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Abstract
We investigate the convergence properties of a projected neural network for solving
inverse variational inequalities. Under standard assumptions, we establish the expo-
nential stability of the proposed neural network. A discrete version of the proposed
neural network is considered, leading to a new projection method for solving inverse
variational inequalities, for which we obtain the linear convergence. We illustrate the
effectiveness of the proposed neural network and its explicit discretization by consid-
ering applications in the road pricing problem arising in transportation science. The
results obtained in this paper provide a positive answer to a recent open question and
improve several recent results in the literature.
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1 Introduction

LetΩ be a nonempty closed convex subset of a Euclidean spaceRn . Let F : Rn → R
n

be a continuous operator. The inverse variational inequality (IVI) is defined as: Find
x∗ ∈ R

n such that F(x∗) ∈ Ω and

(v − F(x∗))T x∗ ≥ 0 ∀v ∈ Ω.

We denote the inverse variational inequality problem associated with F and Ω by
IVI(F,Ω). IVI(F,Ω) could be transformed as a regular variational inequality [8,9]
if an inverse function F−1 of F exists. Nevertheless, it is not a trivial task to obtain
the explicit form of the inverse function of F−1 in reality.

IVI has broad applications in various disciplines.He et al. [2] applied IVI to amarket
equilibrium problem in economics. In addition, a number of normative flow control
problems, appearing in transportation, telecommunication networks and policy design
problems, could be interpreted by IVI(F,Ω) [4,5]. Algorithms for solving IVI(F,Ω)
have been developed. He et al. [2] proposed a proximal point-based algorithm for
solving the IVIs that was applied to solve a bipartite market equilibrium problem
therein. The authors in [4] investigated a projection-type method for solving IVIs. The
existence of solution and alternating contraction projection methods were studied in
[3].

Recently, Zou et al. [12] proposed a neural network (also known as a dynamical
system in the mathematical literature) for solving IVIs. Under specific conditions,
the authors established asymptotic stability and exponential stability of the proposed
neural network. Unfortunately, as pointed out by Xu et al. in [11], there are certain
fatal mistakes in [12], which cannot be fixed. Xu et al. also established some stability
results when F is a symmetric gradient mapping, that is, F = ∇g, where g : Rn → R

is a convex and continuously differentiable function. Moreover, the authors posted an
open question on the exponential stability of the neural network for general operator
F [11, Problem 1].

It is well-known that there is a close connection between neural network (dynamical
system) and its time discretization. A time discretization of a neural network gives an
algorithm for solving the corresponding problem and vice versa [1,9,10].

The aim of this paper is twofold: We first provide a positive answer to the open
question posed in [11]. Then, we consider a discretization of the proposed neural
network, which leads to a relaxed projection method for solving IVI (F,Ω). The
relaxed projection method is general enough so the method proposed in [4] can be
regarded as a special case. Under standard assumptions, we prove that the iterative
sequence generated by the new projection method converges linearly to a solution of
IVI(F,Ω). In addition, we obtain global upper and lower error bounds, which allow
one to have an estimate of the distance between an arbitrary vector to the solution set
of IVI(F,Ω). The theoretical results are confirmed by some numerical experiments
on an application to the road pricing problem in transportation science.

In Sect. 2, we recall some basic definitions and results as well as the neural net-
work proposed in [12]. We establish the exponential stability of the neural network in
Sect. 3, which solves the open problem posted in [11]. Section 4 describes the explicit
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discretization of the neural network and the linear convergence of the corresponding
algorithm. Numerical illustrations are shown in Sect. 5.

2 Preliminaries

One often considers IVI(F,Ω) with some additional properties imposed on the oper-
ator F such as Lipschitz continuity, monotonicity and strong monotonicity of F . Let
us recall some well-known definitions.

Definition 1 [6] The operator F is said to be

(a) strongly monotone with modulus γ if there exists γ > 0 such that

(F(x) − F(y))T (x − y) ≥ γ ‖x − y‖2 ∀x, y ∈ R
n;

(b) monotone if

(F(x) − F(y))T (x − y) ≥ 0 ∀x, y ∈ R
n;

(c) Lipschitz continuous with modulus L if there exists a constant L > 0 such that

‖F(x) − F(y)‖ ≤ L‖x − y‖ ∀x, y ∈ R
n .

Remark 1 If the operator F is strongly monotone with modulus γ and Lipschitz con-
tinuous with modulus L , then it follows from the Cauchy–Schwarz inequality that

γ ‖x − y‖2 ≤ (F(x) − F(y))T (x − y)

≤ ‖F(x) − F(y)‖‖x − y‖
≤ L‖x − y‖2,

which implies γ ≤ L .

Remark 2 If the operator F is strongly monotone and Lipschitz continuous, then
IVI(F,Ω) has a unique solution [3,11].

Next, we recall the metric projection. For each x ∈ R
n , there exists a unique point

in Ω , (see, e.g., [8]), denoted by PΩ(x), such that

‖x − PΩ(x)‖ ≤ ‖x − y‖ ∀y ∈ Ω,

where ‖ · ‖ denotes the l2-norm of Rn . Some well-known properties of the metric
projection PΩ : Rn → Ω are given in the following lemma.

Lemma 1 [8] Assume that the set Ω is a closed convex subset of Rn. Then,

(a) PΩ(.) is a nonexpansive operator, i.e., for all x, y ∈ R
n, it holds

‖PΩ(x) − PΩ(y)‖ ≤ ‖x − y‖.
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(b) For any x ∈ R
n and y ∈ Ω , it holds

(x − PΩ(x))T (y − PΩ(x)) ≤ 0.

Lemma 2 [2] Let α > 0, then x∗ ∈ R
n is a solution of IVI(F,Ω) if and only if

F(x∗) = PΩ(F(x∗) − αx∗).

We consider the following projected neural network

dx

dt
= λ{PΩ(F(x) − αx) − F(x)}, (1)

where λ > 0 and α > 0 are two scaling factors.
We first recall some stability concepts of an equilibrium point of a neural network.

Definition 2 [1,10]

(a) x∗ is an equilibrium point of a neural network (1) if

PΩ(F(x∗) − αx∗) = F(x∗),

i.e., x∗ is a solution of IVI(F,Ω).
(b) An equilibrium point x∗ of (1) is stable if, for any ε > 0, there is a δ > 0 such that

for every x0 ∈ B(x∗, δ), the solution x(t) of the neural network (1) with x(0) = x0
is defined and x(t) ∈ B(x∗, ε) for all t > 0, where B(x∗, r) is the open ball with
center x∗ and radius r .

(c) A stable equilibrium point x∗ is asymptotically stable if there is a δ > 0 such that
for every solution x(t) with x(0) ∈ B(x∗, δ), one has

lim
t→+∞ x(t) = x∗.

(d) An equilibrium point x∗ is exponentially stable if there is a δ > 0 and constants
μ > 0 and η > 0 such that, for every solution x(t) with x(0) ∈ B(x∗, δ), one has

‖x(t) − x∗‖ ≤ μ‖x(0) − x∗‖e−ηt ∀t ≥ 0, (2)

x∗ is globally exponentially stable if (2) holds true for all solutions x(t) of the
neural network.

The neural network (1), also known as dynamical system in the literature, was
proposed by Zou et al. [12] for solving IVI(F,Ω). Under various conditions, the
authors established the asymptotic stability and globally exponential stability of the
projected neural network (1). We recall below some of their results.

123



Journal of Optimization Theory and Applications (2021) 190:915–930 919

Theorem 1 [12, Theorem 4] Suppose that the operator F is L-Lipschitz continuous,
β- strongly monotone and

α2 + 1 + L2 − (2α + 1)β < 0. (3)

Then, the neural network (1) is globally exponentially stable at a solution u∗.

Theorem 2 [12, Theorem 5] Suppose that the operator F is L-Lipschitz continuous,
β- strongly monotone and

α + L − β < 0. (4)

Then, the neural network (1) is globally exponentially stable at a solution u∗.

As commented clearly in Xu et al. [11, Section 4], since β ≤ L (see Remark 1),
condition (4) is never satisfied in any circumstances and condition (3) can only hold
if β > 1. Hence, the results obtained in [12] are incomplete and Xu et al. posted the
following open question:

Problem 1 Assume that F is L-Lipschitz and β-strongly monotone with 0 < β ≤ 1
and there exists a unique equilibrium point x∗ of the neural network (1). Is x∗ globally
exponentially stable?

In Sect. 3, we will provide a positive answer for this question.

3 Global Exponential Stability

We are now in a position to establish the globally exponential stability of neural
network (1) without restrictive condition (3) as imposed in [12].

Theorem 3 Assume that F is L-Lipschitz and β-strongly monotone and α >
L2

4β
.

Then, the unique equilibrium point x∗ of neural network (1) is globally exponentially
stable.

Proof Note that under assumptions made, it follows from Remark 2 that IVI(F,Ω)

has a unique solution x∗, which is also the equilibrium point of the neural network
(1).

Let x ∈ R
n , denoting y := PΩ(F(x) − αx) ∈ Ω , we have

(y − F(x∗))T x∗ ≥ 0,

hence

(y − F(x∗))T (αx∗) ≥ 0. (5)
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On the other hand, using Lemma 1(b), we have

(F(x) − αx − y)T (z − y) ≤ 0 ∀z ∈ Ω.

Substituting z = F(x∗) ∈ Ω into the latter inequality yields

(F(x) − αx − y)T (y − F(x∗)) ≥ 0.

Combining the last inequality with (5), we obtain

(F(x) − y − α(x − x∗))T (y − F(x∗)) ≥ 0,

or equivalently

(F(x) − y − α(x − x∗))T (F(x) − F(x∗) + y − F(x)) ≥ 0.

Therefore,

α(x − x∗)T (y − F(x)) ≤ −‖y − F(x)‖2 −α(x − x∗)T (F(x) − F(x∗))
+(F(x) − y)T (F(x) − F(x∗)).

Using the strong monotonicity, the Lipschitz continuity of F and Cauchy–Schwarz
inequality, we obtain from the last inequality that

α(x − x∗)T (y − F(x))

≤ −‖y − F(x)‖2 − αβ‖x − x∗‖2 + ‖F(x) − y‖‖F(x) − F(x∗)‖
≤ −‖y − F(x)‖2 − αβ‖x − x∗‖2 + L‖F(x) − y‖‖x − x∗‖

≤ −‖y − F(x)‖2 − αβ‖x − x∗‖2 + L2

4
‖x − x∗‖2 + ‖F(x) − y‖2

= −
(

αβ − L2

4

)
‖x − x∗‖2. (6)

Hence,

(x − x∗)T (y − F(x)) ≤ −
(

β − L2

4α

)
‖x − x∗‖2. (7)

Consider the Lyapunov function

V = 1

2
‖x(t) − x∗‖2 ∀x(t) ∈ Ω.
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From (1) and (7), the time derivative of V can be expressed as

dV

dt
= (x − x∗)T

dx

dt

= λ
(
(x − x∗)T (y − F(x))

)
≤ −λ

(
β − L2

4α

)
‖x − x∗‖2

= −γ ‖x − x∗‖2,

where

γ := λ

(
β − L2

4α

)
> 0.

Therefore,

‖x(t) − x∗‖ ≤ ‖x(0) − x∗‖e−γ t .

This means that the equilibrium solution x∗ of the neural network (1) is globally
exponentially stable. ��

As a result of Theorem 3, we obtain the following important global error bound.
Given an arbitrary trajectory x ∈ R

n , this error bound measures how close x is to the
unique solution x∗ of the neural network depending solely on x and the data of (1).
This error bound can also be used to construct practical stopping rules for numerical
method so that the final iterate will satisfy any prescribed level of accuracy.

Corollary 1 Assume that F is L-Lipschitz and β-strongly monotone and α >
L2

4β
.

Let x∗ be the unique solution of neural network (1). Then, for every arbitrary vector
x ∈ R

n, it holds that

‖x − x∗‖ ≤ 4α

4αβ − L2 ‖F(x) − PΩ(F(x) − αx)‖. (8)

Proof It follows from (7) and the Cauchy–Schwarz inequality that

(
β − L2

4α

)
‖x − x∗‖2 ≤ −(x − x∗)T (y − F(x))

≤ ‖x − x∗‖‖y − F(x)‖
= ‖x − x∗‖‖F(x) − PΩ(F(x) − αx)‖,

which implies (8). ��
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4 Explicit Discretization

The explicit discretization of neural network (1) with respect to the time variable t ,
with step size hn > 0 and initial point x0 ∈ R

n , yields the following iterative scheme:

xn+1 − xn
hn

= λ (PΩ(F(xn) − αxn) − F(xn))

or equivalently

xn+1 = xn − λhnF(xn) + λhn PΩ(F(xn) − αxn).

Setting λn = λhn , we obtain the following algorithm for solving IVI(F,Ω).

xn+1 = xn − λn F(xn) + λn PΩ(F(xn) − αxn). (9)

When λn = 1
α
for all n, algorithm (9) is nothing but the projection method considered

in [4] when F is co-coercive on Ω , i.e., there exists μ > 0 such that

(F(x) − F(y))T (x − y) ≥ μ‖F(x) − F(y)‖2 ∀x, y ∈ Ω.

We will prove that when F is strongly monotone and Lipschitz continuous, the
sequence {xn} generated by (9) converges linearly to a solution of IVI(F,Ω). To
do so, we need the following estimate.

Lemma 3 Assume that F is L-Lipschitz and β-strongly monotone and α >
L2

4β
. Let

y := PΩ(F(x) − αx), then

‖F(x) − y‖2 ≤ − 4α2β

4αβ − L2 (x − x∗)T (y − F(x)). (10)

Proof It follows from (6) that

α(x − x∗)T (y − F(x)) ≤ −‖y − F(x)‖2 − αβ‖x − x∗‖2 + L‖F(x) − y‖‖x − x∗‖

≤ −‖y − F(x)‖2 − αβ‖x − x∗‖2 + L2

4αβ
‖y − F(x)‖2

+ αβ‖x − x∗‖2 = −
(
1 − L2

4αβ

)
‖y − F(x)‖2,

which implies (10). ��

As a consequence of Lemma 3, we have the following global lower error bound.
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Corollary 2 Assume that F is L-Lipschitz and β-strongly monotone and α >
L2

4β
.

Let x∗ be the unique solution of neural network (1). Then, for every arbitrary vector
x ∈ R

n, it holds that

4αβ − L2

4α2β
‖F(x) − PΩ(F(x) − αx)‖ ≤ ‖x − x∗‖.

Proof Follows directly from (10) and the Cauchy–Schwarz inequality. ��
The convergence analysis of (9) is stated in Theorem 4. For simplicity of the

analysis, we fix λn = λ for all n.

Theorem 4 Assume that F is L-Lipschitz and β-strongly monotone. Assume also that

α >
L2

4β
and λ <

4αβ − L2

2α2β
. (11)

Then, the sequence {xn} generated by

xn+1 = xn − λF(xn) + λPΩ(F(xn) − αxn) (12)

converges linearly to the unique solution x∗ of IVI(F,Ω).

Proof Setting yn = PΩ(F(xn) − αxn), we have from (10) and (7) that

‖xn+1 − x∗‖2 = ‖(xn − x∗) + λ(yn − F(xn))‖2
= ‖xn − x∗‖2 + 2λ(xn − x∗)T (yn − F(xn)) + λ2‖yn − F(xn)‖2

≤ ‖xn − x∗‖2 + λ

(
2 − 4α2βλ

4αβ − L2

)
(xn − x∗)T (yn − F(xn))

≤
[
1 − 2λ

(
1 − 2α2βλ

4αβ − L2

)(
β − L2

4α

)]
‖xn − x∗‖2.

Hence,

‖xn+1 − x∗‖ ≤ q‖xn − x∗‖,

where

q =
√
1 − 2λ

(
1 − 2α2βλ

4αβ − L2

)(
β − L2

4α

)
∈ (0, 1),

which means that {xn} converges linearly to x∗. ��
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Remark 3 Let us choose λ = 1
α
, then (12) becomes the following projection method

studied in [4].

xn+1 = xn − 1

α
F(xn) + 1

α
PΩ(F(xn) − αxn).

In this case, condition (11) reduces to α > L2

2β and the linear convergence is guaranteed
as

‖xn+1 − x∗‖ ≤
√
1 − 2αβ − L2

2α2 ‖xn − x∗‖.

Observe that the rate q =
√
1 − 2αβ−L2

2α2 attains the minimum value when f (α) :=
2α2

2αβ−L2 attains the smallest value on (0,+∞). It is not difficult to check that this is

occurred when α = α∗ = L2

β
and the best value of q is q = q∗ =

√
1 − β2

2L2 .

5 Numerical Illustrations

This section presents a numerical example, adopted from [4], to illustrate the
effectiveness of the proposed projected neural network algorithm (9). Consider a
continuous-time road pricing problem, where a traffic management authority seeks
to manage the vehicular flows fi by imposing link tolls xi on a set of links i ∈ L.
The imposed tolls are expected to leverage the link flows to predetermined intervals
denoted by Ω = { fi |ai ≤ fi (x) ≤ bi , i ∈ L}. These constraints are designated such
that the resulting traffic pattern could be maintained at a desired level, for instance,
close to a system optimum traffic pattern with emission constraints.

Same as [4], we assume that traffic flows follow user’s equilibrium (UE) and the
link performance function is strongly monotone. The continuous-time road pric-
ing problem faced by the authority can be interpreted as: Find xi (t), such that
limt→∞ f (x(t)) ∈ Ω . Following the discussion in [4], we can derive the Lagrangian
function as: L( f , γ, μ) = ∑

i∈L[γi (bi − fi (x)) + μi ( fi (x) − ai )] with multiplier
vectors γi and μi . The equilibrium traffic flows f ∗

i satisfy the KKT conditions:

{
λ∗
i ≥ 0; bi − f ∗

i ≥ 0; λ∗
i (bi − f ∗

i ) = 0 ∀i ∈ L,

μ∗
i ≥ 0; f ∗

i − ai ≥ 0; μ∗
i ( f

∗
i − ai )= 0 ∀i ∈ L.

(13)

As λi > 0 and μi > 0 are mutually exclusive, the control variable (i.e., toll) can be
defined as xi = λi − μi for each link i ∈ L. By the KKT condition (13) and the
definition xi , if f ∗

i = bi , then x∗
i ≥ 0; if f ∗

i = ai , then x∗
i ≤ 0; if ai < f ∗

i < bi ,
then x∗

i = 0. Therefore, the equilibrium traffic flows and link tolls can be regarded as
an IVI problem that is to find an optimal toll pattern x∗, such that the responsive link
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Fig. 1 A four-bridge road pricing problem

flows f (x∗) ∈ Ω and

( f (x) − f (x∗))T x∗ ≤ 0, ∀ f (x) ∈ Ω.

Note that link flows fi (x) are implicit functions of link tolls x = {xi }, which can
be observed from the field or obtained by solving a traffic assignment problem. In
order to manage the flows to converge to the preferred pattern Ω , the continuous-time
dynamic tolls xi (t) can be designed by following the projected neural network (1).

Let us consider a network shown in Fig. 1, consisting of eight nodes and sixteen
links connecting sixteen origin-destination (OD) pairs. Links 1, 2, 3, and 4 represent
four bridges over a river, connecting four origins, O1 to O4, on one side to four
destinations, D1 to D4, on the other side of the river. The authority plans to manage
the volume/capacity ratios of three main bridges (links 1, 2 and 3) by imposing tolls
on them. The goal is to maintain the traffic volumes on the three bridges lying in the
bounds 100 ≤ x1 ≤ 150, 50 ≤ x2 ≤ 100, and 250 ≤ x3 ≤ 300.

As shown by the projected neural network (1), the dynamics of tolls depend on
the value of the resulting link flows fi (x), which are determined by solving a fixed-
demand user equilibrium traffic assignment in this study. In the traffic assignment, the
OD demands are given in Table 1; the free flow travel times and the link capacities are
provided in Table 2; and the link travel time ti on link i follows the Bureau of Public
Roads (BPR) function as:

ti ( fi ) = t0i

[
1 + 0.15

(
fi
ci

)4
]

,

where fi , t0i , and ci denote link flow, free flow travel time, and capacity on link
i , respectively. Excluding a small neighborhood of zero, the BPR function satisfies
the strongly monotone property. Thus, we can apply the proposed projected neural
network algorithm (9) to solve the dynamic road pricing problem.

The numerical studywas focused on investigating the effects of scaling factorsλ and
α on the stability of the dynamical system.We implemented the explicit discretization
of the neural network shown in Sect. 4 where scaling factor λ is associated with the

123



926 Journal of Optimization Theory and Applications (2021) 190:915–930

Table 1 Origin-destination
demand table

Demand O1 O2 O3 O4

D1 60 30 20 15

D2 50 160 45 30

D3 20 30 20 10

D4 20 15 15 40

Table 2 Link free flow travel time and capacity

Link i 1 2 3 4 5 6 7 8 9 10 11

t0i 60 40 60 40 20 20 20 20 20 20 20

ci 150 100 300 200 300 300 300 300 300 300 300
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Fig. 2 Bridge flows evolution and system stability under α = 50 and λ = 1/α = 0.02

time step size h. In the first testing scenario, we set α = 50 and λn = 1
α

= 0.02,∀n.
Under this setting, the discretization algorithm (9) is the projection method proposed
in [4] as shown in Sect. 4. Denote rn = ‖λn(F(xn) − PΩ(F(xn) − αxn))‖ as the
residents of the projected neural network (1). Clearly, the system is at equilibrium
if rn = 0. Therefore, rn can be used to illustrate convergence rate or as a proxy of
asymptotic stability (8). Figure 2 illustrates the evolution of the traffic flows on the
three bridges with toll. In the first 20 time steps, traffic flows on bridges 1 and 3
converge quickly to their lower bounds of desired flow control intervals. After 100
time steps, the traffic flow on bridge 2 also converges to the upper bound of the desired
level. The evolution of the residue, shown on the right side of the figure, demonstrates
the linear convergence in Theorem 4, given the values of α and λ.

Note that the value of scaling factor λ affects the convergence performance of
the explicit discretization of neural networks. If λ = 0.01 while α = 50, the traffic
flows evolve slower toward the equilibrium state. Comparing the traffic flows shown
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Fig. 3 Bridge flows evolution and system stability under α = 50 and λ = 0.01
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Fig. 4 Bridge flows evolution and system stability under α = 50 and λ = 0.03

in Figs. 3 to those in 2, we can observe that the traffic flow on bridge 2 is quite far
away from the desired level after 100 time steps, resulting in a larger value of residue.

However, if we increase λ = 0.03, the larger value of scaling factor λ will drive the
system to converge quickly toward equilibrium. As shown in Fig. 4, the traffic flows
on the three bridges converge close to the desired levels in 60 time steps. The residue
is reduced to 0.01 at about 60 time steps.

We further investigate the effect of the other scaling factor α. Consider the case that
α = 10 and λ = 0.01. As shown in Fig. 5, the traffic flows converge to the equilibrium
with a pattern similar to that shown in Fig. 3. It seems that the system convergence is
less sensitive to α than to λ.

If we increase λ = 0.03while keeping α = 10, the system converges to equilibrium
as shown in Fig. 6. The convergence performance is similar to the case in Fig. 4.
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Fig. 5 Bridge flows evolution and system stability under α = 10 and λ = 0.01
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Fig. 6 Bridge flows evolution and system stability under α = 10 and λ = 0.03

However, if we keep increasing λ = 1/α = 0.1, the system cannot converge as
shown in Fig. 7. In this case, λ violates the condition in Theorem 4, causing an unstable
system evolution.

The illustrations so far emphasize the importance of scaling factors α and λ on
system stability. They are expected to satisfy conditions 11, which depend on the
strongmonotonicity and Lipschitz modulus of F , i.e., β and L . However, it is common
in practice that mapping F does not have an explicit form, for example, representing
a traffic assignment problem herein. The implicit form prevents an explicit derivation
of appropriate α and λ. Identifying the global values β and L on Ω remains a costly
computational task that requires further analysis.
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Fig. 7 Bridge flows evolution and system instability under α = 10 and λ = 0.1

6 Conclusion

We have provided a positive answer to a recent question on neural networks for
solving IVI problem. In addition, we established new exponential stability and lin-
ear convergence results as well as global error bounds. Numerical experiments in
real-life application problems have been performed confirming the theoretical results
obtained. Observed that all the results presented in this paper also hold in infinite-
dimensional Hilbert spaces without any additional assumption. It is interesting to
investigate whether the strong monotonicity condition could be relaxed to strong
pseudo-monotonicity as in the regular variational inequality problems [1,7] or not.
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