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Abstract—The performance of connected and automated 

vehicle (CAV) platoons, aimed at improving traffic efficiency 

and safety, depends on vehicle dynamics and communication 

reliability. However, CAVs are vulnerable to perturbations in 

vehicular communication. Such endogenous vulnerability can 

induce oscillatory dynamics to CAVs, leading to the failure of 

platooning. Differing from previous work on CAV platoon 

stability, this research exploits CAV platooning vulnerability 

under periodic perturbation by formulating the oscillatory 

dynamics as vibrations in a mechanical system. Akin to other 

mechanical systems, a CAV platoon has its inherent oscillation 

frequency, exhibiting unique characteristics in a perturbed 

travel environment. To this end, this paper proposes an 

approach to characterize the CAV platooning vulnerability 

using the mechanical vibration theory. The employed theory 

reveals that CAV platooning vulnerability mainly associates 

with its resonance frequency, through which a small periodic 

perturbation can amplify the platoon oscillation. The analytical 

formulation and simulation results show that preventing 

periodic perturbations from a platoon's resonance frequency is 

crucial to enhance the CAV platooning reliability and suppress 

large amplitude oscillations, helping to secure the expected 

benefits of CAV platoons. 

I. INTRODUCTION 

Connected and automated vehicle (CAV) technology 

paves new pathways for improving mobility, safety, 

sustainability leveraging the advancements in sensing, 

computation, automation, and communication [1, 2]. Overall, 

CAVs extend the capability of manual vehicles by allowing 

vehicles to share information through connections to improve 

road safety [3], decreasing congestion [4], and reducing 

energy use [5]. Wireless communication is one of the major 

enablers for developing connectivity among CAVs, which 

supports vehicle-to-vehicle and vehicle-to-infrastructure 

communications to enable collaborative travel among CAVs. 

Supported by applications such as cooperative adaptive cruise 

control, CAVs can travel collaboratively with their preceding 

vehicles to form a platoon maintaining a short headway. Such 
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a platoon-based travel mode conveys additional benefits for 

CAV systems. It is expected that CAV platoons will be 

common on the roadways in the future. Hence, platoon 

stability is crucial to warrant the performance of future CAV 

traffic flow, where small disturbances could be amplified and 

lead to stop-and-go traffic waves, even traffic paralysis or 

collisions [6].  

Platoon stability is an important attribute to assess the 

performance of CAV control strategies. Over the past few 

years, vast studies have analyzed the stability of CAV platoon 

under diverse platoon control protocols. For example, Li et al. 

[7] aimed to design a distributed integral sliding-mode control 

strategy for CAV platoon and analyze its stability by using the 

Lyapunov technique. Besselink and Johansson [8] presented a 

delay-based spacing policy for the control of vehicle platoons 

and analyzed its string stability. Zhou et al. [9] developed a 

car-following control strategy of CAVs to stabilize a mixed 

vehicular platoon consisting of CAVs and human-driven 

vehicles and derived a string stability criterion for a mixed 

vehicular platoon. Moreover, other studies have investigated 

various platoon stability analysis approaches. For example, 

Feng et al. [10] categorized the commonly-used methods for 

vehicle platoon into three types, i.e., z-domain, s-domain, and 

Time-domain analysis methods, and discussed the relations 

between ambiguous definitions, analysis methods, and their 

derived properties.  

Unlike those studies focusing on platoon stability, this 

paper introduces an innovative metric to characterize the 

platoon instability, which is inspired by mechanical vibration 

in a spring-mass system. As mentioned in [11], each object in 

the real world is vibrating at a specific frequency. Vibration is 

everywhere, thereby causing instable systems. To uncover 

how a CAV platoon responds to ubiquitous perturbations, this 

research aims to exploit CAV platoon inherent vulnerability 

from the standpoint of traffic instability by formulating 

oscillatory dynamics of CAV platoon as vibrations in a 

mechanical system. To this end, this paper proposes an 

approach to formulate the vulnerability, i.e., fluctuation 

characteristics, of CAV platoons under periodic perturbation 

based on the mechanical vibration theory. The proposed 

approach helps to analyze platoon instability under periodic 

perturbations. The employed mechanical vibration theory 

reveals that a CAV platoon's vulnerability mainly associates 

with its resonance frequency, through which a small 

perturbation can amplify the platoon oscillation. 

The main contributions of this study are summarized as 

follows. (i) This paper proposes an approach to characterize 

the vulnerability of CAV platoons under periodic perturbation 
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based on the mechanical vibration theory. (ii) The inherent 

oscillatory frequency of a CAV platoon is formulated as a 

function of vehicle control parameter, which is a proxy of the 

stiffness coefficient of an object in mechanical vibration 

theory. (iii) The analytical characterization of inherent 

vulnerability, supported by simulation results, shows that a 

CAV platoon is vulnerable to periodic perturbations with a 

frequency same as its inherent frequency, also known as 

resonance. The analysis of CAV platoon vulnerability 

conveys the insight that preventing perturbations from the 

resonance frequency is crucial to enhance the CAV platooning 

reliability and suppress large amplitude oscillations.  

This study is organized as follows. Section II presents a 

generic car-following model that captures the vehicular 

dynamical behaviors. Then the generic car-following model is 

reformulated into the form of a mechanical vibration equation 

with damper, based on the linear stability theory and 

mechanical vibration theory. Section III carries out a 

simulation study to investigate the validity of the proposed 

metric for CAV platooning vulnerability. Section IV 

concludes our findings and suggests future research 

directions.  

II. SYSTEM MODEL 

A. Modeling of the platooned vehicles 

To make our proposed approach potentially compatible 

with most vehicle platoon models, this paper adopts a generic 

car-following formulation to describe the vehicle's 

longitudinal dynamics. The continuous-time car-following 

models have a generalized form as follows [12-14]:  

( )

( ) ( ),

( ) ( ), ( ), ( ,)

n n

n n n n

x t v t

v t f vs t v tt 

=

=
        (1) 

where 
nx  represents the position of vehicle n , 

nv  represents 

the speed of vehicle n , and f  represents an acceleration 

stimuli function, which is determined by vehicle speed 
nv , 

inter-vehicle spacing 
1n n ns x x−= − , and relative velocity 

1n n nv v v− = −  between the adjacent vehicles in the platoon. 

In the typical car-following scheme, each vehicle follows its 

preceding vehicle in a single lane without overtaking, as 

shown in Fig. 1.  

...

121n −n1n +

 
Figure 1 Illustration of the platooned vehicles on a single lane 

The generic car-following model presented by Eq. (1) 
captures the following main characteristics: (i) reaction with 
current vehicle state and (ii) reaction only to the direct 
predecessor. In fact, Eq. (1) can be further extended to cover 
more complicated platooning dynamics models, e.g., with 
reactions to the platoon leader and other predecessors in the 
platoon through time-varying communication topologies [15, 
16]. To some extent, such models can represent the capabilities 
of drivers or CAV control systems regarding the input stimuli 

nv , 
ns  and 

nv . Most car-following models can reproduce 

traffic waves or other disturbance shapes of traffic flow. The 
generic formulation is more comprehensive than the various 

variants in the literature [17, 18], and the derived results can be 
transferred to any car-following model with a well-defined 
acceleration stimuli function.  

The generic model Eq. (1) can well characterize the 

car-following behaviors for CAVs since vehicles equipped 

with the vehicle-to-everything (V2X) communication 

capability intend to "duplicate" its directly preceding vehicle 

behavior based on the predecessor-following (PF) 

communication topology [14]. However, when a periodic 

perturbation is imposed on the vehicle platoon, the vehicle 

platoon becomes unstable. If the periodic perturbation is 

released with different frequencies, the fluctuation pattern of 

the traffic flow changes. Indeed, periodic perturbation is a 

ubiquitous event or process in nature, such as sound, noise, 

and vibration, occurring on varied spatial and temporal scales, 

which can immediately influence system stability [19, 20]. 

Therefore, to capture abnormal platoon vehicle behaviors, 

especially to uncover the relationship between the fluctuation 

amplitude/frequency of platoon vehicles and external 

perturbations, the next section introduces a constructive 

approach to address this issue. 

B. Problem formulation 

This section considers the scenario where a stable vehicle 

platoon is exerted by a perturbation [14]. Define ev  as the 

equilibrium velocity and es  denotes the equilibrium velocity. 

Denote   and y  as the deviation of the velocity and space 

gap of vehicle n  from the equilibrium, respectively, i.e.,  

e

e ,

.

n

ns

v

s

v

y



=

= +

+
  (2) 

At the equilibrium state where vehicles have identical 

space gap and velocity, there exists a function 
e e( )v V s=  

such that e e( , ( ),0) 0f s V s =  for all 
e 0s   based on Eq. (1). 

The perturbation, forcing the changes in space gap and 

velocity of equilibrium traffic flow, will cause fluctuating 

behavior of platoon vehicles [21]. This forced fluctuation is 

similar to mechanical vibration. For example, for a 

spring-mass system in the field of mechanical vibration, if one 

exerts an external force on an object and stretches or contracts 

the spring away from its equilibrium, the spring will vibrate 

back and forth around its equilibrium location and then 

gradually stop at the equilibrium location with the help of 

damper force once removing the external force.  

Considering the similarity between the acceleration 

behavior in platoon vehicles and mechanical vibration, this 

study develops a formula to facilitate the analysis of platoon 

instability, as presented in Theorem 1.  

Theorem 1. The oscillatory dynamics of platooning vehicles 

follows the second-order homogeneous ordinary differential 

equation: 
2

2

0 02
0,2

d y dy
y

dtdt
  + + =   (3) 
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1
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Proof. When a change in the gap and/or velocity occurs, the 

uniform traffic flow becomes unstable. By applying the linear 

stability analysis theory of the traffic flow [22], substituting 

Eq. (2) into Eq. (1) yields the following equation: 

( )
d

, .
d

,e ef s y v
t


 = + + −    (4) 

Based on the differential equation 
d n

n

x
v

dt
=  and Eq.(2), we 

have  

( ).

d

d
,

d
,

,

e ef s

d

y v
t

y

t



 =

−

+ +

=

−

  (5) 

The first-order Taylor expansion of Eq. (5) leads to  

d
terms,nonlinear

d

s vv

nn nff y f
t


 = + − +   (6) 

Ignoring the nonlinear terms in Eq. (6), the linear part can 

be written as a single equation for the inter-vehicle spacing 

deviation:  

( )
2

2
.

d d
0vv s

n n n

y y

dtdt
f f f y− + =−   (7) 

Defining ( ) 0=2v

n n

vf f  −−  and 2

0

s

nf = , Eq. (7) can be 

rewritten as  
2

2

0 02
0,2

d y dy
y

dtdt
  + + =  

The proof of Theorem 1 is completed.   

Note that the form of Eq. (3) is akin to the mechanical 

vibration system, which is also the general form of the 

differential equation for the displacement of a particle in a 

linear system with viscous damping [23]. Here, 
0  represents 

an inherent oscillation frequency, at which the system 

oscillates independently of any external excitation.  

Parameter   in Eq. (3) is a measurement index of system 

performance, which is used to describe the damping capacity 

of a system against vibration. In particular, 1   indicates an 

underdamped system while 1   indicates an overdamped 

system. In the context of vehicle platooning, 1   represents 

the scenario that the perturbed platoon will be oscillating back 

and forth around the equilibrium state and 1   represents 

that the perturbed platoon can converge to its equilibrium state 

and will not oscillate. Therefore, a platoon control protocol 

that ensures 1   can enable the platoon to resist external 

perturbation. Such resistance is helpful in enhancing platoon 

performance reliability in a complex travel environment.  

Compared to overdamped systems, this paper focuses on 

investigating the underdamped condition due to the concern 

that a perturbed vehicle platoon oscillating back and force 

may induce more safety risks and traffic efficiency reduction 

[24]. Furthermore, as shown by [25, 26] in the field of 

mechanical vibration, the largest vibration amplitude occurs at 

resonance when the resonance frequency coincides with the 

inherent oscillation frequency of the underdamped system. 

The resonance effect in CAV platoon will be verified in 

Section III.  

C. Vehicle control model 

This section specifies a car-following model, i.e., Helly's 

model, to be the vehicle control model of CAV platooning due 

to its simplicity and wide application in car-following 

behaviors [27-29]. Furthermore, using Helly's model, the 

acceleration of a vehicle maintains a linear relationship with 

the deviation from the desired space gap and the velocity 

difference between two successive vehicles. Also, this model 

has been found to present a good fit to observed data [28] and 

has been used to design the Adaptive Cruise Control 

algorithm [31] that is suitable to describe the vehicle 

platooning behaviors. The model is expressed as 

( )

min 1

( ) ( )

)with

( ) ( )

( ) (

n

n

v n x n

n

a tv Dt x tt

D t D l v t

 

−

=

= + +

 +  −
  (8) 

where 
v  represents the sensitivity to relative velocity, 

x  

represents the sensitivity to distance difference between two 

successive vehicles, ( )nD t  is a desired following distance, 

minD  is the minimum distance allowed as a safety gap, 
nl  is 

the length of vehicle n , and   represents reaction time. Note 

that distance 
nD  increases with an increased value of 

nv . 

When a periodic perturbation is exerted on an 

underdamped vehicle platoon, the vehicle platoon starts 

oscillating around its equilibrium state. Applying Eqs. (1)-(3) 

to the Helly's model, the platoon fluctuation can be 

characterized by the following equations:  

, = , ,v s

n n n

v

x x vf f f   = − =   (9) 

and 

( )0

1
.

2
,x x xv      = +=   (10) 

Eq. (10) establishes the analytical relationships between 

platoon's inherent oscillation characteristics and vehicle 

control parameters, as graphically illustrated in Fig. 2. 

 
Figure 2 Changes of   with 

v  and 
x  

Fig. 2 shows the change of   with different reaction time   

and sensitivity parameters 
v  and 

x . This figure illustrates 

that increasing the sensitivity parameter of 
x  and/or 

decreasing the sensitivity parameter of 
v  can weaken the 
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fluctuation feature of the platoon. The area above the curves 

denotes the overdamped region, the area below the curves the 

underdamped region.  

Moreover, the reaction time affects the performance 

reliability of the vehicle platoon. In general, the smaller the 

reaction time, the better the platoon efficiency because the 

shorter reaction time allows the following vehicle to response 

the preceding vehicle's operation timely, enabling a shorter 

headway or a higher traffic throughput. However, based on Eq. 

(8), the shorter reaction time yields a smaller space gap that 

could lead to traffic oscillation or even rear-end collisions 

under perturbation. As illustrated by Fig. 2, the shorter reaction 

time expands the underdamped region that increases the 

likelihood of oscillatory dynamics in the platoon. Therefore, 

Eq. (10) provides a quantitative metric for investigating the 

tradeoff between platoon efficiency and reliability.  

At this point, we have derived analytical formulas for 

vehicle platoon fluctuation characteristics using mechanical 

vibration theory and presented that the proposed approach can 

be used to measure the inherent vulnerability of vehicle 

platoon. The next section will demonstrate how to apply the 

approach to analyze or suppress the impact of periodic 

perturbation.  

III. SIMULATION  

To prepare a simulation testbed for our study, we adopt the 
vehicle dynamics with Helly's model and the communication 
topology with PF scheme, which capture both continuous 
vehicle dynamics and discrete impact of inter-vehicle 
communication. The platoon consists of 10 CAVs, and the first 
leading vehicle remains its initial velocity during the entire 
simulation. At the initial stage, each vehicle's speed is 15m/s, 
and each vehicle's space gap is set as 10m. The total simulation 
duration is 80s. The parameters of the platoon are selected 
from existing studies [27, 32], as shown in Table 1. Unless 
otherwise specified, these parameters would not change.  

Table 1 Parameters used in simulation  

Symbol Value Description 

0v  120 km/h Desired free-flow speed 

l  5 m Vehicle length 

0s  2 m Minimum safety distance 

a  23 m/s  Maximum acceleration 

b  
24 m/s  Maximum deceleration 

t  0.1 s Sampling time 

Next, to verify the theoretical results presented in Section II, 
we construct two scenarios on the CAV platoon: no 

perturbation and periodic perturbation. Parameters 0.5x =  

and 0.3v =  in both scenarios. 

Scenario I: no perturbation 

The first case is used to illustrate the performance of the 

simulated platoon with different reaction time in an 

environment without perturbation. Let 00.5,0.6 8, 0. ,1. = . 

Based on Eq. (10), we can derive the value of 

parameter 0.3889, 0.4243 7, 0.4950, 0.565 = , respectively, 

and all 
0  are equal to 0.7071. Hence, 1   representing the 

simulated platoon is underdamped.  

The performance of the platoon is depicted in Figure 3 and 

Figure 4, where Figure 3 shows the change of each vehicle's 

velocity given different reaction time, and Fig. 4 shows the 

change of space gap offset given different reaction time. As 

shown in these two figures, with increasing reaction time, the 

fluctuation amplitude of the vehicle platoon turns larger, 

while the fluctuation ends earlier. In detail, the end time of 

fluctuation for 00.5, 0.6 8, 0. , 1. =  are identified as 72.0s, 

63.7s, 56.2s, and 47.4s, respectively. The longer reaction time 

has a larger stable space gap. The stable space gap is obtained 

as 9.5m, 11m, 14m, and 17m for 00.5,0.6 8, 0. ,1. =  which 

leads to the larger fluctuation amplitude. Although the shorter 

reaction time may cause a smaller space gap, which is a direct 

reflection of the traffic efficiency, it generates a longer 

fluctuation time, which agrees with the theoretical results and 

illustrates the tradeoff effect of increased reaction time in 

space and time dimensions.  

  
(a) 0.5 =  (b) 0.6 =  

  
(c) 0.8 =  (d) 1.0 =  

Figure 3 Plots of velocity with different reaction time 

  
(a) 0.5 =  (b) 0.6 =  

  
(c) 0.8 =  (d) 1.0 =  

Figure 4 Plots of Gap offset with different reaction time 
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Scenario II: Periodic perturbation 

In this scenario, a periodic perturbation with specified 
frequency and amplitude is exerted on the CAV platoon. Such 
a periodic perturbation may be from the control system's noise 
[33] or intentional malicious interference [14, 32]. Under 
extreme conditions, a small perturbation can amplify vehicle 
platoon oscillation. Hence, we attempt to verify whether the 
resonance frequency could lead to serious oscillation. Let 

1.0 = , then, as Scenario I shows, 
0 0.7071 =  and 

0.5657 1 =  , representing an underdamped platoon.  

Without loss of generality, we assume the space gap error of 
the 4th vehicle is disturbed in a sinusoidal fashion, i.e. 

( )

( ) ( )

( ) sin

e

n n

n t

s t s y t

y t A 

= +

=
 (11) 

Figs. 5-7 show the impact of a perturbation with low 
frequency, resonance frequency, and high frequency on the 

CAV platoon, i.e. 0.2 = , 
0 0.7071 = = , and 2=1. , 

respectively. The disturbance appears in the period of 10-20s. 
Comparing Figs. 5-7, the disturbance with the resonance 
frequency in Fig. 6 causes the largest oscillation. In particular, 
the perturbation amplitudes of velocity, space gap, and 
acceleration in Fig. 6 are much larger than those in Fig. 5 or 
Fig. 7. The simulation results demonstrate that the disturbance 
with the resonance frequency on the vehicle platoon can have 
serious consequences. Besides, compared to Figs. 3d and 4d 
with the same reaction time, the periodic perturbation could 
cause severe oscillation behavior in the platoon. 

  
(a) Position versus time (b) Velocity versus time 

  
(c) Gap versus time (d) Acceleration versus time 

Figure 5 Plots of position, velocity, gap, and acceleration with 

time under 0.2 =  

  
(a) Position versus time (b) Velocity versus time 

  
(c) Gap versus time (d) Acceleration versus time 

Figure 6 Plots of position, velocity, gap, and acceleration with 

time under 
0 0.7071 = =  

  
(a) Position versus time (b) Velocity versus time 

  
(c) Gap versus time (d) Acceleration versus time 

Figure 7 Plots of position, velocity, gap, and acceleration with 

time under 1.2 =  

The simulation results show that continuous perturbations 
would lead to platoon oscillations and stop-and-go waves. 
Among periodic perturbations, the one with resonance 
frequency could cause the most severe oscillation. The 
simulation results not only present an application of the 
proposed approach to quantify CAV platoon vulnerability but 
also demonstrate that resonance frequency is a dangerous 
perturbation pattern that could cause dramatic consequences. 

IV. CONCLUSIONS 

The goal of this study focuses on exploring the 

vulnerability of the CAV platoon. The generic car-following 

model and Helly's model have been reformulated as a 

mathematical representation of the mechanical vibration 

based on the similarity between mechanical vibrations and 

platoon oscillations. The proposed approach can be used to 

characterize the vulnerability of CAV platoon and analyze 

platoon oscillation behavior. The theoretical results reveal that 

a CAV platoon's vulnerability mainly associates with its 

resonance frequency, through which a small perturbation can 

amplify its effect to increase the platoon oscillation amplitude. 

The paper demonstrates that resonance frequency could lead 

to serious oscillations among various periodic perturbation 

frequencies through simulation. As a result, preventing the 

perturbation frequency from the resonance frequency is 
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crucial to enhance the CAV platooning reliability and 

suppress large amplitude oscillations.  

The proposed approach for characterizing CAV platooning 

vulnerability can be further extended in several directions. 

First, this study only applies the proposed approach to a linear 

car-following model to develop closed-form formulas of 

inherent oscillation frequency
0  and damping parameter  . 

It will be interesting to investigate the oscillation frequency 

and damping parameter for nonlinear car-following models, 

such as the Intelligent Driver Model. Second, the theoretical 

derivation for CAV platooning vulnerability ignores the 

communication attributes, such as communication topology 

and delay, which affect the platoon stability as proved in the 

literature. These attributes certainly affect CAV platooning 

vulnerability and are expected to be integrated into formulas 

as an extension of Eq. (10). Third, this paper analyzes the 

CAV platooning vulnerability under a periodic perturbation 

formulated as a continuous sinusoidal function. Perturbations 

in the real world may present much complicate forms such as 

discrete pulse, random, or aperiodic perturbation. It will 

provide more insights by employing the proposed approach to 

measure the CAV platooning vulnerability under complicated 

travel environments that will help CAV platoons resist 

perturbations in the real world. 
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