Environmental Microbiology (2021) 00(00), 00-00

doi:10.1111/1462-2920.15446

FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction

Jie Liang,¹ Xianhui Fu,¹ Chaofeng Hao,¹ Zhuyun Bian,² Huiquan Liu,¹ Jin-Rong Xu ⁶ and Guanghui Wang ⁵ and Guanghui Wang

¹College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.

²Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN.

Summary

In wheat head blight fungus Fusarium graminearum. A-to-I RNA editing occurs specifically during sexual reproduction. Among the genes with premature stop codons (PSCs) that require RNA editing to encode full-length proteins, FgBUD14 also had alternative splicing events in perithecia. In this study, we characterized the functions of FgBUD14 and its posttranscriptional modifications during sexual reproduction. The Fgbud14 deletion mutant was slightly reduced in growth, conidiation and virulence. Although deletion of FgBUD14 had no effect on perithecium morphology, the Fgbud14 mutant was defective in crozier formation and ascus development. The FgBud14-GFP localized to the apex of ascogenous hyphae and croziers, which may be related to its functions during early sexual development. During vegetative growth and asexual reproduction, FgBud14-GFP localized to hyphal tips and both ends of conidia. Furthermore, mutations blocking the splicing of intron 2 that has the PSC site had no effect on the function of FgBUD14 during sexual reproduction but caused a similar defect in growth with Fgbud14 mutant. Expression of the non-editable FqBUD14Intron2-TAA mutant allele also failed to complement the Fgbud14 mutant. Taken together, FgBUD14 plays important roles in ascus development, and both alternative splicing and RNA editing occur specifically to its transcripts during sexual reproduction in F. graminearum.

Received 12 November, 2020; revised 3 February, 2021; accepted 23 February, 2021. *For correspondence. E-mail wgh2891458@163.com; Tel. (+86) 13193341980.

Introduction

Fusarium head blight (FHB) or scab is one of the most important diseases of wheat and barley worldwide. One major causal agent of FHB is Fusarium graminearum, a homothallic ascomycete (Bai and Shaner, 2004; Goswami and Kistler, 2004). Besides causing yield losses and reducing grain quality, F. graminearum produces deoxynivalenol (DON) and other mycotoxins (Audenaert et al., 2013; Park et al., 2016). Ascospores are the primary inoculum for FHB (Trail et al., 2002). Fusarium graminearum survives and overwinters in plant debris and forms melanized perithecia on the surface of plant tissues. Mature ascospores are forcibly discharged from perithecia, which is important for the dispersal of airborne ascospores (Maldonado-Ramirez et al., 2005; Trail et al., 2005). After landing on flowering wheat or barley heads, ascospores germinate and infect floral tissues that are predisposed to infection (Kazan et al., 2012). On diseased plant tissues, F. graminearum also produces asexual spores (conidia), which spread the infection to other parts of host plants later in the season.

As in Neurospora crassa, repeat-induced point mutation and meiotic silencing by unpaired DNA occur specifically during sexual development in F. graminearum (Cuomo et al., 2007; Son et al., 2011). Although it lacks adenosine deaminase acting on RNA orthologues, genome-wide A-to-I RNA editing, an important posttranscriptional modification that converts adenosine (A) to inosine (I) in RNA molecules via hydrolytic deamination (Bian et al., 2018), has been shown to occur specifically during sexual reproduction in F. graminearum (Liu et al., 2016). Stage-specific RNA editing also exists in N. crassa, Sordaria macrospora and other filamentous ascomycetes during sexual reproduction (Liu et al., 2017; Teichert et al., 2017). In F. graminearum, the PUK1 (Perithecium Unique Kinase 1) gene, known to be important for sexual development, has two tandem premature stop codons (PSCs) and requires A-to-I RNA editing during sexual reproduction to encode the full-length functional protein (Liu et al., 2016). Among the other genes with PSC in their coding regions that have been functionally characterized for the importance of A-to-I RNA editing, *FgAMA1* also plays critical roles in ascospore formation and release in *F. graminearum* (Cao *et al.*, 2017; Hao *et al.*, 2019). Its orthologue in the budding yeast *Saccharomyces cerevisiae* encodes a meiosis-specific APC activator. In *F. graminearum*, the *Fgama1* mutant produced oval, single-celled, binucleate ascospores instead of the four-celled, uninucleate ascospores produced by the wild-type PH-1 strain (Hao *et al.*, 2019).

In the budding yeast, one of the Ama1-interacting genes is Bud14 that is involved in bud site selection (Tonikian et al., 2009). The Bud14 homologue functions as a cell end marker for polarized growth in the fission veast and plays a role in the growth and asexual reproduction (conidiation) in filamentous ascomycetes Aspergillus nidulans and Magnaporthe oryzae (Higashitsuji et al., 2009; Patkar et al., 2010; Valinluck et al., 2014). However, the function of Bud14 orthologues in sexual reproduction has not been characterized in these ascomycetes. Interestingly, in F. graminearum, FgBUD14 expression was upregulated in perithecia, and its transcripts contained one PSC editing event based on published RNA-seq data (Liu et al., 2016). In this study, we showed that FqBud14 localized to the tip of croziers and plays important roles in crozier formation, ascus development and ascospore genesis. We also confirmed that both alternative splicing and RNA editing occur in FgBUD14 transcripts specifically during sexual development, and they synergistically regulate the function of FgBUD14 during sexual reproduction in F. graminearum.

Results

Both alternative splicing and RNA editing occur in FgBUD14

The predicted gene FGSG_04118 of *F. graminearum* (named *FgBUD14* in this study) is orthologous to *BUD14* of *S. cerevisiae*. It has typical structural features that are conserved among the Bud14 orthologues in other fungi, including a conserved SH3 (Src-homology 3) domain (363–420 aa) and a Glc7 binding domain (Fig. S1). However, the overall homology between yeast Bud14 and its orthologues from filamentous ascomycetes is relatively low. FgBud14 shares only 37.5% identity in amino acid sequences with yeast Bud14.

Based on published RNA-seq data (Liu *et al.*, 2016), the *FgBUD14* gene is upregulated during sexual reproduction in comparison with vegetative hyphae (Fig. 1A). The first two introns of its five introns, intron 1 and intron 2, had alternative splicing events in perithecia (Fig. 1B). Interestingly, intron 2 of *FgBUD14* has an in-frame PSC

(UA¹³³⁴G) (Fig. 1B). Among the transcripts that retain intron 2 (approximately 45.8%), 19% of them had this premature stop codon edited to UG¹³³⁴G in perithecia at 8 days after sexual induction (dai) (Fig. 1C). Therefore, *FgBUD14* transcripts are subjected to both alternative splicing and A-to-I RNA editing specifically during sexual reproduction, which has not been reported for any other fungal genes.

Fgbud14 mutant is defective in vegetative growth and conidiogenesis

To determine the function of *FgBUD14*, we generated *Fgbud14* deletion mutants (Table 1) with the gene replacement approach (Fig. S2). In comparison with the wild-type strain PH-1, the *FgBud14* mutant had normal colony morphology (Fig. 2A) although its growth rate was reduced approximately by 16% (Table 2). Deletion of *FgBUD14* also resulted in a reduction in conidiation (Table 2) and affected conidium morphology. Mutant conidia were shorter and had fewer septa than those of the wild type (Fig. 2B). Although wild-type conidia normally had four or five septa, the majority of *Fgbud14* conidia (over 80%) had three or fewer septa (Fig. 2C).

Conidia of the *Fgbud14* mutant also were defective in germination. After incubation at 25°C for 6 h, the *Fgbud14* mutant had shorter germ tubes than the wild type (Fig. 2D). When observed at 12 h post-incubation (hpi), germlings of the *Fgbud14* mutant also showed reduced germ tube growth in comparison with PH-1 (Fig. 2D). In comparison with the wild type, hyphae of the *Fgbud14* mutant had a shorter inter-septal cell distance (Fig. 2E and F). These results indicated that the *Fgbud14* mutant was defective in vegetative growth, conidiogenesis and septation in *F. graminearum*.

FgBUD14 plays a minor role in plant infection

In infection assays with flowering wheat heads, the *Fgbud14* mutant still caused typical scab symptoms on the inoculated kernels and was able to spread to nearby spikelets (Fig. 2G). However, it was slightly reduced in virulence in comparison with PH-1. On average, the disease indices for PH-1 and the *Fgbud14* mutant were 10.6 and 7.7 respectively (Table 2). The *Fgbud14* mutant also was reduced in virulence in infection assays with corn silks (Fig. 2H), which may be related to its defects in growth rate. We also assayed the DON production in TBI medium and found that the *Fgbud14* mutant had no obvious defect in DON production in comparison with the wild type (Table 2). These results indicate that *FgBUD14* does not play a critical role in plant infection.

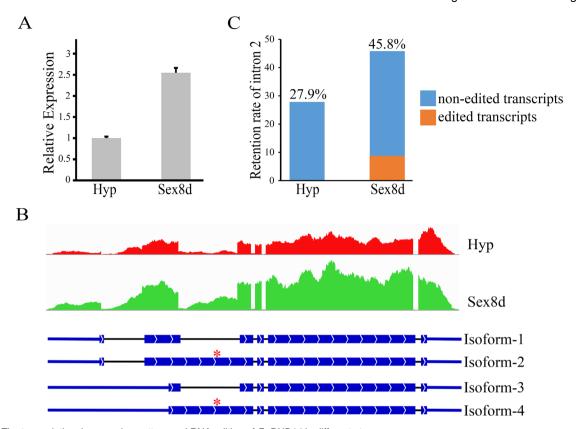


Fig. 1. The transcriptional expression pattern and RNA editing of *FgBUD14* in different stages. A. The abundance of FqBUD14 transcripts in hyphae collected from 24 h YEPD cultures (Hyp) and 8-dai perithecia (Sex8d). The relative expression level of FgBUD14 in hyphae was arbitrarily set to 1.

B. Isoforms of FgBUD14 transcripts derived from alternative splicing and A-to-I RNA editing. IGV-Sashimi plots showing the read coverage and transcript isoforms of *FgBUD14* in RNA-seq data of 24 h germlings harvested from YEPD (Hyp) and perithecia harvested at 8 dai (Sex8d). The asterisk symbol * marks the TA¹³³⁴G stop codon in the second intron that is changed to TGG by RNA editing.

C. Bar graphs show the retention rate of intron 2 and the edited portion of FgBUD14 transcripts. [Color figure can be viewed at wileyonlinelibrary.com]

FgBUD14 is important for ascospore formation

In comparison with the wild-type strain, the Fgbud14 mutant produced melanized perithecia with normal morphology on mating plates (Fig. 3A), but its perithecial density was reduced approximately by 30% (Fig. S3A). However, unlike the wild type, ascospore cirrhi were not observed in the Fgbud14 mutant at 8 dai or longer (Fig. 3A). The Fgbud14 mutant also failed to forcibly release ascospores in ascospore discharge assays (Fig. 3B).

We then examined ascus development and ascospore formation inside perithecia. Mature asci of the wild type contained eight ascospores that had four compartments. On average, the number of asci per perithecium was reduced over 95% in the Fgbud14 mutant in comparison with the wild type (Fig. S3B), suggesting a defect in ascus development. Among the few asci formed by the Fgbud14 mutant at 7 dai, most of them lacked mature ascospores (Fig. 3C). Interestingly, some asci appeared

to produce mature ascospores in 12-dai or 18-dai perithecia produced by the Fgbud14 mutant. For the rare asci with ascospores in 12-dai perithecia, about 40% of them contained fewer than eight ascospores (Fig. 3D; Fig. S3C). These results indicated that the FgBUD14 gene is dispensable for perithecium morphology but plays a critical role in ascus development and ascospore formation.

Deletion of FgBUD14 significantly reduces crozier formation and ascus development

To further characterize the defects of the Fgbud14 mutant in ascus development, we examined the formations of croziers in perithecia at 4 dai. In perithecia formed by PH-1, croziers were observed (Fig. 4A). Under the same conditions, ascogenous hyphae were observed inside perithecia formed by the Fgbud14 mutant. However, croziers were rarely observed (Fig. 4A).

© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology

Table 1. The wild-type and mutant strains of *F. graminearum* used in this study.

Strains	Brief description	Reference
PH-1	Wild type	Cuomo et al. (2007)
mat1-1	Transformant of mat1-1 mutant	Lee
H1-GFP	expressing H1-GFP	et al. (2003)
M11	Fgbud14 deletion mutant of PH-1	This study
M22	Fgbud14 deletion mutant of PH-1	This study
C1	Transformant of M11 expressing FgBUD14-GFP	This study
C8	Transformant of M11 expressing FgBUD14-GFP	This study
N6	Fgama1 deletion mutant of PH-1	Hao et al. (2019)
MN4	Fgbud14 Fgama1 double mutant	This study
MN9	Fgbud14 Fgama1 double mutant	This study
Ri1-19	Transformant of M11 expressing FgBUD14 ^{Intron1}	This study
Ri1-22	Transformant of M11 expressing FgBUD14 ^{Intron1}	This study
Ri2-5	Transformant of M11 expressing FgBUD14 ^{Intron2}	This study
Ri2-10	Transformant of M11 expressing FgBUD14 ^{Intron2}	This study
Ri2 ^{TGG} -5	Transformant of M11 expressing FgBUD14 ^{Intron2-TGG}	This study
Ri2 ^{TGG} -7	Transformant of M11 expressing FqBUD14 ^{Intron2-TGG}	This study
Ri2 ^{TAA} -9	Transformant of M11 expressing FgBUD14 ^{Intron2-TAA}	This study
Ri2 ^{TAA} -10	Transformant of M11 expressing FgBUD14 ^{Intron2-TAA}	This study

At 5 dai, young asci with developing ascospores were observed inside perithecia of PH-1. In the *Fgbud14* mutant, ascogenous hyphae rarely gave rise to elongated developing asci (Fig. 4B). When stained with DAPI, partial elongated asci formed by the *Fgbud14* mutant had eight nuclei (Fig. 4B). These results indicated that FgBud14 plays a critical role in the formations of croziers and ascus development during the early stages of sexual development.

The Fgbud14 mutant is normal in ascosporogenesis in outcrossing

Although it is a homothallic fungus, *F. graminearum* can be forced to outcross. When the *Fgbud14* mutant was crossed as the male with a *mat1-1* H1-GFP strain (Zheng *et al.*, 2013), normal asci with eight ascospores were formed (Fig. 4C). Four of them had GFP signals in the nucleus, suggesting the segregation of H1-GFP in the progeny (Fig. 4C). Therefore, the wild-type *FgBUD14* allele is dominant in the diploid or dikaryotic stage and its presence in one parental strain is sufficient for normal ascus development and ascospore formation.

FgBud14-GFP localizes to the tips of conidia and hyphae

For complementation assays, we generated the FgBUD14-GFP fusion construct under the control of its native promoter and transformed it into the Fgbud14 mutant. The resulting transformants were confirmed to contain the FgBUD14-GFP construct by PCR. The Fgbud14/FgBUD14-GFP transformant was normal in growth (Fig. 2A; Table 1), conidium morphology (Fig. 2B), conidiation (Table 1), plant infection (Fig. 2G and H; Table 1) and sexual reproduction (Fig. 3). These results indicated that the expression of FgBUD14-GFP completely rescued the defects of the Fgbud14 mutant. Therefore, deletion of FgBUD14 is directly responsible for the defects observed in the Fgbud14 mutant.

When examined by epifluorescence microscopy, FgBud14-GFP signals were mainly localized to the tip in developing conidia (Fig. 5A) but observed at both ends in mature conidia (Fig. 5B). Because of the strong background fluorescence, no reliable FgBud14-GFP signal was observed at the septum of conidia. (Fig. 5B). During germination, FgBud14-GFP appeared to be enriched at the germ tube tip (Fig. 5C). Enrichment of FgBud14 at the septum also was observed in germ tubes (Fig. 5C), further indicating the involvement of FgBud14 in septation in *F. graminearum*. Therefore, FgBud14 may play a role in end marking and polarized growth as well as septum formation.

When treated with 10 μ M latrunculin A (an actin polymerization inhibitor) for 20 min, the apical actin patch was no longer visible at hyphal tips (Fig. S4A). However, the FgBud14-GFP is still localized to the hyphal tip, although its GFP intensity was significantly reduced (Fig. S4B). Thus the actin cytoskeleton is not essential but contributes to the localization of FgBud14 to the hyphal tip.

FgBud14-GFP is localized to the apex of ascogenous hyphae and croziers

Because one of the major defects of the *Fgbud14* mutant was crozier formation and ascus development, we then examined the subcellular localization of FgBud14 during sexual reproduction. In developing perithecia at 4 dai, FgBud14-GFP was localized to the tips of ascogenous hyphae and croziers (Fig. 6A). To our knowledge, this is the first report on proteins localizing to the tips of croziers in filamentous ascomycetes. In some croziers, FgBud14-GFP signals appeared to be enriched at the contact region between crozier terminal cell and stalk cell (Fig. 6B). However, GFP fluorescence signals were not observed in young asci (Fig. 6C). One possible function of FgBud14 may be related to the hooking and crozier fusion during crozier formation and ascus development as shown in the diagram (Fig. 6D).

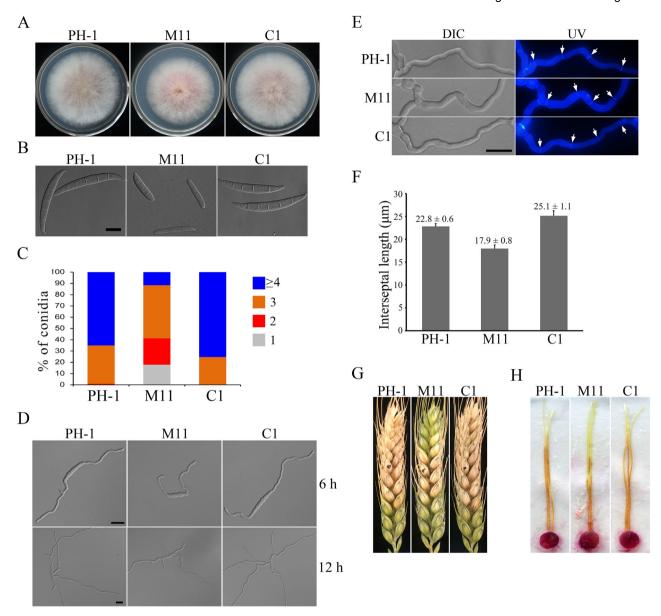


Fig. 2. Defects of the Fgbud14 mutant in growth, conidiation, germination, septation and plant infection.

- A. Three-day-old PDA cultures of the wild-type PH-1, Fgbud14 mutant (M11) and Fgbud14/FgBUD14 complemented transformant (C1).
- B. Conidia of the same set of strains were examined by differential interference contrast (DIC) microscopy. Bar = 10 µm.
- C. Percentage of conidia with different numbers of septa in PH-1, M11 and C1.
- D. Germlings of the same set of strains were examined for defects in germination and germ tube growth by DIC microscopy after incubation in YEPD for 6 or 12 h. Bar = $20 \mu m$.
- E. 12-hpi germlings of the same set of strains were examined for septum formation by staining with CFW. Arrows point to septa. Bar = 20 µm.
- F. The inter-septal distance of 12-hpi germlings of PH-1, M11 and C1.
- G. Flowering wheat heads were drop-inoculated with conidia from PH-1, M11 and C1. Black dots mark the inoculated spikelets. Photographs were taken 14 dpi.
- H. Corn silks were inoculated with culture blocks of labelled strains and examined at 5 dpi. [Color figure can be viewed at wileyonlinelibrary.com]

The FgBud14 may not interact with FgAma1 during sexual reproduction

To investigate the relationship between FgBud14 and FgAma1, we performed BiFC assay to detect their interaction. We generated the FgBUD14-NYFP FgAMA1-CYFP fusion constructs under the control of

their native promoters and co-transformed them into PH-1 strain. The resulting transformants were confirmed to contain both FgBUD14-NYFP and FgAMA1-CYFP constructs by PCR. In the resulting transformants, no reliable YFP signals were observed at the apex of ascogenous hyphae and croziers (Fig. S5A). Moreover,

Table 2. Defects of *Fqbud14* mutant in growth, conidiation, virulence and DON production.

Strains	Growth rate ^a (mm day ⁻¹)	Conidiation ^b (10 ⁵ conidia/ml)	Disease index ^c	DON ^d (mg g ⁻¹)
PH-1	10.1 ± 0.02 ^A	13.8 ± 0.9 ^A	10.0 ± 1.6 ^A	248.7 ± 33.9 ^A
M11	8.4 ± 0.03^{B}	5.5 ± 0.5^{B}	7.7 ± 0.5^{B}	240.5 ± 13.3 ^A
C1	10.2 ± 0.09^{A}	14.0 ± 0.5^{A}	9.6 ± 1.6^{A}	NA

NA, not assayed.

Means \pm SE were calculated from the results of three independent experiments. Data from three replicates were analysed with the protected Fisher least significant difference (LSD) test. The same letter indicates no significant difference and different letters indicate a statistically significant difference (P = 0.05).

we also generated the *Fgbud14 Fgama1* double mutant and compared its sexual reproduction phenotype with *Fgbud14* and *Fgama1* single mutants. Unlike the *Fgbud14* mutant, the *Fgama1* mutant produced abundant asci with oval and single-celled ascospores (Fig. S5B) as previously reported (Hao *et al.*, 2019). Interestingly, the *Fgbud14 Fgama1* double mutant showed a combined defect of both *Fgbud14* and *Fgama1* mutants in sexual reproduction (Fig. S5B). These results indicated that the FgBud14 may not interact with FgAma1 during sexual reproduction.

Expression of an FgBUD14 allele with retained intron 2 complemented the defect of Fgbud14 mutant in sexual reproduction but not its growth defect

Unlike intron 1, intron 2 is subjected to both alternative splicing and RNA editing. To determine the effects of retaining these two introns, we introduced site-specific mutations into the FgBUD14 complementation construct by changing the 'gt-ag' splicing sites to 'ct-aa' to block intron splicing. The resulting FgBUD14^{Intron1} FgBUD14^{Intron2} were transformed into the Fgbud14 mutant. The resulting Fqbud14/FqBUD14Intron1 transformants, similar to the complemented transformant, were normal in vegetative growth and sexual reproduction (Fig. 7A). In contrast, the Fgbud14/FgBUD14^{Intron2} transformants, similar to the Fgbud14 mutant, were defective in vegetative growth (Fig. 7A) but normal in ascospore formation and discharge (Fig. 7B). These results indicate that retaining the 47-bp intron 1 has no obvious effect on FgBUD14 functions. However, the expression of FgBUD14^{Intron2} failed to rescue the growth defect of Fqbud14 but complemented its defect in sexual reproduction. Moreover, we performed RT-PCR to confirm that intron 2 was totally retained in transcripts of FgBUD14^{Intron2} during sexual reproduction (Fig. S6A). We also assayed the PSC editing event in the transcripts of FqBUD14^{Intron2} in perithecia of the Fqbud14/ FgBUD14^{Intron2} transformant. The sequencing peak map showed that there were two distinct signal peaks (A and G) at TA¹³³⁴G (Fig. S6B), indicating the occurrence of A-to-I editing within the 681-bp intron 2. In perithecia, the transcripts produced by Fgbud14/FgBUD14^{Intron2} transformants correspond to isoform-2 and isoform-4 of FgBUD14 (Fig. 1B). Therefore, stage-specific A-to-I RNA editing of the premature stop codon in the retained intron 2 is essential for FgBUD14^{Intron2} transcripts to encode functional proteins.

Editing of TA¹³³⁴G in retained intron 2 to TGG is essential for the function of FgBUD14

To verify the importance of the editing of TA¹³³⁴G in the second intron (681-bp), we introduced the A1334G mutation or inserted an extra stop codon TAA after the TA¹³³⁴G to the FqBUD14^{Intron2} construct. The resulting FgBUD14^{Intron2-TGG} and non-editable FgBUD14^{Intron2-TAA} alleles were transformed into the Fabud14 mutant. Subsequently, we performed RT-PCR and confirmed by sequencing analyses that intron 2 was completely retained and not further edited during sexual reproduction in both Fgbud14/FgBUD14Intron2-TGG and Fgbud14/ FaBUD14^{Intron2-TAA} transformants (Fig. Fqbud14/FqBUD14^{Intron2-TGG} transformants were normal in vegetative growth (Fig. 8A), ascus development and ascospore discharge (Fig. 8B and C), indicating that retaining the in-frame intron 2 with the TG¹³³⁴G mutation had no obvious effects on FqBUD14 functions. In contrast, the Fqbud14/FqBUD14Intron2-TAA transformant expressing the non-editable allele was defective in growth rate and sexual reproduction (Fig. 8), indicating that the expression of non-editable FgBUD14Intron2-TAA allele failed to complement the defects of Fabud14 mutant. Therefore, stage-specific editing of TA1334G to TGG in the retained intron 2 of FgBUD14 is important for its function during sexual reproduction.

^aGrowth rate was measured as the average daily expansion of colony radius after incubation on PDA plates for 3 days.

^bNumber of conidia per ml in 5-day-old CMC liquid cultures.

^cDisease index was estimated by counting the number of diseased spikelets per head at 14 dpi. At least 10 wheat heads were examined for each strain.

^dDON production was measured with TBI cultures inoculated for 7 days.

transformant

perithecia

Fig. 3. Defects of the Fgbud14

A. Selfing cultures of the wild type (PH-1), Fgbud14 mutant (M11) and Fgbud14/FgBUD14

(C1) were examined for perithecium formation and ascospore

B. Perithecia of the same set of strains were assayed for ascospore discharge. Ascospores dis-

from

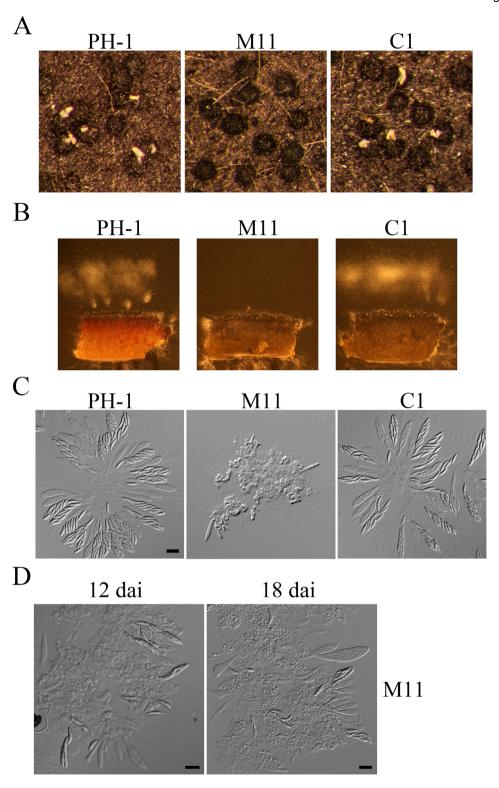
ascospore discharge.

Bar = $20 \mu m$.

accumulated as whitish masses after incubation for 24 h. The Fgbud14 mutant had no visible

C. Asci and ascospores formed

by PH-1, mutant M11 and complemented transformant C1 were examined at 7 dai. Normal asci with eight ascospores were rarely observed in the Fgbud14 mutant.


D. Asci and ascospores formed by the Fgbud14 mutant M11 were examined at 12 and 18 dai. Bar = $20 \mu m$. [Color figure can be viewed at wileyonlinelibrary.com]

mutant in sexual reproduction.

complemented

cirrhi at 8 dai.

charged

Discussion

In the budding yeast, Bud14 is one of the proteins that interact with Ama1 and it is involved in bud-site selection and polarized growth. Although the amino acid sequences of Bud14 homologues are not well conserved, FgBud14 is the only Bud14 homologue in F. graminearum and has the

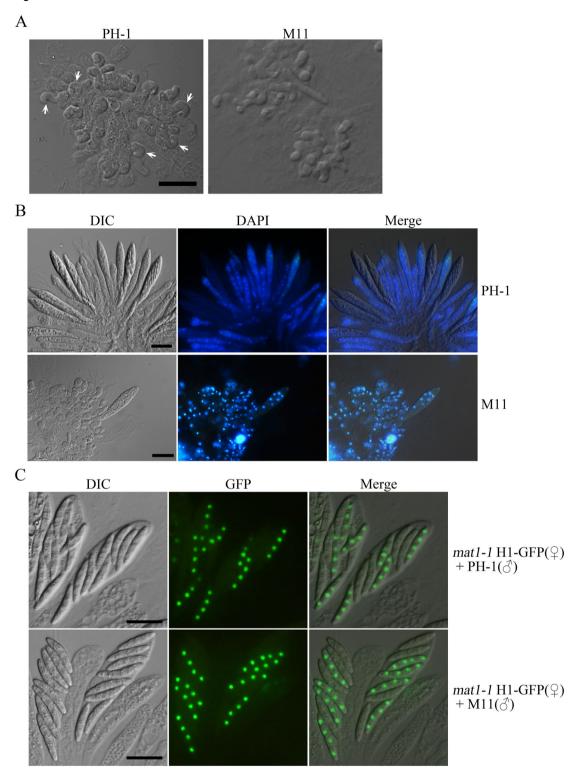


Fig. 4. FgBud14 is important for crozier formation and ascus development.

A. Perthecia from mating cultures of PH-1 and Fgbud14 mutant (M11) were collected at 4 dai and examined for crozier and ascus development.

Abundant croziers (marked with white arrows) were observed only in the wild type. Bar = 20 µm.

B. Developing asci and ascogenous tissues in perithecia of PH-1 and M11 at 5 dai were stained with DAPI and examined by DIC and epifluorescence microscopy. Fascicles of developing asci with eight nuclei were observed only in PH-1. Bar = 20 µm.

C. Asci and ascospores from perithecia from the out-crosses between the mat1-1 H1-GFP strain as the female with PH-1 (upper row) or Fgbud14 (lower row) at 7 dai were examined by DIC and epifluorescence microscopy. Eight ascospores in each ascus showed 1:1 segregation for GFP signals in the nucleus. Bar = 20 μ m. [Color figure can be viewed at wileyonlinelibrary.com]

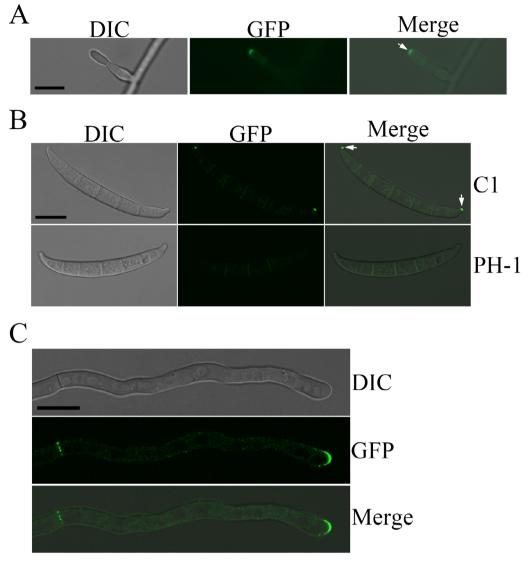
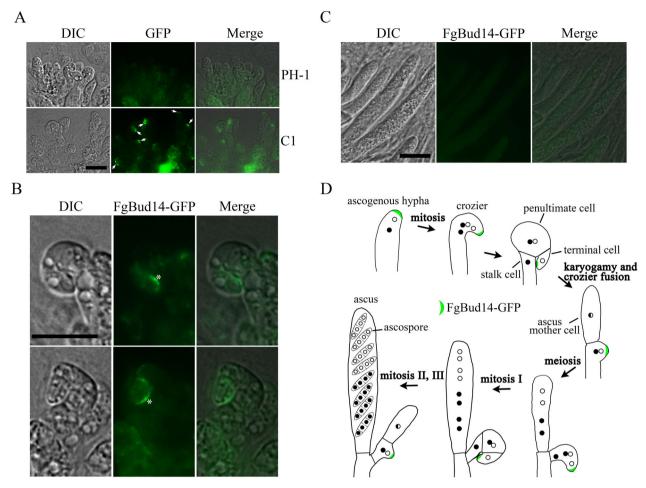


Fig. 5. Subcellular localization of FgBud14 during conidiogenesis and vegetative hyphal growth.

A. Developing conidia on conidiophores of the Fgbud14/FgBUD14-GFP complemented transformant. Arrow points to GFP signals observed at the tip of developing conidia by DIC and epifluorescence microscopy. Bar = $10 \mu m$.


B. Mature conidia of the Fgbud14/FgBUD14-GFP complemented transformant. GFP signals were observed at both ends of mature conidia ((marked with arrows) by Olympus FV3000 confocal microscope. Bar = 10 μm.

C. Germ tubes (12 h) of Fgbud14/FgBUD14-GFP transformant were examined by Olympus FV3000 confocal microscope. GFP signals were observed at the tip and septa of germ tubes. Bar = 10 μm. [Color figure can be viewed at wileyonlinelibrary.com]

conserved SH3 and Glc7-binding domains (Valinluck et al., 2014). However, we failed to detect the interaction between FgBud14 and FgAma1 in BiFC assays. The Fgama1 mutant was normal in ascus development but produced deformed ascospores as reported (Hao et al., 2019). However, the Fabud14 mutant showed a different defect from the Fgama1 mutant during sexual development. Therefore, the FgAma1 and FgBud14 may not be functionally related during sexual reproduction.

Similar to the bud14 mutant in S. cerevisiae (Cullen and Sprague, 2002), the Fgbud14 deletion mutant was

reduced approximately by 16% in growth rate. The Bud14 orthologues also are known to play a role in normal vegetative growth in A. nidulans, M. oryzae and Ustilago maydis (Higashitsuji et al., 2009; Patkar et al., 2010; Valinluck et al., 2014). In F. graminearum, the Fgbud14 mutant had a slightly shorter inter-septal distance in hyphae than that of the wild type. Similarly, an increased number of septa were observed in germ tubes of a \(\Delta teaC \) mutant in \(A. \) nidulans (Higashitsuji et al., 2009). In U. maydis, the filaments of a tea4 mutant formed under dimorphic switch-inducing conditions also

Fig. 6. Subcellular localization of FgBud14 during sexual development.

A. Ascogenous tissues from perithecia formed by the *Fgbud14/FgBUD14*-GFP transformant at 4 dai were examined by DIC and epifluorescence microscopy. GFP signals were localized to the apexes of ascogenous hyphae and croziers (marked with arrows).

B. GFP signals were also accumulated at the contact region (marked with asterisks) between crozier terminal cell and stalk cell, where the crozier

- C. GFP signals were not present at the tip of developing asci from the Fgbud14/FgBUD14-GFP transformant at 4.5 dai. Bar = 10 μm.
- D. A model of dynamic localization of FgBud14 during ascospore genesis. [Color figure can be viewed at wileyonlinelibrary.com]

were increased in the number of septa (Valinluck *et al.*, 2014). Therefore, the Bud14 homologues seem to play a conserved role in hyphal septation.

fusion would occur. Bar = $10 \mu m$.

The Fgbud14 mutant was reduced over 60% in conidiation and the majority of mutant conidia were shorter and had fewer septa than the wild-type conidia. In M. oryzae, the Motea4 mutant also was significantly reduced in conidiation and formed two-celled conidia instead of three-celled pyriform conidia (Patkar et al., 2010). However, the $\Delta teaC$ mutant appeared to have normal conidium morphology, but A. nidulans forms unicellular conidia (Higashitsuji et al., 2009). It is possible that BUD14 homologues are important only for conidiogenesis in fungi that produce multi-septate conidia, which may be related to the function of Bud14 proteins in septation.

BUD14 homologues have been characterized as a cell end marker for polarized growth in the budding and fission

yeasts, and in the filamentous ascomycetes A. nidulans and M. oryzae (Higashitsuji et al., 2009; Patkar et al., 2010; Valinluck et al., 2014). In this study, we showed that FgBud14 localized to the tip of vegetative hyphae and conidia. Conidia of the Fgbud14 mutant were normal in the initial germination from conidium compartments, and 12-hpi germlings of Fabud14 were normal in hyphal branching, but reduced in germ tube growth. In A. nidulans, conidia of $\Delta teaC$ mutant were defective in the emergence of the second germ tube and the number of branches increased in germlings of $\Delta teaC$ mutant (Higashitsuji et al., 2009). In the Motea4 mutant of M. oryzae, one or more branched germ tubes were often formed from the end compartment of conidia, and only 9% of Motea4 conidia formed abnormal appressoria and even fresh germ tubes emerged from the appressorium-like structures (Patkar et al., 2010). Therefore, it is likely that

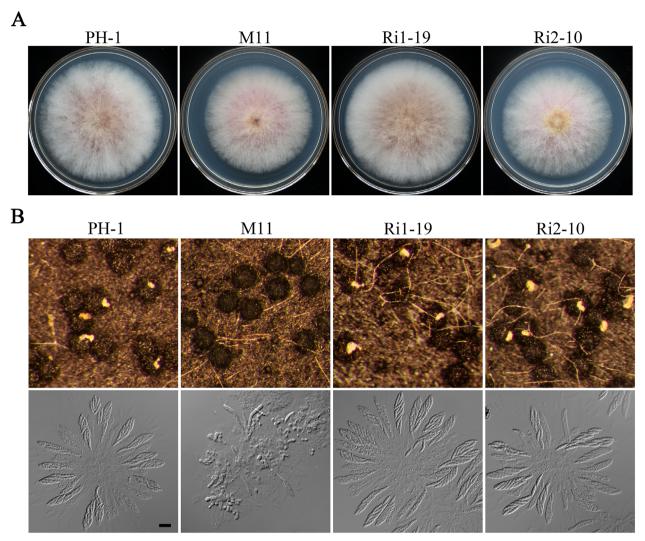


Fig. 7. Functional characterization of the first and second introns of the FgBUD14 gene. A. Three-day-old PDA cultures of the wild-type strain PH-1, *Fgbud14* mutant (M11), *Fgbud14/FgBUD14* transformant (Ri1-19) with non-splicable intron 1 and *Fgbud14/FgBUD14* transformant (Ri2-10) with non-splicable intron 2. B. Mating cultures of the same set of strains were examined for perithecia with ascospore cirrhi (upper panels) at 8 dai and asci from crushed perithecia (lower panels) at 7 dai. Bar = 20 µm. [Color figure can be viewed at wileyonlinelibrary.com]

the role of BUD14 homologues in conidium germination and establishing polarity is species-specific in filamentous fungi. In Saccharomyces pombe, Tea4 mediates the connection between Tea1 and the formin For3 that catalyses F-actin assembly (Evangelista et al., 2002; Martin et al., 2005; Higashitsuji et al., 2009). Tea1 and Tea4 localize to the cell end in a Mod5-dependent manner. The Tea4-formin interaction was also proved in A. nidulans, M. oryzae and U. maydis (Higashitsuji et al., 2009; Patkar et al., 2010; Valinluck et al., 2014). Both polarized growth and septation are actin-dependent processes, and actin usually accumulates at sites of germination, growing hyphal tips and sites of septa formation (Kono et al., 2005; Berepiki et al., 2011). Thus, FgBud14 likely has its conserved role in regulating the organization of actin cytoskeleton in F. graminearum.

In F. graminearum, deletion of FgBUD14 only slightly reduced its virulence in infection assays with wheat heads and corn silks inoculated with conidia. However, deletion of MoTEA4 affected appressorium formation and penetration, and the Motea4 mutant was non-pathogenic in M. oryzae (Patkar et al., 2010). In U. maydis, the TEA4 orthologue also is essential for the fusion between cells of compatible mating types, which is required for the yeast-to-hypha transition and plant infection (Valinluck et al., 2014). The different roles of BUD14 homologues in plant infection among these fungal pathogens may be related to their differences in infection strategies.

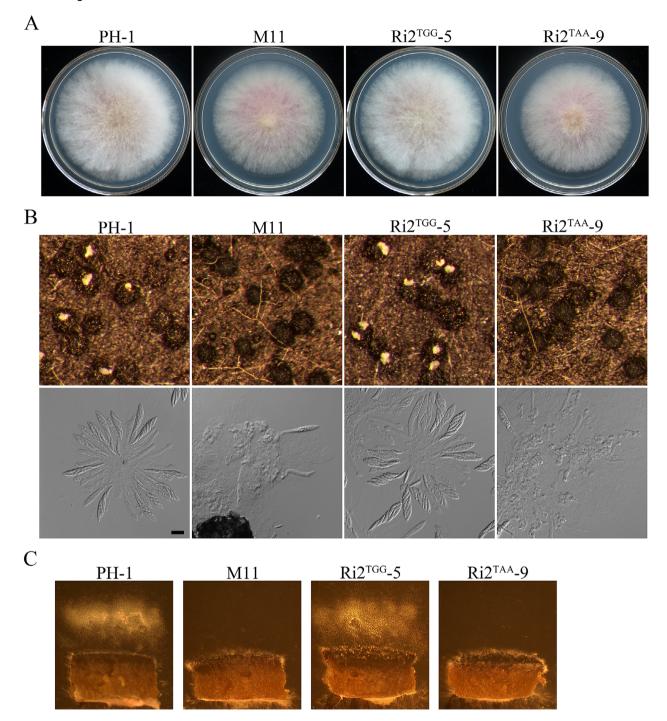


Fig. 8. Functional characterization of the RNA editing in the second intron.

- A. Three-day-old PDA cultures of the wild-type PH-1, *Fgbud14* mutant (M11), *Fgbud14/FgBUD14* Intron2-TGG (Ri2^{TGG}-5) and *Fgbud14/FgBUD14* FgBUD14 (Ri2^{TAA}-9) transformants.
- B. Mating cultures of the same set of strains were examined for perithecia with ascospore cirrhi (upper panels) at 8 dai and asci from crushed perithecia (lower panels) at 7 dai. Bar = $20 \mu m$.
- C. Perithecia of the same set of strains were assayed for ascospore discharge. Ascospores discharged from perithecia accumulated as whitish masses after incubation for 24 h. [Color figure can be viewed at wileyonlinelibrary.com]

Infection of floral tissues by *F. graminearum* does not involve a mating-associated dimorphic transition or heavily melanized appressoria.

Although Bud14 orthologues have been well characterized for their functions during vegetative growth and asexual reproduction in yeasts and other ascomycetes,

their functions in sexual reproduction are not clear. We found that FgBud14, like FgAma1, is dispensable for perithecium formation. However, FgBud14 is important for development. crozier formation. ascus ascosporogenesis. In F. graminearum, FgBud14 may be involved in the tip bending of ascogenous hyphae to form croziers and may also play a role in the crozier fusion event leading to the formation of elongated developing asci in ascogenous tissues (Bouhouche et al., 2004; Pöggeler et al., 2018). In U. maydis, a basidiomycete, the TEA4 orthologue is essential for the fusion between yeast cells of compatible mating types, which lead to hyphal growth and plant infection (Valinluck et al., 2014). Besides its role in the early stages of sexual reproduction, FgBud14 is also important for ascospore formation although the underlying mechanism is not clear. It is possible that FgBud14 is involved in the proper elongation of developing asci and formation of mature asci, because the Fgbud14 mutant often produced deformed asci with fewer than eight ascospores in mature asci of F. araminearum.

Unlike FgAMA1 that is specifically expressed during reproduction, FgBUD14 is sexual constitutively expressed, although its expression level is elevated in perithecia. Interestingly, FgBUD14 transcripts are subiected to both alternative splicing and RNA editing during sexual reproduction. Because of a PSC in the second intron, A-to-I RNA editing is essential for the transcripts that retain intron 2 to encode functional FgBud4 proteins. During sexual development, this stop codon can be removed by alternative splicing or be corrected by A-to-I RNA editing to encode full-length functional proteins. Interestingly, its orthologue in N. crassa (NCU00006) also has the second intron that is subjected to both alternative splicing and RNA editing based on published RNA-seg data (Liu et al., 2017). To our knowledge. FgBUD14 and NCU00006 are the first two genes that are found to have both stage-specific alternative splicing and RNA editing during sexual reproduction in fungi. Alternative splicing and RNA editing would ensure the greatest protein diversity of FgBud14, which may ensure the normal sexual process under harsh environmental conditions.

Materials and methods

Strains and culture conditions

The wild-type strain PH-1 (Cuomo et al., 2007) and transformants derived from it in this study were routinely cultured on potato dextrose agar (PDA) plates at 25°C (Ren et al., 2019). Colony morphology and growth rate were assayed with 3-day-old PDA cultures as described (Li et al., 2015). Conidiation and conidium morphology

were assaved with 5-day-old CMC cultures (Wang et al., 2012). Freshly harvested conidia were incubated in liquid YEPD medium for 6 and 12 h and examined for defects in conidium germination and germ tube growth. For selfing, aerial hyphae of 7-day-old carrot agar cultures were pressed down with sterile 0.1% Tween 20 (Kim et al., 2015). For outcrossing, 7-day-old carrot agar cultures of mat1-1 H1-GFP were pressed down with conidium suspensions (10⁵ conidia ml⁻¹) of the PH-1 or Fgbud14 mutant (Zheng et al., 2013). Mating cultures were incubated under a black light lamp at 25°C for 7-18 days and examined for perithecium formation, ascosporogenesis and ascospore discharge as described (Wang et al., 2011; Zheng et al., 2013). Protoplast preparation and PEG-mediated transformation were performed as previously described (Hou et al., 2002). For selection of transformants, hygromycin B (CalBiochem, La Jolla, CA, USA) and G418 (Sigma-Aldrich, St Louis, MO, USA) were added to the final concentration at 300 and 400 μg ml⁻¹ respectively (Wang et al., 2018).

Generation of Fqbud14 and Fqbud14 Fqama1 mutants

The FqBUD14 (FGSG 04118) gene replacement construct was generated with the split-marker approach as described (Catlett et al., 2003; Li et al., 2011). A 0.9-kb upstream and a 1.0-kb downstream fragment of FgBUD14 were amplified with the primer pairs 1F/2R and 3F/4R respectively. The resulting PCR products were fused to NEO (Neomycin-resistance gene) fragments amplified with the primer pairs NEO-F/EO-R and EO-F/NEO-R from pFL7 plasmid (Zhou et al., 2010) by overlapping PCR and co-transformed into protoplasts of PH-1. Transformants resistant to G418 were screened with primers 5F/6R that amplified a 0.7-kb FgBUD14 fragment. The Fgbud14 deletion mutants were confirmed by PCR with both upstream and downstream anchor primers as described (Wang et al., 2012). For generating the Fgbud14 Fgama1 double mutants, the FgAMA1 gene replacement construct generated with the hygromycin resistance gene (hph) was transformed into the Fgbud14 mutant M11. The putative Fgbud14 Fgama1 mutants were identified by PCR. All primers used for PCR are listed in Table S1.

Complementation of the Fgbud14 mutant

For complementation assays, the gap repair method (Bruno et al., 2004) was used to generate the FqBUD14-GFP construct. The entire FgBUD14 gene with its promoter region was amplified with primers HB-F and HB-R and co-transformed with Xhol-digested pDL2 (carrying the hygromycin resistance marker) into yeast strain XK1-25 as described (Zhou et al., 2011). The

© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology

FgBUD14-GFP fusion construct recovered from Trp + yeast transformants was transformed into the Fgbud14 mutant. The Fgbud14/FgBUD14-GFP transformants resistant to both hygromycin and G418 were analysed by PCR and further confirmed by examination for GFP signals with an Olympus BX53 epifluorescence microscope (Olympus, Tokyo, Japan) or an Olympus FV3000 confocal microscope (Olympus).

Plant infection and DON production

For infection assays with flowering wheat heads of cultivar Xiaoyan 22, conidia were harvested from 5-day-old CMC cultures and re-suspended to 2×10^5 conidia ml $^{-1}$ in sterile distilled water. For each head, a center spikelet was drop-inoculated with 10 μ l of conidium suspensions as described (Gale *et al.*, 2002). Wheat spikelets with typical FHB symptoms were examined at 14 days post-inoculation (dpi). The disease index was estimated as the number of diseased spikelets per head from three independent replicates, with at least 10 wheat heads inoculated in each replicate (Jonkers *et al.*, 2012). Corn silks of cultivar Pioneer 2375 were infected with culture blocks and examined as described (Hou *et al.*, 2002).

For DON production assays, conidia harvested from 5-day-old CMC cultures were re-suspended in TBI medium to a final concentration of 10⁴ conidia ml⁻¹. 2 ml of conidial suspension was transferred to the well of a 24-well plate and incubated for 7 days at 25°C without shaking in the dark. Subsequently, 400 µl liquid culture was mixed with 1.6 ml methanol, and then cleaned up with a C18 SPE cartridge. 800 µl of filtrate was transferred to a new 2 ml tube and vacuum-evaporated to dryness at 25°C. The residue was dissolved in 50 µl complex solvent of TMSI:TMCS (100:1 vol./vol.) by vortexing vigorously for 10 min. The resulting solution was mixed with 800 µl isooctane and 800 µl ultrapure water successively. The mixture was allowed to stand at room temperature for 20 min for separation of liquid phases. The upper organic phase was analysed by a chromatography-mass capillary gas spectrometry (GCMS-QP2010 Shimadzu, Kyoto, Japan) with an Rxi-5MS column (30 m long; 0.25 mm internal diameter; 0.25 µm film thick) and nitrogen was used as the carrier gas at a constant flow rate of 1 ml min-1. The operating conditions were as follows: injector temperature: 260°C; interface temperature: 280°C; oven temperature: 150°C (1 min), slope 30°C min⁻¹ and 280°C (15 min); ion source: 250°C. The m/z fragment ions monitored for quantification of trichothecenes were 193 and 295 for DON, 235 and 377 for 3-ADON and 235 and 392 for 15-ADON. The calculation of trichothecene concentration was based on the average area counts of the fragment ions of each standard toxin. The retention time for each

toxin was 6.375 min for DON, 6.890 min for 3-ADON and 6.960 min for 15-ADON. The values are reported in $\mu g g^{-1}$ dried mycelia, and the assays were repeated three times for each strain. Because the wild-type PH-1 strain tends to produce predominantly 15-ADON in TBI culture (Alexander *et al.*, 2011), we just showed the concentrations of 15-ADON of tested strains.

Generation of different mutant alleles of FgBUD14

To generate the *FgBUD14*^{Intron1} construct by yeast gap repair, three fragments of *FgBUD14* were amplified with primer pairs FR-1F/BPU-1R, BPU-1F/BP1-R and BP1-F/HB-R respectively and co-transformed with *XhoI*-digested pDL2 into yeast strain XK1-25 (Bruno *et al.*, 2004; Zhou *et al.*, 2011). The resulting *FgBUD14*^{Intron1} construct rescued from Trp + yeast transformants was verified by sequencing for the 'gt-ag' to 'ct-aa' mutation at the splicing sites of intron 1. Similar approaches were used to generate the *FgBUD14*^{Intron2}, *FgBUD14*^{Intron2-TGG} and *FgBUD14*^{Intron2-TAA} alleles with PCR primers listed in Table S1. All the mutant alleles of *FgBUD14* were verified by sequencing and transformed into the *Fgbud14* mutant M11 for complementation assays.

Staining for the nucleus and cell wall

To assay defects in septation, conidia and hyphae of the wild-type and Fgbud14 mutant strains were stained with Calcofluor white (CFW) as described (Li et~al.,~2015). To assay nuclear division during ascus development, perthecia were harvested from mating plates at 4–6 dai, gently crushed, and stained with 20 $\mu g~ml^{-1}$ 4,6-Diamidino-2-phenylindole for 5 min. Samples were examined for CFW and DAPI staining signals with an Olympus BX53 epifluorescence microscope.

Acknowledgements

We thank Dr. Cong Jiang, Qinhu Wang and Xue Zhang for fruitful discussions. We also thank Dr. Hua Zhao (State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China) for confocal experimental assistance. This work was supported by the National Natural Science Foundation of China (No. 31801684) to G.W., the Natural Science Foundation of Shannxi Province, China (No. 2020JM-157) to G.W., the National Science Fund for Excellent Young Scholars (No. 31622045) to H.L. and a grant to J.-R.X. from US Wheat and Barley Initiative.

References

Alexander, N., McCormick, S., Waalwijk, C., Lee, T., and Proctor, R. (2011) The genetic basis for 3-ADON and

- 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol 48: 485-495.
- Audenaert, K., Vanheule, A., Hofte, M., and Haesaert, G. (2013) Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel)
- Bai, G., and Shaner, G. (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42: 135-161.
- Berepiki, A., Lichius, A., and Read, N.D. (2011) Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 9: 876-887.
- Bian, Z., Ni, Y., Xu, J.R., and Liu, H. (2018) A-to-I mRNA editing in fungi: occurrence, function, and evolution. Cell Mol Life Sci 76: 329-340.
- Bouhouche, K., Zickler, D., Debuchy, R., and Arnaise, S. (2004) Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167: 151-159.
- Bruno, K.S., Tenjo, F., Li, L., Hamer, J.E., and Xu, J.R. (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3: 1525-1532.
- Cao, S., He, Y., Hao, C., Xu, Y., Zhang, H., Wang, C., et al. (2017) RNA editing of the AMD1 gene is important for ascus maturation and ascospore discharge in Fusarium graminearum. Sci Rep 7: 4617.
- Catlett, N.L., Lee, B.-N., Yoder, O.C., and Turgeon, B.G. (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newslett **50**: 9-11.
- Cullen, P.J., and Sprague, G.F. (2002) The Glc7p-interacting protein Bud14p attenuates polarized growth, pheromone response, and filamentous growth in Saccharomyces cerevisiae. Eukaryot Cell 1: 884-894.
- Cuomo, C.A., Guldener, U., Xu, J.R., Trail, F., Turgeon, B. G., Di Pietro, A., et al. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317: 1400-1402.
- Evangelista, M., Pruyne, D., Amberg, D.C., Boone, C., and Bretscher, A. (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4: 32-41.
- Gale, L.R., Chen, L.F., Hernick, C.A., Takamura, K., and Kistler, H.C. (2002) Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 92: 1315-1322.
- Goswami, R.S., and Kistler, H.C. (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5: 515-525.
- Hao, C., Yin, J., Sun, M., Wang, Q., Liang, J., Bian, Z., et al. (2019) The meiosis-specific APC activator FgAMA1 is dispensable for meiosis but important for ascosporogenesis in Fusarium graminearum. Mol Microbiol 111: 1245-1262.
- Higashitsuji, Y., Herrero, S., Takeshita, N., and Fischer, R. (2009) The cell end marker protein TeaC is involved in growth directionality and septation in Aspergillus nidulans. Eukaryot Cell 8: 957-967.
- Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H.C., and Xu, J.R. (2002) A mitogen-activated protein kinase gene

- (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15: 1119-1127.
- Jonkers, W., Dong, Y., Broz, K., and Kistler, H.C. (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8: e1002724.
- Kazan, K., Gardiner, D.M., and Manners, J.M. (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13: 399-413.
- Kim, H.K., Jo, S.M., Kim, G.Y., Kim, D.W., Kim, Y.K., and Yun, S.H. (2015) A large-scale functional analysis of putative target genes of mating-type loci provides insight into the regulation of sexual development of the cereal pathogen Fusarium graminearum. PLoS Genet 11: e1005486.
- Kono, K., Matsunaga, R., Hirata, A., Suzuki, G., Abe, M., and Ohya, Y. (2005) Involvement of actin and polarisome in morphological change during spore germination of Saccharomyces cerevisiae. Yeast 22: 129-139.
- Lee, J., Lee, T., Lee, Y., Yun, S., and Turgeon, B.G. (2003) Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 50: 145-152.
- Li, C., Melesse, M., Zhang, S., Hao, C., Wang, C., Zhang, H., et al. (2015) FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 98: 770-786.
- Li, Y., Wang, C., Liu, W., Wang, G., Kang, Z., Kistler, H.C., and Xu, J.R. (2011) The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 24: 487-496.
- Liu, H., Li, Y., Chen, D., Qi, Z., Wang, Q., Wang, J., et al. (2017) A-to-I RNA editing is developmentally regulated and generally adaptive for sexual reproduction in Neurospora crassa. Proc Natl Acad Sci U S A 114: E7756-E7765.
- Liu, H., Wang, Q., He, Y., Chen, L., Hao, C., Jiang, C., et al. (2016) Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res 26: 499-509.
- Maldonado-Ramirez, S.L., Schmale, D.G., III, Shields, E.J., and Bergstrom, G.C. (2005) The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agric For Meteorol 132: 20-27.
- Martin, S.G., McDonald, W.H., Yates, J.R., III, and Chang, F. (2005) Tea4p links microtubule plus ends with the formin For3p in the establishment of cell polarity. Dev Cell 8: 479-491.
- Park, A.R., Fu, M., Shin, J.Y., Son, H., and Lee, Y.W. (2016) The protein kinase a pathway regulates zearalenone production by modulating alternative ZEB2 transcription. J Microbiol Biotechnol 26: 967-974.
- Patkar, R.N., Suresh, A., and Naqvi, N.I. (2010) MoTea4-mediated polarized growth is essential for proper asexual development and pathogenesis in Magnaporthe oryzae. Eukaryot Cell 9: 1029-1038.
- Pöggeler, S., Nowrousian, M., Teichert, I., Beier, A., and Kück, U. (2018) Fruiting-body development

- ascomycetes. *Physiology and Genetics*: The Mycota, **15**: 1–56. Cham, Switzerland: Springer.
- Ren, J., Li, C., Gao, C., Xu, J.R., Jiang, C., and Wang, G. (2019) Deletion of FgHOG1 is suppressive to the mgv1 mutant by stimulating Gpmk1 activation and avoiding intracellular turgor elevation in Fusarium graminearum. Front Microbiol 10: 1073.
- Son, H., Min, K., Lee, J., Raju, N.B., and Lee, Y.W. (2011) Meiotic silencing in the homothallic fungus *Gibberella zeae*. Fungal Biol **115**: 1290–1302.
- Teichert, I., Dahlmann, T.A., Kück, U., and Nowrousian, M. (2017) RNA editing during sexual development occurs in distantly related filamentous ascomycetes. *Genome Biol Evol* 9: 855–868.
- Tonikian, R., Xin, X., Toret, C.P., Gfeller, D., Landgraf, C., Panni, S., et al. (2009) Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 7: e1000218.
- Trail, F., Gaffoor, I., and Vogel, S. (2005) Ejection mechanics and trajectory of the ascospores of Gibberella zeae (anamorph Fuarium graminearum). Fungal Genet Biol 42: 528–533.
- Trail, F., Xu, H., Loranger, R., and Gadoury, D.M. (2002) Physiological and environmental aspects of ascospore discharge in *Gibberella zeae* (anamorph *Fusarium graminearum*). *Mycologia* **94**: 181–189.
- Valinluck, M., Woraratanadharm, T., Lu, C.Y., Quintanilla, R. H., Jr., and Banuett, F. (2014) The cell end marker Tea4 regulates morphogenesis and pathogenicity in the basidiomycete fungus *Ustilago maydis*. Fungal Genet Biol 66: 54–68.
- Wang, C., Zhang, S., Hou, R., Zhao, Z., Zheng, Q., Xu, Q., et al. (2011) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 7: e1002460.
- Wang, G., Sun, P., Gong, Z., Gu, L., Lou, Y., Fang, W., et al. (2018) Srk1 kinase, a SR protein-specific kinase, is important for sexual reproduction, plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 20: 3261–3277.
- Wang, G., Wang, C., Hou, R., Zhou, X., Li, G., Zhang, S., and Xu, J.R. (2012) The *AMT1* arginine methyltransferase gene is important for plant infection and normal hyphal growth in *Fusarium graminearum*. *PLoS One* **7**: e38324.
- Zheng, Q., Hou, R., Ma, J., Wu, Z., Wang, G., Wang, C., and Xu, J.R. (2013) The MAT locus genes play different roles in sexual reproduction and pathogenesis in *Fusarium graminearum*. *PLoS One* **8**: e66980.
- Zhou, X., Heyer, C., Choi, Y.E., Mehrabi, R., and Xu, J.R. (2010) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol 47: 143–151.
- Zhou, X., Li, G., and Xu, J.R. (2011) Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. *Methods Mol Biol* **722**: 199–212.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

- Fig. S1. Alignment of FgBud14 with its orthologues from other fungi.
- Sequences of FgBud14 and its homologues from Saccharomyces cerevisiae (Bud14), Magnaporthe oryzae (MGG_06439T0), Neurospora crassa (NCU00006), Aspergillus nidulans (AN1099), and Sclerotinia sclerotiorum (SS1G_03195) were aligned with MEGA software. Identical residues are highlighted in black and conserved residues in grey. The conserved SH3 and Glc7-binding domains are marked with blue overline and red box, respectively.
- **Fig. S2.** PCR assays for confirmation of the deletion of *FqBUD14*.
- A. The *FgBUD14* locus and gene replacement construct. The *FgBUD14* and *NEO* genes are marked with empty and black arrows, respectively. Primer pairs 1F/2R and 3F/4R were used to amplify the upstream and downstream flanking sequences of *FgBUD14*. Primers pairs 5F/6R, G850/G852, 7F/G856R, and G855F/8R were used for mutant screen and verification. B. Verification of the labelled *Fgbud14* deletion mutants by PCR with primer pairs 5F/6R (L1), G850/G852 (L2), 7F/G856R (L3), G855F/8R (L4). DNA isolated from the wild-type strain PH-1 was used as the control. Whereas mutant strains M11 and M22 had only the expected bands derived from homologous recombination events in the flanking sequences, mutant M6 had an additional band when amplified with primers 7F and G856R.
- **Fig. S3.** Quantitative analysis of *Fgbud14* defects in sexual reproduction.
- A. 7-dai selfing cultures of PH-1, *Fgbud14* mutant (M11) and complemented transformant (C1) were counted to calculate the number of perithecia per cm².
- B. The average number of wild-type and *Fgbud14* asci per perithecium at 7 dai. C. The percentage of *Fgbud14* asci with indicated number of ascospores per ascus in perithecia at 12 dai.
- **Fig. S4.** The effect of Latrunculin A on FgBud14 localization. The localizations of LifeAct-GFP (A) and FgBud14-GFP (B) in transformants PH-1/LifeAct-GFP and *Fgbud14/FgBUD14*-GFP treated with or without Latrunculin A (Lat A). These transformants were grown on SYM agar for 1 day and treated with 10% DMSO (-LatA) or 10 μ M Lat A (+LatA) for 20 min, and then observed under Olympus FV3000 confocal microscope.
- Fig. S5. The relationship between FgBud14 and FgAma1.
- A. Ascogenous tissues from perithecia formed by PH-1 expressing both FgBUD14-NYFP and FgAMA1-CYFP at 4 dai were examined by DIC and epifluorescence microscopy. No reliable YFP signals were detected at the apexes of ascogenous hyphae and croziers, suggesting that the FgBud14 may not interact with FgAma1 during sexual development. Bar = 10 μ m. B. The morphology of asci and ascospores in deletion mutants of Fgbud14 (M11), Fgama1 (N6) and Fgbud14 Fgama1 (MN4) at 12 dai. Bar = 20 μ m.
- **Fig. S6.** Detecting the intron 2 retention and RNA editing of *FgBUD14* transcripts in different transformants.
- A. The intron 2 retentions were verified by RT-PCR with primers (marked with arrows) in 8-dai perithecia of transformants Ri2-10 (Fgbud14/FgBUD14Intron2), Ri2^{TGG}-5

 $(Fgbud14/FgBUD14^{Intron2-TGG})$ and Ri2^{TAA}-9 $(Fgbud14/FgBUD14^{Intron2-TAA})$. B. RNA editings were examined by direct sequencing of PCR products in 8-dai perithecia of the same set of strains. The blue boxes point the loci where

RNA editing may occur. The two peaks (A and G) marked by the red arrow indicated that the A-to-I RNA editing occurred in transformants Ri2-10.

Table S1. PCR primers used in this study.