


data points. (For comparison, Kaggle’s March Mania 2017 competition had 𝑛 = 442 forecasters, and
the equivalent of just 2278 binary events.) The main open question has therefore been whether a
mechanism can select an 𝜖-optimal forecaster using far fewer eventsÐperhaps ELF with a tighter
analysis, or some entirely new mechanism.
We answer both parts of this question affirmatively. First, we show that ELF needs only

𝑂 (𝑛 log𝑛/𝜖2) events, a quadratic improvement, and show the dependence on 𝑛 to be tight (ğ 3).
In the nonstrategic setting, however, only Θ(log(𝑛)/𝜖2) events are required (ğ 5.2), raising the
question of whether a new mechanism can achieve this bound with strategic forecasters. Indeed one
can: we give a new 𝑂 (log𝑛/𝜖2)-event mechanism (in ğ 5) based on Follow the Regularized Leader
(FTRL), a common class of online machine learning algorithms. A crucial ingredient of our analysis
is that, under some curvature assumptions on the regularizer, FTRL satisfies a strong notion of
𝛾-approximate truthfulness: reports more than 𝛾-far from one’s belief are strictly dominated (ğ 4).
While our results could pave the way to exactly-truthful mechanisms, we instead focus on our more
resilient solution concept: our guarantees hold as long as forecasters play undominated strategies.

Our work also has implications for online learning from strategic experts, as studied by Roughgar-
den and Schrijvers [21] and Freeman et al. [6]. Each round, the experts make forecasts; the learning
algorithm chooses an expert based on the prior rounds; and then the outcome of the round’s event
is revealed. Experts are strategic, and seek (roughly) to maximize their probability of being chosen
by the algorithm. Despite this strategic behavior, we would like the algorithm’s chosen forecast
reports to have vanishing regret relative to the internal beliefs of the experts. Freeman et al. [6] give
a mechanism that is no-regret and truthful for myopic agents, which only maximize their chance of
being chosen on the subsequent round and do not strategize otherwise. The main open question
has been to give a no-regret learning algorithm in the presence of general strategic experts.
Using our solution concept of undominated strategies, we show that FTRL achieves this goal

(ğ 6). Specifically, if forecasters wish to maximize any positive linear combination of their chances

of being selected in the rounds, and they play undominated strategies, then FTRL achieves 𝑂 (
√
𝑇 )

regret after 𝑇 rounds. We emphasize that the regret is to the beliefs of the optimal forecaster, even
though they may misreport; approximate truthfulness ensures that the reports are accurate enough.
The broad takeaway from our results is that, in both of these settings, perhaps surprisingly,

there is no price of strategic behavior under the solution concept of undominated strategies. For
forecasting and machine learning competitions, our results suggest a benefit of relatively small
changes in competition protocols. For online learning, moreover, popular learning algorithms are
essentially already robust to the type of strategic behavior we consider.

2 MODEL AND PRELIMINARIES

There are𝑚 independent binary events indexed by 𝑡 , each associated with an independent random
variable𝑦𝑡 ∈ {0, 1}. We assume there is an unknown łground truthž probability of event 𝑡 occurring,

𝜃𝑡 = Pr[𝑦𝑡 = 1]. We write ®𝜃 = (𝜃1, . . . , 𝜃𝑚) and ®𝑦 = (𝑦1, . . . , 𝑦𝑚).
There are 𝑛 ≥ 2 forecasters, indexed by 𝑖 and 𝑗 . On each event 𝑡 , forecaster 𝑖 has an immutable

belief 𝑝𝑖𝑡 ∈ [0, 1] of the probability of event 𝑡 . Forecasters believe all events are independent.
Meanwhile, 𝑟𝑖𝑡 ∈ [0, 1] will denote 𝑖’s reported probability of event 𝑡 . Let 𝑃 ∈ [0, 1]𝑛×𝑚 and
𝑅 ∈ [0, 1]𝑛×𝑚 be the matrices of all beliefs and reports, respectively. We write 𝑝𝑖 = (𝑝𝑖1, . . . , 𝑝𝑖𝑚)
for the row consisting of 𝑖’s beliefs, and similarly for 𝑟𝑖 .

2.1 Mechanisms and truthfulness

A mechanism will first solicit reports 𝑅, then observe outcomes ®𝑦, and select exactly one of the 𝑛
forecasters as the winner. We write Δ𝑛 for the probability simplex over {1, . . . , 𝑛}.
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Definition 1. A forecasting competition mechanism 𝑀 is a family of functions 𝑀𝑛,𝑚 :

[0, 1]𝑛×𝑚 × {0, 1}𝑚 → Δ𝑛 , for all 𝑛,𝑚 ∈ N, where 𝑀𝑛,𝑚 (𝑅, ®𝑦)𝑖 is the probability with which the

mechanism picks forecaster 𝑖 on reports 𝑅 and observed outcomes ®𝑦. As 𝑅 determines 𝑛 and𝑚, we

suppress the subscripts. For a belief 𝑝𝑖 ∈ [0, 1]𝑚 , we write𝑀 (𝑅;𝑝𝑖 ) := E ®𝑦∼𝑝𝑖 [𝑀 (𝑅, ®𝑦)].
The utility of forecaster 𝑖 is simply 1 if they are selected, 0 otherwise. Therefore, we define their

expected utility over the randomness of the mechanism as𝑀 (𝑅, ®𝑦)𝑖 ; and their expected utility over
the randomness of the events as well, according to their internal beliefs, is 𝑀 (𝑅;𝑝𝑖 )𝑖 . We write
𝑀 (𝑟𝑖 , 𝑅−𝑖 , ®𝑦) to denote running the mechanism with 𝑖’s report replaced by some vector 𝑟𝑖 ∈ [0, 1]𝑚 .

Definition 2. 𝑀 is truthful if for all 𝑅, all 𝑝𝑖 , all 𝑟𝑖 ≠ 𝑝𝑖 ,

𝑀 (𝑝𝑖 , 𝑅−𝑖 ; 𝑝𝑖 )𝑖 ≥ 𝑀 (𝑟𝑖 , 𝑅−𝑖 ;𝑝𝑖 )𝑖 .
𝑀 is strictly truthful if the inequality is always strict.

Verbally, the mechanism is (strictly) truthful if the probability of selecting 𝑖 is (uniquely) maxi-
mized when 𝑖 reports 𝑟𝑖 = 𝑝𝑖 , fixing all others’ reports. Note the probability here is taken both over
the randomness of the mechanism and the randomness of the events, according to 𝑖’s beliefs.

Meanwhile, we say a mechanism is 𝛾-approximately truthful if it is a strictly dominated strategy
to make any report 𝑟𝑖𝑡 with |𝑟𝑖𝑡 −𝑝𝑖𝑡 | > 𝛾 . Recall that, for a fixed 𝑝𝑖 , the report 𝑟𝑖 strictly dominates 𝑟𝑖
if for all 𝑅−𝑖 , we have𝑀 (𝑟𝑖 , 𝑅−𝑖 ;𝑝𝑖 ) > 𝑀 (𝑟𝑖 , 𝑅−𝑖 ;𝑝𝑖 ). We say that 𝑟𝑖 is strictly dominated if such an 𝑟𝑖
exists, and 𝑟𝑖 is undominated otherwise. Observe that any mechanism is vacuously 𝛾-approximately
truthful if 𝛾 ≥ 1.

Definition 3. A mechanism 𝑀 is 𝛾-approximately truthful if for all 𝑝𝑖 , (i) there exists an

undominated report, and (ii) for all undominated reports 𝑟𝑖 , we have ∥𝑟𝑖 − 𝑝𝑖 ∥∞ ≤ 𝛾 .

Our notion of approximate truthfulness is stronger than the typical one which only requires the
utility to be approximately optimized by truthful reporting (e.g. Dwork and Roth Dwork et al. [5,
Definition 10.2]). This type of approximate truthfulness is relatively easy to achieve in our context,
as one could simply mix𝑀 with the uniform distribution to dampen the incentives. By contrast,
our definition requires the approximation to be in the report space itself, rather than the utility.
This stronger condition is crucial to our results, as our accuracy and no-regret guarantees rely
heavily on any undominated report being close to truthful. When𝑀 is continuous in the reports,
our definition implies the weaker version.

2.2 Accuracy

We use the (unknown) ground truth probabilities ®𝜃 to define the accuracy of the forecasters. The
goal of the mechanism is to pick a forecaster with approximately optimal accuracy. Following
Witkowski et al. [23], we use the following measure of accuracy. Note that a forecaster’s accuracy
is not dependent on the outcomes of the events.

Definition 4. Each forecaster 𝑖’s accuracy is 𝑎𝑖 = 1 − 1
𝑚

∑𝑚
𝑡=1 (𝑝𝑖𝑡 − 𝜃𝑡 )2. We say a forecaster 𝑖 is

𝜖-optimal if 𝑎𝑖 ≥ max𝑗 𝑎 𝑗 − 𝜖 .

We call a mechanism (𝜖, 𝛿)-accurate if it selects an 𝜖-optimal forecaster except with probability
𝛿 . For a non-truthful mechanism, this definition is subtle for two reasons. First, we would like to
select a forecaster whose true beliefs 𝑝𝑖 are accurate, regardless of their strategic reports 𝑟𝑖 . Second,
the mechanism’s accuracy guarantee presumably assumes something about what forecasters are
reporting, even if not truthful. It depends on the solution concept of the game, e.g. łthe mechanism
is accurate in equilibriumž. Here, we will only assume undominated strategies as a solution concept.
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Definition 5. A mechanism𝑀 is (𝜖, 𝛿)-accurate in the setting defined by (𝑛,𝑚, 𝑃, ®𝜃 ) if for all 𝑅
consisting of undominated strategies, with probability at least 1 − 𝛿 over event outcomes ®𝑦 ∼ ®𝜃 and

𝑖 ∼ 𝑀 (𝑅, ®𝑦), the winner 𝑖 is 𝜖-optimal.

The key question of this paper is: given 𝑛 forecasters and an accuracy goal of (𝜖, 𝛿), how many
events𝑚 are needed?

Definition 6. The event complexity of a mechanism𝑀 is the function𝑚∗ : N×[0, 1]×[0, 1] → N
such that, for all 𝑛, 𝜖, 𝛿 , the output𝑚 =𝑚∗ (𝑛, 𝜖, 𝛿) is the smallest integer such that, for all (𝑃, ®𝜃 ), the
mechanism𝑀 is (𝜖, 𝛿)-accurate in the setting (𝑛,𝑚, 𝑃, ®𝜃 ).

The nonstrategic event complexity of a mechanism is its event complexity assuming access to
the true beliefs 𝑃 . In other words, this is the łfirst-bestž that could be achieved if there were no
strategic considerations. A central question for forecaster selection is the cost of informational
asymmetry, i.e. the event complexity gap between the strategic and nonstrategic settings.
The task in this paper of selecting an 𝜖-optimal forecaster is slightly different from the task

in Witkowski et al. [23]. There, it is assumed that there exists an ł𝜖-dominantž forecaster 𝑖 with
𝑎𝑖 − 𝜖 ≥ max𝑗≠𝑖 𝑎 𝑗 . The task here is weakly more difficult: if we have an (𝜖, 𝛿)-accurate mechanism,
it will necessarily select an 𝜖-dominant forecaster with probability 1 − 𝛿 , satisfying the goal in that
paper. It turns out that their mechanism, ELF, solves the harder problem of selecting an 𝜖-optimal
forecaster (ğ 3). The biggest impact of this change is that our lower bound of𝑚∗

= Ω
(

log(𝑛)/𝜖2
)

,
Theorem 5, will apply to selecting 𝜖-optimal forecasters. We do not have a lower bound for the
Witkowski et al. [23] 𝜖-dominant variant of the problem.

2.3 The quadratic scoring rule

As in Witkowski et al. [23], we will focus on the quadratic scoring rule for assessing forecasts. In
principle our results could be extended to other scoring rules, a question we leave for future work.

Definition 7. The quadratic scoring rule is the function 𝑆 : [0, 1] × {0, 1} → [0, 1] defined by
𝑆 (𝑞,𝑦) = 1 − (𝑦 − 𝑞)2.

The quadratic score is an example of a strictly proper scoring rule 𝑆 ′ : [0, 1] × {0, 1} → R. Such
rules guarantee that one maximizes expected score, according to a belief 𝑝𝑖𝑡 , by reporting 𝑝𝑖𝑡 . The
quadratic or łBrierž score was introduced by Brier [3], and more on proper scoring rules can be
found in Gneiting and Raftery [8]. As in Witkowski et al. [23], the quadratic score is closely related
to our definition of accuracy and to our mechanisms, which reward forecasters based on their
quadratic scores. It is also a simple transformation of the squared loss, one of the most common
losses in machine learning. In particular, a forecaster’s expected average quadratic score is equal to
their accuracy 𝑎𝑖 (Definition 5), up to a constant depending on the event variances.

Lemma 1 (Witkowski et al. [23]). From a ground truth perspective, forecaster 𝑖’s expected average

quadratic score when truthful is

E

®𝑦∼ ®𝜃

[

1

𝑚

𝑚
∑

𝑡=1

𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 )
]

= 𝑎𝑖 −𝐶 ®𝜃 ,

where 𝐶 ®𝜃 =
1
𝑚

∑𝑚
𝑡=1 𝜃𝑡 (1 − 𝜃𝑡 ).
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Proof. By definition, the expected score of 𝑖 on event 𝑡 is

E[𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 )] = 𝜃𝑡
[

1 − (1 − 𝑝𝑖𝑡 )2
]

+ (1 − 𝜃𝑡 )
[

1 − 𝑝2𝑖𝑡
]

= 𝜃𝑡
[

2𝑝𝑖𝑡 − 𝑝2𝑖𝑡
]

+ (1 − 𝜃𝑡 )
[

1 − 𝑝2𝑖𝑡
]

= 1 − 𝜃𝑡 + 2𝜃𝑡𝑝𝑖𝑡 − 𝑝2𝑖𝑡

= 1 − 𝜃𝑡 + 𝜃 2𝑡 − (𝑝𝑖𝑡 − 𝜃𝑡 )2 .
Averaging over the𝑚 events gives the result. □

This result suggests that the accuracy goal is perfectly aligned with selecting a forecaster based
on total quadratic score. We next discuss the baseline of directly using this total score.

2.4 The Simple Max baseline

A straightforward selection mechanism often used in practice is the Simple Max mechanism. For
this mechanism, we assign each forecaster a score 𝑓𝑖𝑡 = 𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) for each event. Then, we assign
their final score by summing these over all events, 𝐹𝑖 =

∑𝑚
𝑡=1 𝑓𝑖𝑡 . Finally, we choose the forecaster

with the highest cumulative score as the overall winner.

Truthfulness. As observed by Witkowski et al. [23] and Aldous [2] and discussed in depth by
Lichtendahl and Winkler [14], this mechanism is generally not truthful. To illustrate, consider three
forecasters and one event whose true probability is 0.5. Alice predicts 0.5, but Bob predicts 0.9 and
Charlie predicts 0.1. Observe that Alice cannot win, despite being the best forecaster by far: either
the event occurs (Bob wins) or it doesn’t (Charlie wins). Alice can only win by predicting either 0
or 1, raising her probability of winning from 0 to 0.5.

Event complexity. Although the simple max mechanism is not truthful, it is worth studying its
nonstrategic event complexity as a baseline. The nonstrategic event complexity𝑚∗, by analogy to
Definition 6, denotes the minimum number of events required to select an 𝜖-optimal forecaster
with probability 1 − 𝛿 , but now assuming access to the true beliefs 𝑃 .

Proposition 1. The Simple Max mechanism has a nonstrategic event complexity of

𝑚∗ ≤
2 log

(

𝑛
𝛿

)

𝜖2
.

Proof. We have 𝐹𝑖 =
∑

𝑡 𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 ). By Lemma 1, E[𝐹𝑖 ] = 𝑚𝑎𝑖 − 𝑐 for some constant 𝑐 = 𝑚𝐶 ®𝜃 .
Let 𝑖∗ be the highest accuracy forecaster. For any non-𝜖-optimal forecaster 𝑗 we have 𝑎𝑖 > 𝑎 𝑗 + 𝜖 ,
so E[𝐹𝑖 ] − E[𝐹 𝑗 ] > 𝑚𝜖 . Therefore, a non-𝜖-optimal forecaster cannot win if 𝐹𝑖∗ ≥ E[𝐹𝑖∗ ] − 𝑚𝜖

2
and

(∀𝑗 ≠ 𝑖∗) 𝐹 𝑗 ≤ E[𝐹 𝑗 ] + 𝑚𝜖
2
. We therefore show this fails to happen with probability at most 𝛿 .

Because 𝐹𝑖 is the sum of independent variables bounded in [0, 1], by Hoeffding’s inequality, we
have for all 𝑖

Pr
[

𝐹𝑖 − E[𝐹𝑖 ] >
𝑚𝜖

2

]

< 𝑒
−𝑚𝜖2

2 ,

Pr
[

E[𝐹𝑖 ] − 𝐹𝑖 >
𝑚𝜖

2

]

< 𝑒
−𝑚𝜖2

2 .

Setting𝑚 ≥ 2 log(𝑛/𝛿)
𝜖2

, we have Pr[𝐹𝑖∗ < E[𝐹𝑖∗ ]−𝑚𝜖
2
] ≤ 𝛿

𝑛
; and for each 𝑗 ≠ 𝑖∗, Pr[𝐹 𝑗 > E[𝐹 𝑗 ]+𝑚𝜖

2
] ≤

𝛿
𝑛
. By the union bound, a non-𝜖-optimal forecaster is able to win with probability at most 𝛿 . □

Meanwhile, in Theorem 5, we will use a reduction from agnostic PAC learning to prove that

all mechanisms have nonstrategic event complexity𝑚∗
= Ω

(

log(𝑛)
𝜖2

)

. Therefore, Simple Max is

essentially the best possible. In particular, we can select the best forecaster using a number of events
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only logarithmic in 𝑛, the number of forecastersÐif truthfulness is not required. However, the state
of the art for truthful mechanisms is significantly worse: Witkowski et al. [23] gives the only bound

to our knowledge, showing that their truthful ELF mechanism achieves𝑚∗
= 𝑂

(

𝑛2 log(𝑛)
𝜖2

)

events.

We next attempt to close the gap.

3 A TIGHT ANALYSIS OF ELF

The ELF mechanism𝑀ELF is a truthful forecaster selection mechanism introduced by Witkowski
et al. [23]. For each event 𝑡 = 1, . . . ,𝑚, we use a lottery to award a point to a single forecaster.
Forecaster 𝑖 is chosen with probability

𝑓𝑖𝑡 =
1

𝑛
+ 1

𝑛

(

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) −
∑

𝑗≠𝑖 𝑆 (𝑟 𝑗𝑡 , 𝑦𝑡 )
𝑛 − 1

)

. (1)

Let 𝐹𝑖𝑡 be the indicator function for forecaster 𝑖 getting the point for event 𝑡 , and 𝐹𝑖 =
∑

𝑡 𝐹𝑖𝑡 be the
random variable equal to the number of points forecaster 𝑖 obtains. Then, ELF chooses argmax𝑖 𝐹𝑖
as the winner, breaking ties uniformly.
Equation 1 is adapted from single-round wagering mechanisms [13], with the idea that each

forecaster wagers 1
𝑛
units on her report, with the chance to win back between 0 and 2

𝑛
units (using

that scores are in [0, 1]). The units are then converted into a probability of winning the point. By
increasing her own quadratic score a forecaster increases the chances she wins the point for round
𝑡 , while uniformly decreasing the chances any other forecaster wins that point.

Theorem 6 of Witkowski et al. [23] shows𝑀ELF to be strictly truthful. Theorem 8 of the same
paper also shows1 that𝑀ELF chooses an 𝜖-optimal forecaster with probability 1 − 𝛿 for all

𝑚 ≥ 2(𝑛 − 1)2
𝜖2

log

(

4(𝑛 − 1)
𝛿

)

.

We begin by showing that𝑀ELF’s event complexity can be lowered from a quadratic dependence
on 𝑛 to a linear one.

3.1 Upper bound

Our proof of the upper bounds follows the same outline as that of Witkowski et al. [23], but
uses a tighter concentration bound at a key moment. Let 𝑖 be the best forecaster and 𝑗 be any
non-𝜖-optimal forecaster. Witkowski et al. [23] use Hoeffding’s inequality to bound the probability
that 𝑖’s total score is much below its expectation, or 𝑗 ’s is much above. Hoeffding’s is tight when
the variance of each independent variable in a sum is Ω(1). However for ELF, the probability of
𝑖 winning a point on round 𝑡 is bounded in [0, 2

𝑛
]. In such cases, Bernstein’s inequality gives a

tighter bound than Hoeffding’s, because it takes into account the variance of the sum as well as the
bound on the individual variables. In particular, while a general sum of𝑚 Bernoullis could have
worst-case variance Ω(𝑚), 𝑖’s total score 𝐹𝑖 has a variance bounded by 2𝑚

𝑛
, a factor of 𝑛 smaller.

This translates to a factor-𝑛 improvement in the bound, which we prove in [7, A.1].

Theorem 1. For 𝑛 ≥ 3,𝑀ELF has an event complexity given by𝑚∗ (𝑛, 𝜖, 𝛿) ≤ 5(𝑛−1)
𝜖2

log
(

4(𝑛−1)
𝛿

)

.

3.2 Lower bound

To prove a lower bound for ELF, it suffices to consider a case with a single perfect forecaster with

𝑝1 = ®𝜃 = (1, . . . , 1), and 𝑛 − 1 terrible forecasters with 𝑝 𝑗 = (0, . . . , 0). Unfortunately, despite
1More precisely, their result is slightly weaker as stated: if there exists an 𝜖-dominant forecaster 𝑖 , i.e. one with 𝑎𝑖 >

max𝑗≠𝑖 𝑎 𝑗 + 𝜖 , then it is selected with probability 1−𝛿 . But essentially the same argument shows that𝑀ELF unconditionally

guarantees to select an 𝜖-optimal forecaster, with the same number of events.
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forecaster 1’s clear advantage, she is only chosen to gain a point with probability 2
𝑛
per round,

while all other forecasters have a chance of slightly under 1
𝑛
. Using a balls-in-bins result implies

that, for𝑚 < 𝑂 (𝑛 log𝑛), some terrible (and lucky) forecaster is likely to have more points than
forecaster 1. This scenario yields the following bound.

Theorem 2. For any 𝛿 <
1
2
, 𝜖 < 1, and all sufficiently large 𝑛, 𝑀ELF has event complexity

𝑚∗ (𝑛, 𝜖, 𝛿) > 𝑛
4
log𝑛.

We present the proof in [7, A.2]. Additionally, in [7, A.3], we study a broader class of truthful and
symmetric "ELF-like" mechanisms that independently award a point to a forecaster for each event,
and then choose the one with the highest score. Leveraging connections to wagering mechanism,
we can extend the lower bound of Theorem 2 to this entire class of mechanisms.

The best-known exactly-truthful mechanisms therefore achieve an event complexity ofΘ(𝑛 log𝑛).
To improve on this bound, we first introduce a relaxation of the truthfulness requirement.

4 AN APPROXIMATELY TRUTHFUL MECHANISM: FTRL

In this section, we show how to achieve approximate truthfulness in the strong sense of Definition 3:
when 𝑅 consists of undominated reports, |𝑟𝑖𝑡 − 𝑝𝑖𝑡 | ≤ 𝛾 for all 𝑖, 𝑡 . To do so, we turn to machine
learning algorithms, a natural choice given that our definition of accuracy (Definition 5) strongly
resembles PAC (probably approximately correct) learning guarantees.

The simplest learning algorithm would be Simple Max, which picks the forecaster with the best
total quadratic score. A key incentive problem with Simple Max, exhibited in ğ 2.4, is its sensitivity
to the input: a small change in a report 𝑟𝑖𝑡 can completely change a forecaster’s probability of
winning. In machine learning, regularization is often used to make an algorithm’s decisions less
sensitive while still retaining accuracy. Combining a regularizer with Simple Max yields a Follow
the Regularized Leader (FTRL) algorithm (e.g., [9, 22]), the class we consider.

A canonical example of an FTRL algorithm is Multiplicative Weights.2 Given a tunable parameter
𝜂 > 0, Multiplicative Weights𝑀∗

𝜂 selects forecaster 𝑖 with probability

𝑀∗
𝜂 (𝑅, ®𝑦)𝑖 =

exp
(

𝜂
∑𝑚

𝑡=1 𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 )
)

∑𝑛
𝑗=1 exp

(

𝜂
∑𝑚

𝑡=1 𝑆 (𝑟 𝑗𝑡 , 𝑦𝑡 )
) . (2)

For intuition on its approximate truthfulness, consider what happens when we fix everything
but 𝑟𝑖𝑡 and 𝑦𝑡 , and take the expected value with respect to 𝑦𝑡 ∼ 𝑝𝑖𝑡 . For small enough 𝜂, the
denominator of (2) barely changes, and the numerator is nearly linear in 𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ). So forecaster 𝑖’s
utility function will behave similarly to E𝑦𝑡∼𝑝𝑖𝑡 𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ), which is maximized by truthful reporting
by properness of the quadratic scoring rule. Furthermore, if 𝑆 is concave enough (and it is), then
the utility-maximizing report 𝑟 ∗𝑖𝑡 on round 𝑡 will satisfy |𝑟 ∗𝑖𝑡 − 𝑝𝑖𝑡 | ≤ 𝑂 (𝜂). Further characterizing
the optimal ex ante report (in expectation over all outcomes) is nontrivial, but a small extension
suffices to to show that any undominated report 𝑟𝑖 satisfies ∥𝑟𝑖 − 𝑝𝑖 ∥∞ ≤ 𝛾 .
We next formalize and generalize this analysis approach. With a curvature assumption on the

regularizer, Condition 1, we show that all FTRL algorithms yield𝑂 (𝜂)-approximate truthfulness up
to constants depending on the regularizer. See ğ 7 for a discussion of the related algorithm, Follow
the Perturbed Leader.

4.1 FTRL

Follow the Regularized Leader (FTRL) is a common class of learning algorithms for prediction
with expert advice [22]. Although these algorithms are designed to select a sequence of experts

2The role of regularization in Multiplicative Weights is not clear from the definition, but will be discussed in the next section.
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(forecasters) over a series of rounds, we will also be able to use them as a static selection mechanism
by simply applying them to the entire batch of𝑚 events.
A regularizer is a strictly convex, differentiable3 function R : Δ𝑛 → R. For 𝜂 > 0, the FTRL

mechanism𝑀R,𝜂 chooses the forecaster distribution according to

𝑀R,𝜂 (R, ®𝑦) ∈ argmax
𝜋 ∈Δ𝑛

{

𝜂

𝑛
∑

𝑖=1

𝜋𝑖

𝑚
∑

𝑡=1

𝑆 (𝑟𝑖𝑡 , 𝑦𝑖 ) − R(𝜋)
}

. (3)

The conditions on R above imply that the choice of𝑀R,𝜂 (𝑅, ®𝑦) is unique and can be written

𝑀R,𝜂 (𝑅, ®𝑦) = ∇𝐶 (𝜂𝑞) , (4)

where the convex, differentiable function𝐶 = R∗ is the convex conjugate of R and 𝑞 = 𝑞(𝑅, ®𝑦) ∈ R𝑛
with 𝑞𝑖 =

∑𝑚
𝑡=1 𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) [20, consequence of Theorems 26.3 and 26.1]. Verbally, the mechanism

considers the vector 𝑞 of total quadratic scores, scales it by 𝜂, and takes the gradient of 𝐶 at this
point, yielding a distribution on forecasters.
An important example is Multiplicative Weights, given by𝑀∗

𝜂 := 𝑀R,𝜂 where the regularizer is

negative entropy, R(𝜋) = ∑𝑛
𝑖=1 𝜋𝑖 log𝜋𝑖 . One can verify that here𝐶 (𝑥) = R∗ (𝑥) = log

∑𝑛
𝑖=1 exp(𝑥𝑖 ).

Furthermore, taking ∇𝐶 (𝜂𝑞) gives back exactly eq. (2).

4.2 Approximate Truthfulness

We now show that FTRL with certain regularizers satisfies the strong notion of approximate
truthfulness in Definition 3. As we will see, while weaker than truthfulness, this guarantee is strong
enough to ensure that the mechanism is accurate, and even no-regret in an online setting.
Fixing others’ reports 𝑅−𝑖 and the realized outcomes ®𝑦, define 𝑈𝑖 (𝑟𝑖 ) = 𝑀R,𝜂 (𝑟𝑖 , 𝑅−𝑖 , ®𝑦)𝑖 for the

probability forecaster 𝑖 wins the competition as a function of their report vector. Then, we write
𝜕𝑖𝐶 (·) to refer to the partial derivative of 𝐶 with respect to its 𝑖th argument; 𝜕2𝑖𝐶 (·) for its second
partial derivative with respect to the 𝑖th argument, and so on.
We therefore have 𝑈𝑖 (𝑟𝑖 ) = 𝜕𝑖𝐶 (𝜂 · 𝑞(𝑟𝑖 , 𝑅−𝑖 , ®𝑦)), where 𝑞 is defined above. Our proof relies on

carefully controlling the curvature of𝑈𝑖 as a function of each individual report 𝑟𝑖𝑡 . Consider the
first two derivatives of𝑈𝑖 :

∇𝑈𝑖 = 𝜂 · 𝜕2𝑖𝐶 (𝜂𝑞) · ∇𝑞 , (5)

∇2𝑈𝑖 = 𝜂2 · 𝜕3𝑖𝐶 (𝜂𝑞) · ∇𝑞∇𝑞⊤ + 𝜂 · 𝜕2𝑖𝐶 (𝜂𝑞) · ∇2𝑞 . (6)

For the quadratic score, we have (∇𝑞)𝑡 = 2(𝑦𝑡 − 𝑟𝑖𝑡 ) and ∇2𝑞 = −2𝐼 , where 𝐼 is the𝑚 ×𝑚 identity
matrix.

To control the curvature of𝑈𝑖 , therefore, we must control the curvature of 𝐶 , which leads to the
following condition:

Condition 1. Given regularizer R, let 𝐶 = R∗. Then 𝐶 is thrice differentiable, and:

(i) There exists 𝛼 > 0 such that 𝜕2𝑖𝐶 (𝑥) ≥ 𝛼 |𝜕3𝑖𝐶 (𝑥) | for all 𝑥 ∈ R𝑛 and 𝑖 ∈ {1, . . . ,𝑚}.
(ii) There exists 𝛽 > 0 such that log

(

𝜕2𝑖𝐶 (𝑥)
)

is 𝛽-Lipschitz in ∥ · ∥∞ as a function of 𝑥 , i.e.
�

�

�log
𝜕2
𝑖
𝐶 (𝑥)

𝜕2
𝑖
𝐶 (𝑥 ′)

�

�

� ≤ 𝛽 ∥𝑥 − 𝑥 ′∥∞.

Before continuing, let us verify that Multiplicative Weights 𝑀∗
𝜂 , which is the FTRL algorithm

𝑀R,𝜂 with R(𝜋) = ∑𝑛
𝑖=1 𝜋𝑖 log𝜋𝑖 , satisfies the condition.

Lemma 2. 𝑀∗
𝜂 satisfies Condition 1 with 𝛼 = 2 and 𝛽 = 3.

3Following e.g. Mhammedi and Williamson [15], we say a regularizer R is differentiable on Δ𝑛 if its directional derivative

R′ (𝜋 ;𝑥) is linear in 𝑥 on the subspace {𝑥 ∈ R𝑛 | ∑𝑖 𝑥𝑖 = 0}.
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Proof. We have 𝐶 (𝑥) = R∗ (𝑥) = log
∑𝑛

𝑖=1 exp(𝑥𝑖 ). Computing,

𝜕𝑖𝐶 (𝑥) = exp(𝑥𝑖 )
(

∑𝑛
𝑗=1 exp(𝑥 𝑗 )

)−1
,

𝜕2𝑖𝐶 (𝑥) = exp(𝑥𝑖 )
(

∑𝑛
𝑗≠𝑖 exp(𝑥 𝑗 )

) (

∑𝑛
𝑗=1 exp(𝑥 𝑗 )

)−2
,

𝜕3𝑖𝐶 (𝑥) = exp(𝑥𝑖 )
(

∑𝑛
𝑗≠𝑖 exp(𝑥 𝑗 )

) (

∑𝑛
𝑗≠𝑖 exp(𝑥 𝑗 ) − exp(𝑥𝑖 )

) (

∑𝑛
𝑗=1 exp(𝑞 𝑗 )

)−3
.

To check the conditions,

𝜕2𝑖𝐶 (𝑥)
|𝜕3𝑖𝐶 (𝑥) |

=

(

∑𝑛
𝑗=1 exp(𝑥 𝑗 )

)

�

�

∑𝑛
𝑗≠𝑖 exp(𝑥 𝑗 ) − exp(𝑥𝑖 )

�

�

−1 ≥ 2 ,

𝜕2𝑖𝐶 (𝑥)
𝜕2𝑖𝐶 (𝑥 ′) = exp(𝑥𝑖 − 𝑥 ′

𝑖 )
(

exp(𝑥 ′
𝑖 ) +

∑𝑛
𝑗≠𝑖 exp(𝑥 𝑗 )

)2 (

exp(𝑥𝑖 ) +
∑𝑛

𝑗≠𝑖 exp(𝑥 𝑗 )
)−2

.

Thus we may take 𝛼 = 2. For 𝛽 , observe that the dual𝐶 of any regularizer is 1-Lipschitz: ∥∇𝐶 ∥1 = 1

as domR = Δ𝑛 , and since ∥ · ∥1 and ∥ · ∥∞ are dual norms, e.g. Shalev-Shwartz [22, Lemma 2.6]

gives |𝐶 (𝑥) − 𝐶 (𝑥 ′) | ≤ 1∥𝑥 − 𝑥 ′∥∞. Thus, we have
�

�

�log
𝜕2
𝑖
𝐶 (𝑥)

𝜕2
𝑖
𝐶 (𝑥 ′)

�

�

� =

�

�𝑥𝑖 − 𝑥 ′
𝑖 + 2𝐶 (𝑥) − 2𝐶 (𝑥 ′)

�

� ≤
|𝑥𝑖 − 𝑥 ′

𝑖 | + 2|𝐶 (𝑥) −𝐶 (𝑥 ′) | ≤ 3 for ∥𝑥 − 𝑥 ′∥∞ ≤ 1. □

To reason about the incentives of forecaster 𝑖 , it will be convenient to write𝑈 𝑖 (𝑟𝑖 ) := E ®𝑦∼𝑝𝑖 𝑈𝑖 (𝑟𝑖 ),
that is, 𝑖’s expected utility over her beliefs on ®𝑦 and the mechanism’s randomness. We will also use

versions of𝑈𝑖 and𝑈 𝑖 when we restrict attention to only round 𝑡 . Specifically, let𝑈𝑖𝑡 (𝑟𝑖𝑡 ) := 𝑈𝑖 (𝑟𝑖 )
just as function of 𝑟𝑖𝑡 , for fixed values of 𝑟𝑖𝑡 ′ , 𝑡

′
≠ 𝑡 , and define 𝑈 𝑖𝑡 (𝑟𝑖𝑡 ) := E𝑦𝑡∼𝑝𝑖𝑡 𝑈𝑖𝑡 (𝑟𝑖𝑡 ). We

suppress the dependence on 𝑝𝑖 as beliefs will be fixed and arbitrary throughout this section.

Lemma 3. Let R satisfy Condition 1(i) for 𝛼 , and suppose 𝐶 is strictly convex. For 𝜂 <
𝛼
2
, for all

𝑖 ∈ [𝑛], 𝑡 ∈ [𝑚], and all 𝑅−𝑖 , the functions𝑈 𝑖𝑡 (𝑟𝑖𝑡 ) and𝑈 𝑖 (𝑟𝑖 ) are strictly concave in 𝑟𝑖𝑡 .

Proof. Let 𝑓 (𝑟𝑖𝑡 ) = 𝑈𝑖 (𝑟𝑖𝑡 , 𝑟𝑖,−𝑡 ), i.e.,𝑈𝑖 as a function of 𝑟𝑖𝑡 . We have

𝑓 ′′(𝑟𝑖𝑡 ) = 𝑑2

𝑑𝑟 2
𝑖𝑡

𝑈𝑖 = 𝜂2𝜕3𝑖𝐶 (𝜂𝑞)4(𝑦𝑡 − 𝑟𝑖𝑡 )2 + 𝜂𝜕2𝑖𝐶 (𝜂𝑞) (−2)

≤ 𝜂2 |𝜕3𝑖𝐶 (𝜂𝑞) |4 − 2𝜂𝜕2𝑖𝐶 (𝜂𝑞)
≤ 4𝜂2 1

𝛼
𝜕2𝑖𝐶 (𝜂𝑞) − 2𝜂𝜕2𝑖𝐶 (𝜂𝑞)

= 2𝜂 (2 𝜂

𝛼
− 1)𝜕2𝑖𝐶 (𝜂𝑞) .

Letting 𝑧 = 2𝜂 (2 𝜂

𝛼
− 1), and noting 𝑧 < 0 by assumption on 𝜂, we have 𝑓 ′′(𝑟𝑖𝑡 ) = 𝑧𝜕2𝑖𝐶 (𝜂𝑞).

Let 𝑣 = 𝑞 − 𝜂𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 )𝑒𝑖 , where 𝑒𝑖 is the 𝑖th indicator vector. By definition of 𝑞, 𝑣 is a constant
with respect to 𝑟𝑖𝑡 . As 𝐶 is strictly convex, the function 𝑔 : [0, 𝜂] → R, 𝑎 ↦→ 𝐶 (𝑣 + 𝑎𝑒𝑖 ) is strictly
convex. From [17, Corollary 1.3.10], we conclude 𝑔′′(𝑎) ≥ 0 for all 𝑎 ∈ [0, 𝜂], and the set {𝑎 ∈
[0, 𝜂] : 𝑔′′(𝑎) = 0} cannot contain any open intervals. By construction, 𝑔′′(𝑎) = 𝜕2𝑖𝐶 (𝑣 + 𝑎𝑒𝑖 ).
Letting ℎ : [0, 1] → [0, 𝜂], 𝑟 ↦→ 𝜂𝑆 (𝑟,𝑦𝑡 ), observe that 𝑓 ′′(𝑟 ) = 𝑧𝑔′′(ℎ(𝑟 )) for all 𝑟 ∈ [0, 1]. By
definition of the quadratic score, the ℎ-image of any open interval contains an open interval. Thus,
were {𝑟 ∈ [0, 1] : 𝑓 ′′(𝑟 ) = 0} to contain any open intervals, so would {𝑎 ∈ [0, 𝜂] : 𝑔′′(𝑎) = 0}, a
contradiction. From [17, Corollary 1.3.10], we conclude strict concavity of 𝑓 .

Applying the above to𝑈𝑖 , we have strict concavity of𝑈𝑖 as a function of 𝑟𝑖𝑡 . Taking an expected

value over 𝑦𝑡 and over all outcomes, respectively,𝑈 𝑖𝑡 (𝑟𝑖𝑡 ) and𝑈 𝑖 (𝑟𝑖 ) are strictly concave in 𝑟𝑖𝑡 as
the convex combination of strictly concave functions. □
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The next result shows łleave-one-outž approximate truthfulness, i.e., that if a forecaster knew
and fixed in advance everything about rounds other than 𝑡 , she would still report 𝑟𝑖𝑡 approximately
truthfully.

Lemma 4. Let R satisfy Condition 1 for 𝛼, 𝛽 . Fix all reports but 𝑟𝑖𝑡 and all outcomes but 𝑦𝑡 . Then for

𝜂 < min( 𝛼
2
, 1
𝛽
), letting 𝑟 ∗𝑖𝑡 = argmax𝑟 ∈[0,1] 𝑈 𝑖𝑡 (𝑟 ), we have |𝑟 ∗𝑖𝑡 − 𝑝𝑖𝑡 | ≤ 𝛽𝜂 + (𝛽𝜂)2 < (𝛽 + 1)𝜂.

Proof. Because R satisfies Condition 1(ii), 𝜕2𝑖𝐶 (𝑥) > 0 for all 𝑖 and 𝑥 , so 𝐶 is strictly convex.
Then by Lemma 3, it suffices to find the zero of the first derivative of E𝑝𝑖𝑡 𝑈𝑖 .

E
𝑦𝑡∼𝑝𝑖𝑡

𝑑
𝑑𝑟𝑖𝑡

𝑈𝑖 = E
𝑦𝑡∼𝑝𝑖𝑡

𝜂𝜕2𝑖𝐶 (𝜂𝑞)2(𝑦𝑡 − 𝑟𝑖𝑡 )

= 2𝜂
(

(1 − 𝑝𝑖𝑡 )𝜕2𝑖𝐶 (𝜂𝑞0) (−𝑟𝑖𝑡 ) + 𝑝𝑖𝑡 𝜕
2
𝑖𝐶 (𝜂𝑞1) (1 − 𝑟𝑖𝑡 )

)

.

where 𝑞0, 𝑞1 are the values of 𝑞 when 𝑦𝑡 = 0 and 𝑦𝑡 = 1 respectively. Setting the derivative to zero,
we have

𝑟𝑖𝑡 =
𝑝𝑖𝑡 𝜕

2
𝑖𝐶 (𝜂𝑞1)

(1 − 𝑝𝑖𝑡 )𝜕2𝑖𝐶 (𝜂𝑞0) + 𝑝𝑖𝑡 𝜕
2
𝑖𝐶 (𝜂𝑞1)

= 𝑝𝑖𝑡

(

(1 − 𝑝𝑖𝑡 )
𝜕2𝑖𝐶 (𝜂𝑞0)
𝜕2𝑖𝐶 (𝜂𝑞1)

+ 𝑝𝑖𝑡

)−1
. (7)

Let 𝑎 = 𝜕2𝑖𝐶 (𝜂𝑞0)/𝜕2𝑖𝐶 (𝜂𝑞1). By definition of 𝑞, ∥𝑞0 − 𝑞1∥∞ ≤ 1, i.e. if 𝑦𝑡 changes from 0 to 1 or
vice versa, each person’s total quadratic score changes by at most 1. Condition 1(ii) now gives
| log𝑎 | ≤ 𝛽𝜂. From eq. (7) we have | log 𝑟 ∗𝑖𝑡 − log𝑝𝑖𝑡 | ≤ max𝑝∈[0,1] | log(𝑝 + (1−𝑝)𝑎) | ≤ | log𝑎 | ≤ 𝛽𝜂.

Without loss of generality, suppose 𝑟 ∗𝑖𝑡 ≥ 𝑝𝑖𝑡 . Then |𝑟 ∗𝑖𝑡 − 𝑝𝑖𝑡 | ≤ 𝑝𝑖𝑡 (𝑟 ∗𝑖𝑡/𝑝𝑖𝑡 − 1) ≤ 𝑝𝑖𝑡 (𝑒𝛽𝜂 − 1) ≤
𝑒𝛽𝜂 − 1 ≤ 𝛽𝜂 + (𝛽𝜂)2, where we use the inequality 𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2 for 𝑥 ∈ [0, 1]. □

Using leave-one-out approximate truthfulness, we can extend to her ex ante preferences, obtaining
our main approximate truthfulness result.

Theorem 3. Let R be any regularizer satisfying Condition 1 with 𝛼, 𝛽 > 0. Then𝑀R,𝜂 is (𝛽 + 1)𝜂-
approximately truthful for any 𝜂 < min( 𝛼

2
, 1
𝛽
).

Proof. We first prove Definition 3(i), existence of an undominated report. We will show that for
any 𝑝𝑖 , a best response to any 𝑅−𝑖 always exists. In particular, any best response is an undominated
strategy. The convex function 𝐶 is differentiable, hence continuously differentiable [20, Theorem
25.5]. By Equation (4), 𝑖’s utility is the 𝑖th component of ∇𝐶 (𝜂𝑞). Meanwhile, 𝑞 is a continuous
function of 𝑖’s strategy 𝑟𝑖 for any fixed 𝑅−𝑖 and ®𝑦. Then, 𝑖’s expected utility is the 𝑝-convex combi-
nation of her utility for each ®𝑦, so it is also continuous. A continuous function on the compact set
[0, 1]𝑚 , which is 𝑖’s strategy space, attains its maximum on that set. So 𝑖 has a best response.
Now we show Definition 3(ii), that all undominated reports are within 𝛾 of 𝑝𝑖 . Let 𝛾 = (𝛽 + 1)𝜂.

Let 𝑟𝑖 ∈ [0, 1]𝑚 with ∥𝑝𝑖 − 𝑟𝑖 ∥∞ > 𝛾 . By definition of ∥ · ∥∞ we must have some 1 ≤ 𝑡 ≤ 𝑚 such that
|𝑟𝑖𝑡 − 𝑝𝑖𝑡 | > 𝛾 . Without loss of generality, assume 𝑟𝑖𝑡 > 𝑝𝑖𝑡 +𝛾 ; the other case follows symmetrically.
We will show that 𝑟𝑖 is strictly dominated by 𝑟 ∗𝑖 given by 𝑟 ∗𝑖𝑡 = 𝑝𝑖𝑡 +𝛾 and 𝑟 ∗𝑖,−𝑡 = 𝑟𝑖,−𝑡 , where we use
ł−𝑡ž to denote all entries of a vector except 𝑡 .

Let us now set 𝑟𝑖,−𝑡 = 𝑟𝑖,−𝑡 and fix all reports of 𝑅 except for 𝑟𝑖𝑡 . Recalling the definitions of𝑈 𝑖𝑡

and𝑈 𝑖 above, observe that we have

𝑈 𝑖 (𝑟𝑖𝑡 , 𝑟𝑖,−𝑡 ) = E
®𝑦−𝑡∼𝑝𝑖,−𝑡

𝑈 𝑖𝑡 (𝑟𝑖𝑡 | ®𝑦−𝑡 ) , (8)

where we emphasize the dependence on ®𝑦−𝑡 . In other words, as a function of just 𝑟𝑖𝑡 , forecaster
𝑖’s probability of winning is simply the expected value of their probability of winning on round
𝑡 once the outcomes of all other rounds are revealed. For each ®𝑦−𝑡 ∈ {0, 1}𝑚−1, Lemma 4 states
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that𝑈 𝑖𝑡 (· | ®𝑦−𝑡 ) is maximized by some 𝑟 ( ®𝑦−𝑡 ) with |𝑟 ( ®𝑦−𝑡 ) − 𝑝𝑖𝑡 | ≤ 𝛾 . In particular, as𝑈 𝑖𝑡 (· | ®𝑦−𝑡 ) is
continuously differentiable and strictly concave for all ®𝑦−𝑡 , we must have 𝑈

′
𝑖𝑡 (𝑟 | ®𝑦−𝑡 ) < 0 for all

𝑟 > 𝑝𝑖𝑡 + 𝛾 . In particular,𝑈
′
𝑖𝑡 (𝑟𝑖𝑡 | ®𝑦−𝑡 ) < 0 for all ®𝑦−𝑡 , yielding𝑈

′
𝑖 (𝑟𝑖𝑡 , 𝑟𝑖,−𝑡 ) < 0. The same logic and

continuity of the derivative shows 𝑈
′
𝑖 (𝑝𝑖𝑡 + 𝛾, 𝑟𝑖,−𝑡 ) ≤ 0. By strict concavity of 𝑈 𝑖 , we conclude

𝑈 𝑖 (𝑟 ∗𝑖 ) = 𝑈 𝑖 (𝑝𝑖𝑡 + 𝛾, 𝑟𝑖,−𝑡 ) > 𝑈 𝑖 (𝑟𝑖𝑡 , 𝑟𝑖,−𝑡 ) = 𝑈 𝑖 (𝑟𝑖 ). As this assertion holds for all values of 𝑅, the
report 𝑟𝑖 is strictly dominated by 𝑟 ∗𝑖 . □

In particular, via Lemma 2, we obtain approximate truthfulness for Multiplicative Weights.

Corollary 1. 𝑀∗
𝜂 is 4𝜂-approximately truthful for any 𝜂 <

1
4
.

5 A FORECASTING MECHANISM WITH OPTIMAL EVENT COMPLEXITY

We now utilize our approximate truthulness results for FTRL to obtain an order-optimal event
complexity result. In particular, Multiplicative Weights, when used as a forecasting competition
mechanism, selects an 𝜖-optimal forecaster with𝑚 = 𝑂

(

log(𝑛/𝛿)/𝜖2
)

events. Our proof heavily
relies on the results from Section 4 showing FTRL to be approximately truthful. Put together, we
show that, as long as forecasters play undominated strategies, FTRL satisfies two properties:

1. For all 𝑖, 𝑡 , |𝑟𝑖𝑡 − 𝑝𝑖𝑡 | ≤ 𝑂 (𝜖).
2. With𝑚 ≥ 𝑚∗ events, the winner’s accuracy is within 𝜖 of the best, with probability 1 − 𝛿 .

We emphasize that accuracy is defined in terms of true beliefs, regardless of reports.
Up to constant factors, this event complexity bound matches the nonstrategic event complexity

of the Simple Max mechanism. It also matches (for fixed 𝛿) the nonstrategic event complexity lower
bound of Theorem 5. In other words, if the goal is to select the best forecaster, then up to constant
factors there is no cost of strategic behavior in this setting. One can view approximate truthfulness
as a nice-to-have guarantee that ultimately serves the goal of the competition in selecting a winner.
Of course, one may additionally seek exact truthfulness, which we discuss further in ğ 7.

5.1 Event Complexity Upper Bound

We are now ready to prove the main result, an order-optimal event complexity in the presence of
strategic behavior. For this section, define:

• 𝑄𝑖 =
1
𝑚

∑𝑚
𝑡=1 𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ), i.e. 𝑖’s average quadratic score.

• 𝑆𝑖 = E ®𝑦∼ ®𝜃 [𝑄𝑖 ], i.e. expected average quadratic score.

• 𝑆∗𝑖 = E ®𝑦∼ ®𝜃
1
𝑚

∑𝑚
𝑡=1 𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 ), the expected average quadratic score of 𝑖’s beliefs. Recall that 𝑆∗𝑖

is forecaster 𝑖’s accuracy 𝑎∗𝑖 plus a constant dependent only on 𝜃 .

To show the event complexity, we show that if a forecaster’s expected score 𝑆∗𝑖 with respect to
their beliefs is far from the most accurate forecaster’s expected score, then with high probability
their actual score will also be far from the best forecaster’s. In particular, for sufficiently large𝑚,
their actual scores 𝑄𝑖 are close to their expected scores 𝑆𝑖 , and that for approximately truthful
reports, 𝑆𝑖 is also close to 𝑆∗𝑖 . We first bound the deviation of each forecaster’s actual score from
their expected score given their reports.

Lemma 5. For any 𝑖 , with probability at least 1 − 𝛿
2𝑛
, we have 𝑄𝑖 − 𝑆𝑖 ≤

√

log
(

2𝑛
𝛿

)

/2𝑚. The same

statement holds replacing 𝑄𝑖 − 𝑆𝑖 with 𝑆𝑖 −𝑄𝑖 .

Proof. 𝑄𝑖 is an average of𝑚 independent random scores in [0, 1], with E[𝑄𝑖 ] = 𝑆𝑖 . The result
follows immediately from a standard Hoeffding bound [16]. □

Let 𝑖 = argmax𝑗 𝑄 𝑗 be the forecaster with the highest expected quadratic score. We can also
bound the probability that the winner’s score is far from the expected winner’s score.
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Lemma 6. With probability at least 1 − 𝛿
2
, the winner 𝑖∗ selected by Multiplicative Weights satisfies

𝑄𝑖∗ ≥ 𝑄𝑖 −
log(2𝑛/𝛿)
𝑚 · 𝜂 .

Proof. Fix the total quadratic scores𝑄1, . . . , 𝑄𝑛 and let 𝜋 be the distribution over winners. Recall

that 𝜋𝑖 := 𝑀∗
𝜂 (𝑅, ®𝑦) = exp(𝜂𝑚𝑄𝑖 )

∑

𝑗 exp(𝜂𝑚𝑄 𝑗 ) . Consider any 𝑗 with 𝑄 𝑗 < 𝑄𝑖 − log(2𝑛/𝛿)
𝑚 ·𝜂 :

𝜋 𝑗 = 𝜋𝑖 exp
(

𝜂𝑚(𝑄 𝑗 −𝑄𝑖 )
)

≤ exp
(

𝜂𝑚(𝑄 𝑗 −𝑄𝑖 )
)

≤ 𝛿

2𝑛
.

Therefore, the total probability of selecting any such 𝑗 is bounded by 𝛿
2
. □

Finally, we show that 𝑆𝑖 is close to 𝑆
∗
𝑖 for approximately truthful experts.

Lemma 7. For any 𝛾 > 0, if ∥𝑟 𝑗 − 𝑝 𝑗 ∥∞ ≤ 𝛾 , then |𝑆 𝑗 − 𝑆∗𝑗 | ≤ 2𝛾 .

Proof. First observe that the quadratic score is 2-Lipschitz in the report, as for all 𝑟 ∈ [0, 1], 𝑦 ∈
{0, 1} we have | 𝑑

𝑑𝑟
𝑆 (𝑟,𝑦) | = |2(𝑦 − 𝑟 ) | ≤ 2. The result then follows. □

Now, we combine these bounds to show that an 𝜖-suboptimal forecaster’s score will be far from
the optimal forecaster’s score with high probability.

Theorem 4. The Multiplicative Weights mechanism𝑀∗
𝜂 with 𝜂 ≤ 𝜖

40
is 4𝜂-approximately truthful

and selects an 𝜖-optimal forecaster with probability at least 1 − 𝛿 , provided𝑚 ≥ 5 log(2𝑛/𝛿)
𝜂 ·𝜖 .

In particular, by choosing 𝜂 =
𝜖
40
, we obtain an event complexity bound of

𝑚∗ ≤ 200 log(2𝑛/𝛿)
𝜖2

.

Proof. Let 𝐵 = { 𝑗 : 𝑎 𝑗 < 𝑎𝑖∗ − 𝜖} be the set of non-𝜖-optimal forecasters.
Suppose 𝜂 ≤ 𝜖

40
. Because Multiplicative Weights is 4𝜂-approximately truthful (Corollary 1),

Lemma 7 implies, for all 𝑗 ,

|𝑆 𝑗 − 𝑆∗𝑖 | ≤ 8𝜂 ≤ 𝜖

5
. (9)

If𝑚 ≥ 25 log(2𝑛/𝛿)
2𝜖2

, then by Lemma 5 and a union bound, we have, except with probability 𝛿
2
, the

following: 𝑄𝑖 > 𝑆𝑖 − 𝜖
5
and, for all 𝑗 ∈ 𝐵, 𝑄 𝑗 < 𝑆 𝑗 + 𝜖

5
. In this event, we have for all 𝑗 ∈ 𝐵:

𝑄 𝑗 < 𝑆 𝑗 +
𝜖

5
Lemma 5

≤ 𝑆∗𝑗 +
2𝜖

5
by (9)

< 𝑆∗𝑖 −
3𝜖

5
definition of 𝐵, Lemma 1

≤ 𝑆𝑖 −
2𝜖

5
by (9)

< 𝑄𝑖 −
𝜖

5
Lemma 5.

By Lemma 6, for𝑚 ≥ 5 log(2𝑛/𝛿)
𝜂 ·𝜖 , except with probability 𝛿

2
, the winner 𝑖∗ satisfies 𝑄𝑖∗ ≥ 𝑄𝑖 − 𝜖

5
. So

by a union bound, with probability 1 − 𝛿 , no member of 𝐵 is selected. We find that we just require

𝑚 ≥ 5 log(2𝑛/𝛿)
𝜂 ·𝜖 ≥ 200 log(2𝑛/𝛿)

𝜖2
. □
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5.2 Event complexity lower bound

We now provide a matching lower bound (up to dependence on 𝛿) for the number of events required
to select an 𝜖-optimal forecaster. This lower bound applies to the non-strategic setting, where

only the ground truth ®𝜃 is unknown. In other words, the bound applies to łfirst-best mechanismsž
that know all of the forecasters’ true beliefs without needing to ask and are not constrained by
truthfulness.

Theorem 5. There exists 𝐶 > 0 such that, for any mechanism𝑀 and for all small enough 𝜖 , the

nonstrategic event complexity satisfies

𝑚∗ (𝑛, 𝜖, 1
8
) ≥ 𝐶 log(𝑛)

𝜖2
.

We next sketch the main idea of the proof. The full proof appears in [7, B].

Warmup: two forecasters. Suppose Alice predicts 1 and Bob predicts 0 on all rounds. The ground
truth distributions are either all 1

2
+𝜖 or all 1

2
−𝜖 . As is well known from bounds on determining the

bias of a coin, Ω( 1
𝜖2
) events are required to determine which ground truth is the case. The accuracy

gap is Ω(𝜖), giving an order-optimal 1
𝜖2

lower bound. (One may be tempted to have Alice and Bob

predict 1
2
± 𝜖 , but in such examples, the accuracy gap is generally 𝑂 (𝜖2) instead of Ω(𝜖), yielding a

suboptimal bound.)

Extension to 𝑛 forecasters: overview and challenges. To extend the approach to 𝑛 forecasters, we
will turn to agnostic PAC learning with 𝑛 hypotheses and accuracy 𝜖 , for which there is a suggestive

sample complexity bound of Ω
(

log𝑛

𝜖2

)

. We use a natural approach of reducing from PAC learning: a

dataset is like a set of events, where the label in {0, 1} is like an event outcome; and a hypothesis
is like a forecaster who assigns a prediction to each data point (event). If we have a forecasting
competition that is efficient in picking the best forecaster, we should be able to use it to pick the
best hypothesis and PAC-learn from a small amount of data.
The main obstacle to carrying through this reduction is that in PAC learning, accuracy of a

hypothesis class is defined a priori on the distribution over features 𝑥 and labels 𝑦. In forecasting,
the accuracy depends on which events are being predicted. This is analogous to realizing all of the
𝑥 values first, then redefining the accuracy levels of all the hypotheses. A forecasting competition
may be able to identify the best forecaster conditioned on the realized events quite easily, although
the original PAC problem is hard.4

Fortunately for us, the main agnostic PAC lower bound distribution is uniform on X, the space
of possible data points. So our PAC learner draws 2𝑚 samples from this hard uniform-marginal
distribution, then trims the empirical distribution down so that it is of size 𝑚 and is perfectly
uniform. This implies that the forecasters’ ex interim accuracy, i.e. after defining the𝑚 events but
before the labels/event outcomes are realized from their conditional distributions, is equal to the a
priori. So selection of a good forecaster is equivalent to selection of a good hypothesis ś which

requires𝑚 ≥ Ω

(

log(𝑛)
𝜖2

)

.

Unfortunately, there are not enough samples𝑚 relative to |X| for the argument just described
to actually work. We adapt the argument, showing that one can throw away the members of X
that do not receive enough samples, and create an empirical distribution of events that is uniform

4Suppose events are of two types, 𝐴 and 𝐵. Alice is always perfectly correct on events of type 𝐴 and perfectly wrong on

type 𝐵, and vice versa for Bob. One distribution on event types is (0.5 + 𝜖, 0.5 − 𝜖) , and the other is the reverse. Now PAC

learning is as difficult as distinguishing the bias of a coin. But if we are only given one randomly-drawn event, then selecting

the best forecaster is easy: the accuracy gap is 1.
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on the remainder, while keeping an 𝑂 (𝜖) difference between forecaster accuracy and hypothesis
accuracy. This modification allows us to complete the reduction.

6 NO-REGRET LEARNING FROM STRATEGIC FORECASTERS

Agrowing literature inmachine learning seeks to design learning algorithmswith good performance
guarantees even when the data points are chosen strategically by other agents. Here, we consider
an online learning setting where, each round, strategic experts report forecasts and the mechanism
selects one of them as its own prediction. The experts wish to be selected as many times as possible
and may strategically misreport.
Freeman et al. [6], building on Roughgarden and Schrijvers [21], give no-regret algorithms for

the case where forecasters are myopic. In each round, myopic forecasters make whatever report
they believe maximizes their chance of being selected in the next round. The authors propose a
learning algorithm based on ELF, which is truthful for such agents, but it is not known if it achieves
vanishing regret.

But in general, strategic forecastersmaymisreport on certain rounds in order to affect their chance
of being selected much later. So the question remains: does there exist an incentive-compatible
learning algorithm for general, non-myopic strategic forecasters? We show that, in fact, FTRL is
already such an algorithm. The result holds for quadratic-score incentives, although we believe
it may be extended. Our proof relies on approximate truthfulness, together with the standard no-
regret guarantees of FTRL. The guarantee obtained is that, as long as forecasters play undominated
strategies in the induced extensive-form strategic game, the algorithm’s forecasts are competitive
with the most accurate beliefs of any expert. We formalize the setting next.

6.1 Regret and incentives

We would like to find an online learning algorithm which achieves low regret with respect to the
true beliefs of experts. This notion is captured as follows.

Definition 8. Given a forecasting competition mechanism 𝑀 and reports 𝑅, let 𝜋𝑡
=

𝑀 (𝑅1..𝑡−1, ®𝑦1..𝑡−1) ∈ Δ𝑛 be the probability distribution over forecasters output by the mechanism

after the first 𝑡 rounds. The regret of𝑀 with respect to beliefs 𝑃 ∈ [0, 1]𝑛×𝑇 is

Reg∗ (𝑀) = argmax
𝑖∈[𝑛]

𝑇
∑

𝑡=1

𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 ) −
𝑇
∑

𝑡=1

E
𝑖∼𝜋𝑡

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) . (10)

(For this section, we let𝑇 =𝑚 be the number of rounds / events, to match typical notation in online
learning.)
There are several possible incentive structures one could consider for the experts. Freeman

et al. [6] and Roughgarden and Schrijvers [21] consider the case where experts wish to maximize
the internal weight given to them by the algorithm. Freeman et al. consider normalized weights,
where this weight can be interpreted as the probability an expert is łchosenž on any given round.
Notably, they only give a truthful no-regret algorithm for themyopic case, where on round 𝑡 experts
only care about their weight on round 𝑡 + 1. We consider a general form which can capture such
non-rational (i.e. time-inconsistent) preferences as well as long-term and rationality-compatible
incentives.
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A forecaster 𝑖’s utility is specified, for each round 𝑡 , by a set of nonnegative constants {𝑐𝑠𝑖𝑡 }𝑇+1𝑠=𝑡+1,
not all zero.5 Her utility function at round 𝑡 , for fixed reports 𝑅, is then

𝑢𝑖𝑡 (𝜋𝑡+1, . . . , 𝜋𝑇 ) =
𝑇+1
∑

𝑠=𝑡+1
𝑐𝑠𝑖𝑡𝜋

𝑠
𝑖 (11)

where 𝜋𝑡 , the mechanism’s distribution over experts at time 𝑡 , is a function of the reports 𝑅1..𝑡−1
and outcomes ®𝑦1..𝑡−1 on rounds 1, . . . , 𝑡 − 1. Her perceived expected utility𝑈𝑖𝑡 at time 𝑡 is defined
to be the expectation of 𝑢𝑖𝑡 over her internal beliefs 𝑝𝑖 given reports and outcomes on rounds
1, . . . , 𝑡 − 1. We note that beliefs 𝑝𝑖 are immutable, i.e. do not change over time or update based on
others’ beliefs and actions.
Let (𝑅−𝑖 )𝑡 ..𝑇 denote the fixed reports of all forecasters other than 𝑖 on rounds 𝑡, . . . ,𝑇 (we have

suppressed dependence on previous reports and outcomes). A forecaster 𝑖’s strategy at time 𝑡 is
a plan of reports 𝜎𝑖𝑡 = (𝑟𝑠𝑖𝑡 )𝑇𝑠=𝑡 , chosen with a goal of maximizing 𝑈𝑖𝑡 (𝜎𝑖𝑡 , (𝑅−𝑖 )𝑡 ..𝑇 ). We say 𝜎𝑖𝑡 is
strictly dominated if there exists 𝜎 ′

𝑖𝑡 with𝑈𝑖𝑡 (𝜎 ′
𝑖𝑡 , (𝑅−𝑖 )𝑡 ..𝑇 ) > 𝑈𝑖𝑡 (𝜎𝑖𝑡 , (𝑅−𝑖 )𝑡 ..𝑇 ) for all fixed (𝑅−𝑖 )𝑡 ..𝑇 .

This is a natural extension of the definition of incentive compatibility for forward-looking experts
by Freeman et al. [6]. We let 𝜎𝑖 = (𝜎𝑖𝑡 )𝑇𝑡=1 be a strategy of 𝑖 for the entire game, inducing realized
reports 𝑟𝑖𝑡 = 𝑟 𝑡𝑖𝑡 for all 𝑡 . We say 𝜎𝑖 is undominated if all of its components 𝜎𝑖𝑡 are. A mechanism is
𝛾-approximately truthful if for all undominated 𝜎𝑖 , the induced reports |𝑟𝑖𝑡 − 𝑝𝑖𝑡 | ≤ 𝛾 for all 𝑡 .

This model can include preferences that are inconsistent across time, including the myopic
preferences studied by Freeman et al. [6] given by 𝑐𝑠𝑖𝑡 = 1 if 𝑠 = 𝑡 + 1 and 0 otherwise. One could
also consider discounted rewards, taking 𝑐𝑠𝑖𝑡 = 𝛽𝑠−𝑡 for 𝛽 ∈ (0, 1). In these inconsistent cases, a
forecaster’s plan at time 𝑡 for the round 𝑠 > 𝑡 , 𝑟𝑠𝑖𝑡 , may not match her decisions at time 𝑠 , 𝑟𝑠𝑖𝑠 .

To model consistent łrationalž preferences, one would require 𝑐𝑠𝑖𝑡 = 𝑐𝑠𝑖1 for all 𝑡 ≤ 𝑠 . In this case,

we have a game on 𝑛 players where 𝑖’s utility function is
∑𝑇+1

𝑠=1 𝑐
𝑠
𝑖1𝜋

𝑠
𝑖 . For instance, if 𝑐

𝑠
𝑖𝑡 = 1 for

all 𝑠, 𝑡 , then forecasters wish to maximize the expected number of rounds they are chosen. In the
consistent case, optimizing utility in round one is compatible with optimizing utility on each other
round, so one can take simply take 𝑖’s strategy to be the set of reports 𝑟𝑖 = (𝑟𝑖𝑡 )𝑇𝑡=1, as her plan
for each round can be assumed to be consistent. In this case, undominated strategies correspond
to the usual definition for a simultaneous-move game where players commit to the reports 𝑅.
This simultaneous-move formalization of strategies, where 𝑅−𝑖 is fixed and 𝑖 responds, is also the
approach of Freeman et al. [6] to non-myopic incentive compatibility in online learning (see their
Definition D.1). We discuss extensive-form solution concepts in ğ 7.

6.2 Achieving no-regret

FTRL is well-known to achieve no-regret with respect to the reports of the experts. We would
instead like a guarantee with respect to the beliefs of the experts. We give such a guarantee now,
which holds for any strategies of the experts that are not strictly dominated. Just as with our event
complexity bound for forecasting competitions, the proof combines the non-strategic no-regret
guarantee of FTRL with the approximate truthfulness of the algorithm in each time step. We present
the proof of approximate truthfulness in [7, D]. We omit it here as it simply applies the approach
developed in Section 4.2.

Lemma 8. Let the regularizer R satisfy Condition 1 for 𝛼, 𝛽 > 0. Then 𝑀R,𝜂 is an (𝛽 + 1)𝜂-
approximately truthful online learning algorithm for any 𝜂 < min( 𝛼

2
, 1
𝛽
).

5We assume that at each round the forecaster cares at least slightly about being selected at some future point. For this to

hold on round𝑇 , we suppose the mechanism also makes a selection at round𝑇 + 1, although this does not impact the regret.
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We can now prove our main result for online learning from strategic experts, namely that FTRL
still achieves no-regret. Define 𝐷R = max𝜋,𝜋 ′∈Δ𝑛

(R(𝜋) − R(𝜋 ′)).

Theorem 6. Let the regularizer R be strongly convex6 in the 𝐿1 norm. Let R satisfy Condition 1

for 𝛼, 𝛽 > 0 and let 𝑇 ≥ max( 1
𝛼2 ,

𝛽

2
)𝐷R . With choice of 𝜂 =

√

𝐷R/2(𝛽 + 2)𝑇 , we have for any
beliefs 𝑃 ∈ [0, 1]𝑛×𝑇 and utilities {𝑐𝑠𝑖𝑡 }, for all strategy profiles consisting of undominated strategies,

Reg∗ (𝑀R,𝜂) ≤ 2
√

2(𝛽 + 2)𝐷R𝑇 .

We note that the result extends to regularizers that are strongly convex in other norms, with the
usual additional factors in the regret [22].

Proof. Standard regret guarantees for FTRL, such as Hazan [9, Theorem 5.2] or Shalev-Shwartz
[22, Theorem 2.11], give the following regret guarantee where the benchmark is the reports (not
the beliefs):

argmax
𝑖∈[𝑛]

𝑇
∑

𝑡=1

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) −
𝑇
∑

𝑡=1

E
𝑖∼𝜋𝑡

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) ≤ 2𝜂𝑇 + 1

𝜂
𝐷R . (12)

By Lemma 8, for 𝜂 < min( 𝛼
2
, 1
𝛽
) we have |𝑝𝑖𝑡 − 𝑟𝑖𝑡 | ≤ (𝛽 + 1)𝜂 for all 𝑖, 𝑡 . As the quadratic score is

2-Lipschitz (see Lemma 7), |𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) − 𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 ) | ≤ 2(𝛽 + 1)𝜂. Therefore,

argmax
𝑖∈[𝑛]

𝑇
∑

𝑡=1

𝑆 (𝑝𝑖𝑡 , 𝑦𝑡 ) −
𝑇
∑

𝑡=1

E
𝑖∼𝜋𝑡

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 )

≤ argmax
𝑖∈[𝑛]

𝑇
∑

𝑡=1

(𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) + 2(𝛽 + 1)𝜂) −
𝑇
∑

𝑡=1

E
𝑖∼𝜋𝑡

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) (13)

= argmax
𝑖∈[𝑛]

𝑇
∑

𝑡=1

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) −
𝑇
∑

𝑡=1

E
𝑖∼𝜋𝑡

𝑆 (𝑟𝑖𝑡 , 𝑦𝑡 ) + 2(𝛽 + 1)𝜂𝑇

≤ 2(𝛽 + 1 + 1)𝜂𝑇 + 1

𝜂
𝐷R .

Taking 𝜂 =

√

𝐷R/2(𝛽 + 2)𝑇 gives the result, as long as we have 𝜂 < min( 𝛼
2
, 1
𝛽
), as ensured by our

bound on 𝑇 . (To check, 1/𝜂2 ≥ 2(𝛽 + 2)max( 1
𝛼2 ,

𝛽

2
) ≥ max( 4

𝛼2 , 𝛽
2) = 1/min( 𝛼

2
, 1
𝛽
)2.) □

As a brief aside, if one wishes to bound an alternative notion of regret where the algorithm
is judged by the beliefs of its chosen expert, rather than their reports, then one simply picks up
another additive 2(𝛽 + 1)𝜂𝑇 in eq. (13), less than doubling the final regret bound.

Turning finally to Multiplicative Weights, we have that R is 1-Lipschitz in 𝐿1 norm. Meanwhile,

𝐷R = log𝑛, and 𝛼 = 1/2 and 𝛽 = 3 from Lemma 2. From Theorem 6, setting 𝜂 =

√

log𝑛/10𝑇 gives
the following.

Corollary 2. For 𝑇 ≥ 8, for an appropriate choice of 𝜂, we have Reg∗ (𝑀∗
𝜂 ) ≤ 2

√

10𝑇 log𝑛.

7 DISCUSSION

We conclude with a few observations and open problems.

6A differentiable convex function 𝑓 is strongly convex in norm ∥ · ∥ if for all 𝑥, 𝑦 ∈ dom𝑓 we have 𝑓 (𝑦) − 𝑓 (𝑥) ≥
∇𝑓 (𝑥) · (𝑦 − 𝑥) + 1

2 ∥𝑥 − 𝑦 ∥.
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Follow the Perturbed Leader. A natural alternative to an explicit regularizer in FTRL is to instead
add noise to the total scores and then choose the maximum, an approach called Follow the Perturbed
Leader (FTPL). When the noise follows the Laplace distribution, this approach corresponds to
the Report Noisy Max mechanism from differential privacy [5], which is well-known to provide
approximate truthfulness in the weaker sense that forecasters will not gain much by deviating. In [7,
B], we show that Report Noisy Max also satisfies our stronger notion of approximate truthfulness in
undominated strategies. The result is another mechanism that, like Multiplicative Weights, achieves
optimal event complexity. On the one hand, this result is unsurprising given the known equivalence
of FTPL to FTRL for some choice of regularizer [1, 12]. On the other, it suggests the robustness of
our findings, and provides some intuition for why approximate truthfulness holds.

Other regularizers. While we carefully study negative entropy as the regularizer, another com-
monly choice is the L2 regularizer R(𝜋) = ∥𝜋 ∥2/2. However, this choice of R does not satisfy
Condition 1(ii) since 𝐶 = R∗ will be flat far from the origin. We suspect that indeed R needs to be
entropy-like, more specifically a variant of Legendre type [20] for spaces with empty interior.

Wasted effort from strategizing. Theorem 4 shows that Multiplicative Weights is always 4𝜂-
approximately truthful, and is additionally 𝜖-optimal with 𝑂 (log(𝑛)/𝜂𝜖) events when one chooses
𝜂 ≤ 𝜖/40. While the event complexity is optimized by taking 𝜂 = 𝜖/40, one important reason
to choose 𝜂 even smaller is to control the cost of strategizing by experts. As our mechanism is
not exactly truthful, experts may waste effort modeling their competitors and computing best
responses, instead of spending that effort on improving their predictions [11]. Choosing 𝜂 even
smaller would decrease the benefit of strategizing, at the cost of increasing the event complexity
of the mechanism. An interesting future direction is to study this tradeoff both theoretically and
empirically, in particular to give guidance as to what setting of 𝜂 would eliminate strategizing
entirely in practice.

Exact truthfulness. Our analysis of ELF shows that, though it is exactly truthful, its event com-
plexity is limited to Θ(𝑛 log𝑛) events and any similar point-per-round mechanisms cannot do
better while remaining truthful. (As an aside, one future direction is to strengthen this bound
to Θ(𝑛 log(𝑛)/𝜖2).) Meanwhile, we gave an approximately truthful mechanism which achieves
the optimal event complexity of 𝑂 (log(𝑛)/𝜖2). An interesting open question remains as to what
happens in the gap between these two bounds. Are there exactly truthful mechanisms with optimal
event complexity? One approach could be to further control the curvature of𝑈𝑖 to show concavity
jointly in all reports, i.e., with respect to the vector 𝑟𝑖 . Then fixed point theorems would give us an
equilibrium, and the revelation principle a truthful mechanism (for the solution concept of Nash
equilibria). One challenge is, naively, the bound we achieve from eq. (6) picks up a factor of𝑚
because the norm of ∇𝑞 could be order𝑚. Still, a tighter analysis of the curvature may suffice.

Extensive-form strategies in online learning. Our formulation of the online incentive-compatible
learning problem includes a rational strategic game setting as a special case. That special case can
be viewed as a simultaneous-move game rather than a sequential one: each expert decides on a
response 𝑟𝑖 = (𝑟𝑖𝑡 )𝑇𝑡=1 to a fixed plan of reports 𝑅−𝑖 of the opponents. A nice extension would be to
show the same approximate-truthfulness guarantee while expanding the strategy set to allow for
contingent plans, i.e. reports at time 𝑡 that depend on the opponents’ actions prior to 𝑡 . We chose to
avoid this approach due to the complexity of a model that captures both contingent strategies and
possibly-time-inconsistent preferences, e.g. myopic experts. We conjecture that our approximate
truthfulness results for FTRL would extend to this formalization as well, however, thanks to the
robustness of the dominated-strategies approach.
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Other scoring rules. Most of our results likely extend to scoring rules other than the quadratic
score. It seems the principal requirements of the scoring rule, aside from being proper [8], are
strong concavity and a bounded derivative. Less clear is to what extent our results hold when
moving beyond binary outcomes, and the correct dependence on the number of possible outcomes
in our bounds.
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