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Abstract—Neuromorphic computing with spintronic devices has been of interest due to the limitations of CMOS-driven von
Neumann computing. Domain wall-magnetic tunnel junction (DW-MTJ) devices have been shown to be able to intrinsically
capture biological neuron behavior. Edgy-relaxed behavior, where a frequently firing neuron experiences a lower action
potential threshold, may provide additional artificial neuronal functionality when executing repeated tasks. In this letter,
we demonstrate that this behavior can be implemented in DW-MTJ artificial neurons via three alternative mechanisms:
shape anisotropy, magnetic field, and current-driven soft reset. Using micromagnetics and analytical device modeling to
classify the Optdigits handwritten digit dataset, we show that edgy-relaxed behavior improves both classification accuracy
and classification rate for ordered datasets while sacrificing little to no accuracy for a randomized dataset. This letter
establishes methods by which artificial spintronic neurons can be flexibly adapted to datasets.

Index Terms—Spin electronics, domain wall dynamics, magnetic logic devices, magnetic tunnel junctions, neuromorphic computing.

I. INTRODUCTION

Within the past decade, rapid growth in data volume and complexity
has accelerated the need for alternatives to CMOS-driven von Neu-
mann architecture that has dominated modern computing. Contem-
porary data-intensive tasks often expose the problem of a memory
wall, where computation and memory are separate and processes are
executed sequentially [Wulf 1995]. This leads to significant delay
and energy consumption, particularly in prediction, interpolation, and
extrapolation tasks that deal with complex sets of data. Due to these
difficulties, research efforts have been directed toward eliminating
these bottlenecks through neuromorphic computing, which draws
inspiration from the parallel processing and efficiency of biological
neural systems, e.g., the human brain. Hardware implementation of
neuromorphic computing requires the development of artificial struc-
tures analogous to biological systems: neurons that are interconnected
through synaptic weights. Artificial neural networks (ANNs) have the
potential to overcome limitations faced by von Neumann computing
[Furber 2016].

A fundamental building block of an ANN is the artificial integrate-
and-fire (IF) neuron [Burkitt 2006]. A biological neuron receives
impulses from other neurons through a synaptic network and builds
up a membrane potential (integration). When this membrane potential
reaches a threshold, the neuron generates an action potential, or a
voltage spike, which then propagates to other connected neurons in
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the network (firing). Furthermore, leaky integrate-and-fire (LIF) neu-
rons incorporate the tendency of biological neurons to gradually lose
membrane potential (leak) after a period without stimulation [Nahmias
2013, Hassan 2018, Cui 2020].

An additional behavior of many biological neurons, for example,
mammalian pyramidal neurons in the cortex and hippocampus, is a
transition between edgy and relaxed states. Consequently, the depo-
larizing shift causes the cell to be at a lower threshold for generating
additional action potentials (edgy), whereas a neuron that does not fire
often requires a higher threshold to generate an action potential (re-
laxed). This phenomenon, called afterdepolarization, is an important
mechanism underlying neural oscillations associated with information
processing and rhythmic motor functions in the mammalian central
nervous system [Llinds 1988, Bean 2007]. This edgy-relaxed behavior
can be beneficial for artificial neurons that are used for datasets that
have a degree of repetitive order.

A promising candidate in implementing artificial neurons is the
domain wall-magnetic tunnel junction (DW-MTJ) device [Currivan
2012, Currivan-Incorvia 2016, Alamdar 2021], which consists of a
perpendicularly magnetized ferromagnetic (FM) track containing a
single DW and a sensing MTJ consisting of a fixed FM layer separated
from the track by a thin insulating layer (Fig. 1). The DW propagates
along £ when a current is applied across the DW track through spin
transfer torque. If a heavy metal layer is introduced, the DW can also
be propagated through SOT. The position of the DW represents the
integration of the artificial neuron. The distance between the starting
position of the DW and the sensing MTJ represents the firing threshold
of the artificial neuron; as the DW passes underneath the sensing MTJ,
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Fig. 1. Schematic of the DW-MTJ device. The red and blue in the
CoFeB FM layer represent domains of antiparallel magnetization in Z.
The white boundary represents the DW. The sensing MTJ is depicted as
a blue disk aligned close to the right end of the track. The translucent
layer represents the MgO insulating layer. The dark gray bottom layer
depicts an optional heavy metal layer for SOT propagation. Generalized
boundaries of edgy-relaxed states are also indicated.

a resistance change occurs, causing a spike in output current. This
output spike then triggers a reset current that is applied in the opposite
direction to integration, propagating the DW back to the initial position
in preparation for the next integration. The DW-MT]J device has been
shown to implement IF behavior and exhibit energy efficiency both on
the device and circuit levels [Sharad 2012, Sengupta 2016].

Ina DW-MTJ neuron, the DW is typically reset to the initial position
after firing, which will be referred to as a hard reset. Edgy-relaxed
behavior can be implemented in a DW-MT]J neuron by not completely
resetting the DW to the initial position, leading to a higher integration
state for a neuron that has recently fired; this will be referred to as a soft
reset. This can be accomplished by manipulating shape anisotropy, ex-
ternal magnetic field, and reset current. Shape anisotropy and external
magnetic field have already been shown to leaking behavior by moving
the DW backward in DW-MT]Js [Brigner 2019]. This can be adapted
for edgy-relaxed behavior by not resetting the neuron after firing, and
instead allowing the DW to propagate backward for a duration of
time before integration begins again. The distinction between leaking
behavior and edgy-relaxed behavior is that leaking behavior describes
action potential during integration, whereas edgy-relaxed behavior is
dictated by neuron behavior in between rounds of integration. If the
time duration and the leaking velocity of the DW are tuned to partially
reset the neuron, the result is that the recently fired neuron has a lower
firing threshold than the other neurons in the layer. The application of
a soft reset current is similar in that by reducing the magnitude of the
reverse polarity current compared to a hard reset, the same effect can
be realized.

In this letter, we show using micromagnetic simulations and analyt-
ical modeling that by taking advantage of shape anisotropy and mag-
netic field to implement inherent edgy-relaxed behavior in DW-MTJ
neurons, the delay and classification accuracy of an ANN is improved
on data with repetitive inputs while sacrificing little to no accuracy for
a completely randomized dataset. We also show that tuning the reset
signal to implement edgy-relaxed behavior can result in delay and
classification accuracy improvements. A comparison of the benefits of
each method is also presented.

MxInput Neurons

NxDW-MTJ Output Neurons
(b)

Fig. 2. (a) Top-down view of the dimensions of the FM layer of the
DW-MTJ neuron. The DW is depicted in white. The soft reset methods
using magnetic field (H), shape anisotropy (W;, W, L), and reset cur-

rent (ng[) are also shown. (b) Diagram of perceptron depicting input
neurons and data, synapse network, and the simulated DW-MTJ output
neurons. For Optdigits classification, there are 64 input neurons and ten
output neurons.

II. METHODS

A. Single-Device Micromagnetics Model

To demonstrate the ability of a DW-MTJ neuron to implement edgy-
relaxed behavior, an FM track containing a single DW is modeled
using MuMax3 micromagnetics simulation software that solves the
Landau-Lifshitz—Gilbert equation [ Vansteenkiste 2014]. We study the
edgy-relaxed behavior for three possible leaking methods: magnetic
field, shape-anisotropy, and reset current, as defined in Fig. 2. These
reset options are compared against a DW-MT]J IF neuron with a hard
reset, which will be referred to as the baseline neuron.

A rectangular wire of dimensions W) = W, = 50 nm, L = 250 nm,
and + = 1.5 nm is simulated for the field-driven and current-driven
reset methods. For shape-anisotropy-driven reset, a trapezoidal wire
is simulated with dimensions 25 nm x 100 nm x 250 nm x 1.5 nm
for Wy x W, x L x thickness t, where W, W,, and L are defined in
Fig. 2(a), similar to the model described in Brigner [2019]. The mesh
size of the simulation was chosen to be 1 nm x 1 nm x 1.5 nm. For
field-driven reset, an additional external field H = 400 A/m is applied.
The material parameters chosen are those of CoFeB: exchange stiffness
Aex = 1.3 x 107" J/m, saturation magnetization Mg = 0.8 x 10° A/m,
uniaxial magneto-crystalline anisotropy in 2 K, = 5 x 10° J/m?, Gilbert
damping factor « = 0.05, nonadiabaticity factor & = 0.05, and spin
polarization of P = 0.7. Simulations are done at 0 K.
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B. Neural Network and Classification Task

To quantify the utility of edgy-relaxed behavior in an ANN, a single-
layer neural network (perceptron) utilizing the edgy-relaxed DW-MTJs
as output neurons is constructed. The task selected is the classification
of handwritten digits using the Optdigits dataset, a reduced-resolution
version of the Modified National Institute of Standards and Technology
(MNIST) handwritten digits dataset [Dua 2019]. To test the hypothesis
that edgy-relaxed neurons excel in applications with datasets that have
locality, a randomization scheme is devised. A test set of 100 images is
sorted by digit into groups of 10. The completely sorted set is treated
to have a degree of randomness of 0. Randomness is introduced by
randomly selecting n images per digit group and swapping the images
with a random counterpart drawn from the entire test set. The degree
of randomness increases with n until n = 9, where the dataset is fully
shuffled.

The construction of the perceptron is tailored for the classification
of the Optdigits set. A set of 64 input neurons translate the pixel data
into proportional voltage impulses. A network of 64 x 10 synapses
is pretrained using 900 images from the Optdigits set and treated
as perfect weights. The ten output neurons are simulated using an
analytical model, where the index of the first neuron that fires is the
classification of the image. The baseline neuron classification accuracy
of 87% and completion time of the test set of 1.14 ps were determined
using ten DW-MTJ output neurons. After classification of an image,
the baseline neurons are hard reset using a 10 ns long current pulse.
The reset circuitry is assumed to send minimum reset pulses of 10 ns
duration for feasible implementation. The accuracy achieved is the
theoretical accuracy possible for the pretrained synapse array on the
input data, independent of the magnetic devices.

C. Analytical DW-MTJ Neuron Model

To evaluate the performance of edgy-relaxed DW-MTJ neurons,
an analytical model is used to simulate the output neurons of the
perceptron. A one-dimensional solution of DW motion is used as
described by Beach [2008]. Due to the observation that the DW in the
shape-anisotropy-driven soft reset case is in precession, the velocity
of the DW in Walker breakdown regime is the following:

gmsP .
zeMsut /

U=oayAHy + (D

where y is the gyromagnetic ratio, A is the width of the DW, H,y is the
effective external magnetic field, g is the Landé factor, p5 is the Bohr
magneton, e is electron charge, and j is current density applied in
the —x. The effect of the sloped shape of the DW is approximated
to have the effect of a constant external field. This assumption is
accurate when the DW-MTJ neuron has a slight exponential curve
to the DW track instead of a straight slope [Brigner 2020]. However,
from the relaxation in DW position seen in Fig. 3, this is assumed
to be a sufficient approximation for the device depicted in Fig. 2(a).
H.i due to slope is calculated by fitting (1) to DW relaxation in a
micromagnetics model for each slope. The physical dimensions of
the simulated analytical neurons are approximated to be the same as
that of the device simulated in Section II-A. For the cases of external
field-driven and current-driven soft reset cases, the DW remains in the
Néel configuration due to the straight track. As a result, the expression
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Fig.3. DW position as a function of time due to repeated impulses for
varying periods of time for soft reset methods of (a) shape anisotropy,
(b) external field, (c) current, and (d) hard current reset as reference.

for DW velocity is for a DW in the non-Walker breakdown regime
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where the external field is represented by H.y and the reset current is
reflected in a change in j. The velocity of the DW is calculated at each
timestep based on input current density and effective field. The new
position is then calculated relative to the DW position at the previous
timestep. A fixed timestep of 0.2 ps was used for the simulation. The
fully relaxed position of the DW is set to be x = 25 nm due to the
inclusion of 10 nm fixed magnetization regions at the ends of the device
and the approximate width of the DW.

Ill. RESULTS

A. Single-Device Edgy-Relaxed Behavior

Fig. 3 shows the inherent edgy-relaxed behavior of a single DW-
MTIJ neuron for shape-driven, field-driven, and current-driven reset
methods. Here, using the micromagnetic model in Section II-A, an
80 pA pulse with 1 ns duration is applied for electron flow from IN
to CLK with periods (1) of varying length in red, blue, and green
in increasing order. The DW position versus time plot shows the
periods of integration during the pulse duration, when the DW position
increases as it moves right toward the output MTJ, as well as periods
of leaking after the current pulse is removed and the DW moves back
toward the left of the FM track. After, for example, 40 ns in Fig. 3(a), the
DW stimulated every 5 ns is farthest along the track, followed by 10 ns
period and 20 ns period, respectively. Due to this, the neuron stimulated
every 5 ns has the lowest firing threshold since it remains closer to the
output MTJ, whereas the neuron stimulated every 20 ns has the highest
firing threshold. Similar behavior is observed for the field-driven and
current-driven reset methods in Fig. 3(b) and (c). This demonstrates
that by modulating a soft reset, a DW-MT]J neuron can produce inherent
behavior analogous to biological edgy-relaxed neurons. This contrasts
with the hard reset shown in Fig. 3(d), where there is no difference in
firing threshold between the three neurons.

DW dynamics at finite temperature are not significantly different,
with the only difference being temperature noise introduced to the DW
position measurement.
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Fig. 4. Classification accuracy and completion time as a function of
dataset randomness for varying (a), (b) device slopes §, (c), (d) external
magnetic fields H, and (e), (f) reset current amplitudes I. The baseline
network classification accuracy of 87% and completion time of 1.14 ps
are shown as black dashed lines [inset for (d)].

B. Shape-Anisotropy-Driven Soft Reset

The utility of the edgy-relaxed behavior in DW-MTJ neurons in
ANN:Ss is addressed in this and subsequent sections for the different
possible leaking methods. For shape-anisotropy-driven leaking DW-
MTIJs, output neurons with varying slopes of § = @ =0.1,0.3,
0.5, and 0.7 are used to classify datasets of variable randomization
using the analytical model of (1) and the crossbar array described in
Section II-B. Because a racetrack with a larger width carries a current
density penalty, we set W; = 0 nm to obtain competitive results, i.e.,
a triangular track. Because the leaking effect of shape anisotropy is
relatively weak for tracks with physically reasonable slopes, arest with
a period of 9 ns is implemented after each classification to allow soft
reset of the DW to reduce classification errors otherwise seen in higher
randomness datasets. From the result in Fig. 4(a), for all geometries,
there is enhanced classification accuracy for datasets with a relatively
low degree of randomness. This improvement over the baseline is due
to the repetition of presented images in each subgroup, a short-term
learned repetition due to the edgy-relaxed neuron. The classification
accuracy of a completely random dataset is also significantly increased
with greater leak strength, at 50.67% for § = 0.1 versus 84.00%
for § = 0.7, similar to the baseline network. However, this geometry
results in a significant time penalty.

Fig. 4(b) depicts the total classification time of the test set. For all
geometries, the greatest reduction in completion time results when

the edgy-relaxed neuron is applied to a nonrandom dataset and the
completion time generally increases with increasing randomness. Ad-
ditionally, the completion time increases with device slope due to
the increased leaking effect along with the greater penalty to current
density as the DW approaches the wider end of the device.

C. Magnetic-Field-Driven Soft Reset

External magnetic fields of H = 10, 12, 14, and 16 G are ap-
plied in —Z on output neurons with rectangular dimensions 50 nm
wide x 250 nm long x 1.5 nm thick and implemented in the ANN
from Section II-C using (2). The range of magnetic field strengths was
chosen to be achievable values for a permanent magnet in proximity to
the DW-MT]J neuron that could be engineered near the device or into
the thin film stack. A rest with a period of 2 ns is implemented after
each classification to allow a soft reset of the DW.

In Fig. 4(c), similar to the shape-based leaking, there is an en-
hancement in classification accuracy for nonrandom datasets and
there is less accuracy penalty for highly randomized datasets than
for the shape-anisotropy-driven case. It is also observed that as field
strength increases, the more classification accuracy converges to the
performance of the baseline neuron. Due to field-induced DW leak
strength, there is a significant reduction in completion time, shown in
Fig. 4(d). The completion time increases with dataset randomness and
field strength, though all results are well below the completion time of
the baseline neuron.

D. Current-Driven Soft Reset

The effect of a current-delivered soft reset without a leaking mecha-
nism is studied by applying reset currents /yesee = 5,7.5, 10, and 12.5 pA
to DW-MT]J neurons with rectangular dimensions. The self-imposed
limitation of a minimum 10 ns duration reset pulse is also applied in
this case.

Fig. 4(e) shows that like the other methods discussed, a current-
driven soft reset also enhances classification accuracy for nonrandom
datasets over that of the baseline neuron. This holds until around 30%
randomness. In general, the greater the magnitude of the reset current
pulse, the more the classification accuracy converges to the result of the
baseline neuron. For the /... = 12.5 1A case, the reset current pulse
is close enough to a hard reset that the resulting trend is converging
with the baseline neuron result and the enhancement to classification
accuracy for the datasets with locality is largely lost.

From Fig. 4(f), it can be seen that there is an improvement in
completion time for all reset current amplitudes, though there is no
result that has a greater than 10% reduction. This is likely due to
the limitation that the reset signal must have a minimum of 10 ns
pulse duration. Though variation is not very large, the completion
time generally increases with dataset randomness and reset current
amplitude.

E. Practical Application Considerations

In addition to accuracy and speed, factors like area, current
efficiency, fabrication difficult, and scalability are important for the
experimental realization of edgy-relaxed behavior in DW-MTJ
neurons. Table 1 presents a performance metric comparison between
the soft reset methods described in this letter.

In terms of area, since shape-driven reset is only dependent on the
lithographically defined free layer; the footprint is relatively small.
This can also be the case for field-driven reset since the external
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Table 1. Comparison of Shape Anisotropy, External Field, and Current
Implementations of Edgy-Relaxed Behavior for Various Performance
Metrics.

Shape Field Current
Speed Low High Medium
Accuracy Medium High High
Area Low Low* High
Current efficiency Low High High
Fabrication difficulty Low High Medium
Scalability Low Medium  High
Reconfigurability No Yes** Yes

) Area is low for external field due to magnetic layer in the
stack. **)This is only the case for external field due to circuitry.

magnetic field can be due to a layer engineered into the device stack.
However, if this magnetic field is induced due to circuitry, the area cost
is larger, similar to current-driven soft reset.

For current efficiency, shape-driven reset loses out to the other
options since DW velocity relies on current density, and a wider DW
requires a larger amount of current to propagate. Therefore, to attain
the same performance as the baseline DW-MTJ neuron, a larger current
is required for the integration. There is no significant current efficiency
cost for the other types described.

Fabrication difficulty of field-driven edgy-relaxed DW-MTJs is high
due to strong leaking effect for relatively small fields. As a result,
induced field either due to a magnetic layer in the device stack or
external circuitry must be carefully tuned, which can also lead to
scaling difficulties. Shape-driven edgy-relaxed neurons can be litho-
graphically defined, leading to a relatively easy fabrication process.
However, the sloped design is a barrier for scalability. The difficulty in
fabrication for current-driven reset comes from the required external
circuitry, but CMOS is already well-scaled, and current efficiency
increases as the DW-MTJ device becomes narrower, leading to better
scalability than the other options.

A factor that can lead to extended functionality is the reconfigura-
bility of edgy-relaxed strength. In the case of current-driven reset,
the reset current can be designed to change dynamically based on
the data received by the ANN, i.e., an algorithm can be used to
determine the prevalence of repeated data and adjust the strength of
edgy-relaxed behavior accordingly. This can also be implemented in
field-driven reset, though this only applies to magnetic field applied
through external circuitry. Since shape-driven edgy-relaxed neurons
are lithographically defined, this would not be an option.

V. CONCLUSION

Biological neurons have an adaptive edgy-relaxed transition behav-
ior when repeatedly stimulated, leading to a reduced threshold for
the action potential. This letter demonstrates ways this behavior can
be implemented intrinsically in a DW-MTJ LIF neuron by exploiting
magnetic properties of shape anisotropy and external magnetic field to
manipulate DW movement. An additional method of modulating the
reset pulse is also developed and can be widely applied to other types
of analog neuron devices. By modulating soft reset, the classification
accuracy on a dataset with repeated data can be improved significantly
due to the intrinsic short-term memory of edgy-relaxed behavior.
Additionally, there is a significant improvement in classification time
for external field implementation and a slight improvement for reset

pulse modulation. This letter establishes ways that unique magnetic
properties can be utilized to implement edgy-relaxed behavior in a
DW-MT]J neuron, supported by micromagnetics and analytical model-
ing along with the discussion on various performance metrics. These
results can lead to ANNs that can be adapted to different types of
expected datasets through modification of neuron device behavior.
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