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ABSTRACT

Inspired by the parallelism and efficiency of the brain, several candidates for artificial synapse devices have been developed for neuromorphic
computing, yet a nonlinear and asymmetric synaptic response curve precludes their use for backpropagation, the foundation of modern
supervised learning. Spintronic devices—which benefit from high endurance, low power consumption, low latency, and CMOS
compatibility—are a promising technology for memory, and domain-wall magnetic tunnel junction (DW-MT]J) devices have been shown to
implement synaptic functions such as long-term potentiation and spike-timing dependent plasticity. In this work, we propose a notched
DW-MT] synapse as a candidate for supervised learning. Using micromagnetic simulations at room temperature, we show that notched syn-
apses ensure the non-volatility of the synaptic weight and allow for highly linear, symmetric, and reproducible weight updates using either
spin transfer torque (STT) or spin-orbit torque (SOT) mechanisms of DW propagation. We use lookup tables constructed from micromag-
netics simulations to model the training of neural networks built with DW-MTJ synapses on both the MNIST and Fashion-MNIST image
classification tasks. Accounting for thermal noise and realistic process variations, the DW-MTT devices achieve classification accuracy close
to ideal floating-point updates using both STT and SOT devices at room temperature and at 400 K. Our work establishes the basis for a mag-
netic artificial synapse that can eventually lead to hardware neural networks with fully spintronic matrix operations implementing machine
learning.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0046032

In-memory computing overcomes the memory wall in von
Neumann architectures, where the data-intensive computation is fre-
quently bottlenecked by slow and expensive memory accesses.’
Foremost among these data-driven applications is the processing of
artificial neural networks, modeled after biological neurons intercon-
nected by tunable synapses. Massively parallel analog computation
within a resistive memory array, where the memory devices serve as
synapses, is a promising approach to lower the energy consumption of
training and deploying neural networks.” Nonvolatile memory devices
such as resistive random access memory (ReRAM),”* phase change
memory (PCM),”° conductive bridge RAM (CBRAM),” and electro-
chemical or polymer-based memory” " have all been demonstrated to
implement multi-level synaptic functionality and, in many cases, ade-
quate cycle-to-cycle variability. However, many of these devices exhibit

nonlinear and/or asymmetric responses to programing pulses, making
it difficult to accurately implement the ubiquitous backpropagation
algorithm for neural network training,'"'” These drawbacks, along
with high write voltages or currents,” diminish the energy benefits of
nonvolatile memory-based training accelerators and limit their
generalizability to complex machine learning problems.

Spintronic memory has attracted interest for its high write endur-
ance, low power consumption, and small size. For neuromorphic
applications, domain wall-magnetic tunnel junction (DW-MT]) devi-
ces''* have previously been shown to emulate leaky integrate and fire
(LIF) neuron functionalityls 7 as well as long-term potentiation
(LTP) and spike-timing dependent plasticity (STDP) synaptic behav-
jors."® In contrast to two-terminal MTJs, the three-terminal DW-MT]
enables isolation of the read and write paths, contributing to reduced
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wear on the MgO tunnel barrier. The DW-MT] device, shown in
Fig. 1, consists of a perpendicularly magnetized ferromagnetic (FM)
track containing a DW, separated from a fixed FM layer by a thin
MgO barrier. Current applied between the L and R terminals propa-
gates the DW through spin transfer torque (STT). With the inclusion
of a heavy metal (HM) layer underneath the FM track, DW motion
can also be induced by spin-orbit torque (SOT) at a lower current
density. The conductance of the MTJ stack, which represents the syn-
aptic weight, is determined by the DW position and can be read by a
small vertical current between OUT and either L or R that does not
displace the DW. To date, most work on DW synaptic neuromorphic
systems have focused on small-scale implementations of bio-inspired
learning rules, e.g., STDP or STDP-like rules,” ' rather than on state-
of-the-art deep neural networks that can be applied to complex, high-
dimensional machine learning tasks.”” Supervised learning systems
proposed so far with DW synapses™’ have not considered the implica-
tions of room-temperature drift, stochasticity, and process variations
on the feasibility of these systems.

In this Letter, we show using micromagnetic simulations that a
DW-MT]J device can function effectively as a synapse with a high
intrinsic linearity and symmetry. Notches are added to the track to sta-
bilize the DW position and to improve the linearity and repeatability
of synaptic updates. We build lookup-table models of device behavior,
based on micromagnetic simulations of both STT- and SOT-driven
DW motion, which capture thermally induced cycle-to-cycle variabil-
ity of DW updates as well as process-induced device-to-device vari-
ability in the MTJ conductance. Next, we use these lookup tables to
simulate the training of DW-MT]J synapses on the MNIST** and
Fashion-MNIST* image classification datasets and evaluate their
accuracy.

The magnetization dynamics of DW-MT]J artificial synapses are
modeled using MuMax3, a micromagnetics simulator that solves the
Landau-Lifshitz-Gilbert (LLG) equation.”® The free FM layer is a rectan-
gular wire that is 1050 nm long, 50 nm wide, and 1.5 nm thick for STT
(1750 nm long for SOT). The wire is bounded on both ends by 30 nm
long regions of fixed magnetization (50nm for SOT). The free layer
is assumed to be CoFeB (exchange stiffness A, = 1.3 x 107" J/m,
saturation magnetization My, = 0.8 x 10° A/m, magnetocrystalline
anisotropy zK,, = 5 x 10° ]/m3, Gilbert damping factor o = 0.05, non-
adiabaticity factor £ = 0.05, and spin polarization P=0.7), while the
HM layer for the SOT device is Ta [spin Hall angle 0y = 0.2 and

(@) ouT

<

(b) MgO
MTJ
DW

FIG. 1. (a) Side and (b) top profile of DW-MTJ artificial synapse. The dotted rectan-
gle depicts the placement of the MTJ over the FM track.
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interfacial Dzyaloshinskii-Moriya interaction (DMI) Djq = —0.5
%1073 J/m?]. The HM layer has the same thickness and resistivity as the
EM, so that half of the injected current acts on the DW by STT and the
other half by SOT. The DW position is approximated using the average
magnetization of the wire along its length.

In a perfectly smooth FM wire and in the absence of a driving
current or field, the DW tends to drift toward the center to minimize
its interaction energy with the pinned magnetization regions. This is
illustrated by the blue curve in Fig. 2(a), where the DW is initialized at
the right edge (x ~ 960 nm) and drifts by approximately 200 nm over
50 ns. By adding semi-circular notches to the edges of the track that
act as pinning sites, shown in Fig. 1(b), the DW position can be made
nonvolatile. A further benefit of the notches is shown in Fig. 2(b),
where the DW is driven by a sequence of 1 ns long 50 uA pulses sepa-
rated by 4 ns relaxation periods. Without notches, the DW updates are
nonlinear, controlled both by the applied current and its position
along the track, which determines the rate of drift. The notches ensure
linear updates independent of position and enable lithographic control
of synaptic weight values. Other methods for DW pinning include
using interlayer exchange coupling of multiple MT7Js or by introducing
defects in the shape or anisotropy of the free layer.”** However,
notches were chosen as the preferred pinning method because their
controllable positions guarantee update linearity, which cannot readily
be obtained using randomly distributed defects. In addition, notches
are less complex to lithographically define than interlayer exchange
and can be more easily scaled.

At non-zero ambient temperatures, thermal fluctuations can
cause spontaneous depinning of the DW. As a result, the notch must
provide a sufficiently deep energy well to ensure synaptic non-
volatility. The notch spacing must also be greater than the DW width
to prevent drift. This is particularly important for SOT-driven devices,
since the tilting of the DW due to DMI during and after current injec-
tion can cause uncontrolled movement between notches. Figure 2(c)
illustrates this with snapshots of the Z magnetization of a section of
the track. Here, a 0.5 ns long 27 uA pulse is applied to an SOT device
with a 30 nm notch spacing. With this spacing, the DW interacts with
both adjacent notches and experiences tilting long after the current
stimulus has ceased, eventually settling unpredictably to one of the
notches. For the SOT device, notches with a 5nm radius-spaced
50 nm apart are necessary to suppress the effect of thermal fluctua-
tions, while for the STT device, a notch spacing of 30 nm is sufficient.
These represent lower bounds on notch spacing that provide non-
volatility, predictable updates, and the availability of many states along
the track. These notch spacings are attainable using electron beam
lithography and ion mill etching; well-controlled nanomagnetic fea-
ture sizes down to 10 nm spacing have been demonstrated, and MTJs
have been fabricated with diameters below 50 nm.*”*

The synaptic functionality of DW-MT] devices is demon-
strated using both STT- and SOT-driven devices with 32 equally
spaced notches (32 weight levels). Synaptic updates are character-
ized using a sequence of positive current pulses followed by nega-
tive pulses, which ramp the DW position along the track. To shift
the DW-MT] by one weight level, the pulse duration is fixed to 1 ns
for STT devices (0.5 ns for SOT), and the amplitude is set to 50 uA
for STT (27 pA for SOT). The ramp is repeated 30 times to quantify
the cycle-to-cycle variability in the update amount, which can be
induced by thermal noise.
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(a) (b) Figure 2(d) shows the ramp of DW position at 0K for the STT

960 R device. In the inset, the notch positions depicted by the horizontal lines

£ 920 £ 400 show the lithographically defined levels to which the DW can settle.

S 880 S 300 The linear slope of the ramp in both directions indicates that synaptic

8 s40 8 200 weight changes are both highly linear (minimal state-dependence) and

= — notched = highly symmetric (same response in both directions). This suggests

o 80 e thilt1 }],)V\}’,I-R/IT] synapses canp implement backpropagation withgghigh
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Time (ns) Time (ns) The size of a weight update Ax can be linearly modulated using
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where g is the Landé factor, up is the Bohr magneton, P is the spin

Ti L7 . . .
‘ (e) me (ns) polarization, and e is the electron charge. To validate this property,
; 100 /. positive and negative pulses of varying duration were applied to the
T s e DW at each of the 32 notches, and the average Ax for each duration is
t=5.00 ns “ < o - computed. The result, shown in Fig. 2(e), confirms that Ax varies line-
s pat // arly with pulse duration and that this response is symmetric for the
< 50 A two update polarities.
./. e .
to547ns ‘:' 100 The DW position x is converted to a synapse conductance by
P 2 0 2 4

Pulse polarity x duration (ns)

FIG. 2. (a) DW drift in smooth and notched DW-MTJ devices with no applied cur-
rent. (b) DW response to a current pulse train, for smooth and notched DW-MTJ
devices. (c) DW tilting in an SOT-driven DW-MTJ device. (d) Ramping of the DW
position through 32 discrete levels using periodic positive and negative current
pulses. The horizontal lines in the inset denote notch locations. (e) The change in
the DW position Ax, averaged over 32 notch positions, is a linear function of pulse
duration for both pulse polarities.

treating the MTJ as two resistors in parallel: one over the region where
the free and fixed FM layers have parallel magnetizations and one over
the region where they are anti-parallel. The DW positions collected
from 30 ramps are used to construct a probabilistic lookup table of the
change in conductance AG for each initial conductance G. Figure 3(a)
shows the lookup tables for STT and SOT devices at 0 K and 300 K (at
0K, SOT behaves similarly to STT). Temperature introduces stochas-
ticity to the updates, and this is significantly more pronounced in the
SOT devices where, due to DMI, the DW prefers a Néel geometry.
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FIG. 3. (a) Conductance G vs AG statistics of the DW-MTJ at 0K and 300K for STT and SOT propagation. Each heatmap is constructed from 930 data points from micromag-
netic simulations, and the color represents the cumulative distribution function (CDF) of AG at each conductance, where the CDF is the probability that a given conductance
update is less than or equal to the plotted value of AG. In training simulations, the CDF is randomly sampled for each syna;z)se to obtain the value of an update. (b)

Comparison of update linearity and symmetry with experimental data from two other synaptic devices: ECRAM'® and TaO, ReRAM.

’ The ECRAM data are freely available on

Materials Commons, and the TaO, ramp data were taken from a larger database of TaO, device ramp data, whose neuromorphic implications are summarized in Bennett
et al’’ The axes are normalized to allow a visual comparison. The shaded regions indicate the amount of cycle-to-cycle variability (two standard deviations) at each position
within a ramp, taken over the indicated number of ramps.
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Thermal fluctuations in the DW magnetization, together with its inter-
action with the notches, can randomly cause the DW to either not be
displaced or to propagate multiple levels in order to maintain a Néel
configuration. Nonetheless, when averaged over the noise, all of the
lookup tables show highly linear updates, indicated by an expected
value of AG that is nearly independent of G.

Figure 3(b) compares the simulated ramp response of DW devi-
ces at 300 K with experimentally measured ramp data from two previ-
ously published devices: electrochemical RAM (ECRAM),"” which is
highly linear and reproducible, and TaO, ReRAM,”” which is highly
nonlinear and asymmetric. Table I compares the linearity, symmetry,
and stochasticity of several published devices, where the parameters
are extracted as described in Ref. 12. The DW synapse exhibits greater
write noise than ECRAM, but using STT motion, the device has excel-
lent linearity and symmetry in comparison to the best demonstrated
synaptic devices.

We sample the generated lookup tables to simulate the training
of DW-MTJ synapse arrays using CrossSim.”” To model device-to-
device variation within the array induced by process variations, each
device is assigned a different perturbed lookup table. The perturba-
tions are added as random variations in the MTJ parallel resistance R,
(12.8%) and the tunnel magnetoresistance ratio TMR (6.9%). We
assume normally distributed variations with magnitudes obtained
from Ref. 34 at a 45 nm critical dimension, which is slightly less than
the track width. For computational tractability, we generate 20 per-
turbed lookup tables for each combination of technology (STT/SOT)
and temperature and assign them randomly to devices in the array.”’

As shown in Fig. 4(a), the matrix-vector multiplication can be
executed on the DW-MT] array during forward propagation by read-
ing the MTJ resistance (OUT terminal). Weight updates are per-
formed using the L and R terminals of the track, as shown in Fig. 4(b).
Using backpropagation with stochastic gradient descent (SGD), each
update to the weight matrix is an outer product of two vectors. A par-
allel outer product update can be efficiently executed in a DW-MT]
array by simultaneously driving the L terminals (rows) and the R ter-
minals (columns) with time-coded and voltage-coded pulses, respec-
tively, to obtain a multiplicative effect.””

The DW-MT]J synapse is evaluated on two image classification
tasks—MNIST handwritten digits [see Fig. 5(a)] and the more difficult
Fashion-MNIST clothing items [see Fig. 5(b)]—using the same two-
layer multilayer perceptron topology with 300 hidden neurons. Each

TABLE I. Comparison of simulated update properties of DW devices at 300K with
several published synaptic devices. The nonlinearity parameter is defined as in Ref.
12. For an ideal symmetric response, both the sign and magnitude of the nonlinearity
are equal.

Nonlinearity Cycle-to-cycle
Synapse device (4/— updates) variation
Domain wall STT —+0.07/-0.15 0.77%
Domain wall SOT +0.80/—0.81 3.23%
ECRAM " +0.70/-0.12 0.023%
TaO,/HfO, ReRAM +0.04/—0.63 3.70%
(analysis by Ref. 12)
TaO, ReRAM”’ +668/—51.7 11.2%
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FIG. 4. Crossbar array of DW-MTJ synapses used in (a) matrix-vector multiplica-
tion mode and (b) outer product update mode. In (a), summed currents are inte-
grated on a capacitor and digitized by an analog-to-digital converter (ADC), as in
Ref. 36.

network consists of a 785 x 300 and a 301 x 10 weight matrix (includ-
ing bias). A sigmoid and a softmax activation, after the first and second
layers, respectively, are computed digitally at floating-point precision.
Signed weights are implemented using the difference in conductance
of two DW-MT] devices: W;; = G:r] — G;;- The complementary
weight components are placed in two separate arrays, and updates are
always applied to both halves of a synapse to prevent conductance sat-
uration."' SGD is used with a fixed learning rate schedule for all simu-
lations: the learning rate begins as o and is reduced to /2, a/3, 0./4,
and o/5 after the third, fifth, eighth, and tenth training epochs,
respectively.

Figures 5(a) and 5(b) show the training performance of STT
DW-MT]J synapse arrays at 300 K compared to training with ideal
numeric updates. We have used the MNIST and Fashion-MNIST test
sets for validation. For each series, three networks are trained with ran-
dom initial seeds; the data points show the average, while the colored
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FIG. 5. Validation accuracy of a two-layer multilayer perceptron (MLP) (785 x 300,
301 x 10) of STT DW-MTJ synapses at 300K for (a) MNIST and (b) Fashion-
MNIST over 20 training epochs. PC indicates periodic carry. o is the initial learning
rate. (c) Fashion-MNIST accuracy for different update mechanisms (SOT/STT) and
temperatures assuming continuous weight levels, and (d) assuming 32 notches
with periodic carry. (€) Fashion-MNIST accuracy (best of 20 epochs) vs the number
of synaptic levels in STT and SOT DW-MTJ devices at 300 K without periodic carry.

areas signify standard deviation. If the DW-MT] is idealized to have
continuous levels without drift, the performance is very close to ideal
even with cycle-to-cycle and device-to-device variations introduced by
temperature and MTJ variations, respectively. The resilience to MT]
process variation arises from the high linearity of the devices: even if
the same conductance maps to different DW positions in different
devices, the update strength will be the same since it is largely indepen-
dent of the starting state.

The geometry with 32 notches (green) has a discretizing effect on
DW position: the updated conductance is rounded to the closest dis-
crete level. For this case, the learning rate o is increased to prevent a
large number of small updates from being reduced to zero; however,
this results in inferior convergence relative to the continuous case. In
both classification tasks, the notched synapses suffer a significant per-
formance loss even with an optimized learning rate, with a greater loss
(>20%) for the Fashion-MNIST task. The accuracy can be partially
recovered using periodic carry, which splits the high and low signifi-
cance bits of each weight into two devices with 32 notches each,”
increasing the effective weight resolution of each nanosynapse. With
increasing dataset and neural network complexity, more weight levels

ARTICLE scitation.org/journal/apl

(notches) are needed to obtain ideal numeric accuracy. Indeed, back-
propagation using SGD typically has a clear lower bound on allowable
bit resolution.”*””

Figures 5(c) and 5(d) compare the training performance on
Fashion-MNIST of STT and SOT devices and different temperatures,
assuming ideal continuous and notched synapses with periodic carry,
respectively. In the continuous case, the superior accuracy of STT devi-
ces in Fig. 5(c) results from their smaller cycle-to-cycle variability in
AG. For both device types, the accuracy is roughly the same for 300 K
and 400 K, which reflects the similarity in their lookup tables. On the
other hand, for the notched devices in Fig. 5(d), a higher accuracy is
attained with SOT than with STT. This arises from the fact that when
the desired synapse update AG is small, the more stochastic SOT
device is more likely to yield a non-zero conductance update than the
STT device, where many of the updates will be too small to move the
DW.

To reduce the accuracy loss caused by discretization, an alterna-
tive to periodic carry is to use a longer FM wire with more notches to
increase the available number of weight levels. Figure 5(e) shows the
effect of the number of notches on Fashion-MNIST accuracy using
STT and SOT devices at 300 K. Surprisingly, the SOT device attains a
much higher accuracy than the STT device when the number of
notches is small; with just 32 notches, an accuracy of 72% is achieved
on Fashion-MNIST compared to 10% using STT at the same learning
rate. We attribute this to the greater stochasticity of the SOT mecha-
nism, which allows small device updates that would otherwise fail to
move the DW to the next notch to occasionally produce a change in
conductance. As with the stochastic rounding technique used in soft-
ware,”® when this effect is averaged over thousands of updates, an
effectively higher resolution is achieved for the weight updates than
the actual number of notches present. Noisy updates have also been
shown to reduce overfitting.”® This benefit can be approximated using
STT with a higher learning rate (dashed curve), but with a lower accu-
racy at both a small and large number of notches relative to SOT.

Material parameters may also influence the neuromorphic per-
formance and efficiency of the DW-MTJ synapse. Assuming a free
layer with perpendicular anisotropy, both the DW velocity and the
DW width depend on the track’s magnetic properties. Based on
Eq. (1), an increase in P or a decrease in M, would increase the DW
velocity for a given applied current, allowing the same weight update
to be performed with a lower energy. For small notch spacings close to
half the DW width, an increase in DW width can increase the stochas-
ticity of a weight update. The expression for DW width 6 = n/A/K
indicates that choosing a material with increased exchange stiffness A
or reduced perpendicular anisotropy K can lead to more stochastic
updates with the same device geometry. Additionally, in choosing the
material for the HM layer, the torque contribution from the spin Hall
effect described in Ref. 39 can be used to deduce the relevant material
parameters,

oo 0] 2)

Choosing a material with larger spin Hall angle 0y leads to an
increased DW velocity, increasing the energy efficiency of a weight
update. The HM layer also mediates the magnitude of DMI, which is a
large contributor to the stochasticity found in SOT devices. By choos-
ing a material that induces stronger or weaker DMI, the stochasticity
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of a weight update can be augmented or reduced. In addition to
increasing the effective weight update resolution, tunable stochasticity
can also enable efficient implementations of probabilistic learning
algorithms.

In summary, our micromagnetics-based modeling of DW-MTJ
nanosynapses with a notched geometry demonstrates their suitability
for on-chip learning using backpropagation. Well-engineered notches
eliminate DW drift in both STT and SOT DW-MTTs, bestowing syn-
aptic non-volatility. Device lookup tables constructed from micromag-
netics simulations of 32-level devices display highly linear and
symmetric synaptic response, leading to classification accuracies
approaching ideal numeric performance on the MNIST task. When
taking into account the pinning of DWs to discrete notches, there is
an accuracy penalty for more complex tasks such as Fashion-MNIST.
This penalty could be alleviated by increasing the weight resolution
(adding more notches), using multiple devices to represent the synapse
bits (periodic carry), or by exploiting the stochasticity that is inherent
to the physics of SOT devices. Since our results imply that discretiza-
tion due to notches is the major roadblock to software-equivalent neu-
ral network performance, the effect of stochastic rounding will be
investigated in future work to mitigate this drawback while retaining
the increased linearity of a notched geometry. Overall, our physics-
rich neural network simulations may be a foundational step in the
realization of analog spintronic neuromorphic computation.
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