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Abstract

We present a model of truthful elicitation which generalizes and extends mech-
anisms, scoring rules, and a number of related settings that do not qualify as
one or the other. Our main result is a characterization theorem, yielding char-
acterizations for all of these settings. This includes a new characterization of
scoring rules for non-convex sets of distributions. We combine the characteri-
zation theorem with duality to give a simple construction to convert between
scoring rules and randomized mechanisms. We also show how a generalization
of this characterization gives a new proof of a mechanism design result due to
Saks and Yu.

1. Introduction

Information elicitation, the gathering of information from an agent by a prin-
cipal, is a key problem in economics, statistics, machine learning, and finance.
In these settings, one is interested in obtaining the preferences of an agent, a
probability distribution from an expert, the desired prediction from an algo-
rithm, and the risk of a portfolio, respectively. The key challenge in all of these
settings is to reward the agent in such a way that the agent will truthfully reveal
her knowledge rather than being encouraged to reveal some incorrect version.
A central question in all these literatures has been to characterize all the ways
this can be achieved; that is, to characterize all the truthful mechanisms, proper
scoring rules, proper loss functions, or elicitable properties, respectively. Many
variants on such characterization theorems have been proved. (See Section 1.2
for a partial list.) Moreover, the proofs of these results all use various tools
from convex analysis; in particular, the characterizations tend to be in terms of
convex functions and their subgradients.

Despite this commonality of question and technique, the literature on mech-
anism design has proceeded essentially independent of these other literatures
and vice versa. Further, many characterizations are presented for a particular
setting, and it is not immediately clear how they would apply to others. As a
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result, there are many theorems in the literature whose proofs are slight vari-
ations on existing results to adapt them to a new setting. While ex post the
variations are slight, ex ante the needed changes were frequently not obvious
and required significant effort to pin down. An excellent example of this is the
scoring rules characterization by Gneiting and Raftery (2007), which has had
at least three variants used in various settings (Boutilier, 2012; Chen and Kash,
2011; Cid-Sueiro, 2012).

In this paper we address these two problems by formulating a model of in-
formation elicitation which is general enough to encompass all these variants,
and providing a characterization for it. This characterization obviates the need
for additional new theorems in any future application that fits into our frame-
work. Further, it provides a clearer understanding of the connections between
mechanism design and scoring rules which allows us to translate results from
one domain to the other.

Our model consists of a single agent endowed with some type t known only
to the agent, who is asked to reveal her type to the principal. After doing so,
the principal gives the agent a score A(t′, t) that depends on both the agent’s
reported type t′ and her true type t. We allow A to be quite general, with the
main requirement being that A(t′, ·) is an affine function (linear transformation
plus a constant) of the true type t, and seek to understand when it is optimal
for the agent to truthfully report her type. Given this truthfulness condition, it
is immediately clear why convexity plays a central role—when an agent’s type
is t, we desire the score for telling the truth to satisfy A(t, t) = supt′ A(t

′, t),
which means this “consumer surplus” function G(t) := A(t, t) must be convex
as the pointwise supremum of affine functions.

One special case of our model is mechanism design with a single agent,
where the designer wishes to select an outcome based on the agent’s type. In
this setting, A(t′, ·) can be thought of as the allocation and payment given a
report of t′, which combine to determine the utility of the agent as a function
of her type. In this context, A(t, t) is the consumer surplus function (or indirect
utility function), and Myerson’s well-known characterization (1981) states that,
in single-parameter settings, a mechanism is truthful if and only if the consumer
surplus function is convex and its derivative (or subgradient at points of non-
differentiability) is the allocation rule. More generally, this relationship remains
true in higher dimensions (see Rochet (1985)). Here the restriction that A(t′, ·)
be affine is without loss of generality, because we view types as functions and
function application is a linear operation. (See Section 3.2 for more details.)

Another special case is a proper scoring rule, also called a proper loss in the
machine learning literature, where an agent is asked to predict the distribution
of a random variable and given a score based on the observed realization of
that variable. In this setting, types are distributions over outcomes, and A(t′, t)
is the agent’s subjective expected score for a report that the distribution is t′

when she believes the distribution is t. As an expectation, this score is linear in
the agent’s type. Gneiting and Raftery (2007) unified and generalized existing
results in the scoring rules literature by characterizing proper scoring rules in
terms of convex functions and their subgradients.
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Further, the generality of our model allows it to include settings that do not
quite fit into the standard formulations of mechanisms or scoring rules. These
include counterfactual scoring rules for decision-making (Othman and Sand-
holm, 2010; Chen and Kash, 2011; Chen et al., 2011), proper losses for machine
learning with partial labels (Cid-Sueiro, 2012), mechanism design with partial
allocations (Cai et al., 2013), and responsive lotteries (Feige and Tennenholtz,
2010).

1.1. Our Contribution

Our main theorem (Theorem 1) is a general characterization theorem that
generalizes and extends known characterization theorems for proper scoring
rules (substantially) and truthful mechanisms (slightly). We also survey ap-
plications to related settings and show our theorem can be used to provide
characterizations for them as well, including new results about mechanism de-
sign with partial allocation and responsive lotteries. Thus, our theorem elimi-
nates the need to independently derive characterizations for such settings. Our
unification also yields a new construction to convert between scoring rules and
randomized mechanisms (see Construction 1). Finally, we conclude by exam-
ining cases where, rather than reporting their full type, agents select from a
finite set of possible reports; Lambert and Shoham (2009) showed that, when
the type is a probability distribution, the possible mappings from true type
to optimal report(s) correspond to a generalization of Voronoi diagrams (see
Section 5). We extend their result to settings where the private information
need not be a probability distribution, and give a tight characterization for a
particular restricted “simple” case.

1.1.1. Scoring Rules

Our contribution to the scoring rules literature is a characterization of proper
scoring rules for non-convex sets of distributions, the first of its kind. As mo-
tivation, note that it is very natural to ask for scoring rules which are proper
with respect to a particular family of distributions, e.g. if the principal was
convinced that the agent’s belief came from such a family. Yet many common
families are non-convex, meaning they are not closed under mixtures, includ-
ing most exponential families (Gaussian, Poisson, exponential, Laplace, Pareto,
etc.) (Nielsen and Garcia, 2009). Moreover, general non-convex sets of distri-
butions have proven useful as a way of separating informed and uninformed
experts (Babaioff et al., 2011; Fang et al., 2010). Despite how natural and
useful it is to restrict to the non-convex case, no characterization was known.

We give such a characterization, which surprisingly shows that the only scor-
ing rules which are proper for a non-convex P are those which can be extended
to a proper scoring rule on Conv(P); in other words, one does not gain flexibility
by ruling out distributions in the “interior” of P. Interestingly, the main tech-
nical tool we need to extend the proof to this case comes from the mechanism
design literature, where characterizations for non-convex type spaces have been
previously established. Additionally, we show that properness of a scoring rule
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is locally checkable, in the sense that it suffices to verify it in a neighborhood
around each distribution. See Section Appendix B.2 and Corollary 3.

1.1.2. Mechanism Design

For mechanism design, our contributions are more modest. Our characteri-
zation is a minor extension of Archer and Kleinberg’s characterization, removing
a technical assumption (Archer and Kleinberg, 2008, Theorem 6.1). We show
how many previous results about implementability and revenue equivalence can
be translated into our framework, but do not introduce significant new results.
Instead, the main interest of our approach is that by translating economic ques-
tions into convex analysis questions, we can simplify several proofs and expose
the underlying intuition. Additionally, we show how known results about scor-
ing rules yield a new proof of an implementability theorem due to Saks and
Yu (2005).

1.1.3. Novel Elicitation Settings

Perhaps the most useful direct application of our main theorem is to elicita-
tion settings that do not quite match the standard frameworks of scoring rules
or mechanism design, as it immediately provides a characterization for such
settings. In Section 4 we demonstrate the versatility of our characterization by
surveying four recent such examples (on decision rules, proper losses for partial
labels, mechanism design with partial allocations, and responsive lotteries), and
showing how our results could have been applied.

1.1.4. Summary of Novel Results

Since our results cover a range of applications and include many reframings
or small extensions of existing results, we summarize the main novel results
here.

1. A general characterization theorem for many non-standard applications;

2. A characterization of scoring rules for non-convex sets of distributions;

3. Scoring rules are proper iff they are locally proper;

4. A new geometric proof of the Saks–Yu (2005) result on implementable
mechanisms;

5. A new construction to convert between scoring rules and randomized
mechanisms.

1.2. Related Work

The similarities between mechanisms and scoring rules were noted by (among
others) Fiat et al. (2013), who gave a construction to convert mechanisms into
scoring rules and vice versa, and Feige and Tennenholtz (2010), who gave tech-
niques to convert both to “responsive lotteries.” Further, techniques from con-
vex analysis have a long history in the analysis of both models (see Gneiting
and Raftery (2007); Vohra (2011)). However, we believe that our results use the
“right” representation and techniques, which leads to more elegant characteriza-
tions and arguments. For example, the construction used by Fiat et al. has the
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somewhat awkward feature that the scoring rule corresponding to a mechanism
has one more outcome than the mechanism did, a complication absent from our
results. Similarly, the constructions used by Feige and Tennenholtz only handle
special cases and they claim “there is no immediate equivalence between lottery
rules and scoring rules,” while we can give such an equivalence. So while prior
work has understood that there is a connection, the nature of that connection
has been far from clear.

A large literature in mechanism design has explored characterizations of
when allocation rules can be truthfully implemented; see e.g. McAfee and McMil-
lan (1988); Jehiel et al. (1996, 1999); Jehiel and Moldovanu (2001); Saks and
Yu (2005); Bikhchandani et al. (2006); Müller et al. (2007); Archer and Klein-
berg (2008); Ashlagi et al. (2010); Carroll (2012). Similarly, work on revenue
equivalence can be cast in our framework as well (Myerson, 1981; Krishna and
Maenner, 2001; Heydenreich et al., 2009; Carbajal and Ely, 2013). For scoring
rules, our work connects to a literature that has used non-convex sets of prob-
ability distributions to separate (usefully) informed exports from uninformed
experts (Fang et al., 2010; Babaioff et al., 2011).

A more general version of our setting looks at eliciting properties of the
private information rather than the full information. The study of property
elicitation in scoring rules can be traced to Leonard Savage in 1971, who con-
sidered the problem of eliciting expected values of random variables (Savage,
1971). The general case of arbitrary properties mapping types to reports has
received considerable attention (Osband, 1985; Lambert et al., 2008; Gneiting,
2011), and we refer the interested reader to (Frongillo and Kash, 2019, Sections
3 and 4) for an extension of affine scores to this general setting. We instead focus
on finite properties, where the set of possible reports is a finite set. Lambert and
Shoham (2009) characterized elicitable finite properties, showing a connection
to power diagrams from computational geometry. In mechanism design, finite
properties correspond to settings where the mechanism has a finite set of allo-
cations. Our results about finite properties provide a new proof of a theorem
due to Saks and Yu (2005) that characterizes when allocation rules that select
from a finite set of allocations have payments that make them truthful. Such
mechanisms can be viewed as eliciting a ranking over outcomes rather than a
utility for each outcome (common in, e.g., matching contexts), and our results
are related to characterizations due to Carroll (2012). Subsequent to our work,
our finite properties characterizations have been applied to characterize minimal
peer prediction mechanisms (Frongillo and Witkowski, 2017).

1.3. Notation

We define R = R ∪ {−∞,∞} to be the extended real numbers. Given a
set of measures M on a space X with σ-algebra B, a function f : X → R is
M -quasi-integrable if

∫

X
f(x)dµ(x) ∈ R for all µ ∈ M . Let ∆(X) be the set

of all probability measures on X. We denote by Aff(X → Y ) and Lin(X → Y )
the set of functions from X ⊆ V1 to Y ⊆ V2 which are restrictions of affine
and linear functions (respectively) from vector space V1 to vector space V2. We
write Conv(X) to denote the convex hull of a set of vectors X, the set of all
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(finite) convex combinations of elements of X. Some useful facts from convex
analysis are collected in Appendix Appendix A.

2. Model and Main Result

We consider a general model with an agent who has a given type t ∈ T and
reports some possibly distinct type t′ ∈ T , at which point the agent is rewarded
according to some score A(t′, t) which is affine in the true type t. This reward
we call an affine score. We wish to characterize all truthful affine scores, which
incentivize the agent to report her true type t.

Definition 1. Let T ⊆ V for some vector space V over R, and let A ⊆ Aff(T →
R).1 A function A : T ×T → R is an affine score with score set A if A(t, ·) ∈ A
for all t ∈ T . When A = Aff(T → R), we simply call A an affine score. We say
A is truthful if for all t, t′ ∈ T ,

A(t′, t) ≤ A(t, t). (1)

If this inequality is strict for all t 6= t′, then A is strictly truthful.

Our characterization uses convex analysis, a central concept of which is the
subgradient of a function, which is a generalization of the gradient yielding a
linear approximation that is always below the function.

Definition 2. Given some function G : T → R, a function d ∈ Lin(V → R) is
a subgradient to G at t if for all t′ ∈ T ,

G(t′) ≥ G(t) + d(t′ − t). (2)

We denote by ∂G : T ⇒ Lin(V → R) the multivalued map such that ∂Gt is the
set of subgradients to G at t.2 We will occasionally overload the ∂G notation
to mean ∂G = ∪t∈T ∂Gt. We say a parameterized family of linear functions
{dt ∈ Lin(V → R)}t∈T ′ for T ′ ⊆ T is a selection of subgradients if dt ∈ ∂Gt

for all t ∈ T ′; we denote this succinctly by {dt}t∈T ′ ∈ ∂G.

For mechanism design, it is typical to assume that utilities are always real-
valued. However, the log scoring rule (one of the most popular scoring rules)

1While affine functions to the reals may be defined as linear functions plus a constant, one
must be careful to define affine functions to the extended reals. In line with Waggoner (2021),
we say ℓ(·) ∈ Lin(V → R) if (i) for all α ∈ R and t ∈ T we have ℓ(αt) = αℓ(t), and (ii) for all
t, t′ ∈ T we have ℓ(t + t′) = ℓ(t) + ℓ(t′) whenever {ℓ(t), ℓ(t′)} 6= {∞,−∞}. For (i) we adopt
the convention 0 · ∞ = 0 · (−∞) = 0. We define an affine function a(·) ∈ Aff(V → R) to be
one of the form a(t) = ℓ(t0 − t) + c for some ℓ ∈ Lin(V → R), t0 ∈ V, c ∈ R. For example the
function 1 + ℓ1 +∞ · ℓ2 for ℓ1, ℓ2 ∈ Lin(V → R) is in Aff(V → R). See Waggoner (2021) for a
full treatment.

2The literature often refers to subgradients taking the value±∞ as subtangents (cf. (Gneit-
ing and Raftery, 2007)). Waggoner (2021, Definition 3.1) uses the term extended subgradient

to refer to both finite- and infinite-valued cases; for simplicity we use subgradient for both.

6



has the feature that if an agent reports that an event has probability 0, and then
that event does occur, the agent receives a score of −∞. Essentially solely to
accommodate this, we allow affine scores and subgradients to take on values from
the extended reals. In the next paragraph we provide the relevant definitions,
but for most purposes it suffices to ignore these and simply assume that all
affine scores are real-valued.

It is standard (cf. Gneiting and Raftery (2007)) to restrict consideration to
the “regular” case, where intuitively only things like the log score are permitted
to be infinite. In particular, an affine score A is regular if A(t, t) ∈ R for all
t ∈ T , and A(t′, t) ∈ R ∪ {−∞} for t′ 6= t. A regular affine score may therefore
be written A(t′, t) = Aℓ(t

′, t− t′) + ct′ for some Aℓ(t
′, ·) ∈ Lin(V → R) and ct′ =

A(t′, t′) ∈ R. Similarly, a parameterized family of linear functions (e.g. a family
of subgradients) {dt ∈ Lin(V → R)}t∈T is T -regular if dt(t

′ − t) ∈ R ∪ {−∞}
for all t, t′ ∈ T . Recall that dt(t− t) = dt(0) = 0 by definition of Lin. Likewise,
T -regular affine functions have T -regular linear parts with finite constants (i.e.
we exclude the constant functions ±∞). For the remainder of the paper we
assume all affine scores and parameterized families of linear or affine functions
are T -regular, where T will be clear from context.

2.1. Main Result

We now state, and prove, our characterization theorem. The proof takes
Gneiting and Raftery’s (2007) proof for the case of scoring rules on convex
domains and extends it to the non-convex case using a variant of a technique
introduced by Archer and Kleinberg (2008) for mechanisms with non-convex
type spaces. This technique is essentially that used in prior work on extensions
of convex functions (Peters and Wakker, 1987; Yan, 2014). The theorem applies
for arbitrary score sets A, though as A is given, this fact is not needed in the
proof.

Theorem 1. Let an affine score A : T × T → R with score set A be given.
A is truthful if and only if there exists some convex G : Conv(T ) → R with
G(T ) ⊆ R, and some selection of subgradients {dt}t∈T ∈ ∂G, such that

A(t′, t) = G(t′) + dt′(t− t′). (3)

Proof. It is immediate from the subgradient inequality (2) that the proposed
form is in fact truthful, as

A(t′, t) = G(t′) + dt′(t− t′) ≤ G(t) = G(t) + dt(t− t) = A(t, t).

For the converse, we are given some truthful A : T × T → R.
By definition, each A(t, ·) is the restriction of an affine function defined on all

of V. While in general there may be many different affine functions on V whose
restriction to T is A(t, ·), we now argue that A(t, ·) is well-defined on Conv(T ).
Let Aℓ(t, ·) denote the linear part of A(t, ·). Given any t̂ ∈ Conv(T ) we may
represent t̂ as a finite convex combination t̂ =

∑m

i=1 αiti where ti ∈ T . We have
A(t, t̂) = Aℓ(t,

∑m

i=1 αiti)+A(t, t) =
∑m

i=1 αiAℓ(t, ti)+A(t, t) =
∑m

i=1 αiA(t, ti),
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showing that A(t, t̂) does not depend on the choices of ti and αi.
3 Thus, A(t, ·)

is both determined and well-defined on Conv(T ).
Now we let G(t̂)

.
= supt∈T A(t, t̂), which is convex as the pointwise supremum

of convex (in our case affine) functions. Since A is truthful, we in particular have
G(t) = A(t, t) ∈ R for all t ∈ T by our regularity assumption. Then, also by
truthfulness, we have for all t′ ∈ T and t̂ ∈ Conv(T ),

G(t̂)
.
= sup

t∈T
A(t, t̂) ≥ A(t′, t̂) = A(t′, t′) + Aℓ(t

′, t̂− t′) = G(t′) + Aℓ(t
′, t̂− t′).

(4)

Hence, Aℓ(t
′, ·) satisfies (2) for G at t′, so A is of the form (3).

3. Mechanism Design and Scoring Rules as Affine Scores

In this section, we show how scoring rules and mechanisms fit comfortably
within our framework.

3.1. Scoring Rules for Non-Convex P

In this section, we show that the Gneiting and Raftery characterization is a
simple special case of Theorem 1, and moreover that we generalize their result
to the case where the set of distributions P may be non-convex. We also give
a result about local properness derived using tools from mechanism design in
Appendix Appendix B.2. To begin, we formally introduce scoring rules and
show that they fit into our framework. The goal of a scoring rule is to incentivize
an expert who knows a probability distribution to reveal it to a principal who
can only observe a single sample from that distribution.

Definition 3. Given outcome space O and set of probability measures P ⊆
∆(O), a scoring rule is a function S : P × O → R such that S(p, ·) is P-quasi-
integrable for all p ∈ P (see below). We say S is proper if for all p, q ∈ P,

Eo∼p[S(q, o)] ≤ Eo∼p[S(p, o)]. (5)

If the inequality in (5) is strict for all q 6= p, then S is strictly proper.

To incorporate this into our framework, take the type space T = P. Thus,
we need only construct the correct score set of affine functions available to
the scoring rule as payoff functions. Intuitively, these are the functions that
describe what payment the expert receives given each outcome, but we have a
technical requirement that the expert’s expected utility be well defined. Thus,
following Gneiting and Raftery, we take F to be the set of P-quasi-integrable

3When working with the extended reals, this last expression follows as αi ≥ 0, so by
regularity of A, none of the summands in expression

∑
m

i=1
αiAℓ(t, ti) can have value ∞. We

omit this reasoning for the remainder of the paper, which shows up tacitly when the setting
involves the extended reals.
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functions f : O → R, meaning
∫

O
f(o)dp(o) ∈ R for all p ∈ P, and the score set

A = {p 7→
∫

O
f(o) dp(o) | f ∈ F}. Note that in this case A actually contains

linear functions of p, which are trivially affine.
We now apply Theorem 1, which yields the following generalization of Gneit-

ing and Raftery (2007).

Corollary 1. For an arbitrary set P ⊆ ∆(O) of probability measures, a regular4

scoring rule S : P×O → R is proper if and only if there exists a convex function
G : Conv(P) → R with functions Gp ∈ F such that

S(p, o) = G(p) +Gp(o)−

∫

O

Gp(o
′) dp(o′), (6)

where Gp : q 7→
∫

O
Gp(o

′) dq(o′) is a subgradient of G for all p ∈ P.

Proof. Truthfulness of the given form follows immediately from Theorem 1 and
our definition of A. For the converse, let A : T × T → R be a given truthful
affine score. From the theorem, A(p, ·) = G(p) + dp( · − p) ∈ A, so we must
have dp ∈ F ; the subgradients are then of the form Gp : q 7→

∫

O
dp(o) dq(o) as

desired.

Importantly, Corollary 1 immediately generalizes the characterization of
Gneiting and Raftery (2007) to the case where P is not convex, which is new
to the scoring rules literature. One direction of this extension is obvious (if S is
truthful on the convex hull of a set then it is truthful on that set), but the other
is not, and is an important negative result in that it rules out the possibility of
new scoring rules arising by restricting the set of distributions (as long as the
restriction does not change the convex hull of the set).

In the absence of a characterization, several authors have worked in the non-
convex P case. For example, Babaioff et al. (2011) examine when proper scoring
rules can have the additional feature that uninformed experts do not wish to
make a report (have a negative expected utility), while informed experts do wish
to make one. They show that this is possible in some settings where the space
of reports is not convex. Our characterization shows that, despite not needing
to ensure properness on reports outside P, essentially the only possible scoring
rules are still those that are proper on all of ∆(O). We state the simplest version
of such a characterization, for perfectly informed experts, here.

Corollary 2. Let a non-convex set P ⊆ ∆(O) and p̄ ∈ ∆(O)− P be given. A
scoring rule S is proper and guarantees that experts with a belief in P receive a
score of at least δA while experts with a belief of p̄ receive a score of at most δR
if and only if S is of the form (6) with G(p) ≥ δA∀p ∈ P and G(p̄) ≤ δR.

With a similar goal to Babaioff et al., Fang et al. (2010) find conditions on P
for which every continuous “value function”G : p 7→ S(p, p) on P can be attained

4Just as for affine scores, regular scoring rules cannot be ∞ and only incorrect reports can
yield −∞.
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by some S with the motivation of eliciting the expert’s information when it is
known to come from some family of distributions (which in general will not be a
convex set). As such, they provide sufficient conditions on particular non-convex
sets, as opposed to our result which provides necessary and sufficient conditions
for all non-convex sets. Beyond these specific applications, our characterization
is useful for answering practical questions about scoring rules. For example,
suppose we assume that people have beliefs about probabilities in increments of
0.01. Does that change the set of possible scoring rules? No. What happens if
they have finer-grained beliefs but we restrict them to such reports? They will
end up picking a “nearby” report.5

In Appendix Appendix B.2, we show how local truthfulness conditions,
where one verifies that an affine score is truthful by checking that it is truthful
in a small neighborhood around every point, from mechanism design generalize
to our framework. In particular Corollary 10 shows that local properness (i.e.
properness for distributions in a neighborhood) is equivalent to global proper-
ness for scoring rules on convex P, an observation that is also new to the scoring
rules literature. See Appendix Appendix B.2 for the precise meaning of (weak)
local properness (i.e. truthfulness).

Corollary 3. For a convex set P ⊆ ∆(O) of probability measures, a scoring
rule S : P ×O → R is proper if and only if it is (weakly) locally proper.

3.2. Mechanism Design

We now show how to view a mechanism as an affine score. First, we formally
introduce mechanisms in the single agent case. (See below for remarks about
multiple agents.) Then we show how known characterizations of truthful mech-
anisms follow easily from our main theorem. This allows us to relax a minor
technical assumption from the most general such theorem.

Definition 4. Given outcome space O and a type space T ⊆ R
O, consisting of

functions mapping outcomes to reals, a (direct) mechanism is a pair (f, p) where
f : T → O is an allocation rule and p : T → R is a payment. The utility of the
agent with type t and report t′ to the mechanism is U(t′, t) = t(f(t′))−p(t′); we
say the mechanism (f, p) is truthful if U(t′, t) ≤ U(t, t) for all t, t′ ∈ T .

Here we suppose that the mechanism can choose an allocation from some set
O of outcomes, and there is a single agent whose type t ∈ T is itself the valuation
function. That is, the agent’s net utility upon allocation o and payment p is
t(o)− p. Thus, following Archer and Kleinberg (2008), we view the type space
T as lying in the vector space V = R

O. The advantage of this representation is
that while agent valuations in mechanism design can generally be complicated
functions, viewed this way they are all linear: for any v1, v2 ∈ V, we have

5In some cases, there will be no optimal report, such as when P is the set of Bernoulli(p)
distributions with irrational p. Here for rational p, such as p = 1/2, there is merely a sequence
of reports which approach the true distribution p.
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(v1+αv2)(o) = v1(o)+αv2(o). Thus, we have an affine score A(t′, t)
.
= U(t′, t),

with score set A = {t 7→ t(o) + c | o ∈ O, c ∈ R}, so that every combination of
outcome and payment a mechanism could choose is an element of A.

As an illustration of our theorem, consider the following characterization,
due to Myerson (1981), for a single-parameter setting (i.e. when the agent’s
type can be described by a single real number). The result states that an
allocation rule is implementable, meaning there is some payment rule making it
truthful, if and only if it is monotone in the agent’s type.

Corollary 4 (Myerson (1981)). Let T = R+, O ⊆ R, so that the agent’s
valuation is t · o. Then a mechanism (f, p) is truthful if and only if

1. f is monotone non-decreasing in t,

2. p(t) = tf(t)−
∫ t

0
f(t′)dt′ + p0.

Proof. By elementary results in convex analysis f is a subgradient of a convex
function on R if and only if it is monotone non-decreasing. By Theorem 1, the
mechanism is truthful if and only if f is a subgradient of the particular function
G(t) = U(t, t) = t(f(t)) − p(t), which is equivalent to (i) and the condition

G(t) =
∫ t

0
f(t′)dt′ + C.

More generally, applying our theorem gives the following characterization. It
is essentially equivalent to that of Archer and Kleinberg (2008) (their Theorem
6.1), although our approach allows the relaxation of a technical assumption
they term “outcome compactness” which they require when the set of types is
non-convex.

Corollary 5. A mechanism (f, p) is truthful if and only if there exists a convex
function G : Conv(T ) → R and some selection of subgradients {dGt}t∈T , such
that for all t ∈ T , f(t) = dGt and G(t) = t(f(t))− p(t).

We have written f(t) = dGt, yet the allocation is an outcome f(t) ∈ O while
the subgradient is a linear function dGt ∈ Lin(RO → R). Recall the natural
isomorphism between outcomes o and evaluation functions Eo : t 7→ t(o), which
means that we can always represent an outcome as a function sending types to
their value for that outcome. In that sense, we mean that dGt is the function
dGt : t′ 7→ t′(o) where o = f(t). The intuition that the subgradient is the
allocation function still holds up to this technicality.

While we have thus far dealt with single-agent deterministic mechanisms
implemented in dominant strategies, this characterization actually applies sig-
nificantly more broadly. In a sense, extending our characterizations to multiple
agents is trivial: a mechanism is truthful if and only if it is truthful for agent i
when fixing the reports of the other agents. Hence, we merely apply our charac-
terization to each single-agent mechanism induced by reports of the other agents.
This is sufficient for our present study, but there are certainly reasons to take
a more nuanced approach to the multi-agent setting; see Section 6 for further
discussion. To extend to randomized mechanisms, one can take f : T → ∆(O)
and define U(t′, t) = E

o∼f(t′)[t(o)]− p(t′), which is still affine in t. We can even
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extend to non-risk-neutral agents by taking the outcome space to be O′ .
= ∆(O).

Finally, we can extend to Bayesian agents; in the above discussion of the multi-
agent setting, take expectations instead of fixing specific types for the other
agents.

Of course, mechanism design asks many questions beyond whether a partic-
ular mechanism is truthful, and some of these can be reframed as questions in
convex analysis. Implementability focuses on the question of when there exist
payments that make a given allocation rule truthful. Figure 1(a) illustrates
known characterizations and how they were proved. As it shows, several of
them rely on showing equivalence to a condition from convex analysis known
as cyclic monotonicity. Instead, in Appendix Appendix B, we reprove them in
our more general framework by showing equivalence to the condition of being
subgradients of a convex function (see Figure 1(b)). This reframing has three
main benefits. First, by exposing the essential convex analysis question, we are
able to greatly simplify the proofs of some of these results. For example, the
original proof of Theorem 11 relies on representing the allocation rule using a
graph and arguing about the limit behavior of a process of creating paths in that
graph. In contrast, our proof simply requires defining a function and showing
it is convex with the correct subgradients by elementary arguments. Second,
this reframing reveals that these results actually yield, we believe, new results
in convex analysis (in particular, Theorems 10, 11, and 12 and Corollary 11).
Third, this approach shows us how to translate known results from mechanism
design into new results about scoring rules, as we saw in Section 3.1. While
elements of a subgradient-based approach can be found in a variety of work
on characterizing implementability (see, e.g.,McAfee and McMillan (1988); Je-
hiel et al. (1996, 1999); Jehiel and Moldovanu (2001); Krishna and Maenner
(2001); Milgrom and Segal (2002); Bikhchandani et al. (2006)), this work has
tended to use individual facts applied to particular settings, in contrast to our
approach of translating mechanism design questions into convex analysis ques-
tions. Nevertheless, as these are essentially reframings of known results that do
not directly provide new insights for mechanism design, we defer this material
to Appendix Appendix B.

Revenue equivalence is the question of when all mechanisms with a given
allocation rule charge the same prices (up to a constant). Translating this
question into convex analysis terms, given a selection of a subgradient, when
is the associated convex function unique up to a constant? We ask the more
general question: what are all the convex functions consistent with a given
selection of a subgradient? The result is a theorem, extending a result due
to Kos and Messner (2013), that characterizes the possible payments of every
truthful mechanism, even those that do not satisfy revenue equivalence. As their
analysis essentially applies the natural convex analysis technique, we again defer
this material to Appendix Appendix C.

3.3. Duality Between Scoring Rules and Mechanisms

Using our framework, we can also see a deeper connection between mech-
anisms and scoring rules than has been observed in the literature. In essence,
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Implementable

CMON

Rochet (1987)

Subgradient

Myerson
(1981)

WMON + PI

Müller et al.
(2007) *

LWMON + VF

Archer, Kleinberg
(2008) *

Implementable

Subgradient

Thm 1

WMON + PI

Thm 11 *

LWMON + VF

Cor 11 *

LW
Subgrad.

Thm 12 *
CMON

Thm 10

(a) (b)

Figure 1: Proof structure of existing mechanism design literature (a), and the new proof
structure presented in this paper (b). Asterisks (*) denote the requirement that T be convex.
We write CMON for cyclic monotonicity, WMON for weak monotonicity, and PI for path
independence. For the other abbreviations, L is local, W is weak, and VF is vortex free-
ness, a condition weaker than path independence introduced in Archer and Kleinberg (2008).
Definitions of these conditions can be found in Appendix Appendix B.

scoring rules are dual mechanisms. In the scoring rule setting, an agent has a
private distribution (their belief) and the principal gives the agent a payoff vec-
tor (the score), which assigns the agent a real-valued payment for each possible
outcome. Dually, in a randomized mechanism, the agent possesses a private
payoff vector (their type) encoding their value for each possible outcome, and
the principal assigns a distribution (the allocation) over these outcomes. This
observation allows us to give a very simple and natural construction to convert
between scoring rules and mechanisms. Unlike previous constructions (e.g., Fiat
et al. (2013)) we can establish a direct bijection between the two objects, and
do not require any normalization.

Fix a finite outcome spaceO.6 Let S = {S : P×O → R | P ⊆ ∆(O) is convex}
denote the set of all scoring rules defined on convex sets. Similarly, let M =
{(f : T → ∆(O), π : T → R) | T ⊆ R

O is convex} denote the set of all random-
ized mechanisms defined on convex sets. We use π for prices to avoid confusion
with probabilities. In what follows, we will write expectations as dot products,
such as t · f(t′) = E

o∼f(t′)[t(o)]. We also write S(p′, p)
.
= Eo∼pS(p

′, o). Recall
that for a mechanism (f, π) we define U(t′, t)

.
= t · f(t′)− π(t′).

Construction 1. Given a scoring rule S : P × O → R, let GS : RO → R be
defined by GS(p) = supp′∈P S(p′, p) for p ∈ P and GS(p) = ∞ otherwise, and

set TS
.
= ∂GS(P) ∩ R

O. Similarly, given a randomized mechanism M = (f, π)

6We believe this construction can be extended to infinite outcomes. For a suitable dual
pair of vector spaces, and topology for part (2) (Aliprantis and Border, 2007), Theorem 2
extends immediately. The discussion following the construction relies on convex functions of
Legendre type, i.e., essentially smooth and strictly convex. The results alluded to there hold
for a suitable definition of Legendre type for infinite-dimensional settings, such as for Banach
spaces (Bauschke et al., 2001, Section 5).
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on type space T , let GM : RO → R be given by GM(t) = supt′∈T U(t′, t) for
t ∈ T and GM(t) = ∞ otherwise, and set PM

.
= ∂GM(T ) ∩ ∆(O). Define the

multivalued maps Φ : S ⇒ M and Ψ : M ⇒ S as follows,

Φ(S)
.
= {M = (f, π) : TS → ∆(O)× R | ∀t ∈ TS f(t) ∈ ∂G∗

S(t), π(t) = t · f(t)−G∗
S(t)}

Ψ(M)
.
= {S : PM ×O → R | ∀p ∈ PM, o ∈ O S(p, o) = G∗

M(p) + dp(o)− dp · p, dp ∈ ∂G∗
M(p)} ,

(7)
where for any function F : R

k → R we write F ∗ : R
k → R for the convex

conjugate, F ∗(x) = supd∈Rk d · x− F (d).

Our construction takes a scoring rule and produces a set of mechanisms, and
vice versa. We now show that these are inverse operations, under mild regularity
assumptions. The set-valued nature of our construction arises from the choices
in selecting subgradients in Theorem 1; as we discuss below, when there is only
one choice for the subgradients, the maps Φ,Ψ become single-valued. Note that
the duality in Construction 1 is different from prediction market duality; there
the menu of possible reports changes, akin to posted-price mechanisms, whereas
here the private type itself changes, from a belief to a valuation function.7 See
Frongillo and Kash (2019) for a treatment of both notions of duality, which
includes prediction markets and posted-price mechanisms.

Theorem 2. Let Sprop ⊆ S be the set of proper scoring rules in S, and Mtruth ⊆
M be the set of truthful mechanisms in M. We have the following:

1. For any regular proper scoring rule S, any M ∈ Φ(S) is a truthful mech-
anism; conversely, for any truthful mechanism M, any S ∈ Ψ(M) is a
regular proper scoring rule.

2. Let C be the set of closed convex functions.8 Restricting to the sets {S ∈
Sprop : GS ∈ C} and {M ∈ Mtruth : GM ∈ C}, the maps Φ and Ψ are
inverses as multivalued maps.

Proof. For part (1), note that by Corollaries 1 and 5, the forms are proper/truthful
if we show that the convex functions are finite on the correct domain, and subdif-
ferentiable in the case ofG∗

S
(recall that we allow vertical subgradients for scoring

rules). First, let S be given. The set TS of finite subgradients of GS is a convex
set. As S is regular and proper, we have for all p ∈ P that GS(p) = S(p, p) ∈ R.
In particular, GS is a proper convex function. From (Rockafellar, 1997, The-
orem 7.4), clGS is therefore closed and proper, where cl denotes the closure
of a function. From (Rockafellar, 1997, Corollary 13.3.1) we now have that
G∗

S
= (clGS)

∗ is finite on all of RO as the domain of clGS is bounded. (In fact,
propriety of S is only used to ensure that clGS is a proper convex function; any

7See Abernethy, Chen, and Vaughan (2013) for the model and results to which we refer,
though the key ideas behind this duality appeared earlier (Hanson, 2003; Chen and Vaughan,
2010).

8A convex function is closed if its epigraph is a closed set, or equivalently, if it is lower
semi-continuous.
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non-proper scoring rule satisfying this very weak assumption would also suffice.)
Subdifferentiability of G∗

S
is then implied by (Rockafellar, 1997, Theorem 23.4).

Conversely, given some mechanism M, a similar argument shows that G∗
M

is finite on PM. Applying (Rockafellar, 1997, Theorem 23.5), we have p ∈
∂GM(t) ⇐⇒ GM(t) +G∗

M
(p) = p · t, and as p · t and GM(t) are both finite, we

conclude that G∗
M
(p) is finite. The result then follows from the Corollaries.

For (2), for any convex G : RO → R, let SG and MG be the set of proper
scoring rules and truthful mechanisms, respectively, with consumer surplus G :
R

O → R. Observe that Φ and Ψ depend on their argument (scoring rule or
mechanism) only through its consumer surplus function. In particular, Φ(S) =
Φ(S′) if S, S′ ∈ SG for some G : RO → R, and moreover Φ(S) = MG∗ by the
construction (7). Similarly, Ψ(M) = SG∗ for any consumer surplus function
G : RO → R and any M ∈ MG. From (Rockafellar, 1997, Theorem 12.2), we
have (G∗)∗ = G for any G ∈ C, which gives the result.

To illustrate Theorem 2, consider the log scoring rule S(p, o) = log p(o),
which is strictly proper. The expected score function is negative Shannon en-
tropy, GS(p) =

∑

o∈O p(o) log p(o), which is a closed convex function. In this
case, Φ(S) = {M} is a unique mechanism M = (f, π) which chooses the al-
location probabilities according to the familiar multiplicative weights formula:

f(t) =
(

et(o)∑
o
′∈O

et(o
′)

)

o∈O
∈ ∆(O), π(t) = log

∑

o∈O

et(o) −
∑

o∈O
t(o)et(o)

∑
o∈O

et(o)
. (8)

The prices π bear resemblance to the Log Market Scoring Rule (LMSR) (Hanson,
2003), but as remarked above, the private information here is a fixed valuation
function t, not a belief in the form of a probability distribution. Moreover,
we have Ψ(M) = {S}, meaning we recover the log score. Observe that, while
∂GM(p) is not a singleton since we may shift any subgradient by the all-ones
vector, this shift does not change the resulting score, so the choice is effectively
unique. (See also Footnote 10.)

The log score example raises a natural question: under what conditions are
Φ and Ψ single-valued, and thus bijections in the usual sense? This question
essentially boils down to conditions under which the choice of subgradient in
eq. (7) is unique, or in other words, when the functions GS and GM are guar-
anteed to both be differentiable. One suitable set of mechanisms and scoring
rules are those whose consumer surplus functions are of Legendre type, meaning
they are strictly convex and differentiable on the (relative) interior of their ef-
fective domain, and the norm of the gradient diverges to ∞ as one approaches
the (relative) boundary (Rockafellar, 1997, Theorem 26.3 & Corollary 26.3.1).9

Moreover, strict convexity translates to the scores and mechanisms being strictly

9If a convex function f has an effective domain D with empty interior, f cannot be
differentiable. Nonetheless, one can define differentiability of f with respect to the affine
span of D: one could say a convex function f is differentiable at a point x ∈ relint(D) if
the directional derivative of f at x is linear on the subspace span(D − {x}). As above, if f
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proper and strictly truthful. This Legendre condition is somewhat restrictive,
however, as the scoring rules and mechanisms satisfying it must look something
like the log score example above. In particular, the mechanism must be defined
on an unrestricted type space, as otherwise the conditions would force an infinite
allocation or price on the boundary of the type space.

Intuitively, if we remove the gradient divergence condition from Legendre
type, and work with convex functions which are strictly convex and differen-
tiable, the only problem that could arise is a non-unique choice of subgradients
at the (relative) boundary of the effective domain. Yet, for convex functions
which are differentiable on their (relative) interior, they are continuously differ-
entiable, and we may canonically fill in the choices on the (relative) boundary by
taking the limit of the gradient. To illustrate this approach, let O = {0, 1} repre-
sent being given an item or not, and consider the “linear” mechanism M = (f, π)
on restricted type space T = [0, 1] given by f(t) = t, π(t) = t2/2. Here f as-
signs the probability of being allocated the item. Then M is strictly truthful,
with GM(t) = t2/2 for t ∈ T and GM(t) = ∞ otherwise. Applying our original
construction gives Ψ(M) = {Sa,b | a ≤ 0, b ≥ 1} where Sa,b(p, o) = po− p2/2 for
p ∈ (0, 1), and Sa,b(0, o) = ao and Sa,b(1, o) = bo− 1. For all of these choices of
a and b, we have GS(p) = G∗

M
(p) = p2/2 for p ∈ [0, 1] and GS(p) = ∞ otherwise.

While Ψ does give a range of possible scoring rules, all strictly proper, we may
canonically select the one respecting the limit of the gradients of GS on (0, 1),
that is, the scaled Brier score S0,1. Returning to mechanisms, our construction
would give TS = R, since ∂GS(0) = (−∞, 0], ∂GS(p) = {p} for p ∈ (0, 1) and
∂GS(1) = [1,∞). In other words, we could arrive at an unrestricted mechanism.
Applying the same logic, however, and setting TS = cl ∂GS( (0, 1) ) = [0, 1], we
would arrive at Φ(S0,1) = {M}. Establishing this kind of bijection for restricted
type spaces more broadly is an interesting direction for future work.

The mappings in Theorem 2 are not arbitrary; a mechanism and scoring rule
which are related by Φ or Ψ satisfy certain identities. For example, for S and
M = (f, π) satisfying part (2) of the theorem, and M ∈ Φ(S), a standard result
of convex analysis states that GS(p)+GM(t) = p · t whenever either t = d (from
eq. (7)) or p = f(t) hold. To provide further intuition for this relationship with a
somewhat whimsical example, suppose a gambler in a casino examines the rules
of a dice-based game of chance and forms belief p about the probabilities of pos-
sible outcomes, assuming the dice are fair. The gambler is then offered a proper
scoring rule S to predict the outcome of the game, and reports truthfully. Be-
fore the game is played, however, the casino informs the gambler that the dice
used need not be fair, and offers the gambler the opportunity to select from
among different choices of dice using a truthful mechanism M where the gam-
bler’s private information is the valuation function t given by t(o) = S(p, o);10

is differentiable on relint(D) in this sense, then although ∂f(x) will not be a singleton for
x ∈ relint(D), the score itself will be unique.

10Strictly speaking, to directly apply the convex analysis result referenced above, we would
need to take t(o) to be the linear part of S(p, o); in our setting, however, the allocation and
prices of the mechanism are invariant to adding a constant to the valuation of every outcome.
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note that t(o) truly is the gambler’s valuation of outcome o. If M ∈ Φ(S), and
the gambler again reports truthfully, then the dice chosen by the mechanism
will be fair. And what will be the gambler’s profit in expectation from both the
scoring rule and mechanism? Zero. This follows from the above identity, and
the observation that t·f(t)−π(t) = S(p, p)−(p·t−GM(t)) = GS(p)+GM(t)−p·t.
The power of our construction is that these relationships hold regardless of the
initial scoring rule S.

4. Affine Scores for Other Elicitation Settings

A number of other application domains do not quite fit into mechanism
design or scoring rules, forcing researchers to adapt results to their particular
setting. For example, one may wish to elicit several distributions at once, or
partially allocate items or rewards. Fortunately, many such settings can be
easily expressed in terms of the more general framework of affine scores. We
now briefly survey four such domains, and in each show how our main theorem
could have directly provided the characterization ultimately used, rather than
requiring effort to conceptualize and prove it.

4.1. Decision Rules

A line of work has considered a setting where a decision maker needs to select
from a finite set of decisions or actions and so desires to elicit the distribution
over outcomes conditional on selecting each alternative (Othman and Sandholm,
2010; Chen and Kash, 2011; Chen et al., 2011). Since only one decision will be
made and so only one conditional distribution can be sampled, simply applying
a standard proper scoring rule does not result in truthful behavior. Applying
Theorem 1 to this setting characterizes what expected scores must be, from
which many of the results in these papers follow.

For example, consider the model of proper scoring rules for decision rules (Chen
and Kash, 2011), which we now describe:

• The decision maker’s goal is to select an action from A = {1, . . . , n};

• After i ∈ A is chosen, an outcome from O = {o1, . . . om} will be realized,
where intuitively the probability of each outcome depends on the action
chosen;

• To help decide, the decision maker asks an expert for the probabilities
Pi,o = Pr[o realized|i chosen]; we will denote by P the set of all allowable
such probability matrices;

To see this, note that the subgradients of GM = G∗

S
are probability distributions, so the

directional derivative is 1 in the direction of 1, the all-ones vector; integrating gives the result.
See also Abernethy et al. (2013).
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• The action is then chosen according to a fixed decision rule D : P → ∆(A)
selected in advance by the decision maker, where Di(P ) is the probability
of choosing action i given the expert reported the matrix P ;

• The decision maker scores the expert’s report based on the chosen action
i and realized outcome o, according to the function Si,o : P → R∪{−∞}.

Given a belief P and report Q, we can therefore write the expert’s expected
score as V (Q,P )

.
=
∑

i,o Di(Q)Pi,oSi,o(Q). The definition of (strict) properness
for a particular decision rule then follows naturally: a regular scoring rule S is
proper for a decision rule D if V (P, P ) ≥ V (Q,P ) for all P and all Q 6= P . It is
strictly proper for the decision rule if the inequality is strict.

A key novelty of this setting is the type of the agent: a matrix of conditional
probabilities. This is a different object from a distribution over O or even O×A,
and thus one cannot use standard scoring rule characterizations. Similarly, the
type does not describe the utility of the agent, and hence mechanism design
characterizations cannot be applied. For this reason, Chen and Kash (2011)
derive a characterization from scratch. Fortunately, the utility of the expert
in this setting is an affine score, as the expected score V (Q,P ) can be written
as a linear combination of the entries of P , and therefore is affine in P . We
can therefore immediately apply our theorem to derive Chen and Kash’s (2011)
characterization, and even extend it to the case where the set P of probability
matrices is not convex. In the theorem statement we make use of the Frobenius
inner product P :Q

.
=
∑

i,o Pi,oQi,o.

Corollary 6. Given a set of probability matrices P ⊆ ∆(O)n A regular scoring
rule is (strictly) proper for a decision rule D if and only if

Si,o(Q) =

{

G(Q)−GQ :Q+
GQ,i,o

Di(Q) Di(Q) > 0

Πi,o(Q) Di(Q) = 0

where G : Conv(P) → R ∪ {−∞} is a (strictly) convex function, GQ is a sub-
gradient of G at the point Q with GQ,i,o = 0 when Di(Q) = 0, and Πi,o : P →
R ∪ {−∞} is an arbitrary function that can take a value of −∞ only when
Qi,o = 0.

Proof. By Theorem 1, S is (strictly) proper for D if and only if there exists a
(strictly) convex G such that V (Q,P ) = G(Q) + dGQ(P −Q). That is,

∑

i,o

Di(Q)Pi,oSi,o(Q) = G(Q)−GQ :Q+
∑

i,o

GQ,i,oPi,o ,

or for all i such that Di(Q) 6= 0,

Si,o(Q) = G(Q)−GQ :Q+
GQ,i,o

Di(Q)
.

When Di(Q) = 0, S is unconstrained (other than the minimal requirements
regarding −∞ for regularity). However, note that our affine score is restricted
in that, because Di(Q) is fixed, some choices in A are not possible to select as
subgradients. In particular, it must be that GQ,i,o = 0 when Di(Q) = 0.
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4.2. Proper Losses for Partial Labels

Several variants of proper losses have appeared in the machine learning lit-
erature, one of which is the problem of estimating the probability distribution
of labels for a new data point when the training data may contain several noisy
labels, possibly not even including the correct label. (This is frequently the case,
for example, when using crowdsourced labels for training data.) More formally,
one wishes to estimate p ∈ ∆n where the true label y ∈ {1, . . . , n} is drawn
from p. However, instead of observing a sample y ∼ p and designing a proper
loss ℓ(p̂, y), one instead only observes some noisy set of labels S ⊆ {1, . . . , n}.
Hence, the task is to design a loss ℓ(p̂, S) which when minimized over one’s data
yields accurate estimates of the true p.

Recently this problem was studied by Cid-Sueiro (2012) under the assump-
tion that the labels in S are drawn i.i.d. from distribution q = Mp for some
known M ∈ R

2n×n, where p is the true label distribution. That is, if the ac-
tual label is drawn from p, the noisy set of labels is drawn from Mp (using
some indexing of the sets, say lexographical). Formally, a loss in this setting
takes the form ℓ : ∆n × 2{1,...,n} → R, and is proper if the expected score
ES∼Mp[ℓ(p̂, S)] = ℓ(p̂, ·)⊤Mp is minimized at p̂ = p. Cid-Sueiro provides a
characterization (his Theorem 4.3) of all proper losses for an even more gen-
eral version of this setting where M is not known exactly but assumed to be a
member of some known class; the loss should be proper for any M in this class.
As the (negative) expected loss is linear in the underlying distribution p, our
Theorem 1 applies and allows us to recover his characterization result. This
construction holds more generally for latent outcome settings; any observable
(here a set of labels) whose distribution has an affine relationship with the latent
outcome would suffice to apply our theorem.

Rather than introducing the full, general model used by Cid-Sueiro, we show
how our theorem applies to yield a characterization for a single, fixed M . This
is a special case of his Theorem 4.3, generalized to allow restricted sets of prob-
ability distributions P.

Corollary 7. Let number of labels n, matrix M ∈ R
2n×n , and P ⊆ ∆n be

given such that MP has full dimension in the column space of M . Let outcome
set O = 2{1,...,n} be the power set of {1, . . . , n}. A regular score S : P ×O → R

is proper if and only if there exists a convex function G : Conv(P) → R such
that

ℓ(p̂, S) = −G(p̂)−G⊤
p̂ (M

+eS) +G⊤
p̂ p̂, (9)

where eS is a one-hot encoding (indicator vector) of S, M+ is a left inverse of
M , and Gp is a subgradient of G for all p ∈ P.

Proof. For the form given, the expected loss is

ES∼Mp[ℓ(p̂, S)] = ES∼MP [−G(p̂)−G⊤
p̂ (M

+eS) +G⊤
p̂ p̂]

= −G(p̂)−G⊤
p̂ M

+Mp+G⊤
p̂ p̂

= −G(p̂)−Gp̂ · (p− p̂) ,
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which is linear in p. Propriety of the given form then follows immediately from
Theorem 1. For the converse, let A : T ×T → R be a given truthful affine score
for T = P and score set A = {p 7→ ES∼Mpf(S) | f : 2{1,...,m} → R}. From
the theorem, A(p, ·) = G(p) + dp( · − p) ∈ A. Thus we can write ℓ(p̂, ·)⊤Mp =

ES∼Mp[ℓ(p̂, S)] = −G(p̂)−Gp̂ · (p− p̂). Taking ℓ̂(p̂, ·) = ℓ(p̂, ·)+(G(p̂)−Gp̂ · p̂)1,

this means ℓ̂(p̂, ·)⊤Mp = −Gp̂ · p for all p ∈ P. By our assumption that MP

has full dimension in the column space of M , ℓ̂(p̂, ·)⊤ = −M+Gp̂ for some
left inverse M+, showing ℓ is of the desired form. (If MP does not have full
dimension there may be additional choices of ℓ with the correct expected value
on P, but the proof otherwise applies.)

4.3. Mechanism Design with Partial Allocation

Several mechanism design settings considered in the literature have some
form of exogenous randomization, in that “nature” chooses some outcome ω
according to some (often unknown) distribution, and this distribution may de-
pend on the allocation chosen by the mechanism. Examples include sponsored
search auctions (Feldman and Muthukrishnan, 2008), multi-armed bandit mech-
anisms (Babaioff et al., 2009), and recent work on daily deals (Cai et al., 2013).
The work of Cai, Mahdian, Mehta, and Waggoner (2013) introduces a very
general model for such settings, which will be our focus in this subsection.

In the setting of Cai, et al., the mechanism designer wants to elicit two
pieces of information: the agent’s (expected) value for an item in an auction
and the probability distribution of a random variable conditional on that agent
winning. Their goal is to understand how the organizer of a daily deal site can
take into account the value that will be created for users, as opposed to just
the advertiser (the agent), when a particular deal is chosen to be advertised.
For example, the site operator may prefer deals that sell to many users over
equally profitable deals that sell only to a few because this keeps users interested
for future days. The authors characterize the possible implementable ways of
quantifying user welfare as a function of the agent’s probabilistic belief as to
the outcome (of nature) resulting from each allocation. We will show how to
recover this characterization as a special case of a more general setting in which
a mechanism designer wishes to elicit two pieces of information, but the second
need not be restricted to probability distributions.

We begin with a description of the setting of Cai et al. (2013). Let O be
a set of outcomes, and for each outcome o and each agent i, let Ωi,o be some
set of events. For example, o could determine which agent wins an auction
for the opportunity to advertise a special offer from its business and Ωi,o could
represent the set of numbers of customers that may purchase the deal. Agents
each have a valuation function vi : O → R and a set of beliefs pi,o ∈ ∆(Ωi,o)
for each allocation o ∈ O, e.g., an expected value for getting to advertise and
a probability distribution over the number of customers who accept the deal.
The mechanism aggregates all of this information into a single outcome o, and
additionally choses some payoff function si : Ωi,o → R, so that the final utility
of agent i is vi(o) + Epi,o [si]; that is, the winning agent both gets to advertise
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and accepts a scoring rule contract regarding its prediction of the number of
customers. A mechanism is truthful if for all values of v and p for the other
agents, agent i maximizes her total utility by reporting vi and pi

.
= (pi,o)o∈O

truthfully. For additional examples, the standard sponsored search setting has
Ωi,o = {click, no click} for o such that i is allocated a slot, and the probabilities
pi,o are assumed to be public knowledge. Moreover, the decision rules framework
discussed above is a single-agent special case with v ≡ 0 and Ωo = Ωo

′

= Ω for
all o ∈ O; of course, unlike the interpretation above, in this setting o ∈ O is the
allocation/decision while Ω is the set of outcomes.

Motivated by incorporating the utilities of the end consumers in a daily deal
setting, Cai et al. (2013) ask when one can implement an allocation rule of the
form f(v, p) = argmax

o∈O v(o) + go(po), which they interpret as maximizing
welfare of the winner plus a term that captures something about the welfare
of consumers. In other words, when does there exist some choice of payment
making f truthful. The authors conclude that this can be done if and only if
go is convex for each o ∈ O. In what follows, we will recover this result using
our affine score framework.

We first observe that this model can easily be cast as an affine score, as
follows. For simplicity, we fix some agent i and focus on the single-agent case;
as discussed several times above, this is essentially without loss of generality.
The type is simply the combined private information of the agent, with type
space

T ⊆

{

(v, p) : v ∈ R
O, p ∈

∏

o∈O

∆(Ωi,o)

}

. (10)

By assumption, the utility of the agent upon allocation o and payoff s is simply
v(o) + Epo [s], which is linear in the type t = (v, p) and therefore affine. Thus
the net payoff A(t′, t) = v(o(t′)) + Epo(t′) [s(t′)] is an affine score, with score set

A = {(v, p) 7→ v(o) + Epo [s] : o ∈ O, s ∈ R
Ωi,o

}, where again we have fixed i.
To answer the implementability question of Cai et al. (2013), we consider a

general type space of the form T ⊆ V = VX × VY for linear subspaces VX and
VY . In the daily deal setting, we would have VX = R

O and VY =
∏

o∈O R
Ωi,o

,
and T = VX × T Y where T Y =

∏

o∈O ∆(Ωi,o) ⊆ VY .
We wish to know when a function fX : T → Lin(VX → R) is extendable with

respect to A ⊆ Aff(V → R), in the sense that there exists some truthful affine
score A : T × T → R with score set A, and some fY : T → Aff(VY → R) such
that A(t′, t) = fX(t′)(tX) + fY (t′)(tY ), where t = (tX , tY ). In the daily deals
context, we have tX = v and tY = p. Here fX selects the outcome o, formally
represented as the linear map Eo : v 7→ v(o), and fY is an expected score of
the form Eω∼po [s], which is affine (here linear) in p. Thus, asking whether fX

is extendable is equivalent to asking which rules for selecting the outcome o are
implementable.

To answer this question, let us introduce some notation. For each a ∈ A we
write X(a) ∈ Lin(VX → R) to be the linear part of a on VX , and Y (a) to be the
affine part of a on VY . For any A′ ⊆ A we will write X(A′)

.
= {X(a) : a ∈ A′}.
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In this very general framework, we can show the following.

Theorem 3 (Informal). Partial allocation rule fX is extendable with respect to
A if and only if there exists A′ ⊆ A such that, for all t ∈ T ,

fX(t) ∈ argsup
x∈X(A′)











x(tX) + sup
a∈A′

X(a)=x

{

Y (a)(tY )
}











. (11)

One direction follows from the fact that an affine score is truthful if and only
if A(t) ∈ argsup {a(t) : a ∈ A′} where A′ = {A(t, ·) | t ∈ T }; we simply take the
supremum first over X(A) and then over the rest. For the other direction, for
any A′ ⊆ A, taking A(t′, t) = f(t′)(tX) + y(t′)(tY ) where y is in the argsup of
the supremum of eq. (11), provided one exists, gives a truthful affine score.

Returning to the special case of daily deals, let us denote by ao,s ∈ A the
function (v, p) 7→ v(o)+Epo [s]. We now see that f is implementable if and only
if it satisfies

f(v, p) ∈ argsup
o∈O

{

v(o) + sup
s : ao,s∈A′

{Epo [s]}

}

, (12)

for some A′ ⊆ A. Thus, letting go(po) = sup {Epo [s] : ao,s ∈ A′}, we see that go

is convex as the supremum of affine functions. Moreover, given any collection of
convex functions {go}o∈O, where go : ∆(Ωi,o) → R, we can define So

.
= {ω 7→

go(p) + dgo(1ω − p) : p ∈ dom(go)} and A′ .
= {ao,s : o ∈ O, s ∈ So} ⊆ A,

thus recovering each go in the above expression. It then only remains to show
that no other nonconvex function can serve in the argsup; for this one may
appeal to the argument of Cai et al. (2013) which observes that the indifference
points between different allocations are fixed, thus determining the function in
the argsup up to a constant.

A special case of the above, but closer to classical mechanism design, is
captured in the following scenario. The mechanism designer has two distinct
sets of goods to allocate and wants to design a truthful mechanism that is
consistent with a partial allocation rule that determines how the primary goods
should be allocated given the agent’s preferences over both types of goods. We
can capture this setting with the score set A = {ao1,o2,p : t 7→ t1(o1)+t2(o2)+p |
o1 ∈ O1, o2 ∈ O2, p ∈ R}. Such mechanisms are characterized by the following
informal theorem.

Theorem 4 (Informal). Consider an agent with type t = (t1, t2). A truthful
affine score A : T × T → R with score set A (above) is consistent with a partial
allocation rule f : T → O1, if and only if there exists A′ ⊆ A such that

f(t) ∈ argsup
o′1∈O1















t1(o
′
1) + sup

ao1,o2,p∈A′

o′1=o1

{t2(o2) + p}















. (13)
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In particular, analogous to the daily deals setting, the mechanism designer
is restricted to mechanisms that make decisions based on a convex function of
t2 (the inner supremum is a pointwise supremum over affine functions and thus
convex).

We conclude by noting similarity to work of Chambers and Lambert (2014),
where a center wishes to elicit an agent’s belief about some future event, and to
do so multiple times as the event gets closer. The solution proposed is essentially
to have the agent choose a menu of scoring functions at time 0 from a menu of
menus, and then at time 1 choose a score from the menu chosen at time 0. Both
the present setting and theirs share this sense of “menu of menus”, however
one can check that the two are incomparable. In particular, the relationship
between the final score and the beliefs of the agent can be nonlinear in the
Chambers–Lambert model.

4.4. Responsive Lotteries

Feige and Tennenholtz (2010) study the problem of how an agent can be
incentivized to indirectly reveal their utility function over outcomes by being
given a choice of lotteries over those outcomes, an approach with applications to
experimental psychology, market research, and multiagent mechanism design.
Formally, a lottery rule is a function f : Rn → ∆n, i.e., from utility vectors over
n outcomes to probability distributions (lotteries) over those outcomes. The
authors give several examples of effective lottery rules under the assumption of
risk neutrality. In contrast, our approach allows us to give a complete char-
acterization, which highlights the relationship between natural desiderata and
underlying geometric features of the set of possible lotteries, as we now describe.

The authors ask when a lottery rule is truthful dominant, which is defined
as having the following three features: incentive compatibility, meaning the true
utility vector is among the optimal reports, rational uniqueness, meaning the
optimal lottery for a given utility is unique, and rational invertibility, meaning
every report can be optimal for at most one utility. We would like to relate
these notions to simple geometric features, which we introduce now informally,
and formalize later in Definition 6. A convex set K is strictly convex if no point
on its boundary can be expressed as a convex combination of other points in K,
and K is smooth if each point on its boundary has a unique unit normal vector.
Using the results to follow, we can show that strict truthfulness and continuity
of the lottery rule jointly correspond to strict convexity of the lottery set, and
uniqueness of the utility given the optimal lottery corresponds to smoothness of
the boundary.

Corollary 8. A lottery rule f satisfies incentive compatibility and rational
uniqueness if and only if {f(x)} = argmaxp∈K 〈x, p〉 for K ⊂ ∆n compact
and strictly convex relative to ∆n. Moreover, f additionally satisfies rational
invertibility (and thus is truthful dominant) if and only if K is additionally
smooth.

Proof. In this setting, we can see that utility vectors are equivalent up to
positive-affine transformations. (Since there are no payments, multiplying the
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utility of each outcome by a positive constant or adding a constant to the
utility for each outcome has no effect on the optimal lottery for an agent.)
Thus, we may linearly project the utilities and probability simplex onto the set
V = {x ∈ R

n :
∑

i xi = 0}, which only changes the expected utilities by a
constant. We then write these vectors in a basis for V ∼= R

n−1, normalize the
utilities (only scaling them) to the unit sphere in V , and apply Theorem 5.

We now turn to the geometric statements needed to establish Corollary 8,
beginning with some formal definitions. We denote by ∂K the boundary of the
set K ⊆ R

n.

Definition 5. Given a compact convex set K ⊂ R
n, we define the exposed face

FK(t) in direction t 6= 0 and the normal cone NK(k) at point k ∈ ∂K by

FK(t) = argmax
k∈K

〈t, k〉 , NK(k) = {t ∈ R
n : k ∈ FK(t)}. (14)

An exposed face FK(t) is simply the set of points as far in direction t as
possible; for example, on a triangle ABC the exposed faces are vertices A,B,C
and the edges AB,BC,CA. The normal cone NK(k) is simply the set of all
valid normal vectors to K at a point k on the boundary of K; for the triangle,
the normal cone at a point on an edge is simply a ray perpendicular to it, but
on a vertex there is a closed cone spanning the exterior angle of the triangle.

Definition 6. We say K is strictly convex if FK(t) is a singleton for all t 6= 0.
Dually, we say K is smooth if NK(k) is a ray (i.e. {αt : α ≥ 0} for some t 6= 0)
for all k ∈ ∂K.

To illustrate: a disc is smooth and strictly convex, a triangle is neither,
a rounded rectangle is smooth but not strictly convex, and the intersection
of two discs is strictly convex but not smooth. We now establish the tight
connection between these geometric concepts and the truthfulness conditions
in this setting, which will imply Corollary 8. Throughout, we identify linear
functions h ∈ Lin(Rn → R) with vectors v ∈ R

n such that h(·) = 〈v, ·〉.

Theorem 5. Let T = {t ∈ R
n : ‖t‖2 = 1} be the unit sphere in R

n, and let
a truthful affine score A : T × T → R be given, with score set A = Lin(Rn →
R) ∼= R

n. Let S : T → R
n, t 7→ A(t, ·). Then S is continuous and A is strictly

truthful, if and only if S(T ) is the boundary of a compact and strictly convex
set K ⊂ R

n. S is additionally injective if and only if K is additionally smooth.

Proof. Define A′ .
= S(T ). We begin with the first part of the theorem. Let

K be compact and strictly convex, and A′ = ∂K. Then as A is truthful,
we must have S(t) ∈ argsupa∈A′ 〈t, a〉. As A′ = ∂K, we may also write
S(t) ∈ argmaxk∈K 〈t, k〉. Now by strict convexity of K, we have for every
a ∈ A′ = ∂K, there exists some t ∈ T such that {a} = argmaxk∈K 〈t, k〉. We
conclude S(t) = a, giving strict truthfulness. Continuity follows immediately
from Berge’s Maximum Theorem (Ok, 2007).
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For the converse, let A be strictly truthful and S continuous. By standard
arguments, since T is a compact subset of Rn, we have A′ = S(T ) is compact as
a continuous image of a compact set. Thus, K

.
= Conv(A′) is a compact convex

set. Letting FK(t)
.
= argmaxk∈K 〈t, k〉 be the exposed face of K in direction t,

we will now show FK(t) = {S(t)}. First, observe that the extreme points of K,
ext(K), are a subset of A′; otherwise we have k ∈ ext(K) \ A′, so K \ {k} is a
convex set containing A′, contradicting the definition of K = Conv(A′). Now
we may apply (Urruty and Lemaréchal, 2001, Proposition A.2.4.6) to express
the argmax in terms of the extreme points of K, giving us

FK(t)
.
= argmax

k∈K

〈t, k〉 = Conv

(

argmax
k∈ext(K)

〈t, k〉

)

⊆ Conv

(

argmax
a∈A′

〈t, a〉

)

= {S(t)},

where the last equality uses strict truthfulness. As K is compact, FK(t) is
nonempty. Thus FK(t) = {S(t)}, and we conclude S(t) ∈ ext(K). Hence
A′ = S(T ) ⊆ ext(K). Together with the reverse inclusion above, we have A′ =
ext(K). We now apply (Urruty and Lemaréchal, 2001, Proposition C.3.1.5) to
obtain ∂K =

⋃

t∈T FK(t) =
⋃

t∈T {S(t)} = A′. Finally, as ext(K) = A′ = ∂K,
we have strict convexity of K.

For the final statement of the theorem, we note that by (Urruty and Lemaréchal,
2001, Proposition C.3.1.4), we have k ∈ FK(t) ⇐⇒ t ∈ NK(k). By the above,
we already have FK(t) = {S(t)} for all t ∈ T , which implies NK(k) ∩ T = {t :
S(t) = k}. Hence, NK(a) is a ray for all a ∈ A′ if and only if S is injective.

5. Extension to Finite-Valued Properties

We wish to generalize the notion of truthful elicitation from eliciting private
information from some set T to accept reports from a space R which may be
different from T . To even discuss truthfulness in this setting, we need a notion
of a truthful report r for a given type t. Drawing on the scoring rules literature,
we encapsulate this notion by a general multivalued map which specifies all (and
only) the correct values for t.

Definition 7. Let T be a given type space, where T ⊆ V for some vector space
V over R, and R be some given report space. A property is a multivalued map
Γ : T ⇒ R which associates a nonempty set of correct report values to each
type. We let Γr

.
= {t ∈ T | r ∈ Γ(t)} denote the set of types t corresponding to

report value r.

One can think of Γr as the “level set” of Γ corresponding to value r, a concept
which is especially useful for finite R, the case we focus on in this section.

We extend the notion of an affine score to properties, where the report space
is R instead of T itself, and we require A(r, ·) ∈ Aff(V → R) for all r ∈ R.

Definition 8. An affine score A : R× T → R elicits a property Γ : T ⇒ R if
for all t,

Γ(t) = argsup
r∈R

A(r, t). (15)
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If we merely have Γ(t) ⊆ argsupr∈R A(r, t), we say A weakly elicits Γ. A prop-
erty Γ : T ⇒ R is elicitable if there exists some affine score A : R × T → R

eliciting Γ.

Note that it is certainly possible to write down A such the argsup in (15) is
not well defined. This corresponds to some types not having an optimal report,
which we view as violating a minimal requirement for a sensible affine score.
Thus, in order for A to be an affine score, we require (15) to be well defined for
all t ∈ T .

In the remainder of this section, we examine the special case of finite prop-
erties, where R is a finite set of reports. We treat the general case in Frongillo
and Kash (2019), and here leverage additional structure of finite report sets
to provide stronger characterizations. In the scoring rules literature, Lambert
and Shoham (2009) view finite properties as eliciting answers to multiple-choice
questions. There are also applications to mechanism design, discussed in Sec-
tion 5.1. Assume throughout that R is finite and that T is a convex subset
of V = R

d. In this setting, we will use the concept of a power diagram from
computational geometry.

Definition 9. Given a set of points P = {pi}
m
i=1 ⊂ V, called sites, and weights

w ∈ R
m, a power diagram D(P,w) is a collection of cells cell(pi) ⊆ T defined

by

cellP,w(pi) =

{

t ∈ T

∣

∣

∣

∣

i ∈ argmin
j

{

‖pj − t‖2 − wj

}

}

. (16)

The following result is a straightforward generalization of Theorem 4.1 of
Lambert and Shoham (2009), and is essentially a restatement of results due to
Aurenhammer (1987a; 1987b).

Theorem 6. A property Γ : T ⇒ R for finite R is elicitable if and only if the
level sets {Γr}r∈R form a power diagram D(P,w).

Proof. Let us examine the condition that t is an element of cellP,w(pi) for some
power diagram D(P,w):

t ∈ cellP,w(pi) ⇐⇒ i ∈ argmin
j

{

‖pj − t‖2 − wj

}

⇐⇒ i ∈ argmin
j

{

‖pj‖
2 − 2 〈pj , t〉 − wj

}

. (17)

Note that eq. (17) is affine in t. Now given some D = D(P,w) with index set
R, we simply let A(r, t) = 2 〈pr, t〉+ wr − ‖pr‖

2. By (17) we immediately have
r ∈ argsupr′ A(r

′, t) ⇐⇒ t ∈ cellP,w(pr), as desired.
Conversely, let an affine score A eliciting Γ be given. As we are in finite

dimensions, we may write A(r, t) = 〈xr, t〉 + cr for xr ∈ V and cr ∈ R. Letting
pr = xr/2 and wr = ‖pr‖

2 + cr, we see by (17) again that Γr = cell(pr) of the
diagram D({pr}, w). Hence, Γ is a power diagram.
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We have now seen what kinds of finite-valued properties are elicitable, but
how can we elicit them? More precisely, as the proof above gives sufficient
conditions, what are all ways of eliciting a given power-diagram? In general, it
is difficult to provide a “closed form” answer to this question, so we restrict to
the simple case, where essentially the cells of a power diagram are as constrained
as possible.

Definition 10 (Aurenhammer (1987c)). A j-polyhedron is the intersection of
dimension j of a finite number of closed halfspaces of V = R

d, where 0 ≤ j ≤ d.
A tiling C in V is a covering of V by finitely many j-polyhedra, called j-faces
of C, whose (relative) interiors are disjoint. If furthermore their non-empty
intersections are faces of C then C is a cell complex. A cell complex C is called
simple if each of its j-faces is in the closure of exactly (d− j+1) d-faces (cells).

With this definition in hand, we can now characterize the ways to elicit
simple properties, those whose level sets form a simple cell complex.

Theorem 7. Let V = R
d and let finite-valued, elicitable, simple property Γ :

T ⇒ R be given. Then there exist points {pr}R ⊆ V such that the following
holds: for any affine score A : R×T → R eliciting Γ, there exist α > 0, p0 ∈ V,
and w ∈ R

R such that

A(r, t) = 2 〈αpr + p0, t〉 − ‖αpr + p0‖
2 + wr , (18)

and conversely, for all such α and p0 there exists w ∈ R
R making A in eq. (18)

elicit Γ.

Proof. A result of Aurenhammer for simple cell complexes, given in Lemma 1
of Aurenhammer (1987b) and the proof of Lemma 4 of Aurenhammer (1987a),
states the following: given sites P and P ′ and weights w, there exist weights
w′ such that D(P ′, w′) = D(P,w) if and only if P ′ is a homothet (translated
and positively scaled copy) of P . We simply apply this fact to the proof of
Theorem 6.

Detecting elicitable finite properties. As a practical matter, it is natural to ask
if we can efficiently determine whether a given finite-valued property Γ is elic-
itable. By Theorem 6, we need only test whether the cells C = {Γr}r∈R form
a power diagram. For the simple case, Aurenhammer gives the “Orthogonal
Dual” algorithm for this task; see § 2.2 of Aurenhammer (1987c) and comments
thereafter. The orthogonal dual algorithm assumes that the cells are stored
in an incidence lattice, with nodes for each face of C, and edges when faces
are incident (a j-dimensional face which contains a (j − 1)-dimensional face).
The runtime of the algorithm is O(m), where m is the number of facets (faces
of dimension d− 1). More generally, Borgwardt and Frongillo (2019) present a
weakly polynomial-time algorithm to detect power diagrams in the general case,
via a simple linear program.
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From Theorem 1, we know that a being implementable means that there
exists a convex function G such that a is a selection of its subgradients. From
the characterization of finite properties, however, we also know that a must
encode the sites of a power diagram. This gives us a new proof of Saks–Yu
by showing that WMON characterizes power diagrams. In particular, we can
leverage the following characterization of power diagrams due to Aurenham-
mer (1987a). This result assumes that a is defined on all of V = R

d, as until
recently power diagrams have not been studied on restricted domains. How-
ever, recent results for restricted domains imply that Aurenhammer’s argument
generalizes in a straightforward way (Borgwardt and Frongillo, 2019). For com-
pleteness, we provide a sketch of the proof for the restricted version. Another
standard assumption in the literature on power diagrams is that all cells are full
dimensional (as was done in Definition 10), although the machinery developed
for them typically does not rely on this fact. The full-dimensional case is typi-
cally the interesting one in mechanism design as well because otherwise the set
of types with such an allocation is of measure zero. Therefore we treat only this
case for the remainder of this section.

Definition 12. A tiling C of a convex set T ⊆ V is a covering of T by finitely
many polyhedra Zi (where the i index the polyhedra) whose interiors when re-
stricted to T (and relative to T if T is not full dimensional in V) are non-empty
and disjoint.

Theorem 8 (Aurenhammer (1987a)). Let C be a tiling of a convex set T ⊆
V = R

d by n polyhedra and {p1, . . . , pn} be a point set. Then C is the restriction
to T of a power diagram with sites {p1, . . . , pn} defined on all of V, if and only
if

1. Orthogonality: For Zi 6= Zj, the line L that contains pi and pj (and is
directed from pi to pj) is orthogonal to each face common to Zi and Zj.

2. Orientation: Any directed line that can be obtained by translating L and
that intersects Zi and Zj first meets Zi.

Proof. One direction is trivial: if C is a restriction of a power diagram to T
then by Aurenhammer’s original theorem all choices of point set consistent with
an unrestricted power diagram satisfy orthogonality and orientation on all of V
and thus also on T . For the other direction, Borgwardt and Frongillo (2019)
show that a tiling of T is a restriction of a power diagram if and only if the
following LP is feasible:

λij · aij = pi − pj ∀i ≤ n, ∀j ∈ Ji
λij · γij = γj − γi ∀i ≤ n, ∀j ∈ Ji

λij > 0 ∀i ≤ n, ∀j ∈ Ji

Here i, j ∈ {1, . . . , n} index into the cells, Ji is the indices of cells adjacent to
cell i, and the cells are given by constants aij ∈ R

d, γij ∈ R, so that the ith cell
is defined as {t ∈ T | aij · t ≤ γij ∀j ∈ Ji}. Thus, the variables are the sites
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{p1, . . . , pn} ⊆ R
d and pseudo-weights {γ1, . . . , γn} ⊆ R which are in bijection

with the true weights.
In our setting, by contrast, we are given the pi along with the aij and γij ,

and need only find real numbers γi and λij for which the program is feasible.
By orthogonality, there is a unique choice of λij satisfying the first constraint.
Furthermore, by orientation it is strictly positive, satisfying the third constraint.
For the second constraint, for any pair (i, j) with j ∈ Ji and choice of γi there
is a unique γj satisfying the constraint. Establishing the existence of a globally
consistent set of choices is the heart of Aurenhammer’s argument. In particular,
he shows that if i, j, k share a vertex of C then for arbitrary γi the unique choices
of γj and γk which satisfy the second constraint for (i, j) and (i, k) also satisfy
it for (j, k). Global consistency then follows by a simple inductive construction.
Start by choosing a cell i and arbitrary γi. At each step we assign some γj .
If there is a j for which γj is unassigned and j has a vertex which is shared
with two assigned cells then, per Aurenhammer’s argument, we can assign γj
consistent with all cells assigned so far. Otherwise every unassigned cell has a
most a single face in common with a single assigned cell and therefore we can
choose one which has such a face and it can trivially be assigned consistently.

Theorem 9. A tiling C is a restriction of a power diagram with sites {p1, . . . , pn}
if and only if for all t ∈ Zi and t′ ∈ Zj we have pi · (t

′ − t) ≤ pj · (t
′ − t) (i.e.

C satisfies WMON).

Proof. If C is a restriction of a power diagram to T , then by definition

2pi · t− wi ≥ 2pj · t− wj

2pj · t
′ − wj ≥ 2pi · t

′ − wi.

Adding these shows C satisfies WMON.
Now suppose C satisfies WMON. We show orthogonality and orientation.

For orthogonality, let t, t′ ∈ Zi ∩ Zj . Then pi · (t
′ − t) = pj · (t′ − t), or

(pi − pj) · (t
′ − t) = 0. Thus, the face is orthogonal to L. For orientation,

let t ∈ Zi and t′ ∈ Zj be on such a translated L. That is, we can write
t′ = t + c(pj − pi) for some c ∈ R. By WMON, (pj − pi) · (t

′ − t) ≥ 0, or
c(pj − pi) · (pj − pi) ≥ 0. Thus c ≥ 0. Therefore such a translated L first meets
Zi.

Corollary 9 (Saks and Yu (2005)). If X is finite, T is convex, and a satisfies
WMON, then a is implementable.

Proof. We apply Theorem 9 to conclude that a defines a power diagram with
sites X . Theorem 6 then gives implementability because the construction used
in the proof uses the sites as the allocations (when rescaled to remove the 2s).
In order to apply Theorem 9, it remains only to show that an allocation rule
a satisfying WMON further implies that it defines a tiling. This follows by a
straightforward geometric argument that has been used in a number of previous
proofs (see, e.g., Lemma 4.2 of Archer and Kleinberg (2008)). For completeness,
provide it here.
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Let x ∈ X be given. We can define a polyhedron Px associated with x by
the intersection of the constraints t · (x − y) ≥ inft′s.t.a(t′)=x t

′ · (x − y) for all
y ∈ X. By WMON, inft′s.t.a(t′)=x t

′ · (x − y) ≥ supts.t.a(t)=y t · (x − y), so for
any distinct x, y ∈ X , Px and Py are separated by the hyperplane t · (x− y) =
inft′s.t.a(t′)=x t

′ · (x − y), so their interiors with respect to T are disjoint. By
construction t ∈ Pa(t) for all t, which implies that these polyhedra cover T .

6. Discussion

We have presented a model of truthful elicitation which generalizes and ex-
tends both mechanisms and scoring rules. On the mechanism design side, we
have seen how our framework provides simpler, more general, or more construc-
tive proofs of a number of known results about implementability and revenue
equivalence, some of which lead to new results about scoring rules. On the scor-
ing rules side, we have provided the first characterization for scoring rules for
non-convex sets of probability distributions. We also show how results about
power diagrams in the scoring rules literature lead to a new proof of the Saks–Yu
result in mechanism design.

Our analysis makes use of the fact that A(t′, t) is affine in t to ensure that
G(t) = supt′ A(t

′, t) is a convex function. However, this convexity continues to
hold if A(t′, t) is instead a convex function of t. Thus, a natural direction for
future work is to investigate characterizations of convex scores. While mecha-
nisms can always be represented as affine functions by taking the types to be
functions from allocations to R, it may be more natural to treat the type as
a parameter of a (convex) utility function. While many such utility functions
are affine (e.g. dot-product valuations), others such as Cobb-Douglas functions
are not. Berger, Müller, and Naeemi (2009; 2010) have investigated such func-
tions and given characterizations that suggest a more general result is possible.
Another potential application is scoring rules for alternate representations of
uncertainty, several of which result in a decision maker optimizing a convex
function (Halpern, 2003).

In one sense getting such a characterization is straightforward. In the affine
case we want A(t′, t) to be an affine function such that A(t′, t) ≤ G(t) and
A(t′, t′) = G(t′). Since we have fixed its value at a point, the only freedom we
have is in the linear part of the function, and being such a linear function is
exactly the definition of a subgradient. So while our characterization of affine
scores is in some sense vacuous, it is also powerful in that it allows us to make use
of the tools of convex analysis. A similarly vacuous characterization is possible
for the convex case: A(t′, t) is a convex function such that A(t′, t) ≤ G(t) and
A(t′, t′) = G(t′). The challenge is to find a restatement that is useful and
naturally handles constraints such as those imposed by the form of a utility
function.

Theorem 6 shows that scoring rules for finite properties are essentially equiv-
alent to the weights and points that induce a power diagram. This character-
ization has already been applied to understand minimal peer prediction mech-
anisms (Frongillo and Witkowski, 2017). As power diagrams are known to
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be connected to the spines of amoebas in algebraic geometry, aspects of toric
geometry used by string theorists, and tropical hypersurfaces in tropical geome-
try (Van Manen and Siersma, 2005), there may be useful characterization results
in those fields as well. The last is particularly suggestive given the recent use
of tropical geometry techniques in mechanism design (Baldwin and Klemperer,
2012).

Appendix A. Convex Analysis Primer

In this appendix, we review some facts from convex analysis that are used
in the paper.

Fact 1. Let {ft ∈ Aff(V → R)}t∈T be a parameterized family of affine func-
tions. Then G(t) = supt′∈T ft′(t) is convex as the pointwise supremum of convex
functions.

This follows because convex functions are those with convex epigraphs. The
epigraph of this supremum is the intersection of the epigraphs of the individual
functions, which is a convex set as the intersection of convex sets.

Fact 2. d : R → R is a selection of subgradients of a convex function on R if
and only if it is monotone non-decreasing.

See (Rockafellar, 1997, Theorem 24.3) for a proof of a slightly more general
statement.

Fact 3. For convex G on convex T , {dGt ∈ Lin(V → R)}t∈T ∈ ∂G satisfies
path independence.

Informally, path independence means that integrals of dGt do not depend
on the path through T chosen (see Equation (B.3) and following for a formal
definition). Since the restriction of G to a line is a one-dimensional convex
function, G(y)−G(x) =

∫

Lxy
dGt(y−x)dt (Rockafellar, 1997, Corollary 24.2.1).

Summing along the individual lines in a path from x to y gives that the value
of the path integral is G(y)−G(x) regardless of the path chosen.

The following is a classic result in convex analysis (cf. (Urruty and Lemaréchal,
2001, Thm E.1.4.1)) which we prove for completeness. In its statement, given
a convex function G : V → R we make use of its convex conjugate G∗ : V∗ →
R, where V∗ is the dual vector space to V,11 which is defined as G∗(d) =
supv∈V d(v)−G(v).

Fact 4. Let G : V → R be convex. Then for all v ∈ V, d ∈ V∗,

G∗(d) = d(v)−G(v) ⇐⇒ d ∈ ∂Gv.

11More specifically, we require (V,V∗) to be a dual pair of vector spaces; cf. (Aliprantis
and Border, 2007, Definition 5.90).
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Proof. We can simply break down the conditions step by step:

G∗(d) = d(v)−G(v) ⇐⇒ v ∈ argsupv′∈V d(v′)−G(v′)

⇐⇒ ∀v′ ∈ V, d(v)−G(v) ≥ d(v′)−G(v′)

⇐⇒ ∀v′ ∈ V, G(v′) ≥ G(v) + d(v′ − v),

where in the last step we merely negated and added d(v′) ∈ R to both sides.

Fact 5. For any convex function G, the set ∂G−1(d)
.
= {x ∈ dom(G) : d ∈ ∂Gx}

is convex.

Proof. Let x, x′ ∈ ∂G−1(d); then one easily shows (cf. Fact 4) that G(x) −
G(x′) = d(x− x′). Now let x̂ = αx+ (1− α)x′; we have,

G(x̂) ≤ αG(x) + (1− α)G(x′) (A.1)

= α(G(x)−G(x′)) +G(x′)

= αd(x− x′) +G(x′)

= d(x̂− x′) +G(x′) (A.2)

≤ G(x̂), (A.3)

where we applied convexity of G in (A.1) and the subgradient inequality for d
at x′ in (A.3). Hence, by eq. (A.2) we have shown G(x̂)−G(x′) = d(x̂− x′), so
by Fact 4, d ∈ ∂Gx̂.

Appendix B. Characterizing Truthful Mechanisms

While our theorem provides a characterization of truthful mechanisms in
terms of convex consumer surplus functions, this is not always the most natural
representation for a mechanism. In this section, we examine two other ap-
proaches to characterizing truthful mechanisms that have been explored in the
literature and show that they have insightful interpretations in convex analysis,
which allows us to greatly simplify their proofs. Furthermore, our phrasing of
these results is as conditions for a parameterized family of linear functions to be
a selection of subgradients of a convex function. We believe this phrasing con-
verts known results in mechanism design into new results in convex analysis. It
also shows how any such result in convex analysis would give a characterization
of implementable mechanisms. Note that certain results in this section require
an assumption that the relevant parameterized families are in fact real-valued,
which is natural given our focus on mechanism design.

Appendix B.1. Subgradient characterizations

From an algorithmic perspective, it may be more natural to focus on the
design of the allocation rule f . There is a large literature that focuses on
when there exists a choice of payments p to make f into a truthful mechanism
(e.g. Saks and Yu (2005); Ashlagi et al. (2010)). Viewed through our theorem,
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this becomes a very natural convex analysis question: when is a function f a
subgradient of a convex function?12 Unsurprisingly, the central result in the
literature is closely connected to convex analysis.

Definition 13. A family {dt ∈ Lin(V → R)}t∈T satisfies cyclic monotonicity
(CMON) if for all finite sets {t0, . . . , tk} ⊆ T ,

k
∑

i=0

dti(ti+1 − ti) ≤ 0, (B.1)

where indices are taken modulo k+1. The weaker condition that (B.1) hold for
all pairs {t0, t1} is known as weak monotonicity (WMON).

A well known characterization from convex analysis is that a function f
defined on a convex set is a subgradient of a convex function on that set iff it
satisfies CMON Rockafellar (1997). Rochet’s (1987) proof that payments exist
to implement f on a possibly non-convex T iff f satisfies CMON is effectively a
proof of a generalization of this theorem. Rochet notes that his proof is adapted
from the one given in Rockafellar’s text (1997) of the weaker theorem where T
is restricted to be convex. We adapt Rochet’s proof to highlight how its core
is a construction of G. As we use this basic construction several times, we first
analyze it independently.

Given any family {dt}t∈T of linear functions in Lin(V → R), define Pd :
T × V → R as follows:13

Pd(t, t
′)

.
= sup

k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t′

k
∑

i=0

dti(ti+1 − ti). (B.2)

One way to interpret Pd(t, t
′) is as the length of the shortest path from t to t′ in a

graph with edge weights determined by −d, and in that form has seen extensive
use in mechanism design Vohra (2011). We interpret it somewhat differently, as
the best lower bound on G(t′) − G(t) for an arbitrary convex function G with
subgradients d (and infinity if there is no such convex function). In particular,
computing the best lower bound at every point yields a convex function.

Lemma 1. Let {dt ∈ Lin(V → R)}t∈T be given. If d satisfies CMON, then for
all t, t′ ∈ T and all t′′ ∈ V, the following hold:

1. Pd(t, t
′) + Pd(t

′, t′′) ≤ Pd(t, t
′′)

2. dt(t
′′ − t) ≤ Pd(t, t

′′)

3. Pd(t, t) = 0

12More precisely, we want for all t the allocation f(t) to be a subgradient at t. Equivalently,
we can view f as a parameterized family of functions, which is how we state our results.

13Note that the second argument of Pd is from V rather than T ⊂ V because we wish to
apply this when, e.g., t′ ∈ Conv(T ).
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4. Pd(t, t
′) + Pd(t

′, t) ≤ 0

5. Pd(t, ·) is convex and real-valued on Conv(T ), with d ∈ ∂Pd(t, ·) on T

Otherwise, Pd ≡ ∞ on all inputs.

Proof. If CMON is not satisfied, then there is a cycle C = t0, . . . , tk, t0 with
positive sum. Then for any t and t′ the path tCjt′ that consists of starting at
t, going to t0, going around the cycle j times, then going to t′ has a sum that
goes to infinity as j goes to infinity. For the remainder, assume that CMON is
satisfied.

1. Pd(t, t
′) + Pd(t

′, t′′) ≤ Pd(t, t
′′)

Pd(t, t
′) + Pd(t

′, t′′)

= sup
k∈N, {t1,...,tk}⊆T

t0=t, tk+1=t′

k
∑

i=0

dti(ti+1 − ti) + sup
k∈N, {t1,...,tk}⊆T
t0=t′, tk+1=t′′

k
∑

i=0

dti(ti+1 − ti)

= sup
j,k∈N, {t1,...,tk}⊆T
t0=t, tj=t′, tk+1=t′′

k
∑

i=0

dti(ti+1 − ti)

≤ sup
k∈N, {t1,...,tk}⊆T

t0=t, tk+1=t′′

k
∑

i=0

dti(ti+1 − ti)

= Pd(t, t
′′)

2. dt(t
′′ − t) ≤ Pd(t, t

′′)
Taking k = 0 shows that dt(t

′′ − t) is an element of set over which the
supremum is taken.

3. Pd(t, t) = 0
By CMON, Pd(t, t) ≤ 0. By claim (2), dt(t− t) = 0 ≤ Pd(t, t).

4. Pd(t, t
′) + Pd(t

′, t) ≤ 0
By claims (1) and (3), Pd(t, t

′) + Pd(t
′, t) ≤ P (t, t) = 0.

5. Pd(t, ·) is convex and real-valued on Conv(T ), with d ∈ ∂Pd(t, ·) on T
By CMON, for t′ ∈ T Pd(t, t

′) ≤ −dt(t − t′). Thus, Pd(t, t
′) is finite on

T . Pd(t, ·) is a pointwise supremum of convex functions, so is convex. By
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convexity, it is also finite on Conv(T ). For any t′ ∈ T and t′′ ∈ Conv(T ),

Pd(t, t
′) + dt′(t

′′ − t′) = dt′(t
′′ − t′) + sup

k∈N, {t1,...,tk}⊆T
t0=t, tk+1=t′

k
∑

i=0

dti(ti+1 − ti)

= sup
k∈N, {t1,...,tk}⊆T
t0=t, tk=t′ tk+1=t′′

k
∑

i=0

dti(ti+1 − ti)

≤ sup
k∈N, {t1,...,tk}⊆T

t0=t, tk+1=t′′

k
∑

i=0

dti(ti+1 − ti)

= Pd(t, t
′′),

so dt satisfies (2).

Having extracted the construction at the core of Rochet’s proof, the rephras-
ing of his result as a statement about convex functions now follows easily.

Theorem 10 (Adapted from Rochet (1987)). A family {dt ∈ Lin(V → R)}t∈T

satisfies CMON if and only if there exists a convex G : Conv(T ) → R such that
{dt}t∈T ∈ ∂G.

Proof. Given such a G, by (2) we have dti(ti+1−ti) ≤ G(ti+1)−G(ti). Summing
gives (B.1). Given such a family {dt}t∈T , fix some t0 ∈ T and set G : t 7→
Pd(t0, t). The result follows from Lemma 1(5).

A number of papers have sought simpler and more natural conditions than
CMON that are necessary and sufficient in special cases, e.g. Saks and Yu (2005);
Archer and Kleinberg (2008); Ashlagi et al. (2010). These results are typically
proven by showing they are equivalent to CMON. However, it is much more
natural to directly construct the relevant G. As an example, we show one such
result has a simple proof using our framework. This particular proof also has the
advantage of providing a characterization of the payments that is more intuitive
than the supremum in Rochet’s construction.

As in Myerson’s (1981) construction for the single-parameter case, we con-
struct a G by integrating over dt. In particular, for any two types x and y our
construction makes use of the line integral

∫

Lxy

dt(y − x)dt =

∫ 1

0

d(1−t)x+ty(y − x)dt. (B.3)

As Berger et al. (2009) and Ashlagi et al. (2010) observed, if {dt}t∈T satisfies
WMON and T is convex, this (Riemann) integral is well defined because it is
the integral of a monotone function. If these line integrals vanish around all
triangles (equivalently

∫

Lxy
dt(y − x)dt +

∫

Lyz
dt(z − y)dt =

∫

Lxz
dt(z − x)dt))

we say {dt} satisfies path independence.
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Theorem 11 (adapted from Müller et al. (2007)). For convex T , a family
{dt ∈ Lin(V → R)}t∈T is a selection of subgradients of a convex function if and
only if {dt}t∈T satisfies WMON and path independence.

Proof. Given a convex function G and selection of subgradients {dt}, {dt} sat-
isfies CMON and thus WMON. Path independence also follows from convexity
(Rockafellar (1997) p. 232). Now given a {dt} that satisfies WMON and path
independence, fix a type t0 ∈ T and define G(t′) =

∫

Lt0t′
dt(t

′ − t0)dt (well

defined by WMON as the integral of a monotone function). Given x, y, z ∈ T
such that z = λx + (1 − λ)y, by path independence and the linearity of dz we
have

λG(x) + (1− λ)G(y)

= G(z) + λ

∫

Lzx

dt(x− z)dt+ (1− λ)

∫

Lzy

dt(y − z)dt

≥ G(z) + λdz(x− z) + (1− λ)dz(y − z) = G(z),

so G is convex. Similarly, for x, y ∈ T , dt satisfies (2) because

dx(y − x) ≤

∫

Lxy

dt(y − x)dt = G(y)−G(x).

Appendix B.2. Local Characterizations

In many settings, it is easier to reason about the behavior of a mechanism
given small changes to its input rather than arbitrary changes, so several authors
have sought to characterize truthful mechanisms using local conditions Archer
and Kleinberg (2008); Berger et al. (2009); Carroll (2012). We show in this
section how many of these results are in essence a consequence of a more fun-
damental statement, that convexity is an inherently local feature. For example,
in the twice differentiable case it can be verified by determining whether the
Hessian is positive semidefinite at each point. We start with a local convex-
ity result, and use it to show that an affine score is truthful if and only if it
satisfies a very weak local truthfulness condition introduced by Carroll (2012).
Afterwards we turn to a characterization by Archer and Kleinberg (2008) that
proved a similar theorem for a different notion of local truthfulness. Our results
(specifically Theorem 12) show that these two notions of local truthfulness are
equivalent because Archer and Kleinberg’s definition corresponds to the condi-
tion of being a local subgradient, while Carroll’s corresponds to the condition
of being a weak, local subgradient, which we now define.

Definition 14. Let T be convex. A family {dt ∈ Lin(V → R)}t∈T is a weak
local subgradient (WLSG) of a convex function G : T → R if for all t ∈ T there
exists an open neighborhood Ut of t such that for all t′ ∈ Ut,

G(t) ≥ G(t′) + dt′(t− t′) and G(t′) ≥ G(t) + dt(t
′ − t). (B.4)

Furthermore, if for every s ∈ T , eq. (B.4) holds for all t, t′ ∈ Us, we say {dt}t∈T

is a local subgradient (LSG) of G.
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We now show that being a WLSG is a necessary and sufficient condition
for a family of functions to be a selection of subgradients. The proof is heavily
inspired by Carroll (2012).

Theorem 12. Let T be convex. A family {dt ∈ Lin(V → R)}t∈T is a selection
of subgradients of a convex function G : T → R if and only if it is a WLSG of
G.

(Adapted from Carrol (2012)). As usual, the forward direction is trivial. For
the other, let t, t′ ∈ T be given; we show that the subgradient inequality for dt
holds at t′. By compactness of Conv({t, t′}), we have a finite set ti = αit

′+(1−
αi)t, where 0 = α0 ≤ · · · ≤ αk+1 = 1, such that WLSG holds between each ti
and ti+1. (The cover {Us | s ∈ Conv({t, t′})} has a finite subcover; take t2j from
the subcover and t2j+1 ∈ Ut2j ∩Ut2j+2 .) By the WLSG condition (B.4), we have
for each i,

0 ≥ G(ti+1)−G(ti) + dti+1(ti − ti+1) (B.5)

0 ≥ G(ti)−G(ti+1) + dti(ti+1 − ti). (B.6)

Now using the identity ti+1 − ti = (αi+1 −αi)(t
′ − t) and adding (B.5) to (B.6)

yields
dti+1

(t′ − t) ≥ dti(t
′ − t)

Chaining these inequalities yields that for all i,

dti(t
′ − t) ≥ dt0(t

′ − t) = dt(t
′ − t). (B.7)

Again using the identity ti+1 − ti = (αi+1 − αi)(t
′ − t), we can apply (B.7) to

(B.6) yielding
0 ≥ G(ti)−G(ti+1) + dt(ti+1 − ti). (B.8)

Summing (B.8) over 0 ≤ i ≤ k gives

0 ≥ G(t0)−G(tk+1) + dt(tk+1 − t0).

Recalling our definitions for ti yields the result.

The WLSG condition translates to an analogous notion in terms of truth-
fulness, weak local truthfulness.

Definition 15. An affine score is weakly locally truthful if for all t ∈ T there
exists some open neighborhood Ut of t, such that truthfulness holds between t
and every t′ ∈ Ut, and vice versa. That is,

∀t ∈ T , ∀t′ ∈ Ut, A(t′, t) ≤ A(t, t) and A(t, t′) ≤ A(t′, t′). (B.9)

Corollary 10 (Generalization of Carroll (2012)). An affine score A : T ×T → R

for convex T is truthful if and only if it is weakly locally truthful.
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Proof. Defining G(t) := A(t, t), by weak local truthfulness we may write

G(t) = A(t, t) ≥ A(t′, t) = G(t′) + Aℓ(t
′, t− t′)

G(t′) = A(t′, t′) ≥ A(t, t′) = G(t) + Aℓ(t, t
′ − t),

where t′ is local to t and Aℓ(t, ·) is the linear part of A(t, ·). This says that dt =
Aℓ(t, ·) satisfies WLSG for convex function G; the rest follows from Theorem 12
and Theorem 1.

Finally, in the spirit of Section Appendix B.1, Archer and Kleinberg (2008)
characterized local conditions under which an allocation rule can be made truth-
ful. A key condition from their paper is vortex-freeness, which is a condition
they show to be equivalent to local path independence (analogous to our ter-
minology of weak local subgradients it can be thought of as weak local path
independence). The other condition, local WMON, means that WMON holds
in some neighborhood around each type. Their result then follows from the
observation that local WMON and local path independence imply local subgra-
dient. While this particular proof is not significantly simpler than the original,
we believe it is somewhat more natural and clarifies the connection between
the underlying reasons a notion of local truthfulness suffices both here and in
Carroll’s setting.

Corollary 11. Let T be convex. A family {dt ∈ Lin(V → R)}t∈T is a selection
of subgradients of a convex function if and only if it satisfies local WMON and
is vortex-free.

Proof. We prove the reverse direction; suppose {dt}t∈T satisfies local WMON
and is vortex-free. From Lemma 3.5 of Archer and Kleinberg (2008) we have
that vortex-freeness is equivalent to path independence, so by Theorem 11 for
all t there exists some open Ut such that {dt′}t′∈Ut

is the subgradient of some
convex function G(t) : Ut → R. We need only show the existence of some G
such that {dt}t∈T is the subgradient of G on each Ut; the rest follows from
Theorem 12.

Fix some t0 ∈ T and define G(t) =
∫

Lt0 t
dt′dt

′, which is well defined by

compactness of Conv({t0, t}) and the fact that a locally increasing real-valued
function is increasing. But for each t′ and t ∈ Ut′ we can also write G(t′)(t) =
∫

Lt′ t
dt′′dt

′′ by (Rockafellar, 1997, p. 232), and now by path independence we

see that G and G(t′) differ by a constant. Hence {dt}t∈T must be a subgradient
of G on Ut′ as well, for all t

′ ∈ T .

Appendix C. Revenue Equivalence

Perhaps the most celebrated result in auction theory is the revenue equiva-
lence theorem, which states that, in a single item auction, the revenue from an
agent (equivalently that agent’s consumer surplus) is determined up to a con-
stant by the equilibrium probability that each possible type of that agent will
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receive the item Myerson (1981). A large body of work has looked for more gen-
eral conditions under which this holds (see, e.g., Krishna and Maenner (2001))
or what can be said when it does not Carbajal and Ely (2013). One general
approach is due to Heydenreich et al. (2009), who use a graphical representa-
tion related to CMON. Given our main theorem, this is unsurprising. In convex
analysis terms, asking whether an implementable allocation rule satisfies rev-
enue equivalence is asking whether all convex functions that have a selection of
their subgradients that corresponds to that allocation rule are the same up to a
constant. As we saw in the proof of Lemma 1, CMON permits the natural con-
struction of a convex function from its subgradient via (B.1). Intuitively, if we
know the payments we want for some subset of types, we can check if those are
consistent with a desired payment for some other type by checking whether this
construction still works, both in terms of the constraints of the existing types
on the new one and the new one on the existing ones. The following theorem
applies this insight to get a result that is stronger than revenue equivalence as
iteratively applying it characterizes the possible payments for every mechanism.

Theorem 13. Let G be a convex function on Conv(T ), d = {dt}t∈T a selection
of its subgradients on T , S ⊆ T non-empty, t∗ ∈ T \ S, and c be given. Then
there exists a convex G′ on Conv(T ) agreeing with G on S, with {dt}t∈T ∈ ∂G′

and G′(t∗) = c, if and only if

sup
t0∈S

G(t0) + Pd(t0, t
∗) ≤ c ≤ inf

t0∈S
G(t0)− Pd(t

∗, t0) (C.1)

Proof. Given such a G′, the LHS of (C.1) becomes supt0∈S G′(t0)+Pd(t0, t
∗) ≤

G′(t∗). Applying the definition of Pd (B.2) and then repeatedly applying the
subgradient inequality (2) yields the desired inequality. Similarly, the RHS
of (C.1) can be rewritten as G′(t∗) + Pd(t

∗, t0) ≤ G′(t0) for all t0 ∈ S, and the
definition and subgradient inequality applied.

Now suppose (C.1) holds. LetG′(t)
.
= max

{

c+ Pd(t
∗, t), supt0∈S G(t0) + Pd(t0, t)

}

.
By Theorem 10, d satisfies CMON, so by Lemma 1 G′ is convex, finite-valued
on Conv(T ), and has {dt} ∈ ∂G′. Hence, we need only show that G′ agrees with
G on S and has G′(t∗) = c.

First, fixing any t ∈ S, we will establish the following:

G(t) = sup
t0∈S

G(t0) + Pd(t0, t). (C.2)

As Pd(t, t) = 0 from Lemma 1(3), we haveG(t) = G(t)+Pd(t, t) ≤ supt0∈S G(t0)+
Pd(t0, t). Furthermore, G(t0) + Pd(t0, t) ≤ G(t) for all t0 ∈ T by repeated ap-
plication of the subgradient inequality (2). Hence, we have supt0∈S G(t0) +
Pd(t0, t) ≤ G(t) as well.

By eq. (C.2), we can write G′(t) = max{c+Pd(t
∗, t), G(t)} when t ∈ S. But

by the RHS of eq. (C.1), we see c+Pd(t
∗, t) ≤ G(t), so G′(t) = G(t). Similarly,

applying the LHS of eq. (C.1) and Pd(t
∗, t∗) = 0 to the definition of G′(t∗), we

have G′(t∗) = c.
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Viewed through Theorem 13, revenue equivalence holds when the upper
and lower bounds from (C.1) match after the value of G is fixed at a single
point. This allows us to derive a necessary and sufficient condition for revenue
equivalence that is equivalent to that given by Heydenreich et al. (2009) and
actually applies to all affine scores. For example, this gives a revenue equivalence
theorem for mechanisms with partial allocation.

Corollary 12 (Revenue Equivalence). Let a truthful affine score A : T × T →
R be given, and d = {dt}t∈T be the corresponding selection of subgradients
from (3). Then every truthful affine score A′ : T × T → R with the same cor-
responding selection of subgradients differs from A by a constant (i.e. A(t′, t) =
A′(t′, t) + c) if and only if Pd(t

′, t) + Pd(t, t
′) = 0 for all t, t′ ∈ T .

Proof. We will show that the convex function G from eq. (3) is unique up to a
constant if and only if Pd(t

′, t) + Pd(t, t
′) = 0 for all t, t′ ∈ T .

For the forward direction, let t0 ∈ T be arbitrary. Then for all t ∈ T ,
taking (C.1) with S = {t0} and G(t)

.
= c+Pd(t0, t) gives the condition G(t0) +

Pd(t0, t) ≤ G′(t) ≤ G(t0) − Pd(t, t0) for the value of G′(t). But as Pd(t, t0) =
−Pd(t0, t) we have G′(t) = Pd(t0, t) +G(t0) = G(t) for all t.

For the reverse direction, assume Pd(t
1, t2) 6= −Pd(t

2, t1) for some t1, t2 ∈ T ,
and let G1(t)

.
= Pd(t

1, t) and G2(t)
.
= Pd(t

1, t2)+Pd(t
2, t). We easily check from

Lemma 1(3) that G1(t2) = G2(t2) = Pd(t
1, t2), but we have G1(t1) = 0 while

G2(t1) = Pd(t
1, t2) + Pd(t

2, t1) 6= 0.

We note that these two results are similar to results of Kos and Mess-
ner (2013). The main novelties in our version are showing that every value in
the interval yields a convex function (as opposed to merely the extremal ones),
the ability to characterize possible values after the values at multiple points are
fixed (as opposed to a single point), and the framing in terms of convex analysis.

The conditions given by Theorem 13 and Corollary 12, while general, are
not particularly intuitive. However, there are a number of special cases where
they do have natural interpretations for mechanism design. The first is when
the set of types is finite. In this setting (explored in an auction theory context
in, e.g., Diakonikolas et al. (2012)) it is well known that revenue equivalence
does not hold. The finite set of constraints (C.1) can be used in general as a
linear program to, e.g., maximize revenue (see Section 6.5.2 of Vohra (2011) for
an example). In particular cases, they may become simple enough to have a
nice characterization. For example, in the single-parameter setting only a linear
number of paths need be considered. This setting is illustrated in Figure C.4.

More broadly, as we saw in the proof of Theorem 11, the (supremum over
the) sum can often be interpreted as an integral. In particular, the fact that
G is convex guarantees that (under mild conditions) integrals of a selection of
its subgradient are path independent and the integral from t to t′ gives G(t′)−
G(t). If T is connected by smooth paths (e.g. if it is convex), this means that
T satisfies revenue equivalence for all implementable mechanisms (previously
shown under a somewhat different notion of the set of types Heydenreich et al.
(2009)). As it is particularly simple to prove, we state the version for convex T .
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