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Abstract

Language scientists often need to generate lists of related words, such as potential competitors. They may do this for purposes

of experimental control (e.g., selecting items matched on lexical neighborhood but varying in word frequency), or to test

theoretical predictions (e.g., hypothesizing that a novel type of competitor may impact word recognition). Several online

tools are available, but most are constrained to a fixed lexicon and fixed sets of competitor definitions, and may not give the

user full access to or control of source data. We present LexFindR, an open-source R package that can be easily modified

to include additional, novel competitor types. LexFindR is easy to use. Because it can leverage multiple CPU cores and

uses vectorized code when possible, it is also extremely fast. In this article, we present an overview of LexFindR usage,

illustrated with examples. We also explain the details of how we implemented several standard lexical competitor types used

in spoken word recognition research (e.g., cohorts, neighbors, embeddings, rhymes), and show how “lexical dimensions”

(e.g., word frequency, word length, uniqueness point) can be integrated into LexFindR workflows (for example, to calculate

“frequency-weighted competitor probabilities”), for both spoken and visual word recognition research.

Keywords Psycholinguistics · Lexicon · Word recognition

Introduction

Language scientists often need to generate sets of related

words or words with specific properties. This might be

in service of experimental control (e.g., words matched

on length and frequency of occurrences, but differing in

lexical neighborhood; Luce & Pisoni, 1998). Or the need

might arise based on a theoretically motivated or model-

driven hypothesis; perhaps your theory proposes – or your

model simulations predict – that shorter words embedded

within a word should make that word more difficult to
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process, so you want to find words with many or few

words embedded within them. Sets of related items and their

characteristics can also be useful for clinical purposes. For

example, frequency-weighted lexical neighborhoods have

proven useful for clinical assessments and interventions

(e.g., Kirk, Pisoni, & Osberger, 1995; Morrisette & Gierut,

2002; Sommers & Danielson, 1999; Storkel, Bontempo,

Aschenbrenner, Maekawa, & Lee, 2013; Storkel, Maekawa,

& Hoover, 2010). So how do we generate these lists?

Various excellent tools already exist. For example, three

web-based tools are Michael Vitevtich’s phonotactic prob-

ability (Vitevitch & Luce 1998, 1999) and neighborhood

density calculators (http://www.people.ku.edu/∼mvitevit/

PhonoProbHome.html), the English Lexicon Project

(https://elexicon.wustl.edu/; Balota et al., 2007), and the

recent Auditory English Lexicon Project (https://inetapps.

nus.edu.sg/aelp; Goh, Yap, & Chee, 2020). Other tools exist

for semantic variables or languages other than English,

such as Lexique, which includes English and French (http://

www.lexique.org/; New, Pallier, Brysbaert, & Ferrand,

2004), the multilingual CLEARPOND (https://clearpond.

northwestern.edu/; Marian, Bartolotti, Chabal, & Shook,

2012), and EsPal (https://www.bcbl.eu/databases/espal/;

Duchon, Perea, Sebastián-Gallés, Martı́, & Carreiras, 2013)
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for Spanish, but it takes considerable independent work for

a researcher to combine these resources with things like

neighborhood statistics from the other tools.

Furthermore, while these tools are incredibly useful, they

have limitations. Many require using web interfaces, so

a researcher’s workflow must include interacting with the

websites and documenting the steps taken, and importing

lists of items into the researcher’s local workflow (e.g., into

R; R Core Team, 2019). One might argue that this is not a

major inconvenience, but other limitations are more severe.

For example, so far as we are aware, the computer code

used to search lexicons on the sites listed above are not

readily available, so a researcher can neither easily confirm

the code’s validity or extend it (for example, to include

a new type of potential competitor). Another limitation is

that some tools have a predefined lexicon, and a researcher

cannot substitute another in its place. Substituting your own

lexicon might be useful if you simply prefer a different

lexicon, or if you were using an artificial lexicon, either

with human subjects or with a computational model, or if

you wanted to examine an understudied language or dialect.

Finally, we assume that many labs and researchers have

developed and will continue to develop their own code for

lexical searches. This duplication of effort is unfortunate.

An open-source, extensible tool shared via a version-control

repository would allow researchers to collaborate and share

their extensions, reducing duplication of effort.

We have developed a lightweight R package, LexFindR

(Li, Crinnion, & Magnuson, 2020), which addresses these

limitations. LexFindR comes with a suite of lexical relation

finders for common competitor types used in studies of

spoken and/or visual word recognition (e.g., neighbors,

cohort [onset] competitors, and rhymes), but is also easily

extended to incorporate new definitions. LexFindR is

also fast, as it uses R’s parallelization capabilities to

leverage multiple CPU cores (typically found even on

contemporary laptops) and efficient core capabilities of

R (e.g., R’s apply family of functions). Appendix 1

provides an example of how to put together aspects of the

examples throughout the paper in order to efficiently gather

information about multiple lexical dimensions in one script.

In the following sections, we review how to install and use

LexFindR. Details about how to share extensions with the

community via LexFindR’s GitHub repository are provided

in Appendix 2.

Using LexFindR

Installing and loading LexFindR

The package is implemented in R and can be utilized like

any R package. The package is available from the R package

repository, CRAN. Users can install the stable version using

the Tools::Install Packages menu in R Studio, or via the

following command:

install.packages("LexFindR")

The most current developmental version can be installed

from GitHub with the following commands:

# uncomment the line below to install
# devtools if needed
# install.packages("devtools")
# the line below only needs to be run once
devtools::install_github(
"maglab-uconn/LexFindR")

Once installed, the package can be loaded with the fol-

lowing command.

library(LexFindR)

Getting started

The package comes with two lexicons: the 212-word slex

lexicon (with only 14 phonemes) from the TRACE model of

spoken word recognition (McClelland & Elman, 1986) as a

small data set for the user to experiment with, and a larger

lexicon (lemmalex) that we compiled from various open-

access, non-copyrighted materials. The primary source is

the SUBTLEX subtitle corpus (Brysbaert & New, 2009),

which we cross-referenced with the copyrighted (Francis

& Kučera, 1982) database to reduce the word list to

“lemma” (base- or uninflected) forms. Pronunciations were

drawn from the larger CMU Pronouncing Dictionary (CMU

Computer Science, 2020) without lexical stress for both

lexicons (with those for slex transcribed by Nenadić &

Tucker, 2020a). The second lexicon is large enough to

demonstrate the full capabilities of the package. The two

data sets are automatically loaded when we load LexFindR.

We can use the tidyverse (Wickham et al., 2019) glimpse

function to view essential details about the lexicons, and

view their first few lines.

library(LexFindR)
# tidyr gives us glimpse for
# previewing R objects
library(tidyverse)
glimpse(slex)

## Rows: 212
## Columns: 3
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...

glimpse(lemmalex)
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## Rows: 17,750
## Columns: 3
## $ Item <chr> "a", "abandon", "

abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10, 0.96,

0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D

IH N", "AH B AE N D AH N M AH N T"...

Both lexicons are loaded as R dataframes with three

fields. “Item” is a label (orthography in the case of lem-

malex, and transcriptions in the original phonemic con-

ventions used for the TRACE model in the case of slex).

“Pronunciation” is a space-delimited phonemic transcrip-

tion using the ARPAbet conventions of the CMU Pronounc-

ing Dictionary (ARPAbet transcriptions for TRACE items

are from Nenadić & Tucker, 2020b). We will discuss shortly

how to specify alternative delimiters, including a “null”

delimiter for working with orthographic forms or pronun-

ciation forms that use one character per phoneme without

spaces. “Frequency” is occurrences-per-million words; fre-

quencies are based on (Kučera & Francis, 1967) for slex and

on Brysbaert and New (2009) for lemmalex.

More information about the lexicons can by queried with

the ‘?’ command (we do not present the output here as it is

rather extensive):

?slex
?lemmalex

Note that you can use any lexicon you can load into an R

dataframe. You may find it convenient to use the same field

names as in slex and lemmalex, but it is not necessary. For

work on phonological word forms, you typically will have

both “Item” (usually orthography) and “Pronunciation”, but

as we will see later, you can do useful things with LexFindR

with any list of forms, including orthographic forms. To use

this package with orthographic forms, refer to the section

below on Working with orthography or other “undelimited”

forms, or other delimiters.

LexFindR commands

Table 1 provides a list of LexFindR commands along with

brief descriptions. To use any of the LexFindR functions,

we provide a target pattern and a word list to compare it to.

LexFindR will compare the target pattern to the patterns in

the word list to find items that have particular relations to the

target. The functions can return indices of items that meet

the criteria of the function, but we can also tell LexFindR

to return instead the list of matching forms, the list of accom-

panying labels for matching forms (e.g., spellings), or the fre-

quencies of matching forms. As we progress through exam-

ples, we will see when these different options are useful.

Table 1 LexFindR functions briefly described

Function Description

get cohorts Returns items that overlap at onset

get cohortsP Returns cohorts that are not also neighbors

get embeds in target Returns items that embed in the target

get embeds in targetP Returns items that embed in the target that

are not also cohorts or neighbors

get fw Returns the sum of the log frequencies in

a list

get fwcp Returns the ratio of the target word’s log

frequency to the summed log frequencies of

all words meeting the competitor definition

get homoforms Returns items with the same form as the

target

get neighbors Returns items that differ by no more than

a single deletion, addition, or substitution

(can limit to any combination of deletion,

addition, and substitution with the *overlap*

parameter)

get neighborsP Returns neighbors that are not also cohorts

or rhymes

get nohorts Returns items that meet the definitions for

both cohorts and neighbors

get rhymes Returns items that mismatch at word

onset by no more than a specified number

of elements

get target embeds in Returns items that the target embeds within

get target embeds inP Returns items that the target embeds within

that are not also cohorts or neighbors

get uniqpt Returns position at which the target becomes

a unique completion in the lexicon (or word

length + 1 if the word is not unique at offset)

Cohorts

Let’s begin with cohorts. Cohorts are words that overlap at

word onset, and are called “cohorts” because they comprise

the set of words predicted to be strongly activated as a

spoken word is heard (and thus to form the recognition

cohort) by the Cohort Model (Marslen-Wilson & Welsh,

1978). While definitions vary, LexFindR is equipped to

handle overlap in any number of phonemes. By default, it

uses a very common cohort definition: overlap in the first

two phonemes. However, it contains a parameter – overlap –

to allow the researcher to adjust how many initial phonemes

must match for two words to be cohorts. We can get the set

of cohort indices for a pattern with a command like this for

the pronunciation of CAR:

get_cohorts("K AA R",
slex$Pronunciation)

## [1] 66 67 68 69 70 71
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This tells us that slex entries 66-71 are cohorts of CAR

(overlapping in at least the initial two positions, since 2 is

the default overlap). To get the competitors themselves rather

than the indices, we could specify that we want forms:

get_cohorts("K AA R",
slex$Pronunciation,
form = TRUE)

## [1] "K AA L IY G" "K AA P" "K AA
P IY" "K AA R"

## [5] "K AA R D" "K AA R P AH T"

To see the labels of those items (in TRACE’s phonemic

transcriptions), we can use standard R conventions (and

should see the phonemic transcriptions for COLLEAGUE,

COP, COPY, CAR, CARD, and CARPET):

slex[get_cohorts("K AA R",
slex$Pronunciation), ]$Item

## [1] "kalig" "kap" "kapi" "kar" "
kard" "karpˆt"

Alternatively, we could request the count of cohorts:

get_cohorts("K AA R",
slex$Pronunciation,
count = TRUE)

## [1] 6

That is not a large number of cohorts. Let’s compare it to

the count we get from lemmalex:

get_cohorts("K AA R",
lemmalex$Pronunciation,
count = TRUE)

## [1] 272

As expected, we get many more from a more realistically

sized lexicon. Note that most LexFindR functions have

exactly the same structure, returning indices by default, but

with options to return forms or counts.

Finally, let’s see how we can change the cohort definition

in terms of how many phonemes must match. Let’s say we

want to try a definition of cohorts with overlap in the first

three phonemes for the cohort of CARD:

get_cohorts("K AA R D",
slex$Pronunciation,
form = TRUE,
overlap = 3)

## [1] "K AA R" "K AA R D" "K AA
R P AH T"

We could repeat any of the preceding example commands

with 3-phoneme overlap by simply adding “overlap = 3” to

each command.

Neighborhood

Neighbors are another possible competitor often considered

in word recognition research. The standard neighbor

definition for spoken words comes from the Neighborhood

Activation Model (NAM; (Luce & Pisoni, 1998)). While

NAM includes a graded similarity rule, most often,

researchers use the simpler DAS rule: two words are

considered neighbors (and are expected to be strongly

activated if either one is heard) if they differ by no more

than a single phonemic deletion, addition, or substitution.

For example, CAR (/kar/) has many neighbors, including

the deletion neighbor ARE (note that neighbors are based on

pronunciation here, not spelling), addition neighbors SCAR

and CARD, and substitution neighbors at every position,

such as BAR, CORE, and COP (though as we will see, CAR

has no medial [vowel] substitution neighbors in slex). Let’s

look at CAR’s neighbors in slex, using analogous commands

to those we used for cohorts.

# get indices
get_neighbors("K AA R",

slex$Pronunciation)

## [1] 2 10 67 69 70 104 152 184

# get forms
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE)

## [1] "AA R" "B AA R" "K AA P" "K
AA R" "K AA R D" "P AA R" "S K AA R"

## [8] "T AA R"

# get labels
slex[get_neighbors("K AA R",

slex$Pronunciation), ]$Item

## [1] "ar" "bar" "kap" "kar" "kard"
"par" "skar" "tar"

# get count
get_neighbors("K AA R",

slex$Pronunciation,
count = TRUE)

## [1] 8

Note that in visual word recognition, it is much more

common to consider only substitution neighbors (often

called “Coltheart’s N”; Coltheart, Davelaar, Jonasson, &

Besner, 1977). So if you are working with orthography,

you may only want substitution neighbors. Or perhaps you

would like to explore the relative impact of deletion, addi-

tion, and substitution neighbors. LexFindR’s get neighbors

function anticipates the potential need for such flexibil-

ity. By default, it assumes you want all three, but you can

specify any single type or any combination with the neigh-

bors argument and specifying deletion neighbors with “d”,
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addition neighbors with “a”, and/or substitution neighbors

with “s”. Here are some examples:

# get forms of deletion neighbors
# (just ARE)
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "d")

## [1] "AA R"

# get forms of addition neighbors
# (CARD, SCAR)
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "a")

## [1] "K AA R D" "S K AA R"

# get forms of substitution neighbors
# (BAR, COP, CAR, PAR, TAR)
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "s")

## [1] "B AA R" "K AA P" "K AA R" "P AA R"
"T AA R"

# get forms of deletion (ARE) and
# addition (CARD, SCAR) neighbors
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "ad")

## [1] "AA R" "K AA R D" "S K AA R"

Of course, we can easily do other things using basic R

commands, such as determine what proportion of CAR’s

neighbors are substitution neighbors:

# what proportion of CAR’s neighbors
# are substitution neighbors?
get_neighbors("K AA R",

slex$Pronunciation,
neighbors = "s",
count = TRUE) /

get_neighbors("K AA R",
slex$Pronunciation,
count = TRUE)

## [1] 0.625

Other competitor types

In addition to cohorts and neighbors, LexFindR comes with

analogous functions for several other similarity types.

• get rhymes: returns items that mismatch at word onset

by no more than a specified number of phonemes, using

a mismatch argument which the user can supply. The

default mismatch argument is 1 phoneme, meaning the

function will by default return items that mismatch

at word onset by a maximum of 1 phoneme (so not

a standard definition of poetic rhyme or phonological

rime). With this default argument, rhymes will include

items that are addition or deletion neighbors at first

position (e.g., CAR’s rhymes will include ARE and

SCAR) as well as substitution neighbors at position

1 (e.g., BAR, TAR). If mismatch were set to 2,

for example, CAR would additionally match any 3-

phoneme word ending in /r/ and any 4-phoneme word

ending in /ar/.

• get embeds in target: returns items that are embedded

within a target word. For SCAR, this would include

ARE and CAR.

• get target embeds in: returns items that the target

embeds within. For CAR, this would include SCAR and

CARD.

• get homoforms: returns items with the same form as

the target. We use “homoform” because these would be

homophones for phonological forms but homonyms for

orthographic forms.

LexFindR also anticipates the possibility that a researcher

may want to find competitor types that do not overlap. For

example, CARD is both a cohort and a neighbor of CAR, so

which set should it appear in? We propose a novel category

called nohorts – neighbors that are also cohorts – and provide

“P” (pure) versions of several competitor-type functions that

return non-overlapping sets.

• get nohorts: Cohorts and neighbors are overlapping

sets, although not all cohorts are neighbors (e.g., CAR

and CARPET are cohorts but not neighbors) and not all

neighbors are cohorts. Nohorts are the intersection of

cohorts and neighbors. Note that the target word will

be part of the nohort set, and not part of cohortsP or

neighborsP, which we define next.

• get cohortsP: the set of “pure” cohorts that are not also

neighbors.

• get neighborsP: the set of “pure” neighbors that are not

also cohorts or rhymes.

• get embeds in targetP: set of items that embed in the

target that are not also cohorts or neighbors.

• get target embeds inP: set of items that the target

embeds in that are not also cohorts or neighbors.

The nohort and “P” functions use the base-R intersect

and setdiff functions to find set intersections and differ-

ences. To see the code for any function in R, you can simply

enter the function name with no arguments and no following

parentheses. Let’s look at the code for get nohorts. Many

of the details provided may not be useful for a typical user,
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but the intersect command is the interesting part of this

example.

get_nohorts

## function(target, lexicon, neighbors =
"das", sep = " ", form = FALSE, count =
FALSE) {

## idx <- intersect(
## get_cohorts(target, lexicon, sep,

form = FALSE, count = FALSE),
## get_neighbors(target, lexicon,

neighbors, sep, form = FALSE, count =
FALSE)

## )
##
## get_return(idx, lexicon, form, count)
## }
## <bytecode: 0x7f82fd997d90>
## <environment: namespace:LexFindR>

Now let’s examine the get neighborsP function to see

how setdiff is used to find “pure” sets.

get_neighborsP

## function(target, lexicon, neighbors =
"das", sep = " ", form = FALSE, count =
FALSE) {

## idx <- setdiff(
## setdiff(
## get_neighbors(target, lexicon,

neighbors),
## get_cohorts(target, lexicon, sep,

form = FALSE, count = FALSE)
## ),
## get_rhymes(target, lexicon, sep, form =

FALSE, count = FALSE)
## )
##
## get_return(idx, lexicon, form, count)
## }
## <bytecode: 0x7f82fd28a908>
## <environment: namespace:LexFindR>

This function uses nested setdiff calls to first find neigh-

bors excluding cohorts and then to exclude rhymes from that

set. A user could use these functions as examples to create

their own specific subsets of items.

Form length

You may wish to calculate form length. This is easy to do

with base R. If you use CMU pronunciations, as in lem-

malex, we can use a technique for counting words separated

by whitespace with the lengths command in R.

# get lengths by splitting on spaces
lemmalex$Length <- lengths(strsplit(

lemmalex$Pronunciation, " "))

glimpse(lemmalex)

## Rows: 17,750
## Columns: 4
## $ Item <chr> "a", "abandon",

"abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10,

0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D

IH N", "AH B AE N D AH N M AH N T"...
## $ Length <int> 1, 7, 11, 4, 3, 4, 8,

10, 7, 9, 8, 7, 8, 4, 6, 5, 8, ...

If you have a null-delimited form, where each character

is a single letter or phoneme, we can use the nchar function.

# get lengths by counting characters
# for orthography or 1-char per
# phoneme forms
slex$Length <- nchar(slex$Item)

glimpse(slex)

## Rows: 212
## Columns: 4
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ Length <int> 2, 2, 3, 3, 6, 3,

4, 4, 4, 3, 4, 5, 2, 4, 3, 4, 3, 4,...

Uniqueness point

We have added one other common lexical dimension to the

LexFindR functions (get uniqpt), which is the uniqueness

point (UP) of a form. This is the position at which an item

becomes the only completion in the lexicon. For example,

in slex, /kard/ (CARD) becomes unique at position 4, as

does /karpˆt/ (CARPET). SCAR becomes unique at position

3. CAR (/kar/) is not unique at its final position, so its

uniqueness point is set to its length plus one.

get_uniqpt("K AA R",
slex$Pronunciation)

## [1] 4

get_uniqpt("S K AA R",
slex$Pronunciation)

## [1] 3

Again, CAR is not unique by word offset, so its UP is its

length plus one. SCAR becomes unique at position 3, one

before its offset. Let’s consider some additional useful steps.

We could normalize UPs by dividing them by word length

plus one, the maximal possible score. So CARD would have

a normalized UP of 0.8 (4/5), while CARPET’s would be

0.57 (4/7), and CAR’s would be 1.0 (4/4). Here are some

examples.
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# Get UPs for all items in slex
slex$UP <- unlist(lapply(slex$Pronunciation,

FUN = get_uniqpt,
lexicon = slex$Pronunciation

))

# Now let’s normalize UP
# by word length + 1
slex$UP.norm <- slex$UP /

(slex$Length + 1)

# Check examples
subset(slex, Item == "kar" |

Item == "skar" |
Item == "kard" |
Item == "karpˆt" )

## Item Pronunciation Frequency Length
UP UP.norm

## 69 kar K AA R 386 3
4 1.0000000

## 70 kard K AA R D 62 4
4 0.8000000

## 71 karpˆt K AA R P AH T 22 6
4 0.5714286

## 152 skar S K AA R 22 4
3 0.6000000

Helper functions

LexFindR includes two helper functions that can be applied

to the output of other functions: get fw and get fwcp.

Log frequency weights: get fw

Intuitively, the number (count) of potential competitors may be

important, but some competitors might have more influence

than others; in particular, words with higher frequency-of-

occurrence may compete more strongly. So we may wish to

consider the frequencies of competitors. We can use the indices

returned by functions like get cohorts or get neighbors to

get the frequencies of the items. Let’s do this for the word

CAR in slex and lemmalex and get some summary statistics.

# get CAR’s slex cohorts’
# frequencies
slex_cohort_frequencies <-

slex$Frequency[
get_neighbors("K AA R",

slex$Pronunciation) ]
summary(slex_cohort_frequencies)

## Min. 1st Qu. Median Mean 3rd Qu.
Max.

## 10.0 21.5 47.0 632.9 190.2
4406.0

# get CAR’s lemmalex
# cohorts’ frequencies
llex_cohort_frequencies <-

lemmalex$Frequency[
get_neighbors("K AA R",

lemmalex$Pronunciation) ]
summary(llex_cohort_frequencies)

## Min. 1st Qu. Median Mean 3rd Qu.
Max.

## 0.220 1.353 6.635 58.336 30.830
485.250

Typically, frequencies are log scaled, as this provides a

better fit when they are used to predict human behavior

(e.g., word recognition time). It would be useful, therefore,

to weight the count of competitors by log frequencies. The

LexFindR helper function get fw does this. You supply it

with a list of frequencies, and it takes their logs and returns

the sum. This is simple enough that you could do it with

basic R functions yourself. However, get fw provides some

useful error checking. Specifically, it checks whether the

minimum frequency in your set of frequencies is less than

1, since taking the log would return a negative value. If so,

it also suggests a minimum constant to specify for pad to

add to each frequency before taking the log. Let’s consider

how we might use this. First, let’s try using get fw to give

us summed log frequencies for the frequencies we collected

above for CAR’s slex cohorts.

get_fw(slex_cohort_frequencies)

## [1] 35.1571

This gives us the sum without any problem, as the

minimum frequency in slex cohort frequencies is greater

than 1. Now let’s try with llex cohort frequencies.

get_fw(llex_cohort_frequencies)

## Warning: ‘min(competitors_freq) + pad‘ is
0.22 which is < 1;

## * Consider adding pad >= 0.78

## [1] 55.64038

Now we get a value (55.64038) but also a warning because

the minimum value is less than 1. So let’s add the pad option.

Using 1 will bring our minimum to a value greater than 1,

avoiding results with non-positive values.

get_fw(llex_cohort_frequencies,
pad = 1)

## [1] 65.67193

Log Frequency-Weighted Competitor Probabilities : get fwcp

We could go a step beyond frequency weights and calculate

the Frequency-Weighted Competitor Probability (FWCP) of

a word, inspired by the Neighborhood Activation Model’s

Frequency-Weighted Neighborhood Probability (FWNP;

Luce & Pisoni, 1998). This is calculated as the ratio of the

target word’s log frequency to the sum of all words meeting

the competitor definition, as in the following equation.

FWCP =

log(F requencytarget )
∑

c∈competitors log(F requencyc)
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Notably, on most competitor definitions, this includes the

target word itself, so we can think of the ratio as expressing

what proportion of the “frequency weight” of the target’s

competitors is contributed by the target itself. For spoken

words, the larger the ratio, the more easily the target word

tends to be recognized. To calculate this with LexFindR,

we supply a set of competitor frequencies and the target

word’s frequency to the get fwcp function. Note that we can

include a pad option as for get fw, and it will be applied to

both the target word’s frequency and the list of competitor

frequencies; again, this should be done if the minimum

frequency value is less than 1. Let’s verify that the minimum

frequency in slex is greater than 1.

# check the minimum frequency
min(slex$Frequency)

## [1] 10

The next two code blocks demonstrate how to get the

FWCP for neighbors (i.e., the FWNP) and then for cohorts.

# because get_neighbors returns indices
# by default, we can use its output as
# the keys to get corresponding
# frequencies from another column in the
# dataframe
competitors_freq <-

slex$Frequency[get_neighbors("K AA R",
slex$Pronunciation)]

target_freq <- slex$Frequency[
which(slex$Pronunciation == "K AA R")]

# now we can get the FWCP based on
# neighbors; minimum frequency is > 1
# so we won’t specify a pad
get_fwcp(target_freq, competitors_freq)

## [1] 0.1694064

# Now let’s get the FWCP for cohorts
competitors_freq <- slex$Frequency[

get_cohorts("K AA R", slex$Pronunciation)]
target_freq <- slex$Frequency[

which(slex$Pronunciation == "K AA R")]

get_fwcp(target_freq, competitors_freq)

## [1] 0.2459427

Note that get fwcp is not simply computing the ratio

of target-to-competitor frequencies; it is first converting

the frequencies to log frequencies. If your lexicon file has

frequencies already in log form, you should not use the

get fwcp function, but instead you should calculate the

ratios directly. Also note that it is fairly standard to express

frequencies as occurrences-per-million. If your basis is dif-

ferent (e.g., occurrences-per-six million), you may want to

transform your frequencies to the more standard per-million

basis. Finally, we recommend that you examine distribu-

tions before using the results of get fwcp, as these often

exhibit difficult-to-mitigate deviations from normality. One

may be better served by examining target frequencies and

competitor frequency weights (obtained with get fw) sepa-

rately.

Working with orthography or other “undelimited”
forms, or other delimiters

By default, LexFindR functions expect the forms you supply

to be space-delimited, which is the typical convention for

CMU pronunciations. Using a delimiter allows you to have

form codes (typically phoneme codes) made up of more

than one character. But what if you want to work with

orthography, or a phoneme code that uses one character per

phoneme without delimiters? You can simply specify sep =

”” to indicate that your forms have a “null” delimiter. We

can illustrate this with the orthography in the “Item” field in

lemmalex.

# Let’s list orthographic substitution
# neighbors for CAR in lemmalex
get_{n}eighbors("car",

lemmalex$Item,
form = TRUE,
neighbor = "s",
sep = "")

## [1] "bar" "cab" "cam" "can" "cap" "car"
"cat" "caw" "cur" "ear" "far" "jar"

## [13] "mar" "par" "tar" "war"

Now let’s try it with TRACE’s original phoneme encod-

ings, which use one character per phoneme. Those original

forms are in the “Item” field of slex:

# Let’s list orthographic substitution
# neighbors for CAR in slex
get_neighbors("kar",

slex$Item,
form = TRUE,
neighbor = "s",
sep = "")

## [1] "bar" "kap" "kar" "par" "tar"

Batch processing with target list and lexicon

Often, we may need to get the competitors for each word in

the lexicon, with respect to the entire lexicon. This would

be a prerequisite for selecting words with relatively many

vs. few neighbors, for example. One way to do this would

be to use the base R function lapply. Here is how we could

do this for cohorts. The final glimpse command will show

us the first few instances of each field.
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# reset R
rm(list = ls())
library(LexFindR)

# define the lexicon with the
# list of target words to compute
# cohorts for; we will use
# *target_df* instead of modifying
# slex or lemmalex directly
target_df <- slex

# specify the reference lexicon;
# here it is actually the list of
# pronunciations from slex, as we
# want to find all cohorts for all
# words in our lexicon. It is not
# necessary to create a new dataframe,
# but because we find it useful for
# more complex tasks, we use this
# approach here
lexicon_df <- target_df

# this instruction will create a new
# column in our target_df dataframe,
# "cohort_idx", which will be the
# list of lexicon_df indices
# corresponding to each word’s cohort
# set
target_df$cohort_idx <-

lapply(
# in each lapply instance,
# select the target pronunciation
target_df$Pronunciation,
# in each lapply instance,
# apply the get_cohorts function
FUN = get_cohorts,
# in each lapply instance,
# compare the current target
# Pronunciation to each
# lexicon Pronunciation
lexicon = lexicon_df$Pronunciation

)

# let’s look at the first few
# instances in each field...
glimpse(target_df)

## Rows: 212
## Columns: 4
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ cohort_idx <list> [1, <2, 3, 4, 5>,

<2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3,...

Consider the cohort idx field. We can see that /ad/ (ODD)

has only one cohort (itself), while /ar/ (ARE) has four (items

2, 3, 4, 5, or /ar/, /ark/, /art/, and /artˆst/, i.e., ARE, ARK,

ART, ARTIST).

What if we also want the lists of cohort forms or labels

and frequencies? Rather than calling the function three

times, we could speed up the process (speed will be very

important when we work with large lexicons!) by calling

get cohorts only once, and then using the indices to get the

other items we want. In the next example, we keep working

with target df and its new field cohort idx (which has the

list of indices [row counts] of records that meet the cohort

definition for each target).

# continuing the code block above,
# this instruction creates a new field,
# cohort_str, which will be the list of
# forms corresponding to the list of
# indices in cohort_idx
target_df$cohort_str <-
lapply(
# on each instance of lapply (each
# target word), we apply this simple
# function of returning the Item
# (label) of each cohort index (idx)
target_df$cohort_idx, function(idx){

lexicon_df$Item[idx]
}

)

# to create a list of frequencies for
# each cohort of a target item, we do
# the same thing, but now we get the
# Frequency rather than the Item
target_df$cohort_freq <-
lapply(
target_df$cohort_idx, function(idx){

lexicon_df$Frequency[idx]
}

)

# to get the count of cohorts for each
# item, we *could* run get_cohorts again
# with "count = TRUE", but we can use
# the "lengths" command to get the count
# of items in cohort_str (or cohort_idx)
# instead. We put the result in a new
# field in the dataframe called
# "cohort_count"
target_df$cohort_count <-
lengths(target_df$cohort_str)

# finally, we can get the cohort
# frequency weight for each word (the
# summed log frequencies of all its
# cohorts)
target_df$cohort_fw <-
lapply(target_df$cohort_freq, get_fw)

Let’s look at the results:

glimpse(target_df)
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## Rows: 212
## Columns: 8
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ cohort_idx <list> [1, <2, 3, 4, 5>,

<2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3,...
## $ cohort_str <list> ["ad", <"ar", "ark",

"art", "artˆst">, <"ar", "ark",...
## $ cohort_freq <list> [53, <4406, 50,

274, 112>, <4406, 50, 274, 112>, <44...
## $ cohort_count <int> 1, 4, 4, 4, 4, 7, 7,

7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 3,...
## $ cohort_fw <list> [3.970292, 22.63437,

22.63437, 22.63437, 22.63437, 3...

We can see that cohort idx, cohort str, and cohort freq

all contain lists, and we can verify that for a given word, the

lists are the same length (e.g., one frequency form for each

cohort). There should only be one value per target word in

cohort count and cohort fw, which we can see is the case as

well.

Working with different target and lexicon lists

In some cases, you may only want to get details for a

subset of items in the lexicon – or even for a list of forms

that are not in the lexicon. In these cases, you can simply

specify a shorter target list rather than making the target

list and lexicon the same. Note that of course, if you do

not have frequencies for your items, you will not be able

to use the get fwcp command. As an example, we might

want to examine what the neighborhoods of the words in the

TRACE lexicon would be in the context of a realistically

sized lexicon. We can do this by using slex as our target list

and lemmalex as our lexicon.

# Again, it is not necessary to copy
# slex and lemmalex to target_df and
# lexicon_df, but doing so can promote
# clarity in more complex workflows
target_df <- slex
lexicon_df <- lemmalex

# first, *lapply* get_cohorts
target_df$cohort_idx <-

lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)

# let’s also get cohort counts
target_df$cohort_count <-

lengths(target_df$cohort_idx)

glimpse(target_df)

## Rows: 212
## Columns: 5
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ cohort_idx <list> [<10577, 10578,

10579, 10582>, <762, 763, 764, 765, ...
## $ cohort_count <int> 4, 69, 69, 69, 69,

64, 64, 64, 64, 64, 64, 64, 32, 32...

Comparing this to our earlier results, we see that ODD would

have four cohorts in lemmalex instead of one within slex.

Parallelizing for speed

If we are getting competitors for every word in a lexicon,

speed becomes a concern, especially if we want to do this

for many competitor types. To quantify this, let’s time how

long it takes to calculate cohorts for all words in lemmalex.

We will use the R tictoc package (Izrailev, 2014) to time the

process. For this demonstration, we are using a MacBook

Pro with an Intel Core i9 CPU and 32 GB of RAM.

# load functions for timing
library(tictoc)

# set targets and lexicon to be
# the large lemmalex lexicon
target_df <- lemmalex
lexicon_df <- target_df

# start the timer
tic("get_cohorts w/oparallelization")

# lapply the get_cohorts function -- fast,
# vectorized, but not parallel...
# Warning: this could take a long time,
# depending on your hardware
target_df$cohort_idx <-
lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)
toc()

## get_cohorts w/oparallelization: 140.625
sec elapsed

tic("get additional fields")
# get cohort strings
target_df$cohort_str <- lapply(
target_df$cohort_idx, function(idx) {
lexicon_df$Item[idx]

}
)

# get cohort counts
target_df$cohort_count <-
lengths(target_df$cohort_str)

toc()
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## get additional fields: 0.068 sec elapsed

glimpse(target_df)

## Rows: 17,750
## Columns: 6
## $ Item <chr> "a", "abandon", "

abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10,

0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D

IH N", "AH B AE N D AH N M AH N T"...
## $ cohort_idx <list> [<>, <2, 3, 4, 7,

8, 14, 15, 16, 18, 19, 29, 30, 31,...
## $ cohort_str <list> [<>, <"abandon",

"abandonment", "abate", "abbreviate...
## $ cohort_count <int> 0, 61, 61, 61, 39,

39, 61, 61, 39, 39, 39, 39, 39, 61...

On our demonstration laptop, get cohorts with lapply

took ˜111 seconds (on an older workstation we tested, it

took several minutes). If you only have to do this once, that

may be tolerable. But we can do better! We could easily

parallelize using the R future package, and its commands

like future.apply (Bengtsson, 2013). There are various ways

to engage multiple cores with this package, as detailed

in its documentation. The plan(multisession, workers =

num cores) is quite convenient, and works on Windows,

Macintosh, and Linux with Rstudio and base R. In the

following code block, we show how to load future.apply and

set things up to use multiple cores.

# uncomment the line below to install,
# but you only need to do this once.
# install.packages("future.apply")
library(future.apply)

# how many cores do we have?
num_cores <- availableCores()
print(paste0("Using num_cores: ",

num_cores))

## [1] "Using num_cores: 12"

# now let future.apply figure out
# how to optimize parallel division
# of labor over cores
plan(multisession, workers =

num_cores)

With this setup, the only thing left to do is to replace our

apply functions with their future.apply equivalents. In the

example below, we just replace lapply with future lapply

to parallelize the function that gets competitors (there’s

no real need to do this with the other apply call as it

is not the bottleneck; in fact, it is so poorly suited for

parallelization that it is slowed by a factor of ˜10 if we do use

future apply).

# load functions for timing
library(tictoc)

# set targets and lexicon to be
# the large lemmalex lexicon
target_df <- lemmalex
lexicon_df <- target_df

# start the timer
tic("get_cohorts WITH parallelization")

# future_lapply the get_cohorts
# function: now parallel!
target_df$cohort_idx <-
future_lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)
toc()

## get_cohorts WITH parallelization: 29.225
sec elapsed

# get cohort strings
target_df$cohort_str <- lapply(
target_df$cohort_idx, function(idx) {
lexicon_df$Item[idx]

}
)

target_df$cohort_count <-
lengths(target_df$cohort_str)

toc()

glimpse(target_df)

## Rows: 17,750
## Columns: 6
## $ Item <chr> "a", "abandon", "

abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10,

0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D IH

N", "AH B AE N D AH N M AH N T"...
## $ cohort_idx <list> [<>, <2, 3, 4, 7, 8,

14, 15, 16, 18, 19, 29, 30, 31,...
## $ cohort_str <list> [<>, <"abandon", "

abandonment", "abate", "abbreviate...
## $ cohort_count <int> 0, 61, 61, 61, 39,

39, 61, 61, 39, 39, 39, 39, 39, 61...

We see an improvement from 111 seconds to approxi-

mately 35; it took a bit more than three times longer without

parallelization. On the older workstation, the improvement

was more dramatic, from several minutes to around 35 sec-

onds (around ten times faster with parallelization). Again,

such differences may not seem important if you are running

a search once, but if you want to do many different kinds

of searches, or explore novel similarity definitions, speed

will become important. In Appendix 1, we present an exam-

ple of parallelized code for conducting several LexFindR

competitor searches in series.
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Conclusions

LexFindR fills important gaps in the language scientist’s

toolkit. It provides a free, fast, extensible, tested, and readily

shared tool that can be integrated into typical analysis

workflow within R. Researchers inclined to contribute

extensions to LexFindR should refer to Appendix 2 for basic

guidance on how to do so. We hope our fellow researchers

will find LexFindR useful.

Appendix 1: Extended example – Getting
several competitor types

This example shows how you can go through several com-

petitor types for a lexicon, adding columns for the indices,

labels, frequencies, counts, frequency weights, and FWCP

for each competitor type. For an example implemented

in tidyverse (Wickham et al., 2019) piping style, see the

package vignettes for LexFindR.

library(LexFindR)
library(tidyverse) # for glimpse
library(future.apply) # parallelization
library(tictoc) # timing utilities

# In this example, we define a dataframe
# source for target words (target_df)
# and another for the lexicon to compare
# the target words to (lexicon_df).
#
# Often, these will be the same, but we
# keep them separate here to make it
# easier for others to generalize from
# this example code.

# Code assumes you have at least 3
# columns in target_df & lexicon_df:
# 1. Item -- a label of some sort, can
# be identical to Pronunciation
# 2. Pronunciation -- typically a
# phonological form
# 3. Frequency -- should be in
# occurrences per million, or some
# other raw form, as the functions
# below take the log of the frequency
# form. See advice about padding in
# the main article text.
#
# Of course, you can name your fields
# as you like, and edit the field names
# below appropriately.
target_df <- slex
lexicon_df <- target_df

# Prepare for parallelizing
# 1. how many cores do we have?
num_cores <- availableCores()
print(paste0("Using num_cores: ",

num_cores))

## [1] "Using num_cores: 12"

# 2. now let future.apply figure out
# how to optimize parallel division
# of labor over cores
plan(multisession, workers =

num_cores)

# the functions in this list all
# return lists of word indices; the
# uniqueness point function is not
# included because it returns a
# single value per word.
fun_list <- c(
"cohorts", "neighbors",
"rhymes", "homoforms",
"target_embeds_in",
"embeds_in_target",
"nohorts", "cohortsP",
"neighborsP",
"target_embeds_inP",
"embeds_in_targetP"

)

# we need to keep track of the
# P variants, as we need to tell
# get_fwcp to add in the target
# frequency for these, as they
# exclude the target
Ps <- c(
"cohortsP", "neighborsP",
"target_embeds_inP",
"embeds_in_targetP"

)

# determine how much to pad based
# on minimum frequency
if (min(target_df$Frequency) == 0) {
pad <- 2

} else if
(min(target_df$Frequency) < 1) {
pad <- 1

} else {
pad <- 0

}

# now let’s loop through the functions
for (fun_name in fun_list) {
# start timer for this function
tic(fun_name)

# the P functions do not include the
# target in the denominator for
# get_fwcp; if we want this to be a
# consistent ratio, we need to
# add target frequency to the
# denominator
add_target <- FALSE
if (fun_name %in% Ps) {
add_target <- TRUE

}

# inform the user that we are
# starting the next function, make
# sure we are correctly adding
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# target or not
cat("Starting", fun_name,

" : add_target\n",
add_target)

func <- paste0("get_", fun_name)

# use *future_lapply* to do the
# competitor search, creating
# a new column in *target_df*
# that will be this function’s
# name + _idx (e.g., cohort_idx)
target_df[[paste0(fun_name,"_idx")]]<-
future_lapply(
target_df$Pronunciation,
FUN = get(func),
lexicon = lexicon_df$Pronunciation

)

# list the competitor form labels
# in functionname_str
target_df[[paste0(fun_name,"_str")]]<-
lapply(
target_df[[paste0(fun_name, "_idx")]],
function(idx) {
lexicon_df$Item[idx]

}
)

# list the competitor frequencies
# in functionname_freq
target_df[[paste0(fun_name,"_freq")]]<-
lapply(
target_df[[paste0(fun_name, "_idx")]],
function(idx) {
lexicon_df$Frequency[idx]

}
)

# put the count of competitors
# in functionname_num
target_df[[paste0(fun_name,"_num")]]<-
lengths(
target_df[[paste0(fun_name, "_idx")]])

# put the FW in functionname_fwt
# using the "mapply" function
# to input multiple arguments to
# the get_fw function; using "lapply"
# would require a helper function
target_df[[paste0(fun_name,"_fwt")]]<-
mapply(get_fw,
competitors_freq =

target_df[[paste0(fun_name,
"_freq")]],

pad = pad
)

# put the FWCP in functionname_fwcp
target_df[[paste0(fun_name,"_fwcp")]]<-
mapply(get_fwcp,
target_freq = target_df$Frequency,
competitors_freq =

target_df[[paste0(
fun_name, "_freq")]],

pad = pad,

add_target = add_target
)

toc()
}

## Starting cohorts : add_target
## FALSEcohorts: 1.614 sec elapsed
## Starting neighbors : add_target
## FALSEneighbors: 0.329 sec elapsed
## Starting rhymes : add_target
## FALSErhymes: 0.614 sec elapsed
## Starting homoforms : add_target
## FALSEhomoforms: 0.382 sec elapsed
## Starting target_embeds_in : add_target
## FALSEtarget_embeds_in: 0.402 sec elapsed
## Starting embeds_in_target : add_target
## FALSEembeds_in_target: 0.523 sec elapsed
## Starting nohorts : add_target
## FALSEnohorts: 0.305 sec elapsed
## Starting cohortsP : add_target
## TRUEcohortsP: 0.362 sec elapsed
## Starting neighborsP : add_target
## TRUEneighborsP: 0.35 sec elapsed
## Starting target_embeds_inP : add_target
## TRUEtarget_embeds_inP: 0.528 sec elapsed
## Starting embeds_in_targetP : add_target
## TRUEembeds_in_targetP: 0.383 sec elapsed

# Now let’s streamline the dataframe;
# we’ll select the num, fwt, and fwcp
# columns and put them in that order,
# while not keeping some of the other
# ’helper’ columns we created
export_df <- target_df %>%
select(Item | Pronunciation |

Frequency | ends_with("_num") |
ends_with("_fwt") |
ends_with("_fwcp"))

# save the results
write_csv(
export_df, "slex_lexdims.csv"

)

glimpse(export_df)

## Rows: 212
## Columns: 36
## $ Item <chr> "ad", "ar",

"ark", "art", "artˆst", "bab", "...
## $ Pronunciation <chr> "AA D",

"AA R", "AA R K", "AA R T", "AA R T ...
## $ Frequency <int> 53, 4406,

50, 274, 112, 45, 23, 341, 87, 125...
## $ cohorts_num <int> 1, 4, 4, 4,

4, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3,...
## $ neighbors_num <int> 4, 8, 6, 5,

1, 4, 4, 2, 1, 7, 5, 1, 7, 5, 8,...
## $ rhymes_num <int> 3, 5, 4, 3,

1, 2, 2, 1, 1, 5, 4, 1, 6, 3, 4,...
## $ homoforms_num <int> 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ target_embeds_in_num <int> 6, 29, 5, 9,

1, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1...
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## $ embeds_in_target_num <int> 1, 1, 2, 2,
5, 1, 3, 2, 1, 2, 4, 2, 1, 3, 3,...

## $ nohorts_num <int> 1, 3, 3, 3,
1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 3,...

## $ cohortsP_num <int> 0, 1, 1, 1,
3, 4, 4, 5, 6, 4, 5, 6, 1, 1, 0,...

## $ neighborsP_num <int> 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2,...

## $ target_embeds_inP_num <int> 3, 21, 1, 5,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0...

## $ embeds_in_targetP_num <int> 0, 0, 0, 0,
2, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,...

## $ cohorts_fwt <dbl> 3.970292,
22.634373, 22.634373, 22.634373, 2...

## $ neighbors_fwt <dbl> 21.533445,
37.968634, 33.688446, 27.349358, ...

## $ rhymes_fwt <dbl> 13.142723,
24.473191, 19.684596, 15.046612, ...

## $ homoforms_fwt <dbl> 3.970292,
8.390723, 3.912023, 5.613128, 4.71...

## $ target_embeds_in_fwt <dbl> 29.792782,
127.685319, 22.680328, 42.517044,...

## $ embeds_in_target_fwt <dbl> 3.970292,
8.390723, 12.302746, 14.003851, 35...

## $ nohorts_fwt <dbl> 3.970292,
17.915874, 17.915874, 17.915874, 4...

## $ cohortsP_fwt <dbl> 0.000000,
4.718499, 4.718499, 4.718499, 17.9...

## $ neighborsP_fwt <dbl> 8.390723,
3.970292, 0.000000, 0.000000, 0.00...

## $ target_embeds_inP_fwt <dbl> 16.650059,
88.968478, 2.995732, 22.751933, 0...

## $ embeds_in_targetP_fwt <dbl> 0.000000,
0.000000, 0.000000, 0.000000, 16.5...

## $ cohorts_fwcp <dbl> 1.00000000,
0.37070710, 0.17283550, 0.247991...

## $ neighbors_fwcp <dbl> 0.1843779,
0.2209909, 0.1161236, 0.2052380, ...

## $ rhymes_fwcp <dbl> 0.3020905,
0.3428536, 0.1987352, 0.3730493, ...

## $ homoforms_fwcp <dbl> 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

## $ target_embeds_in_fwcp <dbl> 0.13326355,
0.06571407, 0.17248529, 0.132020...

## $ embeds_in_target_fwcp <dbl> 1.0000000,
1.0000000, 0.3179797, 0.4008275, ...

## $ nohorts_fwcp <dbl> 1.0000000,
0.4683401, 0.2183551, 0.3133047, ...

## $ cohortsP_fwcp <dbl> 1.0000000,
0.6400626, 0.4532777, 0.5432957, ...

## $ neighborsP_fwcp <dbl> 0.3211947,
0.6788053, 1.0000000, 1.0000000, ...

## $ target_embeds_inP_fwcp <dbl> 0.19254240,
0.08618315, 0.56632333, 0.197888...

## $ embeds_in_targetP_fwcp <dbl> 1.0000000,
1.0000000, 1.0000000, 1.0000000, ...

Appendix 2: Bug reports and user
contributions

2.1 How to report bugs

Report any bugs at https://github.com/maglab-uconn/LexFindR/

issues by clicking on “New Issue”.

2.2 How to create an extension

To contribute new functions, first please read the R files

that are part of the LexFindR package. New functions can

be added to extensions.R on your local installation. New

functions should be carefully tested and the code should be

clearly commented. Once you are confident your code is

ready to be shared, move on to the next step of submitting

your code via GitHub.

2.3 How to contribute extensions via GitHub

Extensions are welcomed through a GitHub “pull request”.

Once the user has created a local clone of the forked repos-

itory, the user can edit the competitors.R or extensions.R

file and push their edits to their forked path. Once these

edits have been made, users can open a pull request. Before

every pull request, run R CMD check to ensure that the

code is clean. Please also style your code using the tidy-

verse style guide at https://style.tidyverse.org/ (Wickham,

n.d.) and document your code using roxygen2 (Wickham,

Danenberg, Csárdi, & Eugster, 2020). We will monitor pull

requests and merge appropriate changes.

Acknowledgements This work was supported in part by U.S. National

Science Foundation grants PAC 1754284 (JM, PI) and IGE NRT

1747486 (JM, PI). The authors are solely responsible for the content

of this article. This work was also supported in part by the Basque

Government through the BERC 2018-2021 program, and by the

Agencia Estatal de Investigación through BCBL Severo Ochoa

excellence accreditation SEV-2015-0490.

Author Contributions ZL and JM conceptualized the project; ZL

wrote most code and drafted most of this manuscript; AMC

contributed significant documentation to the LexFindR package and

contributed to the writing and editing of the full manuscript; JM

advised on and contributed to code and writing, and contributed to and

edited the full manuscript.

Open Practices Statement All materials, including computer code,

related to this manuscript are available publicly at the associated

GitHub repository (https://github.com/maglab-uconn/LexFindR). The

package itself is released as open-source software.

References

Balota, D., Yap, M., Cortese, M., Hutchison, K., Kessler, B., &

Loftis, B. (2007). The English Lexicon Project. Behavior Research

Methods, 39, 445–459. https://doi.org/10.3758/BF03193014

Bengtsson, H. (2013). future: Unified parallel and distributed

processing in R for everyone.

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis:
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