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Abstract. Polythiophenes with differently functionalized side chains (alkyl, oligoethylene
oxide, ester, hydroxy, and carboxylic acid) and varied counterions of potassium salt electrolytes
were investigated in organic electrochemical transistors (OECTs). In addition, mixed blends were
investigated to evaluate any synergistic effects between functionalities. Depending on the
functional moiety attached, a large shift to lower potentials of Vi, an increase in drain current, and
increase in transconductance can be observed compared to the base combination of alkyl side chain
and CI'. The newly designed and synthesized hydroxy polymer displayed stability to large shifts
in Vrn, slight increase in drain current, and little or no increase in transconductance when an ionic
radius of the dopant is increased until a much larger anion, large polarizability, and low hydration
number such as TSFI" was used. The acid-functionalized polymer, on the other hand had the same
magnitude in shift with respect to any anion that is larger than CI. The polymers were
characterized by spectroscopy, x-ray diffraction, thermal analysis, and cyclic voltammetry. This
work demonstrates that side-chain engineering can have substantial difference in the level of
interaction in the electrolyte which would require tailoring the ion for specific polymer

interactions.
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1 Introduction

Conjugated polymers (CPs) have been a major focus of organic electronics!* due to their
potentially low cost, solution processability, and the possibility of synthetic design to generate

desired electronic, optical, and mechanical functionality. CPs contribute to the activity of organic
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light-emitting diodes*®, organic thin film transistors’'2, and organic photovoltaics'*'®. More

1718 that require

recently, conjugated polymers have also been used in electrochemical systems
polymers to simultaneously have both ionic and electronic charge density and conductivity,

especially for bioelectronics that generally operate in aqueous media. This is extremely beneficial
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for applications such as biosensing'~~“, bioactive electro-responsive materials™=, tissue

26-29 30-33

engineering scaffolds™~, and neuromorphic devices

Mixed ionic/electronic conductors (MIECs)**3° have been applied to sensors*¢-8,
actuators*’, and organic electrochemical transistors (OECTs)*'***. In OECTs, an electrochemically
driven ion insertion occurs in response to an electrochemical bias, which results in morphological
reconfiguration and expansion to accommodate the volume of added ions.**** OECTs have a
significant advantage over organic field effect transistors (OFETs) in that ions injected into the
material interact with the entire volume of the polymer and generate high transconductance
signaling, desirable for biological sensing elements.***” In general, a competitive OECT channel
material requires the combination of good electronic transport, arising from high charge carrier
mobility and effective ion penetration which increases the volumetric capacitance.*®

Understanding the properties of MIECs to control ion transport from electrolytes into the

conjugated polymer is a fundamental consideration for various applications.



To enhance ion transport in CPs, functionalization with binding moieties can be useful.
Systems such as poly(3-4-ethylenedioxythiophene) : poly(styrene-sulfonate) (PEDOT:PSS)*-5!,
poly(3-hexylthiophene) (P3HT)**>?, and poly(2-(3,3’-bis(2-(2-(2-methoxyethoxy)ethoxy)-
ethoxy)-[2,2’-bithiophen]-5-yl)-thieno[3,2-b]thiophene (p(g2T-TT)**, are very well known and
well-studied for OECTs. The incorporation of glycolated analogs such as p(g2T-TT) has
demonstrated the importance of side chain engineering, and resulted in the highest-performing
OECT material reported.’>>” P(g2T-TT) achieves high currents within sub-milliseconds time
scale, high transconductance, and steep subthreshold switching.’® Giovannitti et al** developed a
donor-acceptor copolymer based on naphthalene-1,4,58-tetracarboxylic-diimide-bi-thiophene
(NDI-T2) and progressively decreased the fraction of the alkyl side chain with a substituted glycol
side chain. Copolymers with predominantly alkyl chains show high electron mobilities but those
drop by orders of magnitude with the replacement by polar glycol chains.

Khau et al®® demonstrated that a carboxylic acid functionalized polythiophene exhibits
unipolar p-channel OECT operation in accumulation mode, competitive volumetric capacitance,
and high transconductance, putting its performance among the highest among polymers with ionic
side chain moieties. Conjugated polymers with modified hydrophilic side chains are being
investigated for OECTs in both p-type and n-type organic semiconductors.*’ Hydrophilic side
chains can enhance the ionic interaction and transport of bio-relevant ions such as Na™, CI~, K*,
Ca?*, PO3 and HCO3 .

When a conjugated polymer is in contact with an electrolyte and a pair of metal electrodes,
the conjugated polymer can accept electronic carriers, while counterions in the electrolyte solution

can migrate into the polymer matrix to compensate for those carriers. This is formally known as
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electrochemical oxidation and reduction but informally known as electrochemical doping.*3-62-63

The dependence of the electronic transport on the counterion is a relatively little studied area.
Flagg et al®* performed a comprehensive study of the role of dopant ions in mixed ionic/electronic
conduction using P3HT-based OECTs as a model for investigating the role of the dopant ion.
Doping PEDOT : PSS with an ionic liquid has also shown to dramatically increase OECT
performance by improving the ion mobility that results from enhancing the ionic character of
PEDOT : PSS.** Dong et al% performed a systematic study on morphological structure and ionic
conduction between two polythiophene derivatives that incorporate glycol side chains adjacent to
Li bis(trifluoromethanesulfonimide) (TFSI) as the electrolyte. Prefered electrolytes for OECTs
induce high ionic conductivity, reducing the polarization time and increasing stability.%

In this work, polymers with the same thiophene backbone structure are used to make
controlled comparisons among electrolyte ion properties and effects of polar side chain
substituents. Five thiophene polymers that contain alkyl (-(CH2).CH3), ethyl ester (-COOR),
poly(ethylene glycol) (-O(CH2CH20),CH3), hydroxyl (-OH), and carboxylic acid (-COOH) side
chain functional groups are included. The OH polymer was newly synthesized. Additionally,
potassium-based salts that vary in size, shape, and chemical composition of the anions, namely
KCl, KCIO4, KPFs, and KTFSI, were investigated. The ionic radius, anhydrous volume, and
polarizability progressively increase while the hydration number in bulk water decreases.
Homopolymers were first studied, and then combinations of polymers with pairs of the functional
groups were blended. The essential findings are that the importance of the counterion dependence

on OECT parameters varies greatly with the side chain functionality, and that some functional



group pairs lead to performance that can exceed that of the individual components. These findings

are concentrated on pages 12-21.

2 Results
Polymer design and Synthesis

Polymers functionalized with an ethyl ester (PTCOOR) or carboxylic acid (PTCOOH)
terminated side-chain were purchased from Rieke metals and had a reported average
regioregularity of 84-85%. A very well-known alkylated side chain polymer poly(3-
hexylthiophene), known as P3HT, a glycolated side chain polymer known as PAMEEMT, and a
newly synthesized and previously unreported hydroxyl terminated side polymer that will be called
PTOH were prepared. Figure 1 displays the chemical structure of the varied terminal side-chain
functionalized polythiophenes being investigated. The three latter polymers were synthesized via
Kumada catalyst-transfer polycondensation (KCTP)/ Grignard Metathesis (GRIM)
polymerization, which is a versatile method for producing regioregular polythiophenes with good
electronic transport properties.®’® The syntheses of the monomers and polymers are outlined in
the Supporting Information, including "H NMR and GPC spectra shown in Figures S1-S8 and S9-
S10, respectively. The synthesized polymers displayed good regioregularity (>90%). The

polydispersity indices (PDIs), which influence the nanostructures formed by self-assembly, are



reasonable and generally narrow; however, the PDI from P3MEEMT is slightly wider but within

commonly reported PDIs of polymers with oligoether side chains.’>>77°
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Figure 1. Chemical structure of varying terminal side-chain functionalized polythiophenes.

The UV-visible absorption spectra of the polymers as spun-coated thin films are shown in
Supporting Information, Figure S11, and the data are summarized in Table 1.

Table 1. Thermal and Optical Summarization of functionalized homopolymers. # Melting
temperature (Tm) and crystallization temperature (T.) determined by DSC. ® Optical band gap
estimated from the low-energy band edge in the optical spectrum. PTOH and PTCOOH do not
have measured enthalpy of fusion due to broadness of enthalpic peak indicating amorphous state.

P3HT 0.2 483, 530, 559, 611
PTCOOR 207 137, 181 29,74 451, 484, 547, 608 1.70
P3IMEEMT 106 151 = 482, 533,618 1.60
PTOH 233 180 = 483, 536 1.70
PTCOOH 215 180 = 454, 483, 544, 595 1.60



The spectral shape and degree of structural order in the solid state of the polymer films are
roughly similar, with the appearance of clearly defined vibronic shoulders to the right of the
maximum absorption peak for systems defined by P3HT, PTCOOR, PTCOOH, and P3AMEEMT,
which indicates intermolecular interactions. P3HT displays the distinct - transition with Amax
at 550 nm (2.25 eV) and a shoulder starting at 608 nm (2.04 e¢V). P3HT displays appropriate
agreement with what has been reported of Amax at 2.23 eV and a shoulder at 2.06 eV.”'7? It is
reported that addition of polar side chains should cause a gradual blue-shift which can be related
to J- and H- like aggregates.”>”* PTCOOR has a Amax at 532 nm (2.33 V) and a shoulder starting
at 610 nm (2.03 eV), PTCOOH has a Amax at 531 nm (2.34 ¢V) and a shoulder starting at 599 nm
(2.07 eV), PTOH has a Amax at 529 nm (2.34 ¢V) with no visible shoulder, and P3SMEEMT has a
Amax at 525 nm (2.36 eV) and a shoulder starting at 615 nm (2.02 eV). It should be noted that
thinner films obtained from the more polar polymers made a negative artifact around 550 nm more
pronounced, which could have altered some Amax values. From the literature, poly(hexyl
thiophene-3-carboxylate) was reported to have features at 395 nm (sh) and 475 nm while
poly(octyl thiophene-3-carboxylate was reported with features at 410 nm (sh) and 469 nm.”
Poly(octylthiophene-3-carboxylate) was additionally reported to have a Amax at 444 nm while also
exhibiting a large absorption at wavelengths lower than 350 nm, which indicates some oligomers
being present.”® Another report shows that the ester-functionalized P3AET (Poly(3-(2-
actoxyethyl)thiophene) has a Amax at 440 nm in the film state and P3HET (Poly(3-(2-
hydroxyethyl)thiophene) at 440 nm as well.”” An additional study was conducted by Bilger et al’®
on the hydrogen-bonding induced ordered assembly of poly(3-alkylthiophene) derivatives bearing

carboxylic acid groups (regioregularity 90-95% HT-HT) from diluted solution, concentrated
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solutions, and solid films. Broad Gaussian-like absorption peaks are observed for P3C3T and
P3CAT with Amax’s of 442 and 464 nm, respectively. However, the absorption of P3C6T exhibited
two peaks with narrow half-widths at 590 and 550 nm corresponding to 1%%ps and I°!4s vibronic
transitions, respectively. This is reported to correspond to the Frank-Condon progression of C=C
stretching within the thiophene ring. Therefore, alkyl-chain length results in hypsochromic and
bathochromic shifting of the spectra. The Amax of PMEEMT was reported to be 500 nm.”
Deviations in optical properties can also occur due to the degree of planarity of the polymer
backbone to which degrees in variation is caused by polymerization methods. For instance, head-
to-head (H-H) linkages in the backbone of a polymer will result in interrupted conjugation due to
the steric twist. Most of the reported literature polymers were synthesized via chemical oxidation,
such as with FeCls, which resulted in a 55% HT-HT coupling structure for P3HET and P3HET.
Poly(octylthiophene-3-carboxylate) was prepared via Ullmann reaction with a H-H/H-T ratio of
2.16: 1. Therefore our homopolymers display spectra consistent with the high regioregularity.

We also prepared 50/50 blend solutions and films as outlined in the Methods section. UV-
visible absorption spectra of blend films are shown in the Supporting Information Figure S12 . If
P3HT is blended with PTCOOR or P3AMEEMT the Amax shifts to 528 nm (2.35 eV) and 524 nm
(2.37 eV), respectively. This is a hypsochromic shift (blue shift) by about 22-26 nm. Blending two
polar side-chain polymers leads to much smaller shifts. It is expected that incorporating polar side
chain results in an observable blue shift that should occur along with a significant decrease in A
9/A%! because of the increase in disorder within the polymer aggregates. On the other hand,

hydrogen bonding among side chains can cause a bathochromic effect.®



Thin Film Morphology

As shown in the Supporting Information, Figure S13, the XRD diffraction pattern was
obtained for the homopolymers alone (Figure A), and the combinatorial blends in Figure B-F at
room temperature for polymer films that were drop-cast on Si/SiO2 (300 nm of thermal oxide)
substrate. In Figure A, P3HT exhibits crystalline order with diffraction peaks at 26 = 5.6° and
10.6°. These two peaks correspond to the (100) and (200) indices, respectively, of the unit cell for
P3HT. The sharp intensity at the (100) index indicates high crystallinity. A study had been done
that reported the differentiation of XRD patterns of P3HT. A slow-dried film should exhibit
crystalline order with diffraction peaks at 26 = 5.4°, 10.8°, 16.4°, and 23°, which corresponds to
the (100), (200), (300), and (010) indices.?! However, the lack of visibility of the higher order
reflections may indicate that the film thickness is very low for suitable peak resolution. PTCOOR
exhibits crystalline order with diffraction peaks at 20 = 5.6°, 10°, and 15°, which corresponds to
the (100), (200), and (300) indices. Another study using a very similar ester functionalized
polythiophene polymer reported that distinct diffraction peaks at 26 = 3.5° and 7.0° correspond
to an inter-chain d-spacing of 24.7 A and 12.6 A, respectively.> However, for our ester
functionalized polythiophene moiety, there is a concomitant disappearance of the n-m stacking
occurring at 20 = 23.2 (010) which means that our polythiophene functionalized with an ester
displays highly ordered lamellar n-stacks.®> PTCOOH displays broad features at 28 = 6.3° and
13.8° with a broad peak beginning at 20°. A broad feature centered at 20° usually corresponds to
disordered chains for P3HT, but for PTCOOH it is more indicative of the amorphous networks
and has been similarly reported with a related polymer such as poly(thiophen-3-yl-acetic acid

(PTAA) where no feature is formed for the polythiophene-based polymers.®* Similar observations
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are made on P3AMEEMT and PTOH. No observable feature or intensified sharp peaks were
detected, which could limit the ability of our XRD study to designate a fully amorphous state or
find crystalline domains within these materials. In addition, it was reported that a broad peak for
a functionalized ester polythiophene was observed at 260 = 24.7°. which indicates n-r stacking
distance observed in other thiophene polymers (3.5-3.8 A).32% Therefore, depending on the
functional group on the side-chain of the polythiophene, the broad features appears stronger, which
can be seen in PTCOOH, PTOH, and P3AMEEMT, which may indicate disorder.

The blended films in Supporting Information, Figure S13 B-F showed a merging of the
individual polymers. Figure B. P3HT blended with PSAMEEMT displayed the usual crystalline
feature of 20 = 5.6° for the (100) index; however, the (200) index is lost and is replaced by the
amorphous disordered region occurring at higher 26. P3HT blended with PTCOOR preserves the
indices found in pure PTCOOR where the distinct (100), (200), and (300) indices of the unit cell
are still observed but the higher index (300) seems less pronounced with (200) index becoming
less distinct and broader. PTCOOR blended with PSMEEMT results in the complete loss of (200)
index and more pronounced 26=5.6° and 16.3°. Blending PTCOOR and PTOH results in more
defined amorphous broad regions; however, the distinct (100) index occurring at 26=5.6 becomes
significantly lower and less intense and sharpness is reduced. This indicates that there is less
crystallinity, crystals are smaller, and/or more defective.®’ PTCOOR blended with PTCOOH
results in more pronounced and intense peaks than are observed from PTCOOH alone. As a matter
of fact, all polymers (P3AMEEMT, PTOH, and PTCOOR) blended with PTCOOH show an increase

in the intensity of the (100) reflection as well as the observable (300) reflection. It is possible that
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the different functionalities of these polymers led to more structural order, larger crystal sizes,
and/or fewer defects. PTOH retains amorphous characteristics except with PTCOOH.
Polymer Thermal Properties

Differential scanning calorimetry (DSC) was performed to determine the thermal
transitions of each polymer. The polymers were heated at a ramp rate of 10°C/min and then cooled
at a ramp rate of 20°C/min under a nitrogen atmosphere. The detailed thermal traces are found in
the Supporting Information, Figure S14, and a corresponding compilation of properties is
presented in Table 1. P3HT exhibits one endothermic peak at 206°C and one single exothermic
peak upon cooling at 157°C. This is very similar to already published values of P3HT where it is
reported that P3HT displays an endothermic peak at around 233°C and a reported exothermic peak
at 194°C.% The enthalpy of calculated fusion (AHm) was 50.2 J/g which is equivalent to reports
of 42.2 J/g for extended chain crystals of oligomeric P3HT to infinite molecular weight.*® For
PTCOOR, it is interesting to note the double exotherms upon cooling, which may indicate the
presence of different polymorphs, a second phase, or even structure change. However, there are
two exotherms at 137°C and 181°C, and a single endothermic peak at 207°C. A report on an ester
functionalized polythiophene that crystallizes at 177 °C and has a sharp endothermic transition
upon heating at 180°C is similar to the PTCOOR polymer that is being studied.®? The enthalpy of
fusion ((AHm ) was calculated as 29 J/g and 74 J/g. PAMEEMT was much more fragile in the sense
that the maximum applied temperatures had to be lower, but it displayed one broad exothermic
peak at 151°C and one endothermic peak at 105°C. A study had been conducted on PAMEEMT
where three crystallite melting temperatures at about 60°C, 125°C (strong peak), and 150°C were
found, suggesting polymorphs. In addition, the crystallite reformation occurred at roughly 125°C
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and 65°C.*” The PTOH and PTCOOH had very similar thermograms in that there is a single
exothermic peak both situated at 180°C, while the endothermic peak was very broad and resided
at 220°C and 215°C, respectively. In a published study, the presence of broad peaks, indicating
glass transitions, further confirms the amorphous nature of PTOH, PTCOOR, PTCOOH, and

P3MEEMT as well as the presence of intermolecular hydrogen bonding.®

Electrical Characteristics

A thin film of each polymer was spin-coated onto each individual OECT substrate
purchased from NanoSPR. The film thickness was measured by profilometer and ranged from 200-
300 =50 nm. The transistor channel length is 10 pm and the total width is 20 mm (20 interdigitated
pairs of 1 mm each). The W/L ratio is reported and validated by NanoSPR as being 2000. Four
electrolytes were studied with each polymer. The electrolytes consisted of KCI (1M), KClO4 (1
M), KPFs (IM), and KTFSI (1M). The gate electrode is an Ag/AgClI (3.5 M) reference electrode
immersed in KCI solution. Further details of OECT, film fabrication, and electrolyte preparation
are provided in the Methods section.

The generated transfer characteristics are shown in Figure 2, and Table 2 displays a
compilation of properties of the homopolymers. The 5 polymers are p-type and by applying a
negative gate voltage (Vg), the anions will diffuse and be injected into the polymer. This will

generate an increase in the hole concentrations resulting in higher drain current (Ip).
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Table 2. Electrical Properties and Characteristics. Compiled tables of transfer characteristic
performance of each anion varying electrolyte subjected to A) P3HT, B) PTCOOR, C)
P3MEEMT, D) PTOH, and E) PTCOOH. Each representative table consists of the Vtu in the
forward 0 to -1 V direction, Vrx in the -1 to 0 V reverse direction, potential of Gm max in forward
and reverse direction. Transconductance (Gm) max in the forward and reverse direction. Key data

are indicated in red boxes.
m

KOl 910£30 500440  -1000  -750%50 oasﬂ 04+03 780430 | -770+10 -990+10 -930+20
KCIO, 740420 -440+70 -960£30 -800£50 64110 3045 KCIO, 550430 270480 820410 750430 5445 5145
KPF,  -690430 -360440 970420 -870+30 [ 70410 6010 KPF,  -450£30 -260£60 -80010 -780150 54110  S8%10
KTPSL so0+20  400£20 -860+20 -B50+30 | 76£20  74+20 KTFSI  -240410 -200420 -700+50 -670+30 60410 70410

Vi (F) Vo (R)
P3IMEEMT (mV) (mV)
KCI 780420 800430 930420 9900  [33k1  64k2 KCl -540120 -470:40 -830:20 -860k20 3511“ 90410
KCIO,  -630+10 -600+20 -990+10 -930+10  35+10  36+10 KClo,  -570£20 -460+10 -920+30 -850+10 3841 3512
KPE6 580410 -560+10 -970+30 -940+10 4445 44410 KPFe -560+20 -480+20 -960+30 -890+10 3545 2845
KTFSI 7004200 -600+400 -900+60 -1000+10 [039+0.1 049+0.1 KTFSI  -400%5 -310110 -820%10 -740£20 48+10 46110
E
G (F)
(mv)

KCl 240450 -230+40 -810+40 -830+50

KCIO,  -200430 -1801+30 -7401+40 -790+30 55110 50+10
KPF6 -210+20 -180+40 -790+40 -8204£50 48110 50110

KTFSI -230420 -200+20 -7304+40 -710450 50+10 60+20
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Figure 2. Transfer curves of functionalized polythiophene motifs configured as electrochemical
transistors. Characteristic transfer curves (Vp = -600 mV) are displayed for A) P3HT, B)
PTCOOR, C) P3BMEEMT, D) PTOH, and E) PTCOOH tested with 4 varying anions of the
potassium salts [chloride, perchlorate, hexafluorophosphate, and
bis(trifluoromethanesulfonyl)imide] at an electrolyte concentration of 1 M. Vg is properly denoted
as V vs Ag/AgCl with correspondence to the reference electrode.

It was already reported by Flagg et al>® that the output currents, threshold voltages (V1n),
and injected charge densities in P3HT OECTSs depend strongly on the anion electrolyte. In general,
with larger molecular anions, Vru was lowered, and greater transistor currents are generated. This
same trend is seen strongly in Figures 2A, 2B, and 2C, but only slightly for the more polar
polymers of Figures 2D and 2E. P3HT had an initial Vru of -910 = 30 mV with KCI but that
shifted to -500 + 20 mV when a much larger TFSI anion was used. PTCOOR displayed a similar

trend; however, the shift was more prominent with each anion. PTCOOR had an initial Vx of -
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780 + 30 mV with KCI but that reached -240 + 10 mV with TFSI, a 69% decrease. PAMEEMT on
the other hand displayed a large magnitude Vru shift up to KPFe; but, when a high concentration
of KTFSI was applied to PAMEEMT a very strong decrease in Ip is observed and immediate shift
of Vru to more negative potentials is observed. This can possibly be explained by the electrolyte
driving a large change in the polymer microstructure. It was reported by Matta et al*°, through
XRF and MD simulations, that different counterions had varied effects on the p(g2T-TT)-water
interface and that softer polyatomic anions such as TFSI and ClO4 can enhance metal coordination
and result in chelation by the ethylene glycol side chains. In addition, the hydrophobic character
of TFSI can result in the higher tendency of the anion to concentrate at the interface of the polymer
electrolyte environment and result in higher cation-side chain chelation. It was also reported that
the polymer side chains can be completely saturated by the cation coordination sphere if TFSI is
used as the counterion. K has a higher propensity to swap loosely bound water solvation for the
glycol side chains of P3MEEMT. Therefore, with the chelating capabilities of K* cation being
strong, it prevents the TFSI™ anion from being injected into the polymer resulting in insufficient
doping, which is observed in the significant decrease in Ip but also return of the Vtu to the same
value as for KCI. PTOH, on the other hand, displayed a unique consistency using KCl, KCIO4, and
KPFg. It was not until a larger anion such as KTFSI was used that a noticeable shift in the Vin
occurred (shift of 26%) as well as an increase in the Ip. PTCOOH had a varying response in the
sense that all anions larger than CI shifted the threshold voltage by roughly the same small
magnitude (about 17% decrease).

Supporting Information, Figure S15, displays all the output curves generated of the
functionalized homopolymers that are individually tested with each anion electrolyte. The

15



polymers all display OECT device behavior, and the magnitude of Ip increases as the anion
electrolyte changes with the increase in anion size, volume, and polarizability.>* As the anions are
injected into the semiconductor film, volumetric doping occurs resulting in the increase in Ip which
is consistent with accumulation mode operation. P3HT originally displays a response when Vy is
held at or above -700 mV for KCl, KCIO4, and KPF¢ anions. In the ideal case of a transistor output
curve, Ip linearly increases at low Vp and becomes saturated at a constant level. However, in
realistic devices, output curves are not perfectly flat at high Vp which is due to channel length
modulation, space-charge-limited conduction through depleted semiconductor, and electric field
dependence of mobility.”® This can be seen with P3HT with KC104and KPFg electrolyte. However,
the working operation is greatly enhanced with KTFSI as the electrolyte. PTCOOR and PTOH
both display more ideal transient OECT device charateristics compared to P3HT and enhanced Ip
generation. PSMEEMT initially does not display any response until a much larger Vg is applied
with KCI; however, more ideal transient behavior is obtained with KClO4 and KPFs. As earlier

described, KTFSI results in de-doping and a loss of strength in transient behavior.
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Figure 3. Transconductance of functionalized polythiophene motifs. Characteristic
transconductance values (Vp=-600 mV) are displayed for A) P3HT, B) PTCOOR, C) P3AMEEMT,
D) PTOH, and E) PTCOOH tested with 4 varying anions of the potassium salts [chloride,
perchlorate, hexafluorophosphate, and bis(trifluoromethanesulfonyl)imide] at an electrolyte

concentration of 1 M. Vg is properly denoted as V vs Ag/AgCl with correspondence to the
reference electrode.

Figure 3 displays the transconductance plots, and Table 2 displays the compiled values. The non-
OH polymers P3HT, PTCOOR, and PAMEEMT had significantly higher transconductance. P3HT
initially had a transconductance value of 0.5 £ 1 mS with CI" but this was greatly enhanced to 64
+ 10 mS, 70 £ 10, and 76 = mS when using ClO4", PF¢", and TFSI, respectively. Flagg et al>}, had
initially stated that P3HT does not demonstrate high transconductance but emphasizes the
importance of favorably tailoring the ion-polymer interaction to improve its properties. The same

demonstration can be seen with PTCOOR and P3IMEEMT where the transconductance value
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increases, but the magnitude of increase is dependent on the anion size and functional moiety that
is present. It was reported by Flagg et al*2, that PAMEEMT transconductance increases from about
1000 puS to 4000 uS from switching from 100 mM of KCI to 100 mM of KPFs with a device
configuration of W/L ratio of 10 and 80 nm thickness films. The geometric parameters of the
OECT channel also define transconductance, so comparisons can only be made within single
systems within our experiment. PTOH and PTCOOH show relatively stable transconduction for
different anions. However, it is noticeable that the potential peak transconductance value shifts to
lower Vg. PTCOOR displays the largest shift in transconductance potential where the peak initially
is found at -1 V but shifts to -0.65 V. The curve shapes are different for the various anions, which

could affect their applicable voltage ranges.

Figure 4 and Table 3, display the transfer curves and summarize transfer characteristics of

the 50/50 mixed blends of the polymers. Note that it was not possible to make compatible mixtures

of P3HT with PTOH or PTCOOH.
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Figure 4. Transfer curves of functionalized polythiophene motifs as 50/50 mixed blends configured
as electrochemical transistors. Characteristic transfer curves (Vp=-600 mV) are displayed for A)
P3HT/PTCOOR, B) PTCOOR/PTOH, C) PTCOOR/PTCOOH, D) PTOH/PTCOOR, E)
P3MEEMT/P3HT, F) P3MEEMT/PTCOOR, G) P3MEEMT/PTOH, and H)
P3MEEMT/PTCOOH tested with 4 varying anions of the potassium salts [chloride, perchlorate,
hexafluorophosphate, and bis(trifluoromethanesulfonyl)imide] at an electrolyte concentration of 1
M. Vy is properly denoted as V vs Ag/AgCl with correspondence to the reference electrode.

Table 3. Compiled tables of transfer characteristic performance of each anion varying electrolyte
subjected to combinatorial 50:50 mixed blends of A) P3HT/PTCOOR, B) PTOH/PTCOOR, C)
PTCOOH/PTCOOR, D) PTCOOH/PTOH, E) PTCOOH/PTOH, F) P3SAMEEEMT/PTCOOR, G)
P3MEEMT/PTOH, H) PAMEEMT/PTCOOH . Each representative table consists of the Vru in the
forward 0 to -1 V direction, V1u in the -1 to 0 V reverse direction, potential of Gm,max in forward
and reverse direction. Transconductance (Gm) max in the forward and reverse direction. Key data
are indicated in red boxes.
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Mixed blends display a Vtu that is between those for the individual constituent polymers. For

example, PTCOOH has an initial Vty of -240 + 50 mV and PTOH has an initial Vtu of about -540

+ 20 mV using 1.0 M of KCI. However, for a mixed 50/50 blend of PTCOOH/PTOH, Vn is -310
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+ 50 mV. For mixed blends that are opposite in polarity or unfavorable in blending compatibility,
for example PTOH/PTCOOR, the Vrn is dominated by the stronger ion-interacting species, which
is PTOH in this case, but for PTCOOH/PTCOOR the initial Vg is an intermediate value of -400
+ 10 mV. Therefore, depending on the functionality and favorability in blend synergist interaction,

the Vru can be adjusted as well.

Supporting Information Figure S16 displays all the output curves generated for the blended
functionalized homopolymers. Most of the polymer mixtures generate ideal OECT transient
behavior. Initially using KCl as the electrolyte, PRHT:PTCOOR blend displays a response when
Vg is held at -700 mV; however, greater transistor response is observed at lower Vg application
with larger anion electrolytes. Importantly, the very low currents observed with KCI and P3HT
are increased when P3HT is blended with any of the other, more polar polymers. Also, the
PTCOOH/PTOH and P3AMEEEMT/PTCOOR blends showed some higher currents than did either
of the individual polymers, evidence of some functional group synergy that could be explored in

future studies.

Figure 5 displays the transconductance-Vy plots and Table 3 displays the compiled values.
Again, functional group polarity seems to dictate the maximum transconductance value obtained.
P3HT and PTCOOR, blends, having the least relative polarity, have the highest ultimate
transconductance and potential window dependence on anion size. The more polar polymers have

higher transconductance with KCl electrolyte. Blends of the
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Figure 5. Transconductance of functionalized polythiophene motifs. Characteristic
transconductance values (Vp = -600 mV) are displayed for A) P3HT/PTCOOR, B)
PTCOOR/PTOH, C) PTCOOR/PTCOOH, D) PTOH/PTCOOR, E) P3MEEMT/P3HT, F)
P3MEEMT/PTCOOR, G) PAMEEMT/PTOH, and H) P3SAMEEMT/PTCOOH tested with 4 varying
anions of the potassium salts [chloride, perchlorate, hexafluorophosphate, and
bis(trifluoromethanesulfonyl)imide] at an electrolyte concentration of 1 M. Vg is properly denoted
as V vs Ag/AgCl with correspondence to the reference electrode.

non-OH polymers have the highest transconductances in the study, illustrating possible synergy
between the organizational and ion-binding properties of the functional groups. However,
polymers with high polarity seem to be less influenced by anionic species due to possible

coordination of the cations, which does not have a large effect on Vru or transconductance
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increase. It is noted that even with the greater stability that polymers such as PTOH and PTCOOH

have, very large anions such as TFSI still can disrupt any coordination interaction resulting in a

shift of Vrn and potential peak of the transconductance but only by a small magnitude.

Additional side chain-dependent electronic parameters

Figure 6 shows the cyclic voltammograms (CVs) of P3HT, PTCOOR, PTOH, and

PTCOOH using 0.1 M TBAPFg in acetonitrile (MeCN) at a scan rate of 50 mV/s. Unfortunately,
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Figure 6. Thin film cyclic voltammograms of drop-
cast polymers. A) P3HT, B) PTCOOR, C) PTOH,
and D) PTCOOH on Pt electrodes in 0.1 M TBAPFs
in MeCN at 50 mV/s. Arrows display scan direction.

16

Harris et a

P3MEEMT is soluble in
acetonitrile and could not be
analyzed in this approach so it
was omitted in this study. P3HT
displays a reversible oxidation
wave with small shoulder at the
foot of the wave. The CVs are
very similar to a published
curves for P3HT with a Mw =
60 kDa using 0.1 M TBAPF.”!

1°2 noted the presence of

two reversible oxidation waves for

P3HT in 0.1 M TBAHFP as the supporting electrolyte. They indicate that the peak near 0.2 vs.

Ag/AgNOs represents the oxidized aggregated domains of a larger conjugated length, but the peak

near 0.6 V represents amorphous regions with short conjugation length that are less oxidizable.

23



We observe a reversible oxidation peak at 0.7 V vs Ag/AgCl which is reasonable since the My of
our P3HT is roughly 16,000 while theirs is 47,000 and therefore might contain some shorter
oligomers. Also, polythiophenes with moderate to high regioregularity are formally amorphous
with a quasi-ordered phase dispersed in continuous disordered domains.”> PTCOOR on the other
hand displays two reversible oxidation waves with oxidation peaks located at 0.9 and 1.2 V vs
Ag/AgCl, respectively. PTCOOH displays one reversible oxidation wave with an oxidation peak
located at about 0.9 V vs Ag/AgCl as well. PTOH is observed to have a reversible oxidation peak
(0.5 V vs Ag/AgCl) as well as well as a small broad shoulder at the foot of the wave (~ 1 V vs
Ag/AgCl). Plots using other scan rates from 10 mV/s to 250 mV/s are also found in Supporting

Information Figure S18-21.

Analysis was continued by calculating the band gaps and LUMO levels. P3HT has been
reported to have a broad range of bandgap values derived from cyclic voltammetry, but the lowest

unoccupied molecular orbital (LUMO) position was reported to range from -3.53 to -2.70 eV;

Table 4. Electrochemical Property of Polymers from CV. | yhile the highest occupied
Experimental HOMO energy levels were calculated from
onset of oxidation peaks in CV. LUMO energy levels obtained lecul .

tal (HOM
from HOMO(onset of CV) and optical band gap using LUMO molecular - orbital (HOMO)
=HOMO + Egopt (€V). Optical band gap calculated from onset
of absorption spectra of polymers and listed in Table 1.

from -4.92 to -5.20 eV.7*%
%,/ (V)

Table 4 compiles the results

position is reported to range

P3HT 0.292 0.56 5
PTCOOR -0.212 0.40 -4.6 -2.9 obtained by both UV-vis
PTOH -0.02 0.60 4.8 3
PTCOOH  -0.30V  0.67 A5 2.9 absorption and CV spectra

analysis. P3HT was
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measured to have a HOMO level of -5.1 eV and LUMO of -3.4 eV, which fits well with previous
reports. Other polymers were similar in this regard. The energy levels were somewhat closer to

vacuum with polar functionalities incorporated .

The parameters volumetric capacitance (C*) and mobility (1) were determined to allow
comparison with established benchmark polymers. To calculate C*, the specific capacitance (per
unit mass) was calculated from the cyclic voltammetry (CV) curves obtained in 0.1 M KClI in H>,O

(Supporting information Figure S22) according to the following equation defined below (the full

derivation can be found in the methods section in the Supplementary Information.):**®
A
Cp= ;
G

By replacing m by the area of the electrode and then dividing the entire expression by the thickness
of the film drop-cast onto the electrode generates the volumetric capacitance. Romele et al®®, had
experimentally found that C* is independent of the ion concentration for PEDOT-PSS. The
polymers in this study were calculated to have a C* value of 6+ 5 Fecm™, 70+ 40 Fecm™, 170+
20 Fecm3, 140 + 10 Fecm™, 160 + 30 Fecm™ for P3HT, PTCOOR, P3AMEEMT, PTOH, and
PTCOOH, respectively. Both P3HT and PTCOOH have already been reported to have a measured
C* value of 40 Fecm™ in 0.1 M TBAPF¢DCM with 0.1 M NaCl using a liquid-liquid phase
separation architecture!®and 150 + 18 Fecm™ in 0.1 M NaCl/H,0,*° respectively. PAMEEMT was
reported to have a C* of 294 Fecm™ in KPF electrolyte and 175 Fecm™ in KCI electrolyte.’
Therefore, volumetric capacitance of the polymers of this study are in good agreement with

previously reported volumetric capacitance values.
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The electronic carrier mobility p associated with a swollen wet state, can be extracted by

measuring the transconductance found in the OECT measurements using the equation:>>

Wed
.
L

Gm = uC* o (Ven = Vg);

where G is the transconductance, d is the film thickness, Vi is the voltage threshold, V; is the
gate bias, and W/L is the width over length ratio of the channel. The values we obtained were 2.7
x 107 +£2.2x 10?7 cm*V'es! 45 x 107+ 7.2 x 107 cm*V-'es!, 6.4 x 107 + 1.1 x 107
cm?V'es! 1.4 x 102 £ 4.0 x 107 cm?V'es!, and 1.0 x 102 + 3.1 x 10? cm?V'ss”! for P3HT,
PTCOOR, P3AMEEMT, PTOH, and PTCOOH, respectively. Comparing these values to already

133 reported P3HT p to converge and saturate near 102 cm?eV-1ss™! and

published values, Flagg et a
attributed this to unannealed films and variation of regioregularity. As an OFET, P3AMEEMT
exhibits a mobility of 3 x 10 cm?»Vles! in the dry state. However, for OECT measurements,
P3MEEMT exhibits a reported hole mobility of 6 x 102 cm?»V-'es! in the hydrated state.”” Using
values extracted from previous work '°!, the OFET p extracted from P3HT, PTCOOR, and
PTCOOH were 1.8 x 10 + 7E-5 cm?V-'es!, 1.2 x 10% + 6E-3 cm?*V'ss”!, and 2.3 x 10 + 8E-3
cm?sV-les’!, For PTOH the extracted OFET mobility was 6.9 x 10 cm?sV-les!, It is clear that
P3HT, PTCOOR, P3AMEEMT, and PTOH swell by at least 10-100x from dry to wet state. This is
attributed to hydration of the polymer matrix resulting in faster anion injection rates. PTCOOH
remains relatively the same either in wet or solid state. The importance of functionality that is

incorporated in the side-chain has major implications on the mixed conduction properties and is

clearly demonstrated.
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3 Conclusion

This study was aimed at improving the understanding of the relationship between
polythiophene OECT properties and their engineered side chains with varied counterions of
potassium salt electrolytes. In addition, mixed blends were investigated to evaluate any synergistic
effects between functionalities. It is observed that depending on the functional moiety that is
attached, a large shift to lower potentials of Vi, an increase in drain current, and increase in
transconductance are observed for P3HT and PTCOOR, with PAMEEMT. A newly designed and
synthesized polymer PTOH was also tested and displayed stability to large shifts in Vrn, slight
increase in drain current, and little or no increase in transconductance when an ionic radius of the
dopant is increased until a much larger anion, large polarizability, and low hydration number such
as TSFI is used that finally generates an interaction. PTCOOH on the other hand has the same
magnitude in shift with respect to any anion that is larger than CI".

The anionic doping process was studied through cyclic voltammetry. Both PTOH and
PTCOOH display irreversible undoping/doping ratio which implies that self-doping of the chains
must be interfering with the involvement of injecting into the polymer, until a very large sized
anion is used. This work demonstrates that side-chain engineering can have substantial difference
in the level of interaction in the electrolyte which would require tailoring the ion for specific
polymer interactions. As new OECT polymeric materials are developed, it is imperative to study
these polymers in different electrolyte settings for applicability purposes and understanding of side

chain influence.
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4 Methods

Materials and Characterization Techniques

Unless otherwise specified, all chemicals were used as purchased without further purification.
Solvents used for workups and cleaning were reagent grade and used as received. All reagents,

monomer and polymer synthesis are outlined in the Supporting Information.

Sample Preparation:

For PTCOOR, P3HT, and P3SMEEMT all polymers were dissolved at a concentration of 10 mg/ml
in anhydrous dichlorobenzene, sonicated for 1 hour, and heated at 60°C for 1 hour. Solutions were
cooled to room temperature, filtered with a hydrophobic filter (0.45 um), and then spincoated onto
interdigitated electrodes at 1600 rpm for 60 seconds. Subsequent annealing was performed under
high vacuum at 60°C. PTCOOH and PTOH were dissolved at a concentration of 10 mg/ml in
anhydrous dimethylformamide, sonicated for 1 hour, heated at 60°C for 1 hour, and heated at
130°C for 20 minutes. The solutions were cooled to room temperature, filtered with a hydrophilic
filter (0.45 um), and then spin-coated onto interdigitated electrodes at 1600 rpm for 320 seconds.'®!
For mixed blends, polymers were followed above, however, once filtered the polymers were then
mixed 50/50 by volumetric ratio. For PTCOOR and P3AMEEMT, the polymers were dissolved in

DMF when mixing with either PTOH or PTCOOH to prevent phase segregation or crashing out

of solution of polymers due to incompatibility in solvent blend.
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OECT Devices. OECTs were purchased from NanoSPR, consisting of an interdigitated electrode
array on sital with 150 nm Au layer and 10 um interdigital gap. The size of the support is 28 mm
x 5 mm x 0.4 mm. The length is 1 mm, and width of the finger is 20 um for all electrode models.
The sital gap is 10 um and the number of interdigit pairs is 20 (40 total added by each side). The
area of the system is 1.25 mm?. The W/L ratio calculated and validated by NanoSPR is 2000. The
source-drain bias/current was measured using a KeySight B1500A semiconductor device
parameter analyzer. Before use, the electrodes were sonicated in isopropanol for 15 minutes, dried

with N2 , and subjected to UV-ozone treatment for 20 minutes using a Jelight model 18.

Yolumetric Capacitance Derivation.

Q
Cy= ;
P sV’

C, is defined as the specific capacitance (F/g), m (g) is the mass of the active material, Q
(Coulombs) is the average of the charges generated from charging and discharging, and AV is the
potential window that is scanned. Q is also represented as current (I) multiplied by time (t), so a

new equation is generated:

Ixt

P msav

Rearrangement of the equation provides the new equation (1) defined as:

[=Chpem-( % ); (Equation 1)

In a CV experiment, the current changes by changing the potential from Vi to V. Therefore, we
can rewrite Equation 1 in its integral form:

V2 V2 v
J,, TWdv= [ "Cp*mx (Ddv
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The integral f;lz I (v)dv = the area A under the CV curve. Therefore:

V2 v
A= [,/ Cp+mx (Ddv

UV-vis Absorption Spectroscopy. Absorption spectra were obtained using a Lambda 950 UV-
vis spectrometer with an operating range of 175-3300 nm. A universal reflectance accessory was
used to measure thin film characterization. Polymers were spin-coated by method outlined above

on borosilicate glass slides.

Profilometer. A Filmetrics F20-NIR thin film analyzer was used to measure the thickness of the
spincoated polymers on the OECTs. All polymers had thin films ranging from 250-350 + 50 nm

of film thickness when spin-coated.

Differential Scanning Calorimetry (DSC). DSC measurements, using 2-3 mg of material, were
conducted under nitrogen scan rate of 10°C/ min when heating and 20°C/min for cooling with a

TA DSC-Q20 instrument.

X-ray Diffraction (XRD). Polymers were dissolved in appropriate solvents noted above and drop-
cast on Si/Si0O2 (300 nm of thermal oxide growth) substrate to form at least 100 nm of film
thickness. The thin films were then collected and analyzed using a Bruker D8 Focus X-ray

Diffractometer analyzer. Quantitative analysis was performed with a DIFFRACP'™ Software
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utilizing DIFFRACP™ EVA and TOPAS programs. Measurements provided intensity distribution
related to the angle 20. The instrument was calibrated with a NIST standard reference piece of

polystyrene or AlOs.

Cyclic Voltammetry. Cyclic voltammetry (CV) measurements were performed in a one-chamber,
three-electrode cell using a PGSTAT302 potentiostat. A 2 mm? Pt electrode from BASi was used
as the working electrode with a platinum wire serving as the counter electrode relative to a
Ag/AgCl (nonaqueous) reference electrode submerged in either 0.01 M AgNO3/0.1 M n-BusPFg
in anhydrous acetonitrile or 0.01 M AgNO3/0.1 M n-Bu4Cl in anhydrous acetonitrile (MeCN).
Measurements were taken in either 0.1 M n-BusPF¢ (in MeCN) electrolyte solution or 0.1 M n-
BusCl (in MeCN) at various scan rate from 10 mV/s to 250 mV/s. Potentials relative to the Ag/Ag"
couple to which the Fc/Fc* couple was measured to be 262 mV (Figure S17 in Supporting
Information). The potential for ferrocene redox is -4.8 eV relative to vacuum. Energy levels of
the highest occupied molecular orbital (HOMO) were calculated according to the equations:

HOMO = -e(Eoxt+ 4.64) (eV), where Eox is the onset oxidation potential vs Ag/AgCl.

'TH NMR. Spectra were measured on a Bruker Avance 300 MHz Spectrometer and chemical shifts
are reported in parts per million (ppm). Spectra were recorded in either CDCl; or DMSO-d6. Gel
permeation chromatography (GPC) analysis to determine molecular weight (SI S30-33). The
analysis was performed on a Tosoh Bioscience EcoOSEC GPC workstation using THF as the eluent
(0.35 mL min-1), 40°C through a TSKgel SuperMultipore HZ-M guard column (4.6 mm ID x 2.0
cm, 4 mm, Tosoh Bioscience). Polystyrene standard (EasiVial PS-M, Agilent) was used to build a

31



calibration curve. Polymers were dissolved in THF (2 mg mL-1), filtered (Millex-FG Syringe
Filter Unit, 0.20 mm, PTFE, EMD Millipore) and injected using an auto-sampler (10 pL).
PTCOOH and PTCOOR were purchased from Rieke Metals with a reported molecular weight
average of 15,000-25,000. PTOH was insoluble in THF when protecting group was cleaved to

form hydroxyl terminated ends; therefore, PTOTBS will be used as the reported value.

OECT Measurements. Measurements were conducted using a KeySight 1500 Semiconductor
Device Analyzer. Transfer curves were obtained by measuring the Vg from 0 V to -1 V with a
step size of -10 mV and Vp =-0.6 V. Output curves were measured from 100 mV to -1 V with a
step size of -11 mV, and V ranged from 0 V to -700 mV with a step size of -50 mV. However, for
polymers like PMEEMT and P3HT, V, ranged from -600 mV to -1.05 V with a step size of -50
mV with KCI. Afterwards, the original setup listed before was used. The reference electrode that
was used was a Ag/AgCl (sat’d KCI) purchased from GAMRY instruments. The Electrode

potential is 199 mV vs Normal Hydrogen Electrode (NHE).

Scanning Electron Microscopy (SEM). Measurements were conducted by drop-casting polymer
ink solutions outlined in the sample preparation on microscope glass slide (borosilicate). A Tescan
Mira 3 GMU field emission gun SEM with EDAX was used to determine the film thickness of
drop-casted films prepared on platinum electrodes that were used for cyclic voltammetry studies.

Film thickness ranged from 1-10 pm.
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