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Abstract Angular symmetry in nanodiffraction reflects rotational symmetry in the sample. We introduce 
the angular symmetry coefficient as a method to extract local symmetry information from electron 
nanodiffraction patterns of amorphous materials. Symmetry coefficients are the average of the angular 
autocorrelation function at the characteristic angles of a particular rotational symmetry. The symmetry 
coefficients avoid artifacts arising from Fourier transformation and Friedel symmetry breakdown that affect 
the angular power spectrum approach to determining angular symmetries in amorphous nanodiffraction. 
Both methods require thin samples to avoid overlapping diffraction from clusters of atoms separated in the 
thickness of the sample, but symmetry coefficients are more forgiving. Electron nanodiffraction 
experiments on a Pd-based metallic glass sample demonstrate both potentially misleading information in 
angular power spectrum and the utility of symmetry coefficients. 
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1. Introduction 

To understand some of their exceptional properties and to gain insight into glass formation, we need to 
study the structure of glasses [1–3]. However, structural characterization of glasses remains a major 
challenge. The lack of long-range periodicity makes an analytical description of the positions of all atoms 
in a glass structure impossible, short of simply listing them. As a result, descriptions of glass structure have 
tended to emphasize simple rules such as dense packing [4], preservation of coordination numbers and bond 
angles [5], or statistical or topological abstractions of atomic configurations [6] (i.e. Frank-Kasper 
polyhedra [7,8], topological rings/clusters of bonds [9], or indices describing Voronoi polyhedra [10]). In 
metallic glasses, approximate rotational symmetry has been identified as a potential important feature of 
local structure. Many metallic glasses are reported to have a structure with some icosahedral local ordering 
[11], which is characterized by distinct 5-fold rotation symmetry. 5-fold symmetry is incompatible with 
crystalline translation symmetry, so is thought to favor glass formation [12,13]. In addition, the dense 
packing within the 5-fold symmetry suggests a glass state that is brittle rather than ductile [14][15]. Previous 
studies also show crystal-like structure in metallic glass [16], which is mainly identified from 4-fold rotation 
symmetry. Crystal-like symmetry is thought to disfavor glass formation by promoting crystallization [17]. 

One way to measure local glass structure and rotational symmetry in amorphous materials is through 
electron nanodiffraction (END) [18]. An electron beam with the size of a few nanometers probes a set of 
atoms in a small sample volume. Structure information is encoded in the diffraction pattern, as local 
structures can give rise to Bragg-like coherent speckles [19]. The angular correlation function (ACF, 
defined below) is one way to extract rotational symmetries from these Bragg diffraction-like patterns. The 
ACF resolved in correlation angle and scattering wave vector is called a correlogram or correlograph. The 
ACF may also be Fourier transformed to obtain the angular power spectrum, in an effort to isolate particular 



rotational symmetries. ACF analysis and correlograms have been used several times to study various glass 
structures. END experiments on amorphous silicon quantified paracrystallinity by fitting atomistic model 
against the average electron correlogram [20]. Local clusters in ZrNi metallic glass were modeled via 
simulation and END with a coherent nanoprobe with diameter less than 1 nanometer [21]. The spatial 
distribution of clusters or local structural symmetry was mapped by scanning the probe across the region 
of interest and acquiring a series of END patterns [22], a procedure now commonly called 4D STEM. ACF 
and angular power spectrum also have drawbacks, including lack of robustness against thicker samples 
[23][24]. Also, ENDs can lack Friedel symmetry, leading to challenges in interpretation [25]. Efforts have 
been made to refine angular correlation and power spectrum results in regard to these drawbacks. Liu et al. 
[26] calculated rotation averaged Fourier coefficients for several archetypical short-range clusters, which 
provides distinct fingerprints that can be used to identify preferred local arrangement. High quality, 
quantitative angular correlation analysis requires complex statistical analysis and theoretical modeling [27]. 

Here, we discuss several artifacts in the angular power spectrum of END patterns from amorphous materials 
that could be detrimental to determining structural symmetries: systematic ringing effects from Fourier 
transformation, chance correlations from random overlap of scatterers, and odd symmetries arising from 
nonstructural sources. Then, we introduce a new method for extracting structural symmetries from END 
data inspired by Symmetry-STEM, a novel method for extracting symmetry information from convergent 
beam electron diffraction (CBED) patterns in crystals [28]. Symmetry-STEM cross-correlates CBED 
patterns from a crystal structure with themselves after application of a symmetry operation. We use a similar 
approach to obtain correlation coefficients from which the symmetry coefficients are calculated to represent 
the magnitude of rotational symmetry in glass local structures. The new method avoids some but not all of 
the artifacts that affect the angular power spectrum. A simple mathematical model and END experiments 
on a Pd-Ni-Cu-P metallic glass illustrates the advantages of symmetry coefficient analysis over the angular 
power spectrum. 

2. Methods 

Figure 1a-c illustrate the process of angular correlation analysis. We start by calculating the ACF [29], 

𝐶𝐶(𝑘𝑘, Δ) =
〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)𝐼𝐼(𝑘𝑘, 𝜑𝜑 + Δ)〉𝜑𝜑 − 〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)〉𝜑𝜑2

〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)〉𝜑𝜑2
, (1) 

where Δ is the correlation angle and 𝐼𝐼(𝑘𝑘, 𝜑𝜑) is the diffracted intensity in the END pattern in terms of 
scattering vector 𝑘𝑘 and azimuthal angle 𝜑𝜑 defined in Fig.1a. Fig.1b shows the correlogram of the pattern in 
Fig 1a. 𝐶𝐶(𝑘𝑘, Δ) is then Fourier transformed to obtain the angular power spectrum, 𝐶̂𝐶(𝑘𝑘, 𝑛𝑛), where 𝑛𝑛 is the 
order of Fourier coefficient, shown in Fig.1c. 𝐶̂𝐶(𝑘𝑘, 𝑛𝑛) is power of the END pattern in polar coordinates. The 
Fourier amplitude for a particular (𝑘𝑘, 𝑛𝑛) is interpreted as the magnitude of the rotational symmetry of the 
structure diffracted at that 𝑘𝑘. 

 



 

Figure 1. Schematics of angular correlation analysis and correlation symmetry analysis 
using an experimental END pattern on Pd-based nanowire sample. (a-c) Angular 
correlation analysis procedure; (d-f) Correlation symmetry analysis procedure  

Figure 1d-f illustrates the process of correlation symmetry analysis, inspired by Symmetry-STEM [28]. We 
start by rotating the pattern around its origin as shown in Fig.1d. The Pearson product-moment correlation 
coefficient between the original and rotated patterns is calculated for different rotation angles Δ as 

𝜌𝜌(Δ) =
〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)𝐼𝐼(𝑘𝑘, 𝜑𝜑 + Δ)〉𝑘𝑘,𝜑𝜑 − 〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)〉𝑘𝑘,𝜑𝜑

2

〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)2〉𝑘𝑘,𝜑𝜑 − 〈𝐼𝐼(𝑘𝑘, 𝜑𝜑)〉𝑘𝑘,𝜑𝜑
2 . (2) 

Here, 〈… 〉𝑘𝑘,𝜑𝜑  denotes average over wave vector 𝑘𝑘 and azimuthal angle 𝜑𝜑. If we average over all wave 
vectors, Eq.2 is the Pearson correlation of the whole pattern; if we average over a smaller 𝑘𝑘-range, Eq.2 
becomes the Pearson correlation of a ring segment of the pattern. Theoretically, 𝜌𝜌(Δ) could range from 1 
to −1. In the example shown in Fig.1e, 𝜌𝜌(Δ) fluctuates near zero at different rotation angles and approaches 
unity at small rotation angles. Symmetry-STEM for crystalline samples calculates the correlation 
coefficient for the entire pattern. As we will see in the discussion, averaging over a smaller 𝑘𝑘-range will 
improve signal quality for amorphous samples. 

To assess rotational symmetry, Symmetry-STEM uses 𝜌𝜌(Δ) at the rotation angle characteristic of the 
symmetry (e.g. 90° for four-fold symmetry). Sets of speckles in nanodiffraction patterns from amorphous 
materials  are often fuzzy, incomplete, or simply missing some of the speckles that would complete the 
symmetry. Therefore, we evaluate the symmetry magnitude from 𝜌𝜌(Δ)  by calculating the symmetry 
coefficient 𝑆𝑆(𝑛𝑛), shown in Fig.1f. The definition of symmetry coefficient for a given 𝑛𝑛 follows two rules: 
(1) 𝑆𝑆(𝑛𝑛) is the mean of 𝜌𝜌(Δ) at the characteristic angles of 𝑛𝑛-fold rotation symmetry, excluding Δ = 0 and 
2𝜋𝜋; and (2) 𝑆𝑆(2𝑛𝑛) does not sample the angles already included in 𝑆𝑆(𝑛𝑛). The first few terms of 𝑆𝑆(𝑛𝑛) are 
defined as 

 

 



𝑆𝑆(2) = 𝜌𝜌(𝜋𝜋) 
𝑆𝑆(3) = [𝜌𝜌(2𝜋𝜋/3) + 𝜌𝜌(4𝜋𝜋/3)]/2 
𝑆𝑆(4) = [𝜌𝜌(𝜋𝜋/2) + 𝜌𝜌(3𝜋𝜋/2)]/2 
𝑆𝑆(5) = [𝜌𝜌(2𝜋𝜋/5) + 𝜌𝜌(4𝜋𝜋/5) + 𝜌𝜌(6𝜋𝜋/5) + 𝜌𝜌(8𝜋𝜋/5)]/4 
𝑆𝑆(6) = [𝜌𝜌(𝜋𝜋/3) + 𝜌𝜌(5𝜋𝜋/3)]/2 

(3) 

 

In this way, 𝑆𝑆(𝑛𝑛) extracts symmetry information encoded at the characteristic rotation angles in the Pearson 
correlation 𝜌𝜌(Δ). We have investigated 𝑆𝑆(𝑛𝑛) coefficients up to 𝑛𝑛 = 10. We have implemented correlation 
symmetry analysis in open source pyXEM package for analysis of 4D STEM data [30]. 

Pd43Ni10Cu27P20 nanowires with a diameter of ~40 nm were fabricated by nanomoulding as described in 
[31]. As-prepared nanowires were attached to a substrate plate of the same bulk metallic glass. The bulk 
metallic glass plate was rinsed with distilled water and isopropyl alcohol to minimize the residual salts and 
anodized aluminum oxide from fabrication. Then the plate was immersed in methanol solution and 
nanowires were released from the substrate by ultrasound for 15–20 min. The nanowires dispersed in 
methanol were dropped on to a DENSsolutions Wildfire TEM heating chip using a micropipette (1.5-1.8 
µL). Nanowires were randomly attached to the 90% electron transparent SiNx membrane present on 
windows in the chip after methanol evaporated. 10-12 drops of the nanowire suspension in methanol were 
used, allowing 5 min methanol evaporation time between drops to achieve a uniform distribution of isolated 
nanowires. The sample was plasma cleaned for 10 mins in a 20 psi Ar + O2 mixture to remove organic 
contaminants before loaded into the microscope. END experiments were performed on an FEI Titan 
microscope at 200 kV acceleration voltage. A coherent probe 2.2 nm in diameter with 0.71 mrad semi-
convergence angle was formed in microprobe mode. A camera length of 510 mm was used in energy filtered 
STEM mode with a 10 eV wide slit. The END patterns are acquired by a 2048×2048 Gatan CCD camera 
with binning factor of 4. The exposure time is set to 6 sec to ensure sufficient signal to noise ratio. The 
patterns are taken at an 8×20 grid of positions along the wire for multiple nanowires with sufficient spacing 
between each position to avoid overlap. A total of 960 patterns were recorded and used for the analysis. 

 

3. Results and Discussion 

3.1 Limitations of the Angular Power Spectrum 

ACF and the angular power spectrum suffer from three significant artifacts, all of which create symmetry 
signals that are not related to symmetries in the atomic structure. The first artifact originates from the 
familiar phenomena of ringing in the Fourier transform. In END experiments, the speckles are disks with a 
radius set by the convergence angle of the probe. The condenser aperture imposes a sharp angular cutoff, 
so the speckles also tend to have sharp edges. Sample scattering redistributes intensity within the speckle 
disks and causes some blurring of the sharp edges, but the basic disk shape remains. 

To see the influence of the Fourier transform of the disk, consider an idealized diffraction pattern consisting 
of sharp-edged, flat disks with 2-fold Friedel symmetry as shown in Fig. 2a. The intensity of the pattern in 
azimuthal angle at wavevector 𝑘𝑘𝑐𝑐 is 

𝐼𝐼𝑘𝑘𝑐𝑐(𝜑𝜑) = �𝐼𝐼0,   0 ≤ 𝜃𝜃 ≤ 𝑤𝑤 − 1,𝑁𝑁/2 ≤ 𝜃𝜃 ≤ 𝑁𝑁/2 + 𝑤𝑤 − 1
0,   elsewhere , (4) 

where 𝑘𝑘𝑐𝑐 is the wavevector at the center of the disks, 𝐼𝐼0 is the intensity of the disk, 𝑁𝑁 is the total number of 
discrete azimuthal angles and 𝑤𝑤  is the width of the disk at 𝑘𝑘𝑐𝑐  in azimuth. Without noise, the angular 



intensity profile of an ideal 2-fold symmetrical END pattern at 𝑘𝑘𝑐𝑐 is two identical rectangular functions 𝜋𝜋 
apart from each other, as shown in Fig. 2b. The ACF from Eq. 1 is a triangle wave, as shown in Fig. 2c, 
and the angular power spectrum is 

𝐶̂𝐶𝑘𝑘𝑐𝑐(𝑛𝑛) = sin2(𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)
sin2(𝜋𝜋𝜋𝜋/𝑁𝑁)

(2 + 2 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛), (5) 

shown in Fig 2d. The term sin2(𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁) / sin2(𝜋𝜋𝜋𝜋/𝑁𝑁) is a sinc function, the Fourier transform of the disk, 
and the term in parentheses is 0 for odd order and 1 for even order. As a result, the power spectrum of an 
ideal END with 2-fold rotational symmetry has power at all even orders as in Fig. 2d. The 2-fold power is 
smeared out to higher even orders because of the incompatibility between Fourier transformation, which 
uses sinusoids as the decomposition kernel, and the triangular ACF. An illustration of this ringing effect is 
shown in Fig.2c. The extent of first lobe in the sinc function is given by 𝑁𝑁/𝑤𝑤. Therefore, as the probe 
convergence angle decreases, the ringing effect becomes more significant. END uses a fairly parallel beam, 
so this artifact can be significant. 



 

Figure 2. END patterns, azimuthal intensity profiles, angular correlation functions plotted 
with Fourier components, and angular power spectra of (a-d) ideal 2-fold crystallographic 
symmetry, (e-h) 2-fold crystallographic symmetry with broken Friedel symmetry, and (i-l) 
two randomly overlaid 2-fold crystallographic symmetries. 

The second artifact arises from the breakdown of Friedel symmetry, which causes non-structural odd 
symmetry. If Friedel symmetry is maintained, i.e. 𝐼𝐼(𝑘𝑘, 𝜑𝜑) = 𝐼𝐼(𝑘𝑘, 𝜑𝜑 + 𝜋𝜋), the odd terms in angular power 
𝐶̂𝐶(𝑘𝑘, 𝑛𝑛)  vanish. The full three-dimensional reciprocal space of the sample is at least approximately 
centrosymmetric, and thin samples with nanometer-scale ordered diffracting clusters should result in very 
long relrods and Friedel symmetry in the diffraction pattern, no matter what orientation the diffracting 
object takes to the electron beam. However, Friedel symmetry is clearly violated in experimental patterns 
like Fig 1a. Friedel breakdown has been attributed to lens aberration and defocus [19,32], but the detailed 



origins are not the primary concern here. In an END pattern without the Friedel symmetry, the odd terms 
in angular power are no longer zero. In the 2-fold crystallographic symmetry example, assuming one disk 
is 𝑝𝑝 times stronger than its Friedel pair as shown in pattern Fig. 2e, the angular power becomes  

𝐶̂𝐶𝑘𝑘𝑐𝑐(𝑛𝑛) =
sin2(𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)
sin2(𝜋𝜋𝜋𝜋/𝑁𝑁)

(1 + 𝑝𝑝2 + 2𝑝𝑝 cos𝑛𝑛𝑛𝑛). (6) 

Now that the bracket term becomes non-zero for odd order, odd symmetries emerge in the angular power 
spectrum, as in Fig. 2h. The nature of these odd symmetry comes from the loss of 𝐶𝐶(Δ = 𝜋𝜋) magnitude 
caused by the uneven speckle intensities. The odd sinusoid eigenfunctions need to be included to 
compensate for the loss. This effect can be misleading, as these odd symmetries are completely 
nonstructural. Real structural odd symmetries, like the 5-fold rotational symmetry of quasicrystals for 
example, diffract into even order that is twice the odd as per the Friedel law. In thick samples, Friedel 
symmetry breakdown can be significant. Im et al. have shown that the power spectrum for thick samples 
becomes a featureless band that monotonically decreases in 𝑛𝑛 [24]. 

The third artifact arises from random overlap of multiple scatterers in the thickness of the sample, resulting 
in several superimposed sets of speckles. It is natural that multiple clusters can exist in the same sample 
column illuminated by electron probe. In this situation, if two or more of these clusters happened to be on 
or near a zone axis, their strong speckles will be overlaid in the pattern recorded at that probe position. An 
example of two randomly overlaid (randomly rotated in the diffraction plane) 2-fold crystallographic 
symmetry diffraction pairs with different 𝑘𝑘 values is shown in Fig. 2i. The two pairs are about 70 degree 
apart from one another, which is close to the characteristic angles for 4- and 6-fold rotational symmetry. As 
a result, they give rise to artifact power in the 𝑛𝑛 = 4 and 6 symmetries at the 𝑘𝑘 values they both share (Fig. 
2j). 

The simple mathematical model can be extended to treat all the three artifacts. Assume the pattern consists 
of 𝑚𝑚 + 1 pairs of diffraction disks with the same 𝑘𝑘 value, with 𝑚𝑚 of them rotated in {Δ1, Δ2, … , Δ𝑚𝑚} with 
regards to a reference pair. They have intensities of {𝑝𝑝0, 𝑝𝑝0′ , 𝑝𝑝1, 𝑝𝑝1′ , … , 𝑝𝑝𝑚𝑚, 𝑝𝑝𝑚𝑚′ } where 𝑝𝑝𝑖𝑖  and 𝑝𝑝𝑖𝑖′ are the 
intensities of the 𝑖𝑖th pair. The angular power of this pattern is given by 

𝐶̂𝐶𝑘𝑘𝑐𝑐(𝑛𝑛) =
sin2(𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)
sin2(𝜋𝜋𝜋𝜋/𝑁𝑁) ��(𝑝𝑝𝑖𝑖 ± 𝑝𝑝𝑖𝑖′)2

𝑖𝑖

+ � 2(𝑝𝑝𝑖𝑖 ± 𝑝𝑝𝑖𝑖′)(𝑝𝑝𝑗𝑗 ± 𝑝𝑝𝑗𝑗′) cos𝑞𝑞(Δ𝑖𝑖 − Δ𝑗𝑗)
𝑖𝑖,𝑗𝑗,𝑖𝑖>𝑗𝑗

�, (7) 

where 𝑞𝑞 = 2𝜋𝜋𝜋𝜋/𝑁𝑁 and 𝑘𝑘𝑐𝑐 is the wavevector at the center of the disks. Here, the ± signs are + when 𝑛𝑛 is 
even and - when 𝑛𝑛 is odd. Eq. 7 shows that when Friedel symmetry breaks down (𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗 ≠ 0), the 
diffraction disks and their corresponding Friedel pairs are only partially destructive at odd order, thus 
yielding non-zero odd power. The cosine term in Eq. 7 acts as a modulation between different diffraction 
pairs, which is the same modulation causing the false power in Fig. 2j.  

In experimental data, the disks become speckles with more diffuse edges, which sit on a background of 
diffuse diffraction. Diffuse edges to the speckles smooth the correlation function in both 𝑘𝑘  and Δ . 
Smoothing in 𝑘𝑘 leads to the widening of the band in the power spectrum, and smoothing in Δ diminishes 
the high order power, leaving angular powers with physical meaning (𝑛𝑛 ≤ 10) largely unaffected. Diffuse 
background does not have much influence on angular power, as it does not vary with angle very much. In 
addition, different structures or compositions of clusters have different atomic spacings and accordingly 
different 𝑘𝑘 values. These limitations notwithstanding, Eq. 7 largely captures the behavior of angular power 
of END patterns, including the ringing effect from the sinc function, Friedel symmetry breakdown, and the 



overlap of diffraction from different structures, all of which can make angular power spectrum results 
challenging to interpret. 

3.2 Advantages of Correlation Symmetry Analysis 

Correlation symmetry analysis diminishes or totally avoids the first two artifacts and may mitigate some 
effects of the third. Unlike the sinusoidal kernel for the angular power, correlation symmetry analysis uses 
𝛿𝛿 eigenfunctions (Fig. 3d), which are not subject to the systematic ringing artifacts. Fig. 3a shows the 
symmetry coefficient of the same diffraction pattern exhibited in Fig. 2a, and here only 2-fold symmetry 
magnitude is present. Nonstructural odd symmetry from Friedel symmetry breakdown will also not occur 
in the symmetry coefficients, as shown in Fig. 3b. Since in symmetry coefficient, 𝑆𝑆(2) = 𝜌𝜌(π), the loss of 
magnitude in 𝜌𝜌(Δ = 𝜋𝜋) causes a decrease in 2-fold 𝛿𝛿 function (Fig. 3e) instead of any emergence of odd 𝛿𝛿 
functions. In correlation symmetry, 2-fold magnitude no longer serves as indicator for 2-fold rotational 
symmetry alone. It in fact represents all even rotational symmetries, i.e., all ordering structures in the sample 
that give rise to strong Bragg-like speckles. 

 

Figure 3 Symmetry coefficient profiles and Pearson correlation profiles plotted with 𝛿𝛿 
function kernels of (a, d) ideal 2-fold crystallographic symmetry, (b, e) 2-fold 
crystallographic symmetry with Friedel symmetry breakdown, and (c, f) two randomly 
overlaid 2-fold crystallographic symmetries. Inset images (a)-(c) are the corresponding END 
patterns. 

Random overlap still plays a role in the symmetry coefficients, but the effect is reduced by the greater 
angular selectivity compared to the angular power. Since the symmetry coefficients defined in Eq. 3 only 
access the correlations at the exact angles of the rotational symmetries, correlations close to but not right at 
those angles will not be registered, which significantly reduces the probability of random overlap creating 
a high magnitude even symmetry. Fig. 3c shows the symmetry coefficient of the same random overlap 
pattern as in Fig. 2i. There is no false 4- and 6-fold symmetry coefficient, but there is some 5-, 7- and 10-
fold symmetry coefficient. This is because in the formulations in Eq. 3, odd symmetries (and all high order 
symmetries for that matter) sample many more angles than low order even symmetries, which makes them 



more likely to gain magnitude from random overlaps. However, odd symmetries arise from both inherent 
odd symmetries in the pattern as well as the even symmetries that are twice the odd (for instance, 𝑆𝑆(3) 
could come from both 3- and 6-fold symmetries). 

3.3 Application of Correlation Symmetry Analysis to Nanodiffraction Experiments 

Fig. 4 compares angular power spectrum and symmetry analyses of 960 END patterns acquired from a 
moderately thick (41 ± 3 nm) Pd43Ni10Cu27P20 sample. Fig. 4a shows the pattern averaged angular power 
spectrum of the END data. The power decreases monotonically with increasing Fourier coefficient 𝑛𝑛 in the 
𝑘𝑘 range of the first diffraction ring. This behavior is very similar to the power spectrum observed in the 
thick sample in [24]. Strong Friedel breakdown introduces high power in nonstructural odd symmetries, 
obscuring features in the spectrum that could be structurally significant. Fig. 4b shows the pattern averaged 
symmetry coefficients of the same data, averaged over the first diffraction ring segment (k  = 0.4 to 0.5 Å-

1). Strong 10-fold symmetry is observed, as well as relatively significant 6-fold symmetry. 2-fold symmetry 
has the lowest magnitude, reflecting the breakdown of Friedel symmetry. The 4-fold symmetry coefficient 
is similar to the 3, 5, 7, and 9-fold odd symmetries. Past structural studies on Pd40Ni40-xCuxP20 metallic glass 
indicates that the preferred local atomic configuration is mixture of a Pd40Ni40P20 type structure and a 
Pd40Cu40P20 type structure depending on the Cu composition [1,33]. The Pd40Ni40P20 type structure is mainly 
a P-centered tri-capped trigonal prisms (TTP), which contains near 6-fold and near 5-fold symmetry. High 
resolution TEM study also showed the possible existence of fcc-like clusters in Pd40Ni40P20 [34]. The 
Pd40Cu40P20 type structure is mainly a P-centered, transformed tetragonal dodecahedron which exhibits near 
5-fold symmetry. The strong 10-fold symmetry in Fig. 4b is consistent with the near 5-fold structural 
symmetry in both structural types, and the 6-fold symmetry is consistent with the near 6-fold structural 
symmetry in Pd40Ni40P20 type structure. The lack of strong 4-fold symmetry in the data suggests little or no 
fcc or other crystal-like structure in this glass. 

 



Figure 4 (a) Averaged power spectrum and (b) averaged symmetry coefficients of the END 
experiments on the Pd-based nanowires; (c, g) examples of END patterns, (d, h) their angular 
correlation functions at 𝑘𝑘 = 𝑘𝑘max , (e, i) power spectrum and (f, j) symmetry coefficients. 

 

Figure 5 (a, e) Examples of END patterns, (b, f) their angular correlation functions at 𝑘𝑘 =
𝑘𝑘max , (c, g) power spectrum and (d, h) symmetry coefficients. 

Fig. 5 compares power spectrum and symmetry analyses of illustrative individual patterns, along with a 
slice of the angular correlation function at selected k. In the END pattern shown in Fig. 5a, two strong 
speckles form at an angle of ~ 125 degrees, which is not associated with a symmetry with n < 10. Fig. 5b 
shows the 𝐶𝐶(Δ) profile of that pattern at 𝑘𝑘 = 0.45 Å−1, with a 6-fold Fourier kernel overlay on the plot. 
The correlation profile has peaks near but not exactly aligned with Δ = 𝑛𝑛𝑛𝑛/3, a result of the near 120 degree 
correlation. The power spectrum reflects this as a false “6-fold” symmetry as shown in Fig. 5c, but 
symmetry coefficient in Fig. 5d does not indicate any strong 6-fold symmetry. In the END pattern shown 
in Fig. 5e, there is a set of five speckles 36 degrees apart from each neighboring one, which is the angle for 



10-fold symmetry, so these speckles represent significant 10-fold symmetry that is only partially complete 
in the diffraction plane of the camera. The correlation profile 𝐶𝐶(Δ) at 𝑘𝑘 = 0.45 Å−1 in Fig. 5f is overlaid 
with 3-fold and 10-fold Fourier kernels. The correlations among the speckles inside the set of five give rise 
to the peak in 𝐶𝐶(𝑘𝑘, Δ) at Δ = 𝜋𝜋/5 as well as two smaller peaks at Δ = 3𝜋𝜋/5 and 4𝜋𝜋/5. While these peaks 
fit the 10-fold characteristic angles very well, 10-fold symmetry is not recognized in the power spectrum, 
as the pattern is incomplete. Even though there are no peaks at the 3-fold rotational symmetry positions, 
since there are other strongly diffracted speckles in this pattern, the power spectrum is heavily modulated 
by them and thus falsely identifies a 3-fold symmetry in Fig. 5g. On the other hand, the symmetry 
coefficient shown in Fig. 5h registers the angles marked in Fig. 5e, generating a strong 10-fold symmetry 
magnitude. These two patterns experimentally demonstrate the instability of power spectrum analysis to 
non-structural random overlap correlations and Friedel symmetry breakdown artifacts. Correlation 
symmetry analysis has lower sensitivity to the same artifacts when applied to the same data. 

 

Figure 6 (a) Symmetry coefficient distributions 𝑆𝑆(𝑛𝑛) for 5- and 6-fold symmetry. Solid lines 
are Gaussian fit of the distributions; (b) Skewness of the distributions of symmetry 
coefficients 𝑆𝑆(𝑛𝑛). 

It is tempting to interpret even symmetry coefficients as arising from symmetries in the structure and odd 
coefficients as arising from artifacts. In Fig. 4b, the odd and even symmetry coefficients are comparable, 
except for n = 10. Does that mean that all of the other symmetry coefficient signals are non-structural? 3- 
and 5-fold symmetry can have some contribution from structural, Friedel-symmetric 6- and 10-fold 
symmetries in the END patterns, but 7- and 9-fold symmetries in the pattern should occur only from random 
overlaps. Constructing a general model to separate structural from non-structural symmetries is a substantial 
challenge, but a preliminary statistical analysis of the symmetry coefficient distributions suggests that it 
might be possible. Fig. 6a compares the symmetry coefficient distributions for n = 5 and n = 6. The n = 6 
distribution is nearly Gaussian, but the n = 5 distribution is skewed towards the left and has a tail on the 
righthand side. It may even be bimodal, although current data is insufficient to test this hypothesis. Fig. 6b 



shows the skewness of the symmetry coefficient distribution for n = 2 to 10, which is sensitive to asymmetry 
in the distribution. The even symmetries have near zero skewness (except for 8-fold symmetry) whereas 
the odd symmetries have relatively high positive skewness. This means for the odd symmetries, the 
distributions are skewed to the left side and has a long tail to the right. One possible origin for this behavior 
is a main distribution with a mean of low 𝑆𝑆(𝑛𝑛) values and a few outliers from the random overlaps with 
much higher 𝑆𝑆(𝑛𝑛). For even symmetries, the distributions are more symmetric around the mean, indicating 
a higher probability of having a structure-related monomodal distribution. However, this interpretation is 
not consistent with the negative skewness for the 8-fold distribution, which is not an allowed 
crystallographic symmetry, so clearly more work is needed. 

Fig. 7 compares the Pearson correlation 𝜌𝜌(Δ) profiles of the END pattern in Fig. 1a integrated over the 
whole pattern and integrated only over the first diffraction ring (k  = 0.4 to 0.5 Å-1). They possess similar 
features, but integrating over the 𝑘𝑘 range of the first diffraction ring generates higher signal to background 
ratio. This is probably due to the diffuse diffraction background and random noise, both of which play more 
significant roles at higher k as the speckle intensity drops. It also suggests the possibility of achieving 
moderate 𝑘𝑘-resolution in correlation symmetry analysis by integrating in ring segments of different k. Such 
an approach might, for example, separate the influence of structures in the sample diffract at differing k due 
to differing local compositions and interatomic spacings. 

 

Figure 7 Pearson correlation 𝜌𝜌(Δ) of the END pattern in Fig.1a by integrating the whole 
pattern (black) and only the first diffraction ring (k  = 0.4 to 0.5 Å-1) (red).  

The END patterns analyzed here were acquired with a CCD detector and fairly long acquisition time. 
Densely-spaced fast 4D STEM acquisition of END data with high speed camera can map local clusters in 
a sample [35]. With symmetry coefficient data at each of the probe positions, machine learning approaches 
like multidimensional clustering could be utilized to identify the symmetry, size, and relative position of 
individual clusters. Correlation symmetry analysis could also have potential applications in semicrystalline 
polymers [36], amorphous silicon [20], anisotropically ordered molecular glasses [2], and other systems. 

4. Conclusion 

Angular power spectrum analysis of rotational symmetries in electron nanodiffraction patterns of 
amorphous materials is prone to systematic and experimental artifacts. The Fourier transformation of the 
sharp-edged speckles in the pattern produces contributions to higher-order power from lower-order physical 
symmetries, Friedel symmetry breakdown in the pattern creates non-structural odd order power, and 
speckles in random orientations created by diffraction from different ordered clusters within the same 
column of the material sampled by the probe create power which does not reflect structural symmetries. 
Correlation symmetry analysis avoids or mitigates all of these artifacts. It avoids ringing artifacts by 
avoiding Fourier transformation, and by probing only specific angles, it decreases the effects of Friedel 
symmetry breaking and chance arrangements of speckles from different ordered clusters. Correlation 



symmetry analysis applied to a Pd43Ni10Cu27P20 sample confirms the presence of 6- and 10-fold rotational 
symmetries in the sample, indicating the existence of both Pd40Ni40P20 and Pd40Cu40P20 type structures. 
Higher speed 4D STEM experiments with correlation symmetry analysis should be able to map more 
reliably local rotational symmetries in amorphous materials. 
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