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The all-or-nothing phenomenon in sparse linear regression

Galen Reeves, Jiaming Xu and Ilias Zadik

Abstract.We study the problem of recovering a hidden binary k-sparse p-dimensional vector ˇ
from n noisy linear observations Y D Xˇ C W , where Xij are i.i.d. N .0; 1/ and Wi are
i.i.d. N .0; �2/. A closely related hypothesis testing problem is to distinguish the pair .X; Y /
generated from this structured model from a corresponding null model where .X; Y / consist
of purely independent Gaussian entries. In the low sparsity k D o.

p
p/ and high signal-to-

noise ratio k=�2 ! 1 regime, we establish an “all-or-nothing” information-theoretic phase
transition at a critical sample size n� D 2k log.p=k/= log.1C k=�2/, resolving a conjecture
of Gamarnik and Zadik (2017). Specifically, we show that if lim infp!1 n=n� > 1, then the
maximum likelihood estimator almost perfectly recovers the hidden vector with high probability
and moreover the true hypothesis can be detected with a vanishing error probability. Conversely,
if lim supp!1 n=n� < 1, then it becomes information-theoretically impossible even to recover
an arbitrarily small but fixed fraction of the hidden vector support, or to test hypotheses strictly
better than random guess.
Our proof of the impossibility result builds upon two key techniques, which could be of

independent interest. First, we use a conditional second moment method to upper bound the
Kullback–Leibler (KL) divergence between the structured and the null model. Second, inspired
by the celebrated area theorem, we establish a lower bound to the minimum mean squared
estimation error of the hidden vector in terms of the KL divergence between the two models.1

Mathematics Subject Classification (2020). 62J05, 94A15; 94A17, 60F10.
Keywords. Sparse regression, second moment method, area theorem.

1. Introduction

In this paper, we study the information-theoretic limits of the Gaussian sparse linear
regression problem. Specifically, for n; p; k 2 N with k � p and �2 > 0 we
consider two independent matrices X 2 Rn�p and W 2 Rn�1 with Xij

i.i.d.
� N .0; 1/

and Wi
i.i.d.
� N .0; �2/, and observe

Y D Xˇ CW; (1)

1An extended abstract version of this work appeared at the Proceedings of the Conference on Learning
Theory (COLT), 2019. http://proceedings.mlr.press/v99/reeves19a/reeves19a.pdf

http://proceedings.mlr.press/v99/reeves19a/reeves19a.pdf
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where ˇ is assumed to be a random vector uniformly distributed on the set

fv 2 f0; 1gp W kvk0 D kg

and independent of .X;W /. The problem of interest is to recover ˇ given the
knowledge of X and Y . Our focus will be on identifying the minimal sample size n
for which the recovery is information-theoretically possible. We study the model in
the high-dimensional regime, where p ! C1 and n D np , k D kp , �2 D �2p are
function of p, potentially growing to infinity when p !C1.
The problem of recovering the support of a hidden sparse vector ˇ 2 Rp

given noisy linear observations has been extensively analyzed in the literature, as
it naturally arises in many contexts including subset regression, e.g., [31], signal
denoising, e.g., [14], compressive sensing, e.g., [12, 16], information and coding
theory, e.g., [25], aswell as high dimensional statistics, e.g., [45,46]. The assumptions
of Gaussianity of the entries of .X;W / are standard in the literature. Furthermore,
much of the literature (e.g., [1, 33, 47]) assumes a lower bound ˇmin > 0 for the
smallestmagnitude of a nonzero entry ofˇ, that ismini Wˇi 6D0 jˇi j � ˇmin, as otherwise
identification of the support of the hidden vector is in principle impossible. In this
paperwe adopt a simplifying assumption by focusing only on binary vectorsˇ, similar
to other papers in the literature such as [1, 18] and [19]. In this case recovering the
support of the vectors is equivalent to identifying the vector itself.
To judge the recovery performance we focus on the mean squared error (MSE).

That is, given an estimator y̌ as a function of .X; Y /, define mean squared error as

MSE. y̌/ , E
�
k y̌ � ˇk2

�
;

where kvk denotes the `2 norm of a vector v. In our setting, one can simply choose
y̌ D EŒˇ�, which equals k

p
.1; 1; : : : ; 1/>, and obtain a trivial

MSE0 D EŒkˇ � EŒˇ�k2�;

which equals k
�
1 � k

p

�
. We will adopt the following two natural notions of recovery,

by comparing the MSE of an estimator y̌ to MSE0.
Definition 1 (Strong and weak recovery). We say that y̌ D y̌.Y;X/ 2 Rp achieves
� strong recovery if lim supp!1MSE. y̌/=MSE0 D 0;

� weak recovery if lim supp!1MSE. y̌/=MSE0 < 1.
The fundamental question of interest in this paper is when n as a function of

.p; k; �2/ is such that strong/weak recovery is information-theoretically possible.
Here, and everywhere in this work, by information-theoretical possibility (respec-
tively, impossibility) of weak/strong recovery we refer to the existence (respectively,
absence) of ameasurable, not necessarily binary-valued, estimator y̌.Y;X/ achieving
weak/strong recovery.
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The focus of this paper will be on sublinear sparsity levels, that is on k D o.p/.
A great amount of literature has been devoted on the study of the problem in the
linear regime where n; k; � D ‚.p/: One line of work has provided upper and
lower bounds on the accuracy of support recovery as a function of the problem
parameters, e.g., [1, 38, 39, 42]. Another line of work has derived explicit formulas
for the minimum MSE (MMSE)

E
�
kˇ � EŒˇ j X; Y �k2

�
:

These formulas were first obtained heuristically using the replica method from
statistical physics [21, 43] and later proven rigorously in [9, 40]. However, to the
best of our knowledge, none of the rigorous techniques of [9, 40] apply when
k D o.p/. Although there has been significantwork focusing directly on the sublinear
sparsity regime, the identification of the exact information theoretic threshold of this
fundamental statistical problem remains largely open (see Section 1.2 for a detailed
discussion). Obtaining a tight characterization of the information-theoretic threshold
is the main contribution of this work.
Towards identifying the information theoretic limits of recovering ˇ, and out of

independent interest, we also consider a closely related hypothesis testing problem,
where the goal is to distinguish the pair .X; Y / generated according to (1) from a
model where both X and Y are independently generated. More specifically, given
two independent matrices X 2 Rn�p and W 2 Rn�1 with Xij

i.i.d.
� N .0; 1/ and

Wi
i.i.d.
� N .0; �2/, we define

Y , �W; (2)

where � > 0 is a scaling parameter. We refer to the Gaussian linear regression
model (1) as the planted model, denoted by P D P.X; Y /, and (2) as the null model
denoted byQ� D Q�.Y;X/. We focus on characterizing the total variation distance
TV.P;Q�/ for various values of �. One choice of particular interest is

� D
p
k=�2 C 1;

under which EŒY Y >� D .k C �2/I in both the planted and null models.
Analogous to recovery, we adopt the following two natural notions of testing [3, 34].

Definition 2 (Strong and weak detection). Fix two probability measures P;Q on our
observed data .Y;X/. We say a test statistic T .X; Y / with a threshold � achieves
� strong detection if

lim sup
p!1

�
P.T .X; Y / < �/CQ.T .X; Y / � �/

�
D 0;

� weak detection if

lim sup
p!1

�
P.T .X; Y / < �/CQ.T .X; Y / � �/

�
< 1:
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Note that strong detection asks for the test statistic to determine with high
probability whether .X; Y / is drawn from P or Q, while weak detection, similar
to weak recovery, only asks for the test statistic to strictly outperform the random
guess. Recall that

inf
T ;�

�
P.T .X; Y / < �/CQ.T .X; Y / � �/

�
D 1 � TV.P;Q/:

Thus, equivalently, strong detection is possible if and only if

lim inf
p!1

TV.P;Q/ D 1;

and weak detection is possible if and only if

lim inf
p!1

TV.P;Q/ > 0:

The fundamental question of interest is when n as a function of .p; k; �2/ is such that
strong/weak detection is information-theoretically possible. Here, and everywhere
in this work, by information-theoretical possibility (respectively, impossibility) of
weak/strong detectionwe refer to the existence (respectively, absence) of ameasurable
test statistic T .X; Y / and threshold � achieving weak/strong detection.

1.1. Contributions. Of fundamental importance is the following sample size:

n� ,
2k log.p=k/
log.1C k=�2/

: (3)

We establish that n� is a sharp phase transition point for the recovery of ˇ when
k D o.

p
p/ and the signal to noise ratio k=�2 is growing to infinity with p. In

particular, for an arbitrarily small but fixed constant � > 0, when n < .1 � �/n�,
weak recovery is impossible, but when n > .1C �/n�, strong recovery is possible.
This implies that the rescaled MMSE undergoes a jump from 1 to 0 at n� samples
up to a small window of size �n. We state this in the following theorem, which
summarizes Theorems 2, 3, 4, and 5 from the main body of the paper.
Theorem (All-or-nothing phase transition). Let ı 2

�
0; 1
2

�
and � 2 .0; 1/ be two arb-

itrary but fixed constants. Then there exists a constant C.ı; �/ > 0 only depending
on ı and �, such that if k=�2 � C.ı; �/, then
� When k � p 12�ı and

n < .1 � �/n�;

both weak recovery of ˇ from .Y;X/ � P and weak detection betweenP andQ�0
are information-theoretically impossible, where

�0 D
p
k=�2 C 1:
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� When k D o.p/ and
n > .1C �/n�;

both strong recovery of ˇ from .Y;X/ � P and strong detection between P
and Q� are information-theoretically possible for any � > 0.
Our result establishes as a corollary a conjecture from [19] where the recovery

problems is studied under the additional assumptions log k D o.logp/ and k=�2 !
C1 as p ! C1. In particular, it is predicted in [19] that the sharp all-or-nothing
phase transition takes place at the sample size

nconj D
2k logp

log.1C 2k=�2/
;

which coincides with the phase transition point n� defined in (3) asymptotically,
that is, n�=nconj ! 1 as p ! C1, under the assumptions log k D o.logp/ and
k=�2 !C1.
Given that the hidden vector is binary-valued, one can naturally wonder whether

a similar “all-or-nothing” phase transition for recovery takes place with respect to the
Hamming error instead of the squared error used in Definition 1. In Appendix D.3 we
present a short argument showing how the “all-or-nothing” phase transition for the
mean squared error implies indeed the same sharp phase transition for the Hamming
error.
We highlight that the positive part of our main result is achieved by the

construction of an, in principle, super-polynomial-time computable optimal estimator
(for recovery) and by an, in principle, super-polynomial-time computable optimal test
statistic (for detection). While the present work is not focusing on such computational
considerations, we encourage the interested reader to [18, 19] for the potential
fundamental nature of such a computational bottleneck in the context of estimation.
Observe that when � is sufficiently small, the critical value of n� can be smaller

thank. Hence, according to ourmain result, in this regime for sufficiently small � > 0,
n D b.1C �/n�c < k samples suffice to achieve strong recovery. In the extreme case
where � D 0, n� trivializes to zero and we can directly argue that one sample suffices
for strong recovery. In fact, for anyˇ 2 f0; 1gp andY1 D hX1; ˇi forX1 � N .0; Ip/,
we can identify ˇ as the unique binary-valued solution of Y1 D hX1; ˇi, almost
surely with respect to the randomness of X (see e.g., [20]). Note that here the binary
assumption on ˇ is crucial. In contrast, if ˇi were real-valued such that either ˇi D 0
or jˇi j � ˇmin for some ˇmin > 0, n D �.k/ samples would be necessary for strong
recovery for any noise level.2
Finally, note that the first part of the above result focuses on k � p1=2�ı . It

turns out that this is not a technical artifact and k D o.p1=2/ is needed for n� to be
2This can be seen by considering a genie-aided scenario where the locations of the nonzero entries

of ˇ are revealed in advance; in this setting, the problem reduces to the standard linear system (defined
with respect to an n � k submatrix of X ) without sparsity constraints and n � k samples are needed to
invert this linear system.
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the weak detection threshold. More details can be found in Appendix C. The sharp
information-theoretic threshold for either detection or recovery is still open when
�.p1=2/ � k � o.p/.

The phase transition role of n�. According to our main result, the rescaled min-
imum mean squared error of the problem, MMSE=MSE0, exhibits a step behavior
asymptotically. Loosely speaking, when n < n� it equals to one and when n > n� it
equals to zero. We next intuitively explain why such a step behavior for sparse high
dimensional regression occurs at n�, using ideas related to the area theorem. The area
theorem has been used in the channel coding literature to study the MAP decoding
threshold [30] and the capacity-achieving codes [27]. The approach described below
is similar to the one used previously for linear regression [40].
First let us observe that n� is asymptotically equal to the ratio of entropyH.ˇ/ D

log
�
p
k

�
and Gaussian channel capacity 1

2
log.1Ck=�2/. We explore this relationship

in the following way. Let
In , I.Y n1 IX;ˇ/

denote the mutual information between ˇ and .Y n1 IX/ with a total of n linear meas-
urements and let

MMSEn , E
�
kˇ � EŒˇ j X; Y n1 �k

2
�

denote the corresponding minimum MSE. Using the chain rule for the mutual
information and the fact that mutual information in the Gaussian channel under a
second moment constraint is maximized by the Gaussian input distribution, it follows
that the increment of mutual information satisfies

InC1 � In �
1

2
log

�
1CMMSEn=�2

�
:

See for example the second part of Lemma 15 in [40]. In particular, all the increments
are between zero and 1

2
log.1C k=�2/ and by telescopic summation for every n:

In �
n

2
log.1C k=�2/; (4)

with equality only if for all m < n, MMSEm D k. This is illustrated in Figure 1,
where we plot n against InC1 � In.
Suppose now that we have established that strong recovery is achieved with

n D .1C o.1//n� samples. Then strong recovery and standard identities connecting
mutual information and entropy implies that In D .1 � o.1//H.ˇ/, and thus

In D .1 � o.1//
n�

2
log.1C k=�2/:

In conjunction with (4) and the upper bound on the mutual information increment in
terms of the MMSE, this implies that MMSEn D .1� o.1//k form D .1� o.1//n�.
In other words, a strong recovery just above the critical threshold n� implies that
weak recovery just below the threshold is impossible.
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Figure 1. The phase transition diagram in Gaussian sparse linear regression. The y-axis is the
increment of mutual information with one additional measurement. The area of gray region
equals the entropyH.ˇ/ � k log.p=k/.

1.2. Comparison with related work. The information-theoretic limits of high-dim-
ensional sparse linear regression have been studied extensively and there is a vast
literature of multiple decades of research. In this paper, we establish conditions for
the all-or-nothing phenomenon for the model under Gaussian assumptions on X;W
and binary assumptions on the entries of ˇ�.
For the purposes of comparison, we note that multiple papers in the literature have

studied the model in discussion under slightly different contexts compared to ours.
For example, some of them have studied the model under the minimax setting instead
of our Bayesian setting with a uniform prior; some have offered recovery guarantees
which hold with high probability rather than in expectation, or hold under the `0 error
(Hamming distance) instead of the squared error. While we mention how the most
relevant results compare to ours below, we point interested readers to Appendix D for
a detailed discussion on howmany of these different assumptions/notions of recovery
compare with each other.

Information-theoretic negative results for weak/strong recovery. For the imposs-
ibility direction, previous work [1, Theorem 5.2] has established that as p ! 1,
achieving Hamming distortion E

�
k y̌ � ˇk0

�
� d for any d 2 Œ0; k� is information-

theoretically impossible if

n � 2p
h2.k=p/ � h2.d=p/

log.1C k=�2/
;

where
h2.˛/ D �˛ log˛ � .1 � ˛/ log.1 � ˛/ for ˛ 2 Œ0; 1�

is the binary entropy function. This converse result is proved via a simple rate-
distortion argument (see, e.g., [48] for an exposition). In particular, given any
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estimator y̌.X; Y / with E
�
k y̌ � ˇk0

�
� d , we have

p
�
h2.k=p/ � h2.d=p/

�
� inf
žWEŒk ž�ˇk0��d

I. žIˇ/

� I. y̌Iˇ/ � I.X; Y Iˇ/ �
n

2
log.1C k=�2/:

Assuming k D o.p/, this result implies that under the Hamming distortion, if
n � .1 � o.1//n�, strong recovery, that is d D o.k/, is information-theoretically
impossible and if n D o.n�/, weak recovery, that is d � .1 � �/k for an arbitrary
� 2 .0; 1/, is impossible.
More recent work [42, Corollary 2] further quantified the fraction of support that

can be recovered when n < .1 � �/n� for some fixed constant � > 0. Specifically
with k D o.p/ and any scaling of k=�2, if n < .1 � �/n�, then the fraction of the
support of ˇ that can be recovered correctly is at most 1�� with high probability; thus
strong recovery is impossible under Hamming distortion. We point interested readers
to Appendix D for more details on how the different notions of strong/weak recovery
in probability and the corresponding notion of strong/weak recovery in expectation
are related.
Restricting to the Maximum Likelihood Estimator (MLE) performance of the

problem, it is shown in [19] that under significantly small sparsity

k D O
�
exp.

p
logp/

�
and k=�2 !C1 if n � .1 � �/n�;

the MLE not only fails to achieve strong recovery, but also fails to weakly recover the
vector, that is recover correctly any positive constant fraction of the support.
Our result (Theorem 3) establishes that the MLE performance is fundamental.

Furthermore, in view of relation between MSE and Hamming distortion in App-
endixD.3, our result improves upon the negative results in the literature by identifying
a sharp threshold for weak recovery, showing that if k D o.

p
p/, k=�2 ! 1, and

n � .1 � �/n�, then weak recovery is information-theoretically impossible by any
estimator y̌.Y;X/. In other words, no constant fraction of the support is recoverable
under these assumptions. Note that while our result holds for the setting of binary
vectors, the impossibility of weak recovery in this setting implies the impossibility
of weak recovery, in a minimax sense, over any class of vectors that contains the set
of all k-spare binary vectors. For example, our result implies that weak recovery
is impossible in the setting where the nonzero values are bounded from below in
magnitude (by a number less than or equal to one) but otherwise arbitrary.

Information-theoretic positive results for weak/strong recovery. In the positive
direction, previous work [2, Theorem 1.5] shows that when kDo.p/, k=�2D‚.1/,
and n > Ck=�2k log.p � k/ for some Ck=�2 , it is information theoretically possible
to weakly recover the hidden vector. Albeit very similar to our results, our positive
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result (Theorem 4) identifies the explicit value of Ck=�2 for which both weak and
strong recovery are possible, that is

Ck=�2 D 2= log.1C k=�2/

for which Ck=�2k log.p=k/ D n�.
In [19] it is shown that when k D O.exp.

p
logp// and k=�2 ! C1 then if

n � .1 C �/n� for some fixed � > 0, strong recovery is achieved by the MLE of
the problem. We improve upon this result with Theorem 4 by showing that when
n � .1C �/n� for some fixed � > 0 and any k D o.p/, there exists a constant

C D C.�/ > 0

such that if k=�2 � C , then the MLE achieves strong recovery. In particular, we
significantly relax the assumption from [19] by showing that MLE achieves strong
recovery with .1 C �/n� samples for (1) any sparsity level k up to k D o.p/ and
(2) finite but large values of signal to noise ratio.

Exact asymptotic characterization of MMSE for linear sparsity. For both weak
and strong recovery, the central object of interest is the MMSE

E
�
kˇ � EŒˇ j X; Y �k2

�
and its asymptotic behavior. While the asymptotic behavior of the MMSE remains a
challenging open problem when k D o.p/, it has been accurately understood when
k D ‚.p/ and k=�2 D ‚.1/.
To be more specific, consider the asymptotic regime, where k D "p, �2 D k=
 ,

and n D ıp, for fixed positive constants "; 
; ı as p ! C1. The asymptotic mini-
mummean-square error (MMSE) can be characterized explicitly in terms of ."; 
; ı/.
This characterization was first obtained heuristically using the replica method from
statistical physics [21, 43] and later proven rigorously [9, 40]. More specifically, for
fixed ."; 
/, let the asymptotic MMSE as a function of ı be defined by

M";
 .ı/ D lim
p!1

E
�
kˇ � E

�
ˇ j X; Y

�
k2
�

E
�
kˇ � EŒˇ�k2

� :

The results in [9, 40] lead to an explicit formula for M";
 .ı/. Furthermore, they
show that for " 2 .0; 1/ and all sufficiently large 
 2 .0;1/, M";
 .ı/ has a jump
discontinuity as a function of ı. The location of this discontinuity, denoted by
ı� D ı�."; 
/, occurs at a value that is strictly greater than the threshold n�=p.
Furthermore, at the discontinuity, the MMSE transitions from a value that is

strictly less than the MMSE without any observations to a value that is strictly
positive, i.e.,

M";
 .0/ > lim
ı"ı�

M";
 .ı/ > lim
ı#ı�

M";
 .ı/ > 0:
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To compare these formulas to the sub-linear sparsity studied in this paper, one
can consider the limiting behavior of M";
 .ı/ as " decreases to zero. Note that
the comparison is qualitative, since in the work by [9, 40] the coefficients of ˇ are
generated i.i.d. according to a Bernoulli.k=p/ distribution, while in this paper we
consider ˇ to be chosen according to a uniform prior over the space of binary k-sparse
vectors. Nevertheless, it can be verified thatM";
 .ı/ converges indeed to a step zero-
one function as "! 0 and the jump discontinuity transfers to the critical value n�=p
which makes the behavior consistent with the results in this paper. However, an
important difference is that the results in this paper are derived directly under the
scaling regime k D o.p/ whereas the derivation described above requires one to
first take the asymptotic limit p ! 1 for fixed .�; 
/ and then take � ! 0. Since
the limits cannot interchange in any obvious way, the results in this paper cannot
be derived as a consequence of the rigorous results in [9, 40]. Finally, it should be
mentioned that taking the limit � ! 0 for the replica prediction suggests the step
behavior for all values of signal-to-noise ratio 
 (see Figure 2). In this paper, the step
behavior is rigorously proven in the high signal-to-noise ratio regime. The proof of
the step behavior when the signal-to-noise ratio is low remains an open problem.

Sparse superposition codes. Constructing an algorithm for recovering a binary
k-sparse ˇ from .Y D Xˇ C W;X/ has received a lot of attention from a coding
theory point of view. The reason is that such recovery corresponds naturally to a code
for the memoryless additive Gaussian white noise (AWGN) channel with signal-to-
noise ratio equal to k=�2. Specifically in this context achieving strong recovery of
a uniformly chosen binary k-sparse ˇ with .1C �/n� samples, for arbitrary � > 0,
corresponds exactly to capacity-achieving encoding-decoding mechanism of

�
p
k

�
�

.pe=k/k messages through a AWGN channel. A recent line of work has analyzed
a similar mechanism where .p=k/k messages are encoded through k-block-sparse
vectors; that is the vector ˇ is designed to have at most one non-zero value in each k
block of entries indexed by

ibp=kc; ibp=kc C 1; : : : ; .i C 1/bp=kc � 1 for i D 0; 1; 2; : : : ; k � 1:

It has been shown that by using various polynomial-time decoding mechanisms, such
as adaptive successive decoding [25,26], a soft-decision iterative decoder [10,15] and
finally Approximate Message Passing techniques [7, 8, 41], one can strongly recover
the hidden k-block-sparse vector with .1C �/n� samples and achieve capacity. Their
techniques are tailored to work for any k D p1�c with c 2 .0; 1/ and also require
the vector to have carefully chosen non-zero entries, that is the hidden vector is not
assumed to simply be binary. In this work Theorem 4 establishes that under the simple
assumption on ˇ being binary and arbitrarily (not block) k-sparse it suffices to make
strong recovery possible with .1 C �/n� samples when k D o.p/. Nevertheless,
our decoding mechanism requires a search over the space of k-sparse binary vectors
and therefore is not in principle polynomial-time. The design of a polynomial-time
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Figure 2. The limit of the replica-symmetric predicted MMSEM";
 .�/ as � ! 0 for signal to
noise ratio (snr) 
 equal to 2 (top curve) and equal to 10 (bottom curve).
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recovery algorithm for this task and .1 C �/n� samples remains largely an open
problem (see [19]).

Information-theoretic limits up to constant factors for exact recovery. Although
exact recovery is not our focus, we briefly mention some of the rich literature on
the information-theoretic limits for the exact recovery of ˇ, i.e., Pf y̌ D ˇg ! 1

as p !1 (see, e.g., [17,33,36,45,47] and the references therein). Note that if exact
recovery is information-theoretically possible, then weak and strong recovery are also
information-theoretically possible. As a consequence, the sample sizes required to
be achieve exact recovery are in principle no smaller than n�.
Specifically, it has been shown in [45, Theorem 1] that the maximum likelihood

estimator achieves exact recovery if

n � �

 
log

 
p � k

k

!
C �2 log.p � k/

!
and n � k !C1:

Conversely,
n > max

˚
f1.p; k/; : : : ; fk.p; k/; k

	
is shown in [47, Theorem 1] to be necessary for exact recovery, where

fm.p; k/ D 2
log

�
p�kCm
m

�
� 1

log
�
1C m.p�k/

p�kCm
=�2

� :
In the special regime where k and � are fixed constants, it has been shown in [24,
Theorem 1] that exact recovery is information-theoretically possible if and only if
n � .1Co.1//n�. Notice that this result achieves exact recovery for approximately n�
sample size, but in this case of constant k it can be easily seen that the information-
theoretic limits of exact and strong recovery coincide.
Computationally, it has been shown in [46, Section IV-B] that LASSO achieves

exact recovery in polynomial-time if n � 2k log.p � k/. More recently, it is shown
in [33, Theorem 3.2, Corollary 3.2] that exact recovery can be achieved in polynomial-
time, provided that k D o.p/, � �

p
3, and n � �

�
k log ep

k
C �2 logp

�
.

Large noise regime. With the exception of the positive result for strong detection
(Theorem 5) the analysis in this paper requires the assumption k=�2 � C for some
sufficiently large constant C > 0. Hence, our results include the case where the
signal-to-noise ratio k=�2 is diverging and also the case where it is fixed, provided
that it is sufficiently large.
For comparison, we now make some remarks concerning the large-noise regime

k=�2 D o.1/. The result in [33] addresses a more general setting than the one in our
paper and specifies a certain initial estimator in the first step. If this initial estimator is
replaced by the zero estimator, then their procedure reduces to the classical matched
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filter followed by thresholding. However, it is unclear how Theorem III.2 of [33]
directly yields the tight sufficient condition for strong recovery. For completeness,
we provide a self-contained proof in the arXiv version of the paper, showing that
the matched filter followed by thresholding can achieve strong recovery if k D o.p/,
k D o.�2/, and n � .1C �/n�. Our proof is based on adapting the arguments given
in [11]. We note that a related argument shows that the condition n � .1C "/n� is
also sufficient for strong detection.
In summary, the positive results for both strong detection and strong recovery

which appear in the present work also hold in the large-noise regime k=�2 D o.1/,
and moreover these results can be achieved using computationally efficient methods.
Whether the corresponding negative results established in this work also hold in
the large noise setting k=�2 D o.1/ remains, to the best of our knowledge, still
unknown. Note that the information theoretic arguments from [42, Corollary 2],
which are discussed above, establish that n > .1 � �/n� is a necessary condition for
strong recovery, regardless of the noise level. However, the corresponding negative
result for weak recovery becomes n D o.n�/ and thus in the large noise regime
k=�2 D o.1/ it appears that there is still a gap between the conditions for weak
and strong recovery. Note that if ˇ were assumed to be i.i.d. Bern.k=p/, then one
could use the genie-aided argument (see e.g., [39] and [33, Theorem 2.1]) where
all the entries of ˇ but one are revealed, showing that weak recovery is impossible
if n � .1 � �/n� when k D o.p/ and k D o.�2/: However, in our setting with the
fixed sparsity, the value of any entry ˇi is known once all the other entries of ˇ have
been revealed and hence this genie-aided argument does not directly apply.

1.3. Proof techniques. In this section, we give an overview of our proof techniques.
Given two probability distributions P;Q with P absolutely continuous toQ and any
convex function f such that f .1/ D 0, the f -divergence ofQ from P is given by

Df .P kQ/ , EQ

�
f

�
dP

dQ

��
:

Three choices of f are of particular interest (see [35, Section 6] for details):
� The Total variation distance TV.P;Q/: f .x/ D jx � 1j=2;
� The Kullback–Leibler divergence (a.k.a. relative entropy)D.P kQ/:
f .x/ D x log x;

� The �2-divergence �2.P kQ/: f .x/ D .x � 1/2.

Note that the�2-divergence�2.P kQ/ is equal to the variance of the Radon–Nikodym
derivative (likelihood ratio) dP=dQ underQ and hence

�2.P kQ/C 1 D EQ

��
dP

dQ

�2�
D EP

�
dP

dQ

�
:
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A key to our proof is the following chain of inequalities:

TV.P;Q/ �
p
2D.P kQ/ �

q
2 log

�
�2.P kQ/C 1

�
; (5)

where the first inequality is simply Pinsker’s inequality, and the second inequality
holds by Jensen’s inequality:

D.P kQ/ D EP

�
log

dP

dQ

�
� log

�
EP

�
dP

dQ

��
D log

�
�2.P kQ/C 1

�
: (6)

Recall that to show the weak detection between P and Q� is impossible, it is
equivalent to proving that TV.P;Q�/ D o.1/. In view of (5) there is a natural
strategy towards proving it: it suffices to prove that �2.P;Q�/ D o.1/, which
amounts to showing the second moment

EQ
�
.dP=dQ�/

2
�
D 1C o.1/:

We prove that indeed if n � .1� o.1//n�=2 and � is appropriately chosen, then this
second moment is indeed 1C o.1/ (Theorem 1); however, if n > n�=2, then it blows
up to infinity. This is because even if potentially TV.P;Q�/ D o.1/, rare events can
cause the second moment to explode and in particular (5) is far from being tight.
We are able to circumvent this difficulty by computing the second moment

conditioned on an event E , which rules out the catastrophic rare ones. In particular,
we introduce the following conditioned planted model.
Definition 3 (Conditioned planted model). Given a subset E � Rn�p � Rp , define
the conditioned planted model

PE.X; Y / D
Eˇ ŒP.X; Y j ˇ/1fEg.X; ˇ/�

PfEg
: (7)

Using this notation we can write

P.X; Y / D .1 � "/PE.X; Y /C "PEc .X; Y /;

where Ec denotes the complement of E and " D Pf.X; ˇ/ 2 Ecg. By Jensen’s
inequality and the convexity of KL-divergence,

D.P kQ�/ � .1 � "/D.PEkQ�/C "D.PEckQ�/: (8)

Under an appropriately chosen E , and � > 0, our main impossibility of detection
result (Theorem 2) shows that if n � .1C o.1//n�, then

EQ�
�
.dPE=dQ�/

2
�
D 1C o.1/;

or equivalently,
�2.PEkQ�/ D o.1/;

which immediately implies that D.PEkQ�/ D o.1/ and TV.PE ;Q�/ D o.1/.
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Finally, we argue that " converges to 0 sufficiently fast so that according to (8),

TV.P;Q�/ � TV.PE ;Q/C o.1/ D o.1/

and
D.P kQ�/ � D.PEkQ�/C o.1/ D o.1/:

We remark that this (conditional) second moment method for providing detection
lower bound has been used inmany high-dimensional inference problems (see e.g., [5,
6, 13, 22, 23, 32, 34, 44, 48] and references therein).
To further showweak recovery is impossible in the regime for sample size n < n�

(Theorem 3), we establish a lower bound of MSE in terms ofD.P kQ�/ (Lemma 2)
which implies that the minimumMSE needs to be .1� o.1//k ifD.P kQ�/ D o.n/.
The key underpinning our lower bound proof is the area theorem [27,30].

1.4. Notation and organization. Denote the identity matrix by I. We let kXk den-
ote the spectral norm of a matrix X and kxk denote the `2 norm of a vector x. For
any positive integer n, let Œn� D f1; : : : ; ng. For any set T � Œn�, let jT j denote its
cardinality and T c denote its complement. We use standard bigO notations, e.g., for
any positive sequences fapg and fbpg, ap D ‚.bp/ if there is an absolute constant
c > 0 such that 1=c � ap=bp � c; ap D �.bp/ or bp D O.ap/ if there exists an
absolute constant c > 0 such that ap=bp � c. We use standard little o notations,
e.g., for any positive sequences fapg and fbpg, ap D !.bp/ or bp D o.ap/ if
lim ap=bp D C1. We say a sequence of events Ep indexed by a positive integer p
holds with high probability, if the probability of Ep converges to 1 as p ! C1.
Without further specification, all the asymptotics are taken with respect to p !1.
All logarithms are natural and we use the convention 0 log 0 D 0. For two real
numbers a and b, we use a _ b D maxfa; bg to denote the larger of a and b. For
two vectors u; v of the same dimension, we use hu; vi denote their inner product. We
use �2n to denote the standard chi-squared distribution with n degrees of freedom.
For n;m; k 2 N with m � k � n and mC k � n we denote by Hyp.n;m; k/ the
Hypergeometric distribution with parameters n;m; k and probability mass function
p.s/ D

�
m
s

��
n�m
k�s

�
=
�
n
k

�
; s 2 Œ0;m� \ Z.

The remainder of the paper is organized as follows. Section 2 presents the
main results without proofs. Section 3 and Section 4 prove the negative results
for detection and recovery, respectively. Section 5 proves the positive results for
detection and recovery. We conclude the paper in Section 6, mentioning a few open
problems. Auxiliary lemmata and miscellaneous details are left to appendices.

2. Main results

In this section we present our main results. The proofs are deferred to the following
sections.
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2.1. Impossibility of weak detection with n < n�. Our first impossibility detection
result is based on a direct calculation of the second moment between the planted
model P and the null model Q�. Specifically, we are able to show that weak
detection between the two models is impossible, if n � .1 � ˛/n�=2 for some
˛ D op.1/ and � D

p
k=�2 C 1.

Theorem 1. Suppose k � p
1
2�ı for a fixed constant ı > 0 and k=�2 � C for a

sufficiently large constant C only depending on ı. If

n �
1

2

�
1 �
log log.p=k/
log.p=k/

�
n�; (9)

then for �0 D
p
k=�2 C 1, it holds that

�2.P kQ�0/ D o.1/

Furthermore, D.P kQ�0/ D o.1/ and TV.P;Q�0/ D o.1/:
The complete proof of the above theorem can be found in Section 3.1. Never-

theless, let us provide here a short proof sketch. Using an explicit calculation, we
first find that for any � >

p
k=�2 C 1=2,

�2.P kQ�/ D �
2nES�Hyp.p;k;k/

��
2�2� 1�

k C S

�2

��n=2�
1C

k � S

�2

��n=2�
� 1;

where S D hˇ; ˇ0i is the overlap between two independent copies ˇ; ˇ0 and follows
a hypergeometric distribution with parameters .p; k; k/. Plugging in

� D �0 D
p
k=�2 C 1;

we get that

�2.P kQ�0/ D ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n�
� 1:

Using this we show that if n � .1 C o.1//n�=2, then �2.P kQ�0/ is indeed o.1/,
implying by (5) the impossibility result. However, if n > n�=2, then this �2-
divergence can be proven to blow up to infinity, rendering the method based on (5)
uninformative in this regime. To see this, by considering the event S D k which
happens with probability 1=

�
p
k

�
, we get that

�2.P kQ�0/ �
1�
p
k

���1� k

k C �2

��n�
�1 D exp

 
n log

�
1C

k

�2

�
�log

 
p

k

!!
�1:

(10)
Recall that n� is asymptotically equal to 2 log

�
p
k

�
= log

�
1 C k=�2

�
. Hence, if n �

n�.1C �/=2 for some constant � > 0, then �2.P kQ�0/!C1.
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To be able to obtain tighter results and go all the way to n� sample size, we
resort to a conditional second moment method as explained in the proof techniques.
Specifically we show that weak detection is impossible for any n � .1 � ˛/n�, for
some ˛ > 0 that can be made to be arbitrarily small by increasing k=�2 and p=k. In
particular, this improves on the direct calculation of the�2 distance by amultiplicative
factor of 2 and shows that n� is a sharp information theoretic threshold for weak
detection between the planted model P and the null modelQ�0 .
Before formally stating our main theorem, we specify the conditioning event E
;�

which will be shown to hold with high probability in Lemma 8 under appropriate
choices of 
 and � .

Definition 4 (Conditioning event). Given 
 � 0 and � 2 Œ0; k�, define an event
E
;� � Rn�p �Rp as

E
;� D

�
.X; ˇ/ W

kX.ˇ C ˇ0/k2

EŒkX.ˇ C ˇ0/k2�
� 2C 
;

8ˇ0 2 f0; 1gp with kˇ0k0 D k and
˝
ˇ0; ˇ

˛
� �

�
: (11)

To understand the value of 
; � in the definition of this event, notice that for
each ˇ; ˇ0, from the definition of X , we have X.ˇ C ˇ0/ � N .0; 2.k C s/In/; for
s WD hˇ0; ˇi ; and therefore,

kX.ˇ C ˇ0/k2

2.k C s/
� �2n:

Thus, by the concentration inequality of chi-squared distributions, the random var-
iable

kX.ˇ C ˇ0/k2

EŒkX.ˇ C ˇ0/k2�

is expected to concentrate around 1 and thus is likely to be smaller than 2 C 
 for
a relatively large 
 . The parameter � quantifies the set of k-sparse ˇ0 for which
we expect this relation to hold. Notice that hˇ0; ˇi � � is equivalent with the
Hamming-distance between ˇ and ˇ0 to be equal to 2.k � �/.
Next, we explain the intuition behind our choice of conditioning eventE
;� . Recall

that in view of (10), �2.P kQ�0/ blows up to infinity when the overlap hˇ; ˇ0i is equal
to k. In fact, when the overlap hˇ; ˇ0i D k, kX.ˇ C ˇ0/k2 can be enormously large,
causing �2.P kQ�0/ to explode. We rule out this catastrophic event by conditioning
on E
;� which bounds from above kX.ˇ C ˇ0/k2 when the overlap hˇ; ˇ0i is large;
see (32) for the key step of bounding from above kX.ˇ C ˇ0/k2.
As a result, we are able to prove that the �2-divergence between the conditional

planted model PE
;� and the null model Q�0 for �0 D
p
k=�2 C 1 is o.1/, which

implies the following general impossibility of detection result.
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Theorem 2. Suppose k � p 12�ı for an arbitrarily small fixed constant ı 2
�
0; 1
2

�
and k=�2 � C for a sufficiently large constant C only depending on ı. Assume
n � .1 � ˛/n� for ˛ 2 .0; 1=2� such that

˛ D
8

log.1C k=�2/
_
32 log log.p=k/
log.p=k/

: (12)

Set

 D

˛k log.p=k/
n

and � D k

�
1 �

1

log2.1C k=�2/

�
:

Then for �0 D
p
k=�2 C 1,

�2.PE
;�kQ�0/ D o.1/: (13)

Furthermore,

D.PE
;�kQ�0/ D o.1/; TV.PE
;� ;Q�0/ D o.1/; and TV.P;Q�0/ D o.1/:

The proof of the theorem can be found in Section 3.2.

2.2. Impossibility of weak recovery with n < n�. In this section we present our
impossibility of recovery result. We do this using the impossibility of detection result
established above. Specifically we first strengthen Theorem 2 and show that under the
assumptions of Theorem 2, D.P kQ�0/ D op.1/. Notice that this is not needed to
conclude impossibility of detection, that is TV.P;Q�0/ D o.1/, but is needed here
for establishing the impossibility of recovery result. As a second step, inspired by the
celebrated area theorem, we establish (Lemma 2) a lower bound to theminimumMSE
in terms of D.P kQ�0/, which is potentially of independent interest. The lemma
essentially quantifies the natural idea that if the data .Y;X/ drawn from planted
model are statistically close to the data .Y;X/ drawn from null model then there are
limitations on the performance of recovering the hidden vector ˇ based on the data
.Y;X/ from the planted model. Interestingly the lemma itself does not require the
hidden vector ˇ to be binary or k-sparse but only to satisfyEŒkˇk2� D k. Combining
the two steps allows us to conclude that the minimum MSE is k.1C op.1//; hence
the impossibility of weak recovery.
Theorem 3. Suppose k � p 12�ı for an arbitrarily small fixed constant ı 2

�
0; 1
2

�
and k=�2 � C for a sufficiently large constant C only depending on ı. Let �0 Dp
k=�2 C 1. If n � .1 � ˛/n� for ˛ 2 .0; 1=2� given in (12), then it holds that

D.P kQ�0/ D op.1/: (14)

Furthermore, if n � b.1�˛/n�c� 1, then for any estimator y̌ that is a function ofX
and Y ,

MSE. y̌/ D k.1C op.1//: (15)
The proof of the above theorem can be found in Section 4.1.



The all-or-nothing phenomenon in sparse linear regression 19

2.3. Positive result for strong recovery with n > n�. This subsection and the next
one are in the regime where n � .1 C �/n� for some � > 0. In this regime, we
establish that both strong recovery and strong detection are possible.
Towards recovering the vectorˇ, we consider theMaximumLikelihood Estimator

(MLE) of ˇ:
y̌ D arg min

ˇ 02f0;1gp ;kˇ 0k0Dk
kY �Xˇ0k2:

We show that MLE achieves strong recovery of ˇ if n � .1C �/n� for an arbitrarily
small but fixed constant � whenever k D o.p/ and k=�2 � C.�/ for a sufficiently
large constant C.�/ > 0.
Specifically, we establish the following result.

Theorem 4. Suppose log log.p=k/ � 1. If

n �

�
1C

4 log log.p=k/
log.p=k/

�
2k log.p=k/
log.1C k=2�2/

; (16)

then

P

�
k y̌ � ˇk2 �

2k

log.p=k/

�
�

e2

log2.p=k/.1 � e�1/
: (17)

Furthermore, if additionally k D o.p/, then

1

k
E
�
k y̌ � ˇk2

�
D op.1/; (18)

i.e., MLE achieves strong recovery of ˇ.
The proof of the above theorem can be found in Section 5.1.

2.4. Positive result for strong detection with n > n�. In this subsection we est-
ablish that when n � .1 C �/n� for some � > 0 strong detection is possible. To
distinguish the planted model P and the null modelQ�, we consider the test statistic:

T .X; Y / D min
ˇ 02f0;1gp ;kˇ 0k0Dk

kY �Xˇ0k2

kY k2
:

Theorem 5. Suppose M D
�
p
k

�
!C1. If

n �

 
1C

s
log logM
logM

!
2 logM

log.1C k=�2/
; (19)

then there exist proper choices of � such that

P.T .X; Y / � �/CQ�.T .X; Y / � �/ D o.1/;

which achieves the strong detection between the planted model P and the null
model Q�.
The proof of Theorem 5 can be found in Section 5.2.
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3. Proof of negative results for detection

3.1. Proof of Theorem 1. We start with an explicit computation of the chi-squared
divergence �2.P kQ�/.

Proposition 1. For any � >
p
k=�2 C 1=2,

�2.P kQ�/ D �
2nES�Hyp.p;k;k/

��
2�2� 1�

k C S

�2

��n=2�
1C

k � S

�2

��n=2�
� 1:

Proof. Since the marginal distribution of X is the same under the planted and null
models, it follows that for any ˇ,

P.X; Y /

Q�.X; Y /
D
P.Y jX/

Q�.Y /
D

Eˇ ŒP.Y jX;ˇ/�

Q�.Y /
:

Therefore, �
P.X; Y /

Q�.X; Y /

�2
D Eˇ??ˇ 0

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

�
;

where ˇ ?? ˇ0 denote two independent copies. By Fubini’s theorem, we have

EQ�

��
P

Q�

�2�
D Eˇ??ˇ 0EXEY

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

�
; (20)

where Xij
i.i.d.
� N .0; 1/ and Yij

i.i.d.
� N .0; �2�2/:

Since in the planted model, conditional on .X; ˇ/, Y � N .Xˇ; �2In/. It follows
that

P.Y jX;ˇ/

Q�.Y /
D �n exp

�
�

1

2�2
kY �Xˇk2 C

1

2�2�2
kY k2

�
D �n exp

�
�
�2 � 1

2�2�2
kY k2 C

1

�2
hY;Xˇi �

1

2�2
kXˇk2

�
:

Hence,

P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

D �2n exp
�
�
�2 � 1

�2�2
kY k2 C

1

�2

˝
Y;X.ˇ C ˇ0/

˛
�

1

2�2

�
kXˇk2 C kXˇ0k2

��
D �2n exp

�
�
�2 � 1

�2�2





Y � �2X.ˇ C ˇ0/2.�2 � 1/





2 C �2kX.ˇ C ˇ0/k2

4.�2 � 1/�2

�
1

2�2

�
kXˇk2 C kXˇ0k2

��
:
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Using the fact that E
�
etZ

2�
D 1=

�p
1 � 2t�2

�
e�

2t=.1�2t�2/ for t < 1=2�2 and
Z � N .�; �2/, we get that

EY

�
exp

�
�
�2 � 1

�2�2





Y � �2X.ˇ C ˇ0/2.�2 � 1/





2��
D

1

.2�2 � 1/n=2
exp

�
�

�2 kX.ˇ C ˇ0/k
2

4.2�2 � 1/.�2 � 1/�2

�
:

Combining the last two displayed equations yields that

EY

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

�
D

�2n

.2�2 � 1/n=2
(21)

� exp
�

1

2�2.2�2 � 1/

�
.1 � �2/

�
kXˇk2 C



Xˇ0

2 �C 2�2 ˝Xˇ;Xˇ0˛ ��:
Let T D supp.ˇ/ and T 0 D supp.ˇ0/. Let Xi denote the i th column of X: Define

Z0 D
X

i2T\T 0

Xi ; Z1 D
X

i2T nT 0

Xi ; Z2 D
X

i2T 0nT

Xi :

Then, conditional on ˇ and ˇ0, Z0; Z1; Z2 are mutually independent and

Z0 � N .0; sIn/; Z1 � N .0; .k � s/In/; Z2 � N .0; .k � s/In/;

where s D jT \ T 0j D hˇ; ˇ0i. Moreover, Xˇ;Xˇ0 can be expressed as a function
of Z0; Z1; Z2 simply by

Xˇ D Z0 CZ1 and Xˇ0 D Z0 CZ2: (22)

Let Z D ŒZ0; Z1; Z2�
t 2 R3n: Using (21) and (22) and elementary algebra we

have

EY

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

�
D

�2n

.2�2 � 1/n=2
expftZ>AZg; (23)

where

t D
1

2�2.2�2 � 1/
; and A D

242 1 1

1 1 � �2 �2

1 �2 1 � �2

35˝ In 2 R3n�3n;

where by A˝ B we refer to the Kronecker product between two matrices A and B .
Note that Z is a zero-mean Gaussian vector with covariance matrix

V D diag fs; k � s; k � sg ˝ In:
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Note that

AV D

�242 1 1

1 1 � �2 �2

1 �2 1 � �2

35 diag fs; k � s; k � sg

�
˝ In:

It is straightforward to find that the eigenvalues of AV are 0 of multiplicity n, k C s
of multiplicity n, and .k � s/.1 � 2�2/ of multiplicity n: Thus,

det.I3n � 2tAV / D
�
1 � 2t.k C s/

�n�
1 � 2t.k � s/.1 � 2�2/

�n
: (24)

It follows from (23) that

EXEY

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

�
D

�2n

.2�2 � 1/n=2
EZ

�
etZ
>AZ

�
D

�2n

.2�2 � 1/n=2
1p

det.I3n � 2tAV /
; (25)

where the last equality holds if t < 1=2.k C s/ and follows from the expression of
MGF of a quadratic form of normal random variables, see, e.g., [4, Lemma 2].
Combining (24) and (25) yields that if t D 1=2�2.2�2 � 1/ < 1=2.k C s/, then

EXEY

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2
�
.Y /

�
D

�2n

.2�2 � 1/n=2

�
1 �

k C s

�2.2�2 � 1/

��n=2�
1C

k � s

�2

��n=2
D �2n

�
2�2 � 1 �

k C s

�2

��n=2�
1C

k � s

�2

��n=2
:

Note that if 2�2 � 1 > 2k
�2
, then

1

2�2.2�2 � 1/
<

1

2.k C s/

for all 0 � s � k. It follows from (20) that if 2�2 � 1 > 2k=�2, then

EQ�

��
P

Q�

�2�
D �2nES�Hyp.p;k;k/

��
2�2�1�

k C S

�2

��n=2�
1C

k � S

�2

��n=2�
:

We establish also the following lemma.
Lemma 1. Suppose k � p 12�ı for an arbitrarily small fixed constant ı 2

�
0; 1
2

�
and

k=�2 � C for a sufficiently large constant C only depending on ı. If n satisfies
condition (9), then

ES�Hyp.k;k;p/

��
1 �

S

k C �2

��n�
D 1C op.1/: (26)
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Proof. The lemma readily follows by combining Lemma 6 and Lemma 7 with

˛ D
log log.p=k/
log.p=k/

and c D p�1=2�ı :

Proof of Theorem 1. Using Proposition 1 for � D �0 satisfying �20 D k=�2 C 1 we
have

�2.P kQ�0/ D ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n�
� 1:

Using now Lemma 1 we have �2.P kQ�0/ D o.1/. The chain of inequalities (5)
concludes the proof of Theorem 1.

3.2. Proof of Theorem 2.

Proof. For notational simplicity we denote in this proof the probability measureQ�0
simply byQ and the event E
;� by E:

We first show that (13) implies D.PEkQ/ D o.1/, TV.PE ;Q/ D o.1/, and
TV.P;Q/ D o.1/:
It follows from (5) thatD.PEkQ/ D o.1/ and TV.PE ;Q/ D o.1/: Observe that

under our choice of � and 
 , Lemma 8 implies that

PfEcg � exp
�
�
n


8

�
D exp

�
�
˛k log.p=k/

8

�
� exp

�
� 4k log log.p=k/

�
D op.1/: (27)

Thus, in view of (8), we get that

TV.P;Q/ �
�
1 � PfEcg

�
TV.PE ;Q/C PfEcgTV.PEc ;Q/

� TV.PE ;Q/C PfEcg D o.1/:

Nextweprove (13). Wefirst consider the casewhere� satisfies�>
p
k=�2 C 1=2;

we then restrict to � D
p
k=�2 C 1. In view of (7), we have

PE.X; Y /

Q.X; Y /
D

1

Q.Y /Q.X/
Eˇ

�
P.X/P.Y jX;ˇ/1fEg.X; ˇ/

PfEg

�
D Eˇ

�
P.Y jX;ˇ/1fEg.X; ˇ/

Q.Y /PfEg

�
;

where the last equality holds because P.X/ D Q.X/. Hence,�
PE.X; Y /

Q.X; Y /

�2
D Eˇ??ˇ 0

�
P.Y jX;ˇ/P.Y jX;ˇ0/1fEg.X; ˇ/1fEg.X; ˇ0/

Q2.Y /P2fEg

�
;
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where ˇ0 is an independent copy of ˇ. Recall PfEg D 1 � o.1/. Therefore,

EQ

��
PE

Q

�2�
D .1C o.1//

� Eˇ??ˇ 0EX

�
EY Œ

P.Y jX;ˇ/P.Y jX;ˇ0/

Q2.Y /
�1fEg.X; ˇ/1fEg.X; ˇ0/

�
:

It follows from (21) that

EY

�
P.Y jX;ˇ/P.Y jX;ˇ0/

Q2.Y /

�
D

�2n

.2�2 � 1/n=2

� exp
�
kX.ˇ C ˇ0/k2 � .2�2 � 1/kX.ˇ � ˇ0/k2

4�2.2�2 � 1/

�
:

Combining the last two displayed equations yields that

EQ

��
PE

Q

�2�
D
.1C o.1//�2n

.2�2 � 1/n=2

� Eˇ??ˇ 0EX
h
e
kX.ˇCˇ0/k2�.2�2�1/kX.ˇ�ˇ0/k2

4�2.2�2�1/ 1fEg.X; ˇ/1fEg.X; ˇ0/
i
: (28)

Next we break the right hand side of (28) into two disjoint parts depending on
whether hˇ; ˇ0i � � . We prove that the part where hˇ; ˇ0i � � is 1C o.1/ and the
part where hˇ; ˇ0i > � is o.1/. Combining them we conclude the desired result.
Part 1. Note that

EX

�
exp

�
kX.ˇ C ˇ0/k2 � .2�2 � 1/kX.ˇ � ˇ0/k2

4�2.2�2 � 1/

�
1fEg.X; ˇ/1fEg.X; ˇ0/

�
� 1fhˇ;ˇ 0i��g � EX

�
exp

�
kX.ˇ C ˇ0/k2 � .2�2 � 1/kX.ˇ � ˇ0/k2

4�2.2�2 � 1/

��
1fhˇ;ˇ 0i��g:

(29)

Since hˇ C ˇ0; ˇ � ˇ0i D 0 and Xij
i.i.d.
� N .0; 1/, conditional on .ˇ; ˇ0/,

Cov
�
X.ˇ C ˇ0/; X.ˇ � ˇ0/

�
D 0;

and therefore,

X.ˇ C ˇ0/ � N .0; 2.k C s/In/
is independent of

X.ˇ � ˇ0/ � N .0; 2.k � s/In/

for s D hˇ; ˇ0i. Therefore,

EX

�
exp

�
kX.ˇ C ˇ0/k2 � .2�2 � 1/kX.ˇ � ˇ0/k2

4�2.2�2 � 1/

��
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D EX

�
exp

�
kX.ˇ C ˇ0/k2

4�2.2�2 � 1/

��
EX

�
exp

�
�
kX.ˇ � ˇ0/k2

4�2

��
D

�
1 �

.k C s/

�2.2�2 � 1/

��n=2�
1C

.k � s/

�2

��n=2
; (30)

where the last equality holds if � >
p
.k C s/=.2�2/C 1=2 and follows from the

fact that
EZ��2.1/

�
e�tZ

�
D

1
p
1C 2t

for t > �1=2. Combining (29) and (30) yields that if � >
p
k=�2 C 1=2, then

�2n

.2�2 � 1/n=2

� Eˇ??ˇ 0EX

�
e
kX.ˇCˇ0/k2�.2�2�1/kX.ˇ�ˇ0/k2

4�2.2�2�1/ 1fEg.X; ˇ/1fEg.X; ˇ0/
�
1fhˇ;ˇ 0i��g

�
�2n

.2�2 � 1/n=2
Eˇ??ˇ 0

��
1 �

.k C s/

�2.2�2 � 1/

��n=2�
1C

.k � s/

�2

��n=2
1fs��g

�
:

In particular, by plugging in � D
p
k=�2 C 1, we get that

�2n

.2�2 � 1/n=2

� Eˇ??ˇ 0EX

�
e
kX.ˇCˇ0/k2�.2�2�1/kX.ˇ�ˇ0/k2

4�2.2�2�1/ 1fEg.X; ˇ/1fEg.X; ˇ0/
�
1fhˇ;ˇ 0i��g

(a)
�

�
k

�2
C 1

�n
ES�Hyp.p;k;k/

��
1C

.k � S/

�2

��n
1fS��g

�
D ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��g

�
; (31)

where (a) holds by noticing that s D hˇ; ˇ0i follows a Hypergeometric distribution
with parameters .p; k; k/ as the dot product of two uniformly at random chosen
binary k-sparse vectors.
Using Lemma 6 we conclude that under our assumptions, there exists a constant

C > 0 depending only on ı > 0 such that if k=�2 � C then

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��g

�
D 1C o.1/;

concluding the Part 1.

Part 2. By the definition of E , since � � s D hˇ; ˇ0i � k,

kX.ˇ C ˇ0/k2 � EX
�
kX.ˇ C ˇ0/k2

�
.2C 
/ D 2n.k C s/.2C 
/ � 4nk.2C 
/:
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Therefore,

EX

�
exp

(
kX.ˇ C ˇ0/k2 � .2�2 � 1/ kX.ˇ � ˇ0/k

2

4�2.2�2 � 1/

)
1fEg.X; ˇ/1fEg.X; ˇ0/

�
� 1fhˇ;ˇ 0i>�g

� EX

�
exp

�
4nk.2C 
/ � .2�2 � 1/ kX.ˇ � ˇ0/k

2

4�2.2�2 � 1/

��
1fhˇ;ˇ 0i>�g

D exp
�
nk.2C 
/

�2.2�2 � 1/

��
1C

.k � s/

�2

��n=2
1fhˇ;ˇ 0i>�g; (32)

where the first inequality follows from the definition of event E and the last equality
holds due to (30). It follows that

�2n

.2�2 � 1/n=2

� Eˇ??ˇ 0

�
EX

�
e
kX.ˇCˇ0/k2�.2�2�1/kX.ˇ�ˇ0/k

2

4�2.2�2�1/ 1fEg.X; ˇ/1fEg.X; ˇ0/
�
1fhˇ;ˇ 0i>�g

�
�

�2n

.2�2 � 1/n=2
exp

�
nk.2C 
/

�2.2�2 � 1/

�
ES�Hyp.p;k;k/

��
1C

.k � S/

�2

��n=2
1fS>�g

�
(a)
� �nen.1C
=2/ES�Hyp.p;k;k/

��
1C

.k � S/

�2

��n=2
1fS>�g

�
(b)
D en.1C
=2/ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n=2
1fS>�g

�
; (33)

where (a) follows due to 2�2�1 � �2 and 2�2�1 � 2k=�2; (b) follows by plugging
in �2 D k=�2 C 1.
Recall that n � .1�˛/n�. Then under our choice of ˛ and � , applying Lemma 7

with n being replaced by n=2, c D p�1=2�ı , we get that there exists a universal
constant C > 0 such that if k=�2 � C then

en.1C
=2/ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n=2
1fS>�g

�
� exp

�
� ˛k log.p=k/C log..2 � c/=.1 � c//C n

�
1C




2

��
(a)
D exp

�
�
1

4
˛k log.p=k/C log..2 � c/=.1 � c//

�
(b)
� exp

�
� 8k log log.p=k/C log..2 � c/=.1 � c//

�
D op.1/;
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where (a) follows because under our choice of 
 and ˛,

n

�
1C




2

�
� nC

1

2
˛k log.p=k/ � n� C

1

2
˛k log.p=k/ �

3

4
˛k log.p=k/I

(b) holds due to ˛k log.p=k/ � 32k log log.p=k/.
Combing the bounds for Parts 1 and 2, we conclude

�2.PEkQ/ D EQ

��
PE

Q

�2�
� 1 D o.1/;

as desired.

4. Proof of negative results for recovery

4.1. Lower bound on MSE. Our first result provides a connection between the rel-
ative entropy D.P kQ�/ and the MSE of an estimator that depends only a subset of
the observations. This bound is general in the sense that it holds for any distribution
on ˇ with EŒkˇk2� D k. For ease of notation, we write Q� as Q whenever the
context is clear.

Lemma 2. Given an integer n � 2 and an integer m 2 f1; : : : ; n � 1g, let y̌ be an
estimator that is a function of X and the first m observations .Y1; : : : ; Ym/. Then,

MSE. y̌/ � e�
2

n�mD.P kQ/.�2 C k/ � �2: (34)

Proof. The conditional mutual information I.ˇIY j X/ can be rewritten as

I.ˇIY j X/ D E.ˇ;X;Y /�P

�
log

P.Y jX;ˇ/

P.Y jX/

�
D E.ˇ;X;Y /�P

�
log

P.Y jX;ˇ/

Q.Y /

�
C E.X;Y /�P

�
log

Q.Y /

P.Y jX/

�
;

where .ˇ;X; Y / � P denotes that .ˇ;X; Y / are generated according to the planted
model. Plugging in the expression of P.Y jX;ˇ/ andQ.Y /, we get that

E.ˇ;X;Y /�P

�
log

P.Y jX;ˇ/

Q.Y /

�
D
n

2
log.�2/C

1

2
E

�
kY k22
�2�2

�
kY �Xˇk22

�2

�
:

Furthermore, by definition,

E.X;Y /�P

�
log

Q.Y /

P.Y jX/

�
D �D.P kQ/:
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Combining the last three displayed equations gives that

I.ˇIY j X/ D
n

2
log.�2/C

1

2
E

�
kY k22
�2�2

�
kY �Xˇk22

�2

�
�D.P kQ/

D
n

2

�
log

�
�2

1C k=�2

�
C
1C k=�2

�2
� 1

�
C
n

2
log.1C k=�2/ �D.P kQ/

�
n

2
log.1C k=�2/ �D.P kQ/; (35)

where the inequality follows from the fact that log.u/C 1=u � 1 � 0 for all u > 0.
To proceed, we will now provide an upper bound on I.ˇIY j X/ in terms of the

MSE. Starting with the chain rule for mutual information, we have

I.ˇIY j X/ D I.ˇIY m1 j X/C I.ˇIY
n
mC1 j X; Y

m
1 /; (36)

where we have used the shorthand notation Y ji D .Yi ; : : : ; Yj /. Next, we use the fact
that mutual information in the Gaussian channel under a second moment constraint
is maximized by the Gaussian input distribution. Hence,

I.ˇIY m1 j X/ �

mX
iD1

I.ˇIYi j X/

�
m

2
E
�
log

�
E
�
kY1k

2
j X

�
=�2

��
�
m

2
log

�
E
�
kY1k

2
�
=�2

�
�
m

2
log.1C k=�2/; (37)

and

I.ˇIY nmC1 j X; Y
m
1 / �

nX
iDmC1

I.ˇIYi j X; Y
m
1 /

�
n �m

2
log

�
E
�
kYmC1 � E

�
YmC1 j X; Y

m
1

�
k
2
�
=�2

�
�
n �m

2
log

�
1CMSE. y̌/=�2

�
; (38)

where the last inequality holds due to

E
�
kYmC1 � E

�
YmC1 j X; Y

m
1

�
k
2
�
D E

�
kˇ � E

�
ˇ j Y m1 ; X

�
k
2
�
C �2

� MSE. y̌/C �2:

Plugging inequalities (37) and (38) back into (36) leads to

I.ˇIY j X/ �
m

2
log.1C k=�2/C

n �m

2
log.1CMSE. y̌/=�2/: (39)

Comparing (39) with (35) and rearranging terms gives the stated result.
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4.2. Upper bound on relative entropy via conditioning. We now show how a con-
ditioning argument can be used to bound from above the relative entropy. Recall
that (8) implies

D.P kQ/ � .1 � "/D.PEkQ/C "D.PEckQ/: (40)

The next result provides an upper bound on the second term on the right-hand side.
Lemma 3. For any E � Rp �Rn�p we have

"D.PEckQ/ � 2
p
"C

"n

2
log.�2/C

p
" n.1C k=�2/

�2
;

where " D Pf.X; ˇ/ 2 Ecg. In particular, if �2 D 1C k=�2, then

"D.PEckQ/ �
"n

2
log.1C k=�2/C

p
".2C n/:

Proof. Starting with the definition of the conditioned planted model in (7), we have

PEc .X; Y / D
Eˇ
�
P.X; Y j ˇ/1fEcg.X; ˇ/

�
PfEcg

D
P.X/Eˇ

�
P.Y j X;ˇ/1fEcg.X; ˇ/

�
"

Recall that Wij
i.i.d.
� N .0; �2/. It follows that P.Y j ˇ;X/ � .2��2/�n=2, and thus

PEc .X; Y / �
P.X/Eˇ

�
1fEcg.ˇ;X/

�
".2��2/n=2

�
P.X/

".2��2/n=2
:

Therefore, recalling thatQ.X; Y / D P.X/Q.Y /, we have

D.PEckQ/ D EPEc

�
log

PEc .X; Y /

P.X/Q.Y /

�
� EPEc

�
log

1

" .2��2/n=2Q.Y /

�
D log.1="/C

n

2
log.�2/C

E
�
kY k2 j .X; ˇ/ 2 Ec

�
2�2�2

Multiplying both sides by " leads to

"D.PEckQ/ � " log.1="/C
" n

2
log.�2/C

E
�
kY k21fEcg.ˇ;X/

�
2�2�2

The first term on the right-hand side satisfies " log.1="/ � 2
p
". Furthermore, by

the Cauchy–Schwarz inequality,

E
�
kY k21fEcg.ˇ;X/

�
�

q
E
�
1fEcg.X; ˇ/

�
E
�
kY k4

�
D
p
"n.2C n/.k C �2/;

where we have used the fact that kY k2=.k C �2/ has a chi-squared distribution
with n degrees of freedom. Combining the last two displayed inequalities and using
the inequality nC 2 � 3n leads to the stated result.
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4.3. Proof of Theorem 3.

Proof. First, we prove (14) under the theorem assumptions. Let E be E
;� with 

and � given in Theorem 2. It follows from Theorem 2 that D.PEkQ�0/ D op.1/:

Moreover, it follows from Lemma 8 and k D o.p/ that

" D PfEcg � e�4k log log.p=k/:

Thus, we get from Lemma 3 that for �2 D k=�2 C 1

"D.PEckQ�0/ �
"n

2
log.1C k=�2/C

p
" .2C n/

�
"n�

2
log.1C k=�2/C

p
" .2C n�/

� e�4k log log.p=k/
�
k log.p=k/

�
C 2e�2k log log.p=k/

�
1C

k log.p=k/
log.1C k=�2/

�
D op.1/;

where the last equality holds due to k D o.p/ and k=�2 � C for a sufficiently large
constant C . In view of the upper bound in (40), we immediately get

D.P kQ�0/ D op.1/

as desired.
Next we prove (15). Note that if b.1 � ˛/n�c � 1, then (15) is trivially true.

Hence, we assume b.1 � ˛/n�c � 2 in the following. Applying Lemma 2 with

n D b.1 � ˛/n�c and m D b.1 � ˛/n�c � 1

yields that

MSE. y̌/
k

�

�
1C

�2

k

�
exp

˚
� 2D.P kQ�0/

	
�
�2

k
D 1 � op.1/; (41)

where the last equality holds because D.P kQ�0/ D op.1/ and k=�2 � C for a
constant C .

5. Proof of positive results for recovery and detection

In this section we prove the positive result.

5.1. Proof of Theorem 4. Towards proving Theorem 4, we need the following
lemma.
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Lemma 4. Let X 2Rn�p with i.i.d. N .0; 1/ entries and W �N.0; �2In/. Further-
more, assume that ˇ; ˇ0 2 f0; 1gp are two k-sparse vectors with kˇ � ˇ0k2D2` for
some ` 2 f1; : : : ; kg. Then,

P
˚
kW CX.ˇ � ˇ0/k2 � kW k2

	
�

�
1C

`

2�2

��n=2
:

Proof. Let Q.x/ be the complementary cumulative distribution function of the
standard Gaussian distribution, that is for any x 2 R, Q.x/ D P ŒZ � x� for
Z � N .0; 1/. The Chernoff bound givesQ.x/ � e�x2=2 for all x � 0. Then,

P
˚
kW CX.ˇ � ˇ0/k2 � kW k2

	
D P

˚
2W TX.ˇ � ˇ0/C kX.ˇ � ˇ0/k2 � 0

	
D P

�
�W TX.ˇ � ˇ0/

�kX.ˇ � ˇ0/k
�
kX.ˇ � ˇ0/k

2�

�
(a)
D E

�
Q

�
kX.ˇ � ˇ0/k

2�

��
(b)
� E

�
exp

�
�
kX.ˇ � ˇ0/k2

8�2

��
�

�
1C

`

2�2

��n=2
;

where (a) holds because conditioning on X , �W
TX.ˇ�ˇ 0/

�kX.ˇ�ˇ 0/k
� N .0; 1/; (b) holds due

toQ.x/ � e�x2=2; the last inequality follows from kX.ˇ�ˇ0/k2=.2`/ � �2.n/ and
EZ��2.1/

�
e�tZ

�
D

1p
1C2t

for t > 0.

We now proceed with the proof of Theorem 4.

Proof of Theorem 4. First, note that when k D o.p/, (18) readily follows from (17).
In particular, observe that since y̌; ˇ 2 f0; 1gp are binary k-sparse vectors, it follows
that k y̌ � ˇk2 � 2k, and therefore

1

k
MSE. y̌/ D

1

k
E
�
k y̌ � ˇk2

�
�

2

log.p=k/
C 2P

�
k y̌ � ˇk2 �

2k

log.p=k/

�
�

2

log.p=k/
C

2e2

log2.p=k/.1 � e�1/
;

which is op.1/ when k D o.p/:
It remains to prove (17). Set for convenience

d ,
k

log.p=k/
: (42)
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By the definition of the MLE,

kW CX.ˇ � y̌/k2 D kY �X y̌k2 � kY �Xˇk2 D kW k2:

Hence,˚
k y̌ � ˇk2 � 2d

	
D [

k
`�d

˚
9ˇ0 2 f0; 1gp W kˇ0k0 D k; kˇ

0
� ˇk2 D 2`;

kW CX.ˇ � ˇ0/k2 � kW k2
	
:

By a union bound and Lemma 4, we have that

P
˚
k y̌ � ˇk2 � 2d

	
�

kX
`�d

 
k

`

! 
p � k

`

!�
1C

`

2�2

��n=2
(a)
�

kX
`�d

�
ke

`

�`�
pe

`

�`�
1C

`

2�2

��n=2
(b)
�

kX
`�d

�
e2pk

d2

�`�
1C

`

2�2

��n=2
,

kX
`�d

exp.h.`/ � `/; (43)

where (a) holds due to
�
m1
m2

�
� .em1=m2/

m2 ; (b) holds due to ` � d ; and

h.x/ , �
n

2
log

�
1C x=2�2

�
C x log

�
e3pk=d2

�
:

Note that h.x/ is convex in x; hence the maximum of h.`/ for ` 2 Œd; k� is achieved
at either ` D d or ` D k, i.e.,

max
d�`�k

h.`/ � max fh.d/; h.k/g : (44)

We proceed to bound from above h.d/ and h.k/. Note that by assumption (16),

n �
2k log.p=k/
log

�
1C k=2�2

��1C 4 log log.p=k/
log.p=k/

�
: (45)

Then we conclude that

h.k/ D �
n

2
log

�
1C k=2�2

�
C k log

�
e3pk=d2

�
(45)
� �k log.p=k/ � 4k log log.p=k/C k log

�
e3pk=d2

�
(42)
� �k log.p=k/ � 4k log log.p=k/C k log

�
e3pk log2.p=k/

k2

�
D �2k log log.p=k/C 3k: (46)
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Analogously, we can bound from above h.d/ as follows:

h.d/ D �
n

2
log

�
1C d=2�2

�
C d log

�
e3pk=d2

�
(45)
� �

�
1C

4 log log.p=k/
log.p=k/

�
k log.p=k/

log.1C k=.2�2//
log

�
1C d=2�2

�
C d log

�
e3pk=d2

�
: (47)

Let
q.x/ , log

�
1C x=2�2

�
�
x

k
log

�
1C k=2�2

�
:

Note that q.x/ is concave in x, q.0/ D 0, and q.k/ D 0. Thus,

min
0�x�k

q.x/ � min
˚
q.0/; q.k/

	
� 0:

Hence, q.d/ � 0, i.e.,

k log
�
1C d=2�2

�
� d log

�
1C k=2�2

�
:

Combining the last displayed equation with (47) gives that

h.d/ � �

�
1C

4 log log.p=k/
log.p=k/

�
d log.p=k/C d log

�
e3pk=d2

�
(42)
� �d log.p=k/ � 4d log log.p=k/C d log

�
e3pk log2.p=k/

k2

�
� �2d log log.p=k/C 3d:

Combining the last displayed equation with (46) and (44), we get that

max
d�`�k

h.`/ � �2d log log.p=k/C 3d:

Combining the last displayed equation with (43) yields that

P
˚
k y̌ � ˇk2 � 2d

	
� e�2d log log.p=k/C3d

kX
`�d

e�`

� e�2d log log.p=k/C3d
e�d

1 � e�1

� e�2 log log.p=k/
e2

1 � e�1

D
e2

.1 � e�1/ log2.p=k/
;

where the last inequality holds under the assumption log log.p=k/ � 1. This com-
pletes the proof of Theorem 4.
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5.2. Proof of Theorem 5.

Proof. We start with the observation that under the null model, we have for any � > 0.

Q.T .X; Y / � �/ �M�n=2: (48)

To prove this, notice that under the null model it holds,

T .X; Y / D
minˇ2f0;1gp ;kˇk0Dk k�W �Xˇk2

k�W k2
:

Using the union bound, we have for any � > 0,

Q.T .X; Y / � �/ �
X

ˇ2f0;1gp ;kˇk0Dk

P

�
k�W �Xˇk2

k�W k2
� �

�
�M sup

ˇ2Rp
P

�
k�W �Xˇk2

k�W k2
� �

�
;

whereM D
�
p
k

�
. Conditional on the event fW Dwg, it follows that k�w �Xˇk2=kˇk2

has a noncentral chi-square distribution with n degrees of freedom and noncentrality
parameter �2kwk2=kˇk2. Thus,

sup
ˇ2Rp

P

�
k�W �Xˇk2

k�W k2
� �

�
� E

�
sup
ˇ2Rp

P

�
k�W �Xˇk2

k�W k2
� � j kW k

��
D sup
u�0

P
˚
�2NC.n; u/ � u�

	
; (49)

where �2NC.n; u/ denotes a noncentral chi-square variable with n degrees of freedom
and noncentrality parameter u. For all � � 0 the Chernoff bound yields

P
˚
�2NC.n; u/ � u�

	
� E

�
exp

�
�u�

2
�
�

2
�2NC.n; u/

��
D exp

�
�u�

2
�
�

2

u

1C �
�
n

2
log.1C �/

�
:

Evaluating the above displayed equation with � D maxf1=� � 1; 0g leads to

Pf�2NC.n; u/ � u�g � �
n=2:

Combining it with (49) yields that for any � > 0 (48) holds.
We divide the rest of the proof into two cases depending on whether n� diverges

or not. LetM D
�
p
k

�
and s D k=�2.

Case 1: log.1C s/ D o.logM/. In this case, n� D !.1/. Under the planted model,
we have

T .X; Y / �
kW k2

kW CXˇk2
:
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For any � > 0, introducing Z , �kW CXˇk2=�2 � kW k2=�2, we observe

kW k2

kW CXˇk2
� � ” Z � 0:

Recalling that W=� and Xˇ=
p
k are independent standard Gaussian vectors, we

rewrite Z as

Z D

�
W=�

Xˇ=
p
k

�
‰
�
W=� Xˇ=

p
k
�
; where ‰ ,

�
� � 1 �

p
s

�
p
s �s

�
:

It follows thatZ is equal in distribution to the random variable �1AC�2B , whereA,
B are i.i.d. chi-squared random variables �2.n/ with n degrees of freedom, and �1
and �2 are the eigenvalues of ‰. Hence, if � > 1=.1C s/, then

EŒZ� D nTr.‰/ D nŒ.1C s/� � 1� > 0

and by Chebyshev’s inequality,

PfZ � 0g �
var.Z/
EŒZ�2

D
2Tr.‰2/
nTr.‰/2

:

Noting that

Tr.‰2/ D 1 � 2� C �2 C 2s�2 C s2�2 D Œ.1C s/� � 1�2 C 2s� D Tr.‰/2 C 2s�

and combining the above displays leads to

P.T .X; Y / � �/ D PfZ � 0g �
2

n

�
1C

2s�

Œ.1C s/� � 1�2

�
for � > 1=.1C s/:

(50)
In particular, choose

� D
1C

p
st=.1C s/n

1C s
(51)

for some choice of t > 0 such that t D !.1/. We get

P.T .X; Y / � �/ �
2

n

 
1C 2s

1C
p
st=.1C s/n

1C s

.1C s/n

st

!
D
2

n
C
4

t
C 4

p
s=.1C s/nt D o.1/;

where the last equality holds as n � n� D !.1/ and t D !.1/.
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Meanwhile, under the null model, plugging the choice of � as per (51) in (48),
we have

logQ.T .X; Y / � �/
(a)
� logM �

n

2
log.1C s/C

1

2

p
stn=.1C s/

(b)
� logM �

n

2
log.1C s/C

p
tn log.1C s/

2

(c)
� �

�n log.1C s/
2.1C �/

C

p
tn log.1C s/

2

(d)
! �1I

where (a) holds due to log.1 C x/ � x; (b) holds due to s=.1 C s/ � log.1 C s/;
(c) holds by assumption that

n � .1C "/
2 logM
log.1C s/

; where � D

s
log logM
logM

I

(d) holds by choosing !.1/ � t � o.log logM/ and noting that

n log.1C s/ � 2 logM:

In conclusion, we get that P.T .X; Y / � �/CQ.T .X; Y / � �/! 0:

Case 2: log.1C s/ D �.logM/. In this case, s D !.1/ and n� D O.1/. Under the
planted model, letting A;B � N .0; In/ be independent standard Gaussian vectors,
we have

.1C s/kW k2

kW CXˇk2
dist
D

.1C s/kAk2

kAC
p
sBk2

D
kAk2

q 1

1Cs
AC

q
s
1Cs

B


2 a.s.
�!
kAk2

kBk2
: (52)

Note that the ratio kAk2=kBk2 has a beta prime distribution, and satisfies

P
˚
kAk2=kBk2 � t

	
D o.1/ for t D !.1/:

Let
� D

t

1C s
:

As a consequence,

P.T .X; Y / � �/ � P

�
.1C s/kW k2

kW CXˇk2
� t

�
D P

�
kAk2

kBk2
� t

�
C o.1/ D o.1/:

Under the null model, it follows from (48) that

logQ.T .X; Y / � �/ � logM �
n

2
log.1C s/C

n

2
log t

� �
�n log.1C s/
2.1C �/

C
n

2
log t ! �1;
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where the second inequality holds under the assumption that

n log.1C s/ � 2.1C �/ logM;

and the last equality holds by choosing !.1/ � log t � o.
p
logM.log logM// and

noting that

� log.1C s/ D �.� logM/ D �.
p
logM.log logM//:

In conclusion, we also get that P.T .X; Y / � �/CQ.T .X; Y / � �/! 0:

6. Conclusion and future work

In this paper, we establish an all-or-nothing information-theoretic phase transition
for recovering a k-sparse vector ˇ 2 f0; 1gp from n independent linear Gaussian
measurements Y D XˇCW with noise variance �2. In particular, we show that the
MMSE normalized by the trivial MSE jumps from 1 to 0 at a critical sample size

n� D
2k log.p=k/
log.1C k=�2/

within a small window of size �n�. The constant � > 0 can be made arbitrarily
small by increasing the signal-to-noise ratio k=�2. Interestingly, the phase transition
threshold n� is asymptotically equal to the ratio of entropy H.ˇ/ and the AWGN
channel capacity 1

2
log.1 C k=�2/. Towards establishing this all-or-nothing phase

transition, we also study a closely related hypothesis testing problem, where the
goal is to distinguish this planted model P from a null model Q� where .X; Y / are
independently generated and Yi

i.i.d.
� N .0; �2�2/. When � D �0 D

p
k=�2 C 1, we

show that the sum of Type-I and Type-II testing errors also jumps from 1 to 0 at n�
within a small window of size �n�.
Our impossibility results for n � .1 � �/n� apply under a crucial assumption

that k � p1=2�ı for some arbitrarily small but fixed constant ı > 0. This naturally
implies for �.p1=2/ � k � o.p/, two open problems for the identification of the
detection and the recovery thresholds, respectively.
For detection, as argued in Appendix C, k D o.p1=2/ is needed for n� being

the detection threshold, because weak detection is achieved for all n D �.n�/ when
k D �.p1=2/, that is the weak detection threshold becomes o.n�/. The identification
of the precise detection threshold when �.p1=2/ � k � o.p/ is an interesting open
problem.
For recovery, however, we believe that the recovery threshold still equals n�

when �.p1=2/ � k � o.p/. To prove this, we propose to study the detection
problem where both the (conditional) mean and the covariance are matched between



38 G. Reeves, J. Xu, and I. Zadik

the planted and null models. Specifically, let us consider a slightly modified null
modelQ with the matched conditional mean

EQŒY jX� D EP ŒY jX� D
k

p
X1

and the matched covariance

EQŒY Y
>� D EP ŒY Y

>�;

where 1 denotes the all-one vector. For example, if X;W are defined as before and

Y ,
k

p
X1C �W

with � equal to
p
k=�2 C 1 � k2=p, then both the mean and covariance constraints

are satisfied. It is an open problem whether this new null model is indistinguishable
from the planted model P when n � .1 � �/n� and �.p1=2/ � k � o.p/. If the
answer is affirmative, then we may follow the analysis road map in this paper to
further establish the impossibility of recovery.
Finally, another interesting question for future work is to understand the extent

to which the all-or-nothing phenomenon applies beyond the binary vectors setting or
the Gaussian assumptions on .X;W /. In this direction, some recent work [37] has
shown that under mild conditions on the distribution of ˇ, the distance between the
planted and null models can be bounded in term of “exponential moments” similar
to the ones studied in Appendix A.
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A. Hypergeometric distribution and exponential moment bound

Throughout this subsection, we fix

�2 D k=�2 C 1 and � D k

�
1 �

1

log2 �2

�
: (53)

The main focus of this subsection is to give tight characterization of the following
“exponential” moment:

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS2Œa;b�g

�



The all-or-nothing phenomenon in sparse linear regression 39

for a given interval Œa; b�. It turns out this “exponential”moment exhibit quantitatively
different behavior in the following three different regimes of overlap S : small regime
(s � �k), intermediate regime (�k < s � � ), and large regime (s � � ), where � is
given in (55).
In the sequel, we first prove Lemma 6, which focuses on the small and intermediate

regimes under the assumption n � n�. Then we prove Lemma 7, which focuses on
the large regime under the assumption n � .1 � ˛/n�=2 for ˛ 2 .0; 1=2/.
We startwith a simple lemma, bounding the probabilitymass of an hypergeometric

distribution.

Lemma 5. Let p; k 2 N. Then for S � Hyp.p; k; k/ and any s 2 Œk�,

P .S D s/ �

 
k

s

!�
k

p � k C 1

�s
:

Proof. We have

P .S D s/ D

 
k

s

!�
p�k
k�s

��
p
k

� �  k
s

!�
p
k�s

��
p
k

�
D

 
k

s

!
.p � k/Š.k/Š

.p � k C s/Š.k � s/Š
�

 
k

s

!�
k

p � k C 1

�s
:

Next, we bound from above the “exponential” moment in the small overlap regime
(s � �k), and the intermediate overlap regime (�k < s � � ).

Lemma 6. Suppose n � n�.

� If k�p 12�ı for an arbitrarily small but fixed constant ı2
�
0; 1
2

�
and k=�2�C.ı/

for a sufficiently large constant C.ı/ only depending on ı, then for any 0��� 1
2
,

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��kg

�
D 1C op.1/; (54)

� If k D o.p/ and k=�2 � C for a sufficiently large universal constant C , then for

� D �k;p D
log log.p=k/
2 log.p=k/

; (55)

it holds that

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1f�k<S��g

�
D op.1/; (56)
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Proof. Using Lemma 5,

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��g

�
D PfS D 0g C

b�cX
sD1

 
k

s

!�
k

p � k C 1

�s
e�n log.1�s=.kC�

2//:

Note that

PfS D 0g D

�
p�k
k

��
p
k

� � �1 � k
p

�k
� 1 � k2=p D 1C op.1/;

where the last equality holds due to k � p1=2�ı for some constant ı 2 .0; 1=2/.
Thus, to show (54) it suffices to show

b�kcX
sD1

 
k

s

!�
k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

D op.1/;

and to show (56) it suffices to show
b�cX

sDd�ke

 
k

s

!�
k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

D op.1/;

We first prove (54).

Proof of (54). Using the fact that
�
k
s

�
� ks , we have

b�kcX
sD1

 
k

s

!�
k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

�

b�kcX
sD1

ks
�

k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

D

b�kcX
sD1

e
�s log p�kC1

k2
�n� log.1�s=.kC�2//

D

b�kcX
sD1

ef .s/�s log..p�kC1=p/;

where for s 2 Œ1; �k� let the real-valued function f be given by

f .s/ D �s log.p=k2/ � n� log
�
1 � s=.k C �2/

�
:

Claim 1. Suppose k � p
1
2�ı for a constant ı 2

�
0; 1
2

�
and � � 1

2
. There exists

a constant C1 D C1.ı/ > 0, such that if k=�2 � C1 then it holds that for any
s 2 Œ1; �k�,

f .s/ � �
1

2
s log.p=k2/:
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Proof of the claim. Standard calculus implies that for x 2 .0; 1/,

log.1 � x/ � �.1C x/x:

Hence, for 0 � x � � � 1=2,

log.1 � x/ � �.1C �/x: (57)

Using this inequality it follows that since for any s 2 Œ1; �k�,
s

k C �2
� �;

it also holds that

f .s/ � �s log.p=k2/C n�.1C �/
s

k C �2

D s

�
� log.p=k2/C

n.1C �/

k C �2

�
� �

1

2
s log.p=k2/;

where the last inequality holds under the assumption that

n� �
.k C �2/ log.p=k2/

2.1C �/
:

Recall that n� D 2k log.p=k/
log.1Ck=�2/ . Hence, it suffices to show that

2k log.p=k/
log.1C k=�2/

�
.k C �2/ log.p=k2/

2.1C �/
;

which holds if and only if�
1 �

4.1C �/

.1C �2=k/ log.1C k=�2/

�
log.p=k/ � log k: (58)

By assumption, k � p1=2�ı for ı 2
�
0; 1
2

�
. Hence, (58) is satisfied if

1 �
4.1C �/

.1C �2=k/ log.1C k=�2/
�
1=2 � ı

1=2C ı
:

Since � � 1
2
, there exists a constant C1 D C1.ı/ > 0 depending only on ı such that

if k=�2 � C1 then the last displayed equation is satisfied. This completes the proof
of the claim.

Using the above claim we conclude that
b�kcX
sD1

ef .s/�s log..p�kC1/=p/ �

b�kcX
sD1

e�
1
2 s.log.p=k

2/C2 log..p�kC1/=p//

�
e�

1
2 log..p�kC1/

2=pk2/

1 � e�
1
2 log..p�kC1/2=pk2/

D op.1/;

where the last equality holds since k � p 12�ı .



42 G. Reeves, J. Xu, and I. Zadik

Next we prove (56). Again it suffices to prove (56) for n D n�.

Proof of (56). Note that
�
k
s

�
� 2k : Hence,

b�cX
sDd�ke

 
k

s

!�
k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

� 2k
b�cX

sDd�ke

�
k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

D 2k
b�cX

sDd�ke

e�s log.p=k/�n
� log.1�s=.kC�2//�s log..p�kC1/=p/:

Define for s 2 Œ0; k�, the function g given by

g.s/ , �s log.p=k/ � n� log
�
1 � s=.k C �2/

�
: (59)

The function g is convex in s for �k � s � � , as the addition of two convex functions.
Hence, the maximum of g.s/ over s 2 Œ�k; �� is achieved at either s D �k or s D � .
Thus it suffices to bound from above g.�k/ and g.�/.

Claim 2. There exist a universal constant C2 > 0 such that if k=�2 � C2, then
g.�/ � �1

2
k log.p=k/ and g.�k/ � � �k

2
log.p=k/.

Proof of the claim. We first bound from above g.�/.

g.�/ � �� log.p=k/ � n� log
�
1 � �=k

�
D �

�
1 �

1

log2 �2

�
k log.p=k/C

4k log.p=k/ log log.�2/
log.�2/

;

where the last equality holds by plugging in the expressions of � and n�.
Recall that �2 D 1C k=�2. Hence, there exists a universal constant C2 > 0 such

that if k=�2 � C2, then

�

�
1 �

1

log2 �2

�
k log.p=k/C

4k log.p=k/ log log.�2/
log.�2/

� �
1

2
k log.p=k/:

Combining the last two displayed equations yields that g.�/ � �1
2
k log.p=k/.

For g.�k/, applying (57), we get that

g.�k/ D ��k log.p=k/ � n� log
�
1 �

�k

k C �2

�
� ��k log.p=k/C

n��k

k C �2
.1C �/ D �k

�
� log.p=k/C

n�.1C �/

k C �2

�
:
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Note that we can conclude g.�k/ � � �k
2
log.p=k/ if

� log.p=k/C
n�.1C �/

k C �2
� �

1

2
log.p=k/;

which holds if and only if

n� D
2k log.p=k/
log.1C k=�2/

�
.k C �2/ log.p=k/

2.1C �/
;

or equivalently
4.1C �/

.1C �2=k/ log.1C k=�2/
� 1:

Note that there exists a universal constant C2 > 0 such that if k=�2 � C2 then the
last displayed inequality is satisfied and hence g.�k/ � � �k

2
log.p=k/where the last

inequality holds by choosing C2 sufficiently large.

Using the above claim we now have that if k=�2 � C2,
b�cX

sDd�ke

 
k

s

!�
k

p � k C 1

�s
e�n
� log.1�s=.kC�2//

� 2k
b�cX

sDd�ke

eg.s/�s log..p�kC1/=p/

� ek log2Clogk�
�k
2 log.p=k/�k log..p�kC1/=p/ D op.1/;

where the last equality holds due to log k � k, k D o.p/, and that
�k

2
log.p=k/ D �

k

4

log log.p=k/
log.p=k/

log.p=k/ D �
k

4
log log.p=k/:

Finally, we bound from above the “exponential” moment in the large overlap
regime (s � � ) where � is defined in (53).
Lemma 7. Suppose that k � cp for c 2 .0; 1/ and k=�2 � C for a sufficiently large
universal constant C . If n � 1

2
.1 � ˛/n� for some ˛ � 1

2
, then

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��g

�
� exp

�
� ˛k log.p=k/C log..2 � c/=.1 � c//

�
: (60)

Proof. Using Lemma 5, we get that

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��g

�
�

kX
sDb�c

 
k

s

!�
k

p � k C 1

�s
e�n log.1�s=.kC�

2//
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�

kX
sDb�c

 
k

s

!
e�s log.p=k/�n log.1�s=.kC�

2//�s log..p�kC1/=p/

D

kX
sDb�c

 
k

s

!
egn.s/�s log..p�kC1/=p/;

where gn.s/ is given by

gn.s/ , �s log.p=k/ � n log
�
1 � s=.k C �2/

�
:

Note that gn.s/ is convex in s for � � s � k. Hence, the maximum of gn.s/ over
s 2 Œ�; k� is achieved at either s D � or s D k: In view of (59) and Claim 2, for
all n � n�.

gn.�/ � gn�.�/ D g.�/ � �
1

2
k log.p=k/:

Thus, it remains to bound from above gn.k/.

Claim 3. Assume n � 1
2
.1 � ˛/n� for some ˛ > 0. Then gn.k/ � �˛k log.p=k/.

Proof of the claim. For all n � 1
2
.1 � ˛/n�,

gn.k/ D �k log.p=k/ � n log
�
1 � k=.k C �2/

�
D �k log.p=k/C

1

2
.1 � ˛/n� log

�
1C k=�2/

�
D �k log.p=k/C .1 � ˛/k log.p=k/ D �˛k log.p=k/:

In view of the above claim and the assumption that ˛ � 1=2, we conclude that
for all n � 1

2
.1 � ˛/n�,

ES�Hyp.p;k;k/

��
1 �

S

k C �2

��n
1fS��g

�
�

kX
kDb�c

 
k

s

!
e�˛k log.p=k/�s log..p�kC1/=p/

� e�˛k log.p=k/
kX
sD0

 
k

s

!�
p

p � k C 1

�s
� e�˛k log.p=k/

�
1C

p

p � k C 1

�k
� e�˛k log.p=k/Ck log..2�c/=.1�c//;

where the last equality holds due to the assumption k � cp.



The all-or-nothing phenomenon in sparse linear regression 45

B. Probability of the conditioning event

In this section, we bound from above the probability that the conditioning event does
not happen.
Lemma 8. Consider the set E
;� defined in (11). Let � D k.1��/ for some � 2 Œ0; 1�.
Then we have

Pf.X; ˇ/ 2 Ec
;�g � exp
�
�
n


4
C �k log

�
e2p=�2k

��
:

Furthermore, for

� D
1

log2.1C k=�2/
and 
 �

k log.p=k/
n log.1C k=�2/

_
k

n

there exists a universal constant C > 0 such that if k=�2 � C , then

Pf.X; ˇ/ 2 Ec
;�g � exp
n
�
n


8

o
:

Proof. Fix ˇ to be a k-sparse binary vector in f0; 1gp . Let ˇ0 denote another k-sparse
binary vector and s D hˇ; ˇ0i. We haveX.ˇCˇ0/ � N .0; 2.kCs/In/ and therefore

kX.ˇ C ˇ0/k2

2.k C s/
� �2n:

Observe also that the number of different ˇ0 with hˇ; ˇ0i � � is at most

b�kcX
`D0

 
k

`

! 
p � k

`

!
by counting on the different choices of positions of the entries where ˇ0 differ from ˇ.
Combining the two observations it follows from the union bound that

P
˚
.X; ˇ/ 2 Ec
;� j ˇ

	
� Q�2n.n.2C 
//

b�kcX
`D0

 
k

`

! 
p � k

`

!
; (61)

whereQ�2n.x/ is the tail function of the chi-square distribution.
For all x > 0, we have (see, e.g., [29, Lemma 1]:

Q�2n

�
n.1C

p
x C x=2/

�
� exp.�nx=4/: (62)

Noting thatp
 C 
=2 � 1C 
 for all 
 > 0, we see that

Q�2n

�
n.2C 
/

�
� expf�n
=4g:
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Next, using the inequalities
�
a
b

�
� .ae=b/b for a; b 2 Z>0 with a < b, x !

x log x decreases in
�
0; 1
e

�
, and

Pd
iD0

�
m
i

�
� .me=d/d for d;m 2 Z>0 with d < m

(see, e.g., [28]), we get that

b�kcX
`D0

 
k

`

! 
p � k

`

!
�

b�kcX
`D0

�ek
`

�` p � k
`

!

�

�e
�

��k b�kcX
`D0

 
p � k

`

!
�

�e2p
�2k

��k
:

Combining the above expressions completes the first part of the proof of the lemma.
For the second part, note that under our choice of �,

�
n


4
C �k log.e2p=�2k/ D �

n


4
C
k
�
log.p=k/C 4 log log.1C k=�2/C 2

�
log2.1C k=�2/

:

Under the choice of 
 , there exists a universal constantC > 0 such that if k=�2 � C ,
then

n


16
�

k log.p=k/
log2.1C k=�2/

;

n


16
�
k
�
4 log log.1C k=�2/C 2

�
log2.1C k=�2/

:

Combining the last two displayed equation yields that

�
n


4
C �k log.e2p=�2k/ � �

n


8
:

This completes the proof of the lemma.

C. The reason k D o.p1=2/ is needed for weak detection threshold n�

This section shows that weak detection between the planted model P and the null
model Q� is possible for any choice of � > 0 and for all n D �p.n

�/, if k D
�p.p

1=2/, k=�2 D �p.1/, and log.p=k/ D �p.log.1C k=�2//. In particular, we
show the following proposition.
Proposition 2. Suppose

nk2

p.k C �2 � k2=p/
D �p.1/: (63)

Then weak detection is information-theoretically possible.
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Remark 1. If k=�2 D �p.1/ and k=p is bounded away from 1, then (63) is
equivalent to

nk

p
D �p.1/:

Recall that
n� D

2k log.p=k/
log.1C k=�2/

:

Therefore, if furthermore k D �p.p1=2/ and log.p=k/ D �p.log.1Ck=�2//, then
n�k=p D �p.1/, and hence weak detection is possible for all n D �p.n�/.

Proof. Let x̌ D EŒˇ� and consider the test statistic

T .X; Y / D
˝
Y;X x̌

˛
I

we declare planted model if T .X; Y / � 0 and null model otherwise. Let A;B be
independent n-dimensional standard Gaussian vectors. Then we have that

.X x̌; Y /
d
D

(�p
k2=p A;

p
k2=p AC

p
k C �2 � k2=p B

�
if .X; Y / � P;�p

k2=p A; ��B
�

if .X; Y / � Q�:

Hence,
Q�

� ˝
Y;X x̌

˛
� 0

�
D
1

2
;

and

P
� ˝
Y;X x̌

˛
� 0

�
D E

�
Q

�s
k2=p

k C �2 � k2=p
kAk

��
;

where
Q.x/ D

Z 1
x

.2�/�1=2 exp.�t2=2/ dt

is the tail function of the standard Gaussian. Therefore, as long ass
k2=p

k C �2 � k2=p
kAk

does not converge to 0 in probability, then P
� ˝
Y;X x̌

˛
� 0

�
� 1=2 � � for some

positive constant � > 0. Thus,

P
� ˝
Y;X x̌

˛
< 0

�
CQ�

� ˝
Y;X x̌

˛
� 0

�
� 1 � �I

hence, weak detection is possible. Since kAk22 � �2n highly concentrates on n, it
follows that if

nk2

p.k C �2 � k2=p/
D �p.1/; (64)

then weak detection is possible.
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D. Prior distribution and other types of recovery

D.1. The uniform prior is the least favorable prior. All the recovery results of
the present work are under the assumption of ˇ being a binary k-sparse vector
chosen uniformly at random. One can naturally wonder how much restrictive is this
assumption. In this section we establish that in our setting the uniform prior is the
least favorable prior, or, in other words, the MMSE under the uniform prior matches
the minimax risk. The result follows by appropriately exploiting the fact that the joint
distribution of the columns of X is permutation invariant.
More formally, assume the uniform prior on ˇ and the model generated according

to (1). Now let L.X; Y j ˇ/ denote the law of .X; Y / conditional on ˇ. Then the
following “invariance” holds:

L.X; Y j ˇ/ D L.X…>; Y j …ˇ/ for any p � p permutation matrix… : (65)

This follows from the straightforward identities

L.X j ˇ/ D L.X/ D L.X…>/ D L.X…> j ˇ/

and L.Y j X;ˇ/ D L.Y j X…>;…ˇ/:

This invariance allows us to establish the claimed result.
Proposition 3. Given a binary k-sparse p-dimensional vector ˇ, let Y;X;W gener-
ated according to (1). Then it holds that

inf
y̌

sup
ˇ2f0;1gp Wkˇk0Dk

E
�
kˇ � y̌k2

�
D inf
y̌

Eˇ�Unif
�
E
�
kˇ � y̌k2

��
;

where the infimum is taken over all measurable estimators y̌ D y̌.Y;X/ and by Unif
we denote the uniform distribution over binary k-sparse p-dimensional vectors.
Proposition 3 shows that the minimax risk is equal to the MMSE under the uni-

form prior. Hence, our main result on the sharp “all-or-nothing” phenomenon for
the MMSE under the uniform prior holds for the minimax risk as well.
We now proceed with the proof of Proposition 3.

Proof of Proposition 3. Let ˇ� be an arbitrary binary k-sparse p-dimensional vector
and… be an arbitrary p � p permutation matrix. It holds

E
�
kˇ � EŒˇ j X; Y �k2 j ˇ D …ˇ�

�
D E

�
k…ˇ� � EŒˇ j X; Y �k2 j ˇ D …ˇ�

�
(a)
D EŒkˇ� � E

�
…>ˇ j X; Y

�
k
2
j ˇ D …ˇ��

(b)
D EŒkˇ� � E

�
ˇ j X…>; Y

�
k
2
j ˇ D …ˇ��

(c)
D EŒkˇ� � E

�
ˇ j X; Y

�
k
2
j ˇ D ˇ��

D E
�
kˇ � E

�
ˇ j X; Y

�
k
2
j ˇ D ˇ�

�
;
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where (a) follows from…>… D I , (b) follows from

L.ˇ j X…>; Y / D L.…>ˇ j X; Y /

due to (65), and (c) follows from (65). The last displayed equation immediately
implies that

sup
ˇ2f0;1gp Wkˇk0Dk

E
�
kˇ � E

�
ˇ j X; Y

�
k
2
�
D Eˇ�Unif

�
E
�
kˇ � E

�
ˇ j X; Y

�
k
2
��

Therefore, for any measurable estimators y̌ D y̌.Y;X/,

inf
y̌

sup
ˇ2f0;1gp Wkˇk0Dk

E
�
kˇ � y̌k2

�
� Eˇ�Unif

�
E
�
kˇ � E

�
ˇ j X; Y

�
k
2
��

D inf
y̌

Eˇ�Unif
�
E
�
kˇ � y̌k2

��
;

where the last equality holds because EŒˇ j X; Y � is the MMSE estimator. On the
contrary, using the elementary fact that the average of a finite set of real numbers is
upper bounded by the maximum of these numbers, it follows that

inf
y̌

Eˇ�Unif
�
E
�
kˇ � y̌k2

��
� inf
y̌

sup
ˇ2f0;1gp Wkˇk0Dk

E
�
kˇ � y̌k2

�
:

Combining the two last displayed equations yields the desired identity.

D.2. Recovery in expectation and in probability. All the recovery results of the
present work are stated in terms of squared error in expectation. One can naturally
wonder whether we could get similar guarantees/impossibility results in probability.
We start with a definition.
Definition 5 (Strong andweak recovery in probability). We say that y̌D y̌.Y;X/2Rp

achieves:
� Strong recovery in probability if for any � > 0,

lim sup
p

P
�
k y̌.Y;X/ � ˇk2=k > �

�
D 0I

� Weak recovery in probability if for some � > 0,

lim sup
p

P
�
k y̌.Y;X/ � ˇk2=k > 1 � �

�
D 0:

Recall the corresponding definition of strong/weak recovery in the MSE sense
(Definition 1). It is straightforward to verify that strong recovery with respect toMSE
in expectation implies strong recovery in probability, by Markov’s inequality. We
establish here that the followings also hold.
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Proposition 4. Let p 2 N and three fixed sequences of p, n D np , k D kp ,
�2 D �2p . Then the following hold:
� Strong recovery (with respect to MSE) is equivalent with strong recovery in prob-

ability;
� Weak recovery (with respect to MSE) is implied by weak recovery in probability.

Proof. As already discussed, byMarkov’s inequality, it is straightforward to conclude
that strong recovery with respect to MSE implies strong recovery in probability. We
now prove that strong/weak recovery in probability imply strong/weak recovery with
respect to MSE.
Suppose that for some " 2 .0; 1/, Pf 1

k
k y̌ � ˇk2 > "g converges to zero. Weak

recovery implies the existence of such an " 2 .0; 1/ while strong recovery implies
that one can take any such arbitrarily small " > 0. Recall that under our assumptions
1
k
kˇk2 D 1 is bounded. We now define

y̌0 D

(
y̌ for 1

k
k y̌k2 � 4;

0 otherwise:

Let E WD
˚
1
k
k y̌ � ˇk � "

	
. By the triangle inequality,

1

k
k y̌k

2
�
1

k

�
kˇk C kˇ � y̌k

�2
� 2C

2

k
k y̌ � ˇk2;

and thus in the event E , since " < 1, we can conclude that 1
k
k y̌k2 � 4, and therefore

y̌0 D y̌. Hence, it holds that

1

k
E
�
k y̌
0
� ˇk2

�
D
1

k
E
�
k y̌ � ˇk21E

�
C
1

k
E
�
k y̌
0
� ˇk21Ec

�
(66)

� "C 10P
˚
1
k
k y̌ � ˇk � "

	
; (67)

where the second line follows from the definitions of E as well as the bound

1

k
kˇ � y̌0k2 �

2

k
kˇk2 C

2

k
k y̌
0
k
2
� 10:

The assumption of weak recovery (and of course strong recovery) in probability
implies that the second term in (67) converges to zero. Hence, under weak recovery
we conclude

lim sup
p!C1

1

k
E
�
k y̌
0
� ˇk2

�
� ": (68)

Since " 2 .0; 1/ we conclude the weak recovery with respect to MSE. Now, under
the assumption of strong recovery in probability we can take " > 0 arbitrarily small,
and therefore we conclude the strong recovery with respect to MSE.
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D.3. The all-or-nothing phenomenon for Hamming error. In this sectionwe form-
ally show that one of our main results, the all-or-nothing phenomenon for strong/weak
recovery of ˇ, holds also if one considers recovering ˇ with respect to the Hamming
error instead of the MSE.
We start with appropriate definitions. For ˇ chosen uniformly at random from

the set of binary k-sparse vectors, .X; Y / given by (1) and an estimator y̌which is a
function of .X; Y /, we define the Hamming error (HE) as

HE. y̌/ , E
�
k y̌ � ˇk0

�
;

where kvk0 denotes the `0 norm of a vector v, that is the cardinality of the support
of v. In our setting, one can simply choose y̌ D 0, and obtain (the optimal when
k < p=2) trivial Hamming error HE0 D E

�
kˇ � 0k0

�
D k. We will adopt the

following two natural notions of recovery, by comparing the HE of an estimator y̌
to HE0.
Definition 6 (HE-strong and weak recovery). We say that y̌ D y̌.Y;X/ 2 Rp

achieves:
� HE-strong recovery if lim supp!1HE. y̌/=HE0 D 0;

� HE-weak recovery if lim supp!1HE. y̌/=HE0 < 1.
Recall the definitions of strong and weak recovery (with respect to MSE) we used

in the main body of the paper (Definition 1). We establish the following proposition
relating the different notions of recovery.
Proposition 5. Let p 2 N and three fixed sequences of p, n D np , k D kp ,
�2 D �2p . Then the following hold:
� Strong recovery (with respect to MSE) is equivalent with HE-strong recovery;
� Weak recovery (with respect to MSE) is implied by HE-weak recovery.

Note that, under appropriate assumptions, the all-or-nothing phenomenon for
the Hamming error follows directly from our main result and Proposition 5.
Indeed, according to our main result assuming k � p 12�ı for some ı 2 .0; 1/,
and k=�2 !C1 as p ! C1 for any � > 0, if n > .1 C �/n� strong recovery
(with respect to MSE) is possible, while if n < .1 � �/n� weak recovery (with
respect to MSE) is impossible. Using Proposition 5 we immediately conclude that
if n > .1C �/n� HE-strong recovery is possible, while if n < .1 � �/n� HE-weak
recovery is impossible, as we wanted.
More formally, by combining Theorems 3, 4 and Proposition 5 one immediately

obtains the following.
Corollary 1 (All-or-nothing phase transition for Hamming error). Let ı 2

�
0; 1
2

�
and � 2 .0; 1/ be two arbitrary but fixed constants. Then there exists a constant
C.ı; �/ > 0 only depending on ı and �, such that if k=�2 � C.ı; �/, then
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� HE-weak recovery of ˇ from .Y;X/ � P is information-theoretically impossible
when

k � p
1
2�ı and n < .1 � �/n�I

� HE-strong recovery of ˇ from .Y;X/ � P is information-theoretically possible
when

k D o.p/ and n > .1C �/n�:

We now conclude the section with proving Proposition 5.

Proof of Proposition 5. Let us fix any signal ˇ 2 f0; 1gp and estimator y̌ D
y̌.X; Y / 2 Rp . Denote by Œ y̌� the Euclidean projection of y̌ on f0; 1gp and by y̌box
the Euclidean projection of y̌ onto Œ0; 1�p (solving “ties” arbitrarily).
First observe the elementary deterministic inequalities,

k y̌ � ˇk0 � kŒ y̌� � ˇk0 D kŒ y̌� � ˇk
2:

As an immediate corollary, HE-strong (respectively, weak) recovery implies strong
(respectively, weak) recovery with respect to MSE.
Now, observe that using that any projection operator is a contraction and elemen-

tary deterministic inequalities,

k y̌ � ˇk2 � k y̌box � ˇk2 D

pX
iD1

�
y̌box
i � ˇi

�2
�

pX
iD1

1

4
jŒ y̌i � � ˇi j D

1

4
kŒ y̌� � ˇk0:

As an immediate corollary strong recovery with respect to MSE implies HE-strong
recovery. This completes the proof.
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