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Abstract 

Sensitivity analysis is a popular feature selection approach employed to identify the important 
features in a dataset. In sensitivity analysis, each input feature is perturbed one-at-a-time and the 
response of the machine learning model is examined to determine the feature's rank. Note that the 
existing perturbation techniques may lead to inaccurate feature ranking due to their sensitivity to 
perturbation parameters. This study proposes a novel approach that involves the perturbation of 
input features using a complex-step. The implementation of complex-step perturbation in the 
framework of deep neural networks as a feature selection method is provided in this paper, and its 
efficacy in determining important features for real-world datasets is demonstrated. Furthermore, 
the filter-based feature selection methods are employed, and the results obtained from the proposed 
method are compared. While the results obtained for the classification task indicated that the 
proposed method outperformed other feature ranking methods, in the case of the regression task, 
it was found to perform more or less similar to that of other feature ranking methods.    
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1. Introduction 1 

Feature selection is a process of identifying a subset of features that dictate the prediction accuracy 2 
of the target variables/ class labels in a given machine learning task [1–3]. Identification of relevant 3 
features improves the machine learning (ML) models' generalized performance and facilitates a 4 
better understanding of the data in relation to the ML model [4]. For performing the task of feature 5 
selection, various methods have been proposed by researchers in the past. These methods could be 6 
broadly grouped into six categories, namely, filter methods, wrapper methods, embedded methods, 7 
hybrid methods, ensemble methods, and integrative methods [5–7]. While filter methods select 8 
features based on a performance metric regardless of the supervised learning algorithm [8–12], the 9 
wrapper methods choose feature subset by iteratively examining a certain or an ensemble of the 10 
ML algorithm's performance for selected features [13]. Examples of filter methods include Pearson 11 
correlation coefficient, information gain, gain ratio, Chi-square, Fisher score, ReliefF, etc., and 12 
examples of wrapper method include sequential feature selection, genetic algorithms, etc. On the 13 
other hand, in embedded methods, the feature selection algorithm is integrated into the learning 14 
algorithm [5,9,13]. Examples of the embedded method include decision tree, random forest, 15 
support vector machine recursive feature elimination (SVM-RFE). When compared to filter-based 16 
approaches, the embedded approach yields higher accuracy because of its interaction with a 17 
specific classification model. A comprehensive review of these three methods' description and 18 
comparison is discussed by various researchers in the literature [4,5,14–19].  19 

In hybrid methods, multiple conjunct primary feature selection methods are applied consecutively 20 
[6]. For instance, Liu et al. [20] proposed a hybrid feature selection method in which mutual 21 
information was first applied to identify the relevant features from the feature set, and then the 22 
wrapper method was applied subsequently to choose the subset of best features from the relevant 23 
features. Ensemble feature selection methods use an aggregate of feature subsets of diverse base 24 
classifiers [6]. For instance, Hoque et al. [21] proposed an Ensemble Feature Selection – Feature 25 
Selection (EMI-FS) in which information gain, gain ratio, ReliefF, symmetric uncertainty, and 26 
Chi-square were employed as base filter methods to obtain the relevant subset of features which 27 
were subsequently combined to extract the optimal subset. In the integrative feature selection 28 
method, the external knowledge of feature selection is integrated [6]. For example, Cindy et al. 29 
[7], proposed an integrative gene selection approach in which gene rankings are determined by 30 
considering both the statistical significance of a gene in the dataset and the biological background 31 
information acquired through research. In this paper, we restrict our scope to the embedded feature 32 
selection methods that incorporate feed-forward neural networks/multi-layer perceptron as the 33 
learning models.  34 

Multi-layer Perceptron (MLP) is a basic type of neural network that learns a function 𝑔𝑔:ℝ𝑞𝑞 → ℝ𝑚𝑚 35 
by training on a dataset, where 𝑞𝑞 is the number of inputs and 𝑚𝑚 is the number of outputs. MLP’s 36 
were employed for performing feature selection by various researchers in the past. For instance, 37 
Setiono and Liu [22] developed a neural network feature selector method based on backward 38 
elimination wherein weights of low magnitude in the network were converged to zero by adding a 39 
penalty term to the error function. Sindhwani et al. [23] presented a maximum output information 40 
algorithm for feature selection. Liefeng Bo [24] proposed MLP Embedded Feature Selection 41 
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(MLP-EFS), in which each feature is multiplied by the corresponding scaling factor. By applying 42 
truncated Laplace prior to the scaling factors, feature selection is integrated into MLP-EFS.  43 

Notwithstanding to methods mentioned above, sensitivity analysis of MLP and support vector 44 
machines (SVM) was also carried out to perform feature selection. For instance, Ruck et al. [25] 45 
developed a technique that analyzes the weights in MLP to determine essential features. Gasca et 46 
al. [26] proposed a saliency measure that estimates the input features' relative contribution to the 47 
output neurons. Utans et al. [20] proposed a ‘sensitivity-based-pruning (SBP)’ to remove irrelevant 48 
input features from a nonlinear regression model. Acir et. al. [29] implemented the perturbation 49 
method in the framework of SVM to perform feature selection for classification of 50 
Electrocardiogram (ECG) beats. Sensitivity analysis examines the change in the target output when 51 
one of the input features is perturbed, i.e., first-order derivatives of the target variable with respect 52 
to the input feature are evaluated. Herein we refer the first-order derivative term as the feature 53 
sensitivity metric. The higher the magnitude of change in feature sensitivity metric, the higher is 54 
the importance of input feature. At this juncture, it is important to note that sensitivity analysis 55 
methods involve computation of the feature sensitivity metric or first-order derivative for 56 
identifying important features. In general backpropagation algorithm (for MLP), is employed or 57 
finite difference schemes [30–33] is used for computing feature sensitivity metric. Employing 58 
numerical differentiation techniques such as finite difference approximation (FDA) (see Eq. 1) and 59 
central finite difference approximation (CFDA) (see Eq. 2) results in inaccurate computation of 60 
derivatives [34,35] because of inappropriate choice of step size. For instance, Juana et.al. [36] 61 
introduced the iterative perturbation method for auto-tuning the step size for SVM. Such errors 62 
arising due to the choice of smaller step sizes are referred to as subtractive cancellation errors. 63 

Finite difference approximation (FDA) 64 

 𝑔𝑔′�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘, … 𝑥𝑥𝑞𝑞� ≈
�𝑓𝑓�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘 + ℎ, …𝑥𝑥𝑞𝑞� − 𝑓𝑓�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘, … 𝑥𝑥𝑞𝑞��

ℎ
 (1) 

Central finite difference (CFDA) 65 

 𝑔𝑔′�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘, … 𝑥𝑥𝑞𝑞� ≈
�𝑓𝑓�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘 + ℎ, … 𝑥𝑥𝑞𝑞� − 𝑓𝑓�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘 − ℎ, …𝑥𝑥𝑞𝑞��

2ℎ
 (2) 

where 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑘𝑘 , … 𝑥𝑥𝑞𝑞)′ ∈ ℝ𝑞𝑞×1 are the inputs, 𝑞𝑞 is the number of inputs, 𝑔𝑔(. ) is the 66 
function mapping the inputs to the output variable and, 𝑔𝑔′(. ) is the first partial derivative 67 
approximation of 𝑓𝑓(. ) with respect to the input 𝑥𝑥𝑘𝑘. The feature 𝑥𝑥𝑘𝑘 is perturbed in both the cases 68 
to get the first derivative as seen in Eq. (1) and (2).  69 

In this paper, a novel Complex-step sensitivity analysis-based feature selection method referred to 70 
as CS-FS is proposed, which incorporates a complex-step perturbation of the input feature to 71 
compute the feature sensitivity metric and identify the important features. It evaluates the 72 
analytical quality first-order derivatives without the need for extra computations in neural 73 
networks or SVM ML models. A brief overview of the complex step perturbation approach is 74 
provided in Section 2, and its implementation in the framework of FFNN to perform feature 75 
selection is described in Section 3. The details of the dataset are provided in Section 4 and the 76 
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efficacy of the proposed method is then demonstrated on real-world datasets in Section 5, and the 77 
summary and future work are provided in Section 6.  78 

2. Overview of Complex-Step Perturbation Approach (CSPA) 79 

CSPA, originally referred to as complex-step derivative approximation (CSDA), was proposed by 80 
Lyness and Moler [37] to evaluate the first-order derivative of analytic functions. A simplified 81 
version of mathematical derivation for computing the first-order derivative of a scalar function 82 
using complex-step perturbation was then provided by Squire and Trapp [38] which is as follows.  83 

Consider a holomorphic function 𝑓𝑓(. ) which is infinitely differentiable. The Taylor series 84 
expansion of the function 𝑓𝑓(. )  evaluated at the complex perturbed point 𝑥𝑥0 + 𝑖𝑖ℎ is expressed as  85 

 𝑓𝑓(𝑥𝑥0 + 𝑖𝑖ℎ) = 𝑓𝑓(𝑥𝑥0) + 𝑖𝑖ℎ𝑓𝑓′(𝑥𝑥0) −
ℎ2

2!
𝑓𝑓′′(𝑥𝑥0) −

𝑖𝑖ℎ3

3!
𝑓𝑓′′′(𝑥𝑥0) + ⋯ (3) 

where, ℎ is the step size and 𝑖𝑖2 = −1.  86 

By taking the imaginary component of 𝑓𝑓(𝑥𝑥0 + 𝑖𝑖ℎ), and truncating the higher-order terms in the 87 
Taylor series, the first-order derivative can be expressed as 88 

 𝑓𝑓′(𝑥𝑥0) =
Imag�𝑓𝑓(𝑥𝑥0 + 𝑖𝑖ℎ)�

ℎ
+ 𝒪𝒪(ℎ2) (4) 

where, Imag (*) denotes the imaginary component and  𝒪𝒪(ℎ2) is the second-order truncation error. 89 
It is evident from Eq. 4 that the first-order derivative evaluated using the CSPA technique is not 90 
prone to subtractive cancellation errors (see Eq.1 and Eq.2) due to the absence of subtractive 91 
operations. Furthermore, a choice of the small magnitude of ℎ could possibly eliminate the 92 
truncation error 𝒪𝒪(ℎ2) too.  A simple example illustrating the accuracy of CSPA over finite 93 
difference schemes can be found elsewhere [39,40].  Some examples of the fields where CSPA is 94 
currently gaining a lot of attention for performing sensitivity analysis includes aerospace [41–44], 95 
computational mechanics [39,40,45], estimation theory (e.g., second-order Kalman filter) [46]. 96 

3. Complex-step Feature Selection Method 97 

In the proposed method, we implement a complex-step perturbation in the framework of feed-98 
forward neural networks to illustrate the task of feature selection. Note that this could be extended 99 
to other ML models such as SVM whose decision function is holomorphic. Higher the change in 100 
the magnitude of the output variable 𝑦𝑦 ∈ ℝ of the FFNN with respect to the input feature 𝑥𝑥𝑘𝑘 ∈ ℝ, 101 
higher is the importance of the feature 𝑥𝑥𝑘𝑘. For a multivariate function, the extended form of CSPA 102 
can be expressed as 103 

 𝑔𝑔′�𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑘𝑘 , … 𝑥𝑥𝑞𝑞� =
Imag �𝑔𝑔�𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑘𝑘 + 𝑖𝑖ℎ, … 𝑥𝑥𝑞𝑞��

ℎ
+ 𝒪𝒪(ℎ2) (5) 

where 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑘𝑘 , … 𝑥𝑥𝑞𝑞)′ ∈ ℝ𝑞𝑞×1 is a vector of input features, 𝑞𝑞 is the number of input 104 
features, 𝑔𝑔(. ) is the function mapping the input features to the output target variable and, 𝑔𝑔′(. ) is 105 
the first-order derivative approximation of 𝑔𝑔(. ) with respect to the 𝑘𝑘𝑡𝑡ℎ input feature 𝑥𝑥𝑘𝑘. 106 
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3.1. Feature Selection for Regression Using Complex-step Sensitivity 107 

The proposed feature selection method for the regression task involves four steps (see Figure 1). 108 
In the first step, an FFNN is configured and trained for a given dataset. Configuring the FFNN is 109 
a trial-and-error process that involves finding the appropriate number of neurons and hidden layers 110 
in a network.  A neural network is said to be configured when it is capable of learning a 111 
mathematical mapping between the input features and the associated target variable such that it 112 
could be generalized to the unseen data instances. In the second step, one of the input features, 𝑥𝑥𝑘𝑘 113 
is chosen at a time and is perturbed with an imaginary step size of 𝑖𝑖ℎ (where ℎ ≪ 10−8). 114 
Feedforward operation is then performed with the perturbed feature on the trained FFNN, and the 115 
results in the output layer are obtained. In the third step, the imaginary components of the output 116 
neurons' results are extracted for each perturbed feature and are divided with the step size (ℎ) (see 117 
Eq. 5), i.e., the first-order derivative of the target output with respect to the input feature is 118 
evaluated. Note that step 2 and step 3 are repeated for all instances in the dataset, and the average 119 
absolute magnitude of the first-order derivative of the target output with respect to the input feature 120 
is evaluated. For example, if 𝑦𝑦 is the target output variable and 𝑥𝑥𝑗𝑗𝑗𝑗 is the 𝑘𝑘𝑡𝑡ℎ feature in the 𝑗𝑗𝑡𝑡ℎ 121 
observation that is complex-step perturbed (𝑖𝑖ℎ), then the first order derivative of the target output 122 
with respect to the input feature averaged over all instances of datasets is expressed as (see Eq. 6) 123 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

=
1
𝑁𝑁
��

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗

�
𝑁𝑁

𝑗𝑗=1

 (6) 

where, 𝑁𝑁 denotes the number of instances in the dataset, 𝑘𝑘 = 1 … 𝑞𝑞  indicates the input feature, 124 
and 𝑗𝑗 represents the observation number in the dataset. In the fourth and final step, the rank of each 125 
input feature is determined based on the magnitude of the first-order derivatives evaluated, as 126 
shown in Eq. 5. The feature with a higher magnitude of the first-order derivative is assigned a 127 
higher rank and vice versa. Note that for training the feedforward neural network, a 128 
backpropagation algorithm, in conjunction with the Levenberg-Marquardt optimization technique, 129 
is employed in this study [47]. 130 

3.2. Feature Selection for Classification Using Complex-Step Sensitivity 131 

Unlike regression, a modification to step 3 is needed in the proposed method when feature selection 132 
is performed on the classification task, i.e., evaluating the first-order derivative of target output 133 
with respect to perturbed input feature. The need for modification could be attributed to two 134 
reasons: (1) discrete output in the output layer and (2) multiple first-order derivatives yielded by 135 
the feed-forward neural network output layer (SoftMax layer) (see Figure 2).  Considering the fact 136 
that the inputs fed to the SoftMax activation neurons in the output layer are not discrete, the first-137 
order derivatives of such inputs could still be evaluated. These first-order derivatives will aid in 138 
providing information about the importance of the input features. If Σr represents the net function 139 
of 𝑟𝑟𝑡𝑡ℎ neuron in the SoftMax layer, then the first-order derivative of the net function Σr with 140 
respect to the 𝑘𝑘𝑡𝑡ℎ feature 𝑥𝑥𝑘𝑘 is expressed as (see Eq. 7) 141 

 �
𝜕𝜕Σr
𝜕𝜕𝑥𝑥𝑘𝑘

� =
1
ℎ

Imag�Σ𝑟𝑟(𝑥𝑥𝑘𝑘 + 𝑖𝑖ℎ)� (7) 
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where, 𝑟𝑟 = 1 … . .𝑚𝑚 and 𝑚𝑚 indicates the number of class labels. To quantify the change in the 142 
target output with respect to the 𝑘𝑘𝑡𝑡ℎ input feature 𝑥𝑥𝑘𝑘, the average of the first-order derivatives 143 
obtained for all neurons in the output layer is determined. This average magnitude is referred to as 144 
saliency (𝑆𝑆𝑘𝑘) of 𝑘𝑘𝑡𝑡ℎ input feature [25] and is expressed as (see Eq. 8) 145 

  𝑆𝑆𝑘𝑘 =
1
𝑁𝑁
�����

𝜕𝜕Σr
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗

��
𝑚𝑚

𝑟𝑟=1

�
𝑁𝑁

𝑗𝑗=1

 (8) 

where 𝑟𝑟 denotes the neuron in the SoftMax output layer, 𝑚𝑚 represents the number of class labels, 146 
Σr represents the net function of 𝑟𝑟𝑡𝑡ℎ neuron in the SoftMax layer. The rank of each input feature 147 
is then determined based on the magnitude of the first-order derivatives for each perturbed feature 148 
𝑥𝑥𝑘𝑘 determined as shown in Eq. 8. 149 

4. Numerical Experiments  150 

In this section, numerical experiments are performed to demonstrate the effectiveness of the 151 
proposed method.  152 

4.1. Datasets 153 

Three real-world datasets, each for regression and classification problems, are employed to 154 
demonstrate the proposed method's efficacy. The datasets are obtained from the UCI open-source 155 
data repository [48]. For regression problems, the body fat percentage dataset, abalone dataset, and 156 
wine quality dataset are chosen, and, for the classification task, a vehicle dataset, segmentation 157 
dataset, and breast cancer dataset are chosen. One of the main reasons for choosing these datasets 158 
is that they are commonly adopted in the literature of feature selection. On the other hand, the 159 
results obtained from some of the chosen datasets such as body fat percentage, wine quality, 160 
segmentation are easily interpretable and aids in ensuring the verification of the proposed method. 161 
While most of the chosen datasets have descriptive features that are continuous in nature, the 162 
proposed method can be extended to the datasets consisting of discrete input features. The 163 
descriptive features and target variables for each dataset are mentioned as follows. 164 

Regression 165 

Body fat percentage dataset [49]: Features – (1) Age (years), (2) Weight (kg), (3) Height (cm), (4) 166 
Neck (cm), (5) Chest (cm), (6) Abdomen (cm), (7) Hip (cm), (8) Thigh (cm), (9) Knee (cm), (10) 167 
Ankle (cm), (11) Biceps (cm), (12) Forearm (cm), (13) Wrist (cm); Target variable – percentage 168 
of body fat. 169 

Abalone dataset [50]: Features – (1) Female, (2) Infant, (3) Male, (4) Length (gms.), (5) Diameter 170 
(gms.), (6) Height (gms.), (7) Whole weight (gms.), (8) Shucked weight (gms.), (9) Viscera weight 171 
(gms.), (10) Shell weight (gms.); Target variable – Number of rings. 172 

Wine quality dataset [51]: Features – (1) fixed acidity, (2) volatile acidity, (3) citric acid, (4) 173 
residual sugar, (5) chlorides, (6) free sulfur dioxide, (7) total sulfur dioxide, (8) density, (9) pH, 174 
(10) sulfates, (11) alcohol; Target variable – quality score (1 to 10). 175 

Classification 176 
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Vehicle dataset [52]: Features – (1) Compactness, (2) circularity, (3) radius circularity, (4) radius 177 
ratio, (5) axis aspect ratio, (6) maximum length aspect ratio, (7) scatter ratio, (8) elongatedness, 178 
(9) axis rectangularity, (10) maximum length rectangularity, (11) scaled variance major, (12) 179 
scaled variance minor, (13) scaled radius of gyration, (14) skewness major, (15) skewness minor, 180 
(16) kurtosis major, (17) kurtosis minor, (18) hollow ratio; Target variable – Class label 1 (van), 181 
Class label 2 (Saab), Class label 3 (bus), Class label 4 (Opel). 182 

Segmentation dataset [48]: Features – (1) region-centroid-col (2) region-centroid-row (3) short-183 
line-density (4) the results of a line extraction algorithm that counts how many lines of length  (5) 184 
vedge-mean (6) vedge-sd (7) hedge-mean (8) hedge-sd (9) intensity-mean (10) rawred-mean (11) 185 
rawblue-mean (12) rawgreen-mean (13) exred-mean (14) exblue-mean (15) exgreen-mean (16) 186 
value-mean (17) saturatoin-mean (18) hue-mean; Target variable – Class label 1 (Window), Class 187 
label 2 (foilage), Class label 3 (brickface), Class label 4 (path), Class label 5 (cement), Class label 188 
6 (grass), Class label 7 (sky). 189 

Breast cancer dataset [53]: Features – (1) radius1, (2) texture1, (3) perimeter1, (4) area1, (5) 190 
smoothness1, (6) compactness1, (7) concavity1, (8) concave points1, (9) symmetry1, (10) fractal 191 
dimension1, (11) radius2, (12) texture2, (13) perimeter2, (14) area2, (15) smoothness2, (16) 192 
compactness2, (17) concavity2, (18) concave points2, (19) symmetry2, (20) fractal dimension2, 193 
(21) radius3, (22) texture3, (23) perimeter3, (24) area3, (25) smoothness3, (26) compactness3, (27) 194 
concavity3, (28) concave points3, (29) symmetry3, (30) fractal dimension3; Target variable – 195 
Class label 1 (Benign), Class label 2 (Malignant). 196 

Other details about regression and classification datasets are provided in Table 1 and Table 2, 197 
respectively. 198 

4.2. Configuring feed-forward neural networks 199 

Feed-forward neural networks (FFNN) with three hidden layers (HL) are configured to train on 200 
the regression and classification datasets. While a configuration of 1st HL – 20 neurons, 2nd HL – 201 
10 neurons, and 3rd HL – 5 neurons is employed to train on regression datasets, a configuration of 202 
1st HL – 60 neurons, 2nd HL – 40 neurons, and 3rd HL – 20 neurons is employed to train on 203 
classification datasets. A Rectified Linear Unit (ReLU) nonlinear function is used as an activation 204 
function for all the configurations [54]. Note that different architectures and model parameters 205 
yield different results if a suitable configuration is not adopted. In this study, various trail 206 
configurations of increased complexity (i.e., more hidden neurons and hidden layers) were 207 
examined before choosing a suitable configuration. Herein, the suitable configuration refers to the 208 
model architecture for which further improvement in performance was not observed with an 209 
increase in complexity of architecture. For training, validating, and testing the chosen 210 
configurations, the datasets are randomly partitioned into 70:15:15 ratio, respectively. Note that in 211 
the case of the classification task, the partition ratio is maintained consistently for each class label, 212 
i.e., 70:15:15 of training, validation, and testing data from each class label is chosen. To ensure 213 
that the chosen configurations yield repeatable results, the training operation is performed 100 214 
times with the same partition ratio but with the replacement of instances randomly selected in 215 
every iteration. The performance metric, namely mean squared error (MSE) and accuracy, are 216 
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evaluated for regression and classification datasets, respectively, for chosen configurations. The 217 
average MSE error for body fat percentage, abalone, and wine quality datasets is determined to be 218 
20.41, 4.6, and 0.53, respectively. The average accuracy for the vehicle, segmentation, and breast 219 
cancer dataset is determined to be 75%, 80% and, 90%, respectively. The addition of more hidden 220 
layers or neurons in each hidden layer to the chosen configuration was found to yield similar MSE 221 
errors or accuracies and hence are not considered in this study. 222 

5. Results 223 

Followed by the determination of FFNN configuration, the rank of the features in each dataset is 224 
evaluated using the proposed method. Furthermore, other feature ranking methods are also 225 
considered in this study for the sake of comparison. An open-source software WEKA is employed 226 
for this purpose. While feature ranking methods such as Pearson correlation coefficient, ReliefF 227 
and, mutual information are used for regression task, symmetric uncertainty, information gain, 228 
gain ratio, reliefF and, chi-square is employed for the classification task. The efficacy of all feature 229 
ranking methods is then assessed by evaluating the performance of FFNN, wherein the size of the 230 
input layer is increased by one feature in each succession. In other words, the performance of 231 
FFNN for the only top-most feature is first assessed, and then the process is repeated by including 232 
the second most important feature and so on.   233 

5.1 Regression 234 

From Table 3, it can be inferred that all four feature ranking methods yielded feature 6 (Abdomen) 235 
as the most important feature and feature 10 (Ankle) as the least relevant feature for determining 236 
the percentage of body fat. While the top six features determined using Pearson correlation 237 
coefficient, ReliefF and, mutual information method are noticed to be similar; the proposed method 238 
yielded different feature ranks. Furthermore, the MSE for body fat dataset with each feature's 239 
inclusion is evaluated for all four feature ranking methods and is shown in Figure 3(a). From Figure 240 
3(a), it is evident that the overall trend of MSE for FFNN decreases with the inclusion of each 241 
feature. While the proposed method was found to yield lower MSE with only seven top-most 242 
features, the mutual information method yielded lower MSE for eleven features for the bodyfat 243 
dataset. In other words, the filter based approach was found to be ineffective at determining a 244 
subset of important features that could reduce the MSE. According to the proposed method, 245 
following features are found to be least important as they do not contribute further for reduction 246 
of MSE: (5) Chest (cm), (7) Hip (cm), (9) Knee (cm), (10) Ankle (cm), (11) Biceps (cm), (12) 247 
Forearm (cm). 248 

In the case of the abalone dataset, the least relevant features are determined to be the same by all 249 
four feature ranking methods, i.e., feature 1 (female), feature 2 (infant), and feature 3 (male) are 250 
identified to be the least relevant (see Table 3). While the remaining seven features' rank was found 251 
to vary, feature 10 (shell weight) and feature 7 (whole weight) were common in the top four 252 
features for all feature ranking methods, including the proposed method. Similar to the body fat 253 
dataset, the MSE of FFNN with the inclusion of each feature is determined for all feature ranking 254 
methods and is shown in Figure 3(b). From Figure 3 (b), it can be inferred that the trend of ReliefF 255 
and the proposed method are similar. Both ReliefF and the proposed method identified feature 5 256 
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(diameter), feature 6 (height), feature 7 (whole weight), and feature 10 (shell weight) as the top 4 257 
features that yield the lowest MSE. In other words, ReliefF was found to be effective among all 258 
the filter-based methods. According to the proposed method, following features are found to be 259 
least important as they do not contribute further for reduction of MSE: (1) Female, (2) Infant, (3) 260 
Male, (4) Length (gms.), (8) Shucked weight (gms.), (9) Viscera weight (gms.). 261 

Interestingly, in the wine quality dataset, all four feature ranking methods yielded different ranks 262 
for the features (see Table 3). However, feature 11 (alcohol) is determined to be one of the top two 263 
features by all four feature ranking methods. Furthermore, feature 6 (free sulfurdioxide) is 264 
determined to be common among first four features determined by all feature ranking methods 265 
except mutual information. The MSE of FFNN with each feature's inclusion is determined for all 266 
feature ranking methods and is shown in Figure 3(c). The trend obtained in Figure 3 (c), reveals 267 
that all feature ranking methods performed more or less similar.      268 

5.2 Classification 269 

From Table 4, it can be inferred that all feature ranking methods employed for the classification 270 
task identified similar least relevant features for the vehicle dataset (feature 15 (skewness minor), 271 
feature 16 (kurtosis major)). However, the rank of the remaining features was found to vary. While 272 
feature 12 (scaled variance minor), feature 7 (scatter ratio) and feature 8 (elongatedness) was found 273 
to be the top three features for symmetric uncertainty, information gain, gain ratio, reliefF and, 274 
chi-square, feature 10 (maximum length rectangularity), feature 8 (elongatedness) and feature 5 275 
(axis aspect ratio) was found to be the top 3 features for the proposed method, i.e., feature 8 276 
(elongatedness) was found to be common among top 3 features predicted by all feature ranking 277 
methods. Furthermore, the trend of the accuracy is determined for vehicle dataset for all feature 278 
ranking methods with the inclusion of each feature in succession and is shown in  Figure 4(a). 279 
From Figure 4(a), it is evident that the accuracy of the FFNN increases with the addition of each 280 
feature for the vehicle dataset. The proposed method yielded an accuracy of 75% by selecting only 281 
the top 6 features and was found to outperform the other feature ranking methods. The top 6 282 
features are identified as follows: (5) axis aspect ratio, (8) elongatedness, (10) maximum length 283 
rectangularity, (14) skewness major, (17) kurtosis minor and (18) hollow ratio. 284 

Similar to the vehicle dataset, all feature ranking methods employed in the case of the segmentation 285 
dataset obtained the same least relevant features (feature 1 (region-centroid-col), feature 3 (short-286 
line density), feature 4 (lines of length), feature 6 (vedge-sd), and feature 8 (hedge-sd)). While the 287 
rank of the top features was found to vary for all feature ranking methods, feature 10 (rawred-288 
mean), feature 16 (value-mean), and feature 18 (hue-mean) were found to be common among the 289 
top-most 6 features. The trend of the accuracy for the segmentation dataset is determined for all 290 
feature ranking methods with the inclusion of each feature in succession and is shown in  Figure 291 
4(b). From Figure 4(b), it is evident that the accuracy of the FFNN increases with the addition of 292 
each feature for the segmentation dataset. Among all the feature ranking methods, the proposed 293 
method was found to outperform yielding the highest accuracy of 90% with only the top 6 features. 294 
In other words, the filter based methods suggested top 10 features are important for achieving an 295 
accuracy of 85%. 296 
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Interestingly, in the breast cancer dataset, all feature ranking methods resulted in similar top-most 297 
features, i.e., feature 21 (radius3) and feature 23 (perimeter3). While symmetric uncertainty, 298 
information gain, gain ratio, reliefF and, chi-square identified feature 10 (fractal dimension1), 299 
feature 12 (texture2), and feature 15 (smoothness2) as least relevant, the proposed method 300 
identified the feature 3 (perimeter1), feature 5 (smoothness1) and feature 27 (concavity3) are least 301 
relevant. Similar to the vehicle and segmentation dataset, the trend of accuracy is obtained for the 302 
breast cancer dataset with the inclusion of each feature in each succession and is shown in Figure 303 
4(c). In the case of the breast cancer dataset, the trend of all feature ranking methods was found to 304 
be more or less similar. An accuracy of 93% is achieved by the inclusion of the top two features, 305 
i.e., feature 21 (radius3) and feature 23 (perimeter3). 306 

6. Summary and Future Work 307 

A novel complex-step sensitivity analysis-based feature selection method is proposed in this study 308 
for regression and classification tasks. A step-by-step process involved in implementing the 309 
proposed method in the framework of FFNN is described, and its efficacy on real-world datasets 310 
is demonstrated. Three real-world datasets, namely, body fat percentage dataset, abalone dataset, 311 
and wine quality dataset, are chosen for the regression task and, three datasets, namely vehicle 312 
dataset, segmentation dataset, and breast cancer dataset, are chosen for the classification task. 313 
While the proposed method was found to outperform other popular feature ranking methods for 314 
classification datasets (vehicle, segmentation, and breast cancer), it was found to perform more or 315 
less similar with other methods in the case of regression datasets (body fat, abalone, and wine 316 
quality). An average MSE of 20.41, 4.6, and 0.53 were observed for body fat, abalone, and wine 317 
quality datasets, respectively, and an average accuracy of 75%, 80%, and 90% was observed for 318 
the vehicle segmentation and breast cancer datasets, respectively. Furthermore, the top-most 319 
relevant features and irrelevant features are identified for all the employed datasets. At this 320 
juncture, it is also important to note that the proposed method possesses the advantage of 321 
performing sensitivity analysis through the forward propagation of FFNN, i.e., no backpropagation 322 
is required for evaluating the derivatives.  323 

In future work, the authors intend to extend the proposed method to the multiple output regression 324 
problems. In addition to this, the authors would also like to investigate the influence of different 325 
activation functions (e.g., Sigmoid, tanh, Softplus, Leaky ReLU, etc.). Other supervised ML 326 
classification algorithms will be employed, and the efficacy of the proposed method will be 327 
examined. Note that often complete dataset may not be required for training the FFNN when the 328 
size of the dataset is large. Hence the influence of a number of instances on the determination of 329 
the important features would also be studied. Furthermore, the proposed method would also be 330 
extended to the datasets that consists of discrete and continuous features and also include 331 
redundant features.        332 
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Figures 483 

 484 

Figure 1. Steps involved in the complex-step sensitivity for regression task. 485 

 486 

Figure 2. Steps involved in the complex-step sensitivity for the classification task. 487 
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 488 

Figure 3. Comparison of the complex-step sensitivity method with other feature selection 489 
methods for regression task. 490 
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 492 

Figure 4. Comparison of the complex-step sensitivity method with other feature selection 493 
methods for the classification task. 494 
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Tables 496 

Table 1. Description of the datasets used for regression task. 497 

Dataset name Instances No. of features No. of target variables 
Bodyfat 252 13 1 
Abalone 4177 10 1 

Wine quality 4898 11 1 
 498 

Table 2. Description of the datasets used for the classification task. 499 

Dataset name Instances No. of features No. of class labels 
Vehicle 846 30 4 

Segmentation 210 18 7 
Breast cancer 569 18 2 

 500 

Table 3. Important features identified by various feature selection methods for regression task 501 
(ranked in the descending order of their importance). 502 

Bodyfat dataset Abalone dataset Wine quality dataset 
Corr. ReliefF MI CS-FS Corr. ReliefF MI CSDA Corr. ReliefF MI CS-FS 

6 
5 
7 
2 
8 
9 
1 
11 
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10 
13 
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Table 4. Important features identified by various feature selection methods for classification task 505 
(ranked in the descending order of their importance). 506 

 Method Feature Ranking 

V
eh

ic
le

 d
at

as
et

 ReliefF 8, 7, 12, 9, 3, 11, 18, 4, 2, 1, 13, 10, 16, 14, 17, 6, 15, 5 
Symmetric 
Uncertainty 12, 7, 8, 11, 9, 6, 3, 4, 1, 13, 2, 14, 10, 17, 18, 5, 16, 15 

Info Gain 12, 7, 8, 11, 9, 3, 6, 2, 1, 4, 13, 10, 14, 17, 18, 5, 16, 15 
Gain Ratio 11, 9, 12, 7, 4, 8, 6, 3, 5, 18, 13, 14, 1, 2, 16, 10, 15, 17 

Chi-Squared 12, 7, 8, 9, 11, 3, 6, 1, 2, 10, 14, 13, 4, 17, 18, 5, 16, 15 
CSDA 10, 8, 5, 17, 14, 18, 11, 3, 6, 12, 7, 1, 9, 4, 13, 2, 15, 16 

Se
gm

en
ta

tio
n 

da
ta

se
t 

ReliefF 11, 16, 18, 9, 12, 10, 2, 15, 14, 13, 17, 1, 5, 7, 3, 4, 6, 8  
Symmetric 
Uncertainty 18, 10, 9, 16, 12, 11, 15, 17, 2, 14, 13, 7, 8, 5, 6, 3, 4, 1  

Info Gain 18, 9, 12, 16, 10, 11, 15, 17, 13, 14, 2, 7, 8, 5, 6, 3, 4, 1  
Gain Ratio 10, 11, 9, 16, 18, 2, 12, 14, 15, 17, 13, 8, 7, 5, 6, 3, 4, 1  

Chi-Squared 18, 12, 9, 16, 10, 11, 13, 15, 17, 14, 2, 7, 8, 5, 6, 3, 4, 1  
CSDA 2, 18, 15, 13, 10, 16, 11, 12, 17, 9, 14, 6, 8, 7, 5, 4, 3, 1  

B
re

as
t c

an
ce

r d
at

as
et

 

ReliefF 28, 8, 21, 23, 3, 1, 7, 24, 4, 27, 26, 6, 22, 25, 11, 2, 14, 13, 29, 30, 
10, 18, 5, 16, 9, 17, 19, 15, 12, 20.  

Symmetric 
Uncertainty 

23, 21, 24, 28, 8, 3, 7, 4, 1, 27, 14, 11, 13, 6, 26, 17, 2, 18, 22, 25, 
29, 16, 5, 30, 9, 19, 20, 10, 12, 15.  

Info Gain 23, 24, 21, 28, 8, 3, 4, 1, 7, 14, 27, 11, 13, 26, 6, 17, 18, 22, 2, 29, 
16, 25, 9, 5, 30, 20, 19, 10, 12, 15.  

Gain Ratio 23, 21, 24, 28, 8, 7, 27, 3, 4, 1, 14, 6, 11, 13, 26, 17, 2, 19, 18, 25, 
22, 29, 5, 16, 30, 9, 20, 12, 10, 15. 

Chi-Squared 23, 21, 24, 28, 8, 3, 4, 1, 7, 14, 27, 11, 13, 26, 6, 17, 18, 22, 2, 29, 
25, 16, 9, 5, 30, 20, 19, 10, 12, 15.  

CSDA 21, 23, 28, 20, 8, 4, 7, 11, 24, 17, 15, 2, 22, 30, 12, 26, 13, 16, 1, 14, 
10, 9, 29, 25, 18, 19, 6, 3, 27, 5. 
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