∣∣∣sin

(
α∗ − α

2

)∣∣∣∣ ≤
∣∣∣∣sin

(
α∗ − αn

2

)∣∣∣∣+ sin
(
αn − α

2

)
.

(77)

The second term in (77) is deterministic and satisfies

sin
(
αn − α

2

)
= cos

(
αn − α

2

)
sin(αn) − sin(α)
cos(αn) + cos(α)

(78)

≤ tan(αn)
2

(
1 − sin(α)

sin(αn)

)
(79)

≤ tan(αn)
2

log
(

sin(αn)
sin(α)

)
(80)

=
tan(αn)

2

[ 1
2 logn− logM

n− 1
+R log(2)

]
(81)

≤ tan(αn) logn
2n

. (82)

To bound the moments of the first term in (77) we can use
Lemma 17. Finally, recalling that sin(αn) ≤

√
sinα, it follows

that

tan(αn) =
1√

sin(αn)−2 − 1
(83)

≤ 1√
sin(α)−1 − 1

. (84)

In view of (74) and n > p, it follows that

E [Δp
1]

1/p ≤ CR

(
[log(n) + p]√

n
+
√
n2−M/p

)
(85)

≤ CR

(
1 +

√
p+

√
n2−M/p

)
. (86)

Finally, for the term
√
n2−M/p, recalling that Mn = �2nR�,

we see that for p ≤ √
n,

√
n2−M/p ≤ √

n2−2nR/p ≤ √
n2−2nR/n ≤ C′′

R (87)

for some positive constant C′′
R. This completes the proof of

Theorem 2. �
Proof of Theorem 3: The specification given (13) corre-

sponds to the choice

α = arcsin
(
M1/(n−1)

)
(88)

Under the assumption M ≥Mβ(n), there exists α̃ ∈ (α, β]
such that M =

√
n(csc(α̃))n−1. Using the same approach as

in the proof Theorem 2 leads to∣∣∣∣sin
(
α∗ − α

2

)∣∣∣∣ ≤
∣∣∣∣sin

(
α∗ − α̃

2

)∣∣∣∣+ tan(αn) logn
2n

. (89)

By Lemma 17 it follows that

E [Δp
1]

1/p ≤ C′ sec(α̃)[log(n) + p]√
n

+ 2
√
n csc(α̃)2−M/p

(90)

where C′ is a numerical constant. Since the secant function is
non-decreasing on [0, π/2] we have sec(αn) ≤ sec(β), and so
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the first term is bounded from above by C′
βp for some number

C′
β . The second term satisfies

√
n csc(α̃)2−M/p =

√
n csc(α̃) exp

{√
n

p
(csc α̃)n−1 log 2

}

≤ √
n csc(α̃) exp

{
−
√
n

p
csc(α̃) log 2

}

≤ p

e log 2
.

�

APPENDIX B
PROOF OF LEMMA 17

Let integers n,M and α ∈ (0, π/2) be such that M =√
n(cscα)n−1. Recall that the goal is to bound the absolute

moments of the random variable sin((α∗−α)/2) where α∗ is
drawn according to (5). We consider two cases. First, on the
event α∗ > π/2, we can use the trivial upper bound of one.
Note that Qn(0) = 1/2 and so the probability of this event
is 2−M . Alternatively, on the event α∗ ≤ π/2, we use basic
trigonometric identities to write

sin
(
α∗ − α

2

)
= cos

(
α∗ − α

2

)
(sin(α∗) − sin(α))
(cos(α∗) + cos(α))

. (91)

Noting that cos(α∗) ≥ 0 leads to the upper bound
| sin((α∗ − α)/2)| ≤ tan(α) ξ where

ξ :=
∣∣∣∣ sin(α∗)

sin(α)
− 1
∣∣∣∣ . (92)

Combining these two cases yields

E

[∣∣∣∣sin
(
α∗ − α

2

)∣∣∣∣
p]1/p

≤ tan(α)E [ξp]1/p + 2−M/p.

(93)

The remaining step in the proof is to provide an upper bound
moments of ξ. We need the following bounds on the function
Qn(s) defined in (6).

Lemma 18: For integer n ≥ 2 and s ∈ [0, 1],

(1 − s2)(n−1)/2

√
2πμn

≤ Qn(s) ≤ (1 − s2)(n−1)/2

√
2πμn max(s, n−1)

, (94)

where

μn :=

√
2Γ(n+1

2 )
Γ(n2 )

(95)

is the mean of the chi distribution with n degrees of freedom.
Proof: Making the change of variables u = (1 − t2) and

using the relation μn−1μn = n− 1 leads to

Qn(s) =
1√

2πμn

∫ 1−s2

0

(n− 1)u(n−3)/2

2
√

1 − u
du.

Noting that the denominator in the integral satisfies
s ≤ √

1 − u ≤ 1 and then integrating gives the double
inequality:

(1 − s2)(n−1)/2

√
2πμn

≤ Qn(s) ≤ (1 − s2)(n−1)/2

√
2πμns

. (96)

To prove an upper bound with s replaced by n−1 in the
denominator, observe that for n ≥ 3,

Qn(s) =
(n− 1)√

2πμn

∫ 1

s

(1 − t2)(n−3)/2 dt

≤ (n− 1)√
2πμn

(1 − s2)(n−3)/2(1 − s)

=
(n− 1)(1 − s2)(n−1)/2

√
2πμn(1 + s)

.

Meanwhile, for n = 2, direct calculation reveals

Q2(s) =
1√

2πμ2

(π
2
− arcsin(s)

)

≤ 2(1 − s2)1/2√
2πμ2

.

Combining these upper bounds completes the proof. �
Lemma 19: For integers n,M ≥ 2 and u ∈ [0, 1],

P [sin(α∗) ≤ u] ≤ un−1M√
2πμn max(

√
1 − u2, n−1)

(97)

P [sin(α∗) ≥ u] ≤ exp
(
−u

n−1M√
2πμn

)
. (98)

Proof: Let s =
√

1 − u2. Expressing the event {sin(α∗) <
u} in terms of cos(α∗), we can write

P [sin(α∗) ≤ u] = P [cos(α∗) ≥ s] + P [cos(α∗) ≤ −s]
= 1 − (1 −Qn(s))M + (1 −Qn(−s))M
= 1 − (1 −Qn(s))M +Qn(s)M

≤MQn(s).

Here, the third step follows because Qn(−s) = 1 −Qn(s)
and the last step is due to the basic inequality 1− (1− q)p −
qp ≤ pq for q ∈ [0, 1] and p ≥ 2. Combining this inequality
with the upper bound on Qn(s) in (94) gives (97). For the
complementary event, we have

P [sin(α∗) ≥ u] = (1 −Qn(s))M − (1 −Qn(−s))M
≤ exp(−MQn(s)),

where we have used the basic inequality 1 − q ≤ e−q for all
q ∈ [0, 1]. Combining with the lower bound on Qn(s) in (94)
gives (98). �

To bound the distribution of ξ we consider two cases. First,
conditional on the event sin(α∗) ≤ sin(α), we can write

ξ = 1 − sin(α∗)
sin(α)

≤ log
sin(α)
sin(α∗)

, (99)

where we used the basic inequality 1 − 1/x ≤ log x for x >
0. In view of (97) and the assumption M =

√
n(cscα)n−1,

it follows that for t ≥ 0,

P [ξ ≥ t, sin(α∗) < sin(α)] ≤ P
[
sin(α∗) ≤ sin(α)e−t

]
≤

√
n exp (−(n− 1)t)√

2πμn max(cos(α), n−1)
≤min(csc(α), n) exp (−(n−1)t) ,

where the last step uses the lower bound μn ≥√n− 1/2.
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Next, conditional on the event sin(α∗) ≥ sin(α), we can
write

ξ =
sin(α∗)
sin(α)

− 1 ≤ 1
n− 1

[(
sin(α∗)
sin(α)

)n−1

− 1

]
, (100)

where we used the basic inequality x − 1 ≤ (xp − 1)/p for
all x ≥ 0 and p ≥ 1. In view of (98) and the assumption
M =

√
n(cscα)n−1, it then follows that for t ≥ 0,

P [ξ ≥ t, sin(α∗) ≥ sin(β)]

≤ P

[
sin(α∗) ≥ (sin(β)) [1 + (n− 1)t]

1
n−1

]
≤ exp

(
−
√
n[1 + (n− 1)t]√

2πμn

)

≤ exp
(
− (n− 1)t√

2π

)
, (101)

where the last step uses the upper bound μn ≤ √
n.

With (100) and (101) in hand, we can upper bound the
moments of ξ according to

E [ξp] =
∫ ∞

0

P

[
ξ ≥ t1/p

]
dt

≤ log(min(secα, n))
n− 1

+
1 +

√
2π

n− 1
Γ(p+ 1),

where Γ(z) =
∫∞
0 xz−1 exp(−x) dx is the gamma function.

Combining this inequality with (93) and using the basic upper
bound Γ(z + 1) ≤ zz completes the proof of Lemma 17.

APPENDIX C
PROOF OF LEMMA 20

Lemma 20: Let A ∼ N (0, 1) and B ∼ χn−1. For all p ≥ 1
and n ≥ 2,(

E

[∣∣∣∣
√
A2 + (B −√

n)2
∣∣∣∣
p])1/p

≤ C
√
p,

where C ≤ √
2 + e1/e.

Define Δ2 :=
√
A2 + (B −√

n)2. Minkowski’s inequality
implies

(E [Δp
2])

1/p ≤ E [Δ2] + (E [|Δ2 − E [Δ2]|p])1/p (102)

Recall that μn of (95) is the mean of the chi-distribution
with n degrees of freedom. By Jensen’s inequality, E [Δ2] can
be upper bounded as

E [Δ2]
2 ≤ E

[
Δ2

2

]
= Var(A) + Var(B) + (μn−1 −

√
n)2

= 1 + (n− 1) − μ2
n−1 + (μn−1 −

√
n)2 ≤ 2,

where we used that
√
n− 1 ≤ μn <

√
n. To bound the

deviation about the mean, we use the fact that B can be
expressed as B = �W� where W is an (n − 1)-dimensional
vector with i.i.d. standard Gaussian entries. This allows us
to write Δ2 = ψ(A,W ), where ψ : R × R

n−1 → R is
given by ψ(a,w) = (a2 + (�w� − √

n)2)1/2. The function
ψ is 1-Lipschitz continuous because it is the composition of
1-Lipschitz functions. Therefore, we can apply the Tsirelson-
Ibragimov-Sudakov Gaussian concentration inequality (see

e.g., [56, Theorem 5.2.2]) to conclude that Δ2 − E [Δ2]
is sub-Gaussian with variance parameter one. Consequently
(E [|Δ2 − E [Δ2] |p])1/p ≤ e1/e

√
p. �

APPENDIX D
LIPSCHITZ ESTIMATION IN AWGN MODEL

Lemma 21: Suppose that (U,X) are random vectors in
R
m × R

n with finite second moments. Let Z = X + σW
where σ > 0 is known and W ∼ N (0, In) is independent
Gaussian noise. Define f∗(z) = E [U | Z = z]. For each � > 0
there exists a number L and estimator f : R

n → R
m with

�f�Lip ≤ L such that

E
[�U − f(Z)�2

] ≤ E
[�U − f∗(Z)�2

]
+ �. (103)

Proof: Given T > 0, let B be a binary random variable
that is equal to zero if {�U�∨ �X� ≤ T } and one otherwise.
Define g(z, b) = E [U | Z = z,B = b] to be the conditional
expectation given (Z,B) and let f(z) = g(z, 0). Two different
applications of the law of total variance yields

E
[�U−f∗(Z)�2

]
=E
[�U−g(Z,B)�2

]
+E
[�g(Z,B)−f∗(Z)�2

]
E
[�U−f(Z)�2

]
=E
[�U−g(Z,B)�2

]
+E
[�g(Z,B)−f(Z)�2

]
.

Meanwhile, noting that f(Z) = g(Z,B) whenever B = 0,
we have

�g(Z,B) − f(Z)� ≤ B�g(Z,B) − f(Z)�
≤ B�g(Z,B)� +BT

where the second step follows from the triangle inequality
and that fact that f(y) lies in a Euclidean ball of radius T .
Combining the above displays with the inequality (a+ b)2 ≤
2 a2 + 2 b2 leads to

E
[�U − f(Z)�2

]− E
[�U − f∗(Z)�2

]
≤ 2E

[
B�g(Z,B)�2

]
+ 2E [B]T 2

≤ 2E
[
1(�U� > T )�U�2

]
+ 2P [�U� > T ]T 2.

By the assumption that �U� has finite second moment, this
upper bound converges to zero as T increases. Thus, for each
� > 0, there exists T large enough such that (103) holds.

Next, we will verify that f has a finite Lipschitz constant.
Lemma 22 below implies that the Jacobian of f is given by

∂f(z)
∂z

=
Cov(U,X | Z = z,B = 0)

σ2
.

By the Cauchy-Schwarz inequality and the definition of B,
it follows that �Cov(U,X | Z = z,B = 0)� ≤ T 2, uniformly
for all z, and thus �f�Lip ≤ T 2/σ2. �

Lemma 22: Let X be a n-dimensional random vector with
E [ρ (X)] < ∞, where ρ(x) is the standard Gaussian density
in n dimensions, and let Y ∼ N (X,σ2In). Let h : R

n → R
m

be a measurable function such that

φ(y) := E [h(X)|Y = y] , y ∈ R
n,

is defined for any y ∈ R
n. The Jacobian of φ is given by

Jφ(y) =
1
σ2

Cov (X,h(X) | Y = y) .
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Proof of Lemma 22: Set ρσ(x) := ρ(x/σ)/σ, PY (y) :=
E [ρσ (X − y)], and xy := E [X |Y = y]. From Bayes rule we
have

φ(y) =
E [h(X)ρσ (X − y)]

E [ρσ (X − y)]
=

E [h(X)ρσ (X − y)]
PY (y)

.

It follows from [62, Thm. 2.7.1] that we may differentiate
with respect to yj within the expectation. We get

[Jφ(y)]i,j =
∂φi
∂yj

=
E [hi(X)ρσ (X − y) (Xj − yj)]

σ2 PY (y)

− E [hi(X)ρσ (X − y)] E [ρσ (X − y) (Xj − yj)]
σ2 P 2

Y (y)

=
E [ρσ (X − y) (hi(X) − φi(y)) (Xj − yj)]

σ2 PY (y)

=
E
[
ρ2
σ (X − y) (hi(X) − φi(y))Xj

]
σ2 PY (y)

.

The last transition implies

∂φi
∂yj

= E

[
ρσ (X − y)
σ2 PY (y)

(hi(X) − φi(y)) (Xj − a)
]
,

for any constant a ∈ R. It follows that

Jφ(y) = E

[
(X − xy) (h(X) − φ(y))T

ρσ(X − y)
σ2 PY (y)

]
1
σ2

∫
Rn

(x− xy) (h(x) − φ(y))T PX|Y (dx|Y = y)

=
1
σ2

E

[
(X − xy) (h(X) − φ(y))T | Y = y

]
=

1
σ2

Cov (X,h(X)|Y = y) .

APPENDIX E
LIPSCHTIZ CONTINUITY OF AMP

Proposition 23: Let A ∈ R
n×dn be a random matrix with

i.i.d. entries N (0, 1/n). Assume that n/dn → δ ∈ (0,∞).
Denote by z → θtAMP(z) the result of t iterations of AMP
using a sequence of local non-linearity functions {η1, . . . , ηt}
as in (41) and set LAMP

n,t = �θtAMP�Lip. If ηk is Lk-Lipschitz
for k = 1, . . . , t, then with probability one there exists Kt

such that supn L
AMP
n,t ≤ Kt.

Proof: Use the tail bound on the maximal eigenvalue of
a random matrix with sub-Gaussian entries from [56, Thm
4.4.5] to deduce that there exists a constant c, independent of
n, such that

Pr
(√

n�A�2 ≤ c(
√
n(1 +

√
δ) + a)

)
≥ 1 − 2e−a

2
.

For C = c(2 +
√
δ), define the event

En = {�A�2 ≤ C}.
Using a =

√
n, the Borel-Cantelli Lemma applied to the

sequence {En} implies that the event

G := {∃n0 : �A�2 ≤ C, ∀n ≥ n0}

occurs with probability one. Conditioning on G and given such
n0, we consider the t-th iteration of AMP for reconstructing
θ from z = Aθ+W as given by (39) and (40). For ηt applied
element-wise to vectors x, r ∈ R

n, we have

�ηt(u) − ηt(x)� ≤ Lt �u− x� ,
and

|	η′t(x)
| ≤ Lt.

For x ∈ R
n, denote by θt(x) and rt(x) the result of

applying t iterations of (40) to x. We have∥∥θt+1(x) − θt+1(x̃)
∥∥

=
∥∥ηt (A�rt(x) + θt(x)

) − ηt
(
A�rt(x̃) + θt(x̃)

)∥∥
≤ Lt

∥∥A� (rt(x) − rt(x̃)
)

+ θt(x) − θt(x̃)
∥∥

≤ Lt
∥∥A� (rt(x) − rt(x̃)

)∥∥+ Lt
∥∥θt(x) − θt(x̃)

∥∥
≤ LtC

∥∥rt(x) − rt(x̃)
∥∥+ Lt

∥∥θt(x) − θt(x̃)
∥∥ . (104)

Furthermore,∥∥rt(x) − rt(x̃)
∥∥ ≤ �x− x̃� +

∥∥A (θt(x) − θt(x̃)
)∥∥

+
1
n

∥∥∥∥∥rt−1(x)
n∑
i=1

η′t−1

(
[A�rt−1(x) + θt(x)]i

)

− rt−1(x̃)
n∑
i=1

η′t−1

(
[A�rt−1(x̃) + θt(x̃)]i

)∥∥∥∥∥
≤ �x− x̃� + C

∥∥θt(x) − θt(x̃)
∥∥

+ Lt−1

∥∥rt−1(x) − rt−1(x̃)
∥∥ . (105)

We now prove by induction that for t = 1, . . ., there exists
Kt and Rt such that∥∥θt(x) − θt(x̃)

∥∥ ≤ Kt �x− x̃� (106)∥∥rt−1(x) − rt−1(x̃)
∥∥ ≤ Rt−1 �x− x̃� . (107)

For t = 1, we have∥∥θ0(x) − θ0(x̃)
∥∥ = 0,∥∥u0(x) − u0(x̃)
∥∥ = �x− x̃� ,∥∥θ1(x) − θ1(x̃)
∥∥ ≤ L0 C �x− x̃� ,

and for the second inequality we take R0 = 0. Assume now
that for all k = 1, . . . , t− 1, there are Kk and Rk such that∥∥θk(x) − θk(x̃)

∥∥ ≤ Kk �x− x̃� ,∥∥rk−1(x) − rk−1(x̃)
∥∥ ≤ Rk−1 �x− x̃� .

From (104), (106), and (107), we obtain∥∥θt(x) − θt(x̃)
∥∥ ≤ Lt−1C

∥∥rt−1(x) − rt−1(x̃)
∥∥

+ Lt−1

∥∥θt−1(x) − θt−1(x̃)
∥∥ ,

≤ Lt−1CRt−1 �x− x̃� + Lt−1Kt−1 �x− x̃�
= (Lt−1CRt−1 + Lt−1Kt−1) �x− x̃� .

From (105), (106), and (107), we obtain∥∥rt−1(x) − rt−1(x̃)
∥∥ ≤ �x− x̃� + C

∥∥∥θt−1(x) − θt−1(X̃)
∥∥∥

+ Lt−2

∥∥rt−2(x) − rt−2(x̃)
∥∥

≤ (1 + CAKt−1 + Lt−2Rt−2) �x− x̃� .
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It follows that both (106) and (107) hold with k = t.
We have shown that with probability one there exists n0

such that, for each t ∈ N, there exists Kt for which∥∥θt(x) − θt(x̃)
∥∥ ≤ Kt �x− x̃� , ∀n ≥ n0. (108)

It follows that for each t, supn LAMP
n,t ≤ Kt. �
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