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Abstract: Connected automated vehicles (CAVs), built upon advanced vehicle control and
communication technology, can improve traffic throughput, safety, and energy efficiency.
Previous studies on CAVs control focus on instability and stability properties of CAV platoons;
however, these analyses cannot reveal the damping platoon oscillation characteristics, which
are important for enhancing CAV platoon reliability against variant continuous perturbations.
To this end, this research seeks to characterize the damping oscillations of CAVs through
exploiting the platoon's unforced oscillatory, i.e., damping behavior. Inspired by the mechanical
vibration theory, this research proposes an approach to analyze the platoon oscillation
characterization by formulating the oscillatory dynamics as vibrations in a mechanical system.
The proposed approach is applied to a CAV platoon with the linear car-following behavior
formulated as Helly's model and the predecessor-following communication topology.
Numerical analysis results show that a periodic perturbation with the resonance frequency of
the CAV platoon will amplify the oscillation and lead to the severest oscillatory traffic. Our
analysis highlights the importance of preventing platoon oscillations from resonance in

ensuring CAV platooning reliability.
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1. Introduction

Connected automated vehicles (CAVs) are expected to improve traffic mobility, safety, and
sustainability through vehicle automation and connectivity technologies (Shladover, 2018).
These technologies enable vehicles to share information through communications to improve
travel safety and comfort (Dong et al., 2021), increase traffic capacity (Papadoulis et al., 2019)
and reduce pollution (Saxena et al., 2019). To achieve such goals, it is critical for individual
CAVs to coordinate with their neighboring vehicles while maintaining stable and safe travel.
Therefore, analyzing CAV traffic behavior is of great importance (Jia and Ngoduy, 2016).

Among the research on CAV traffic behaviors, stability, instability, and oscillation are
attracting more and more attention. For example, some research investigated the vehicle platoon
performance, such as local stability and string stability (Ding et al., 2020; Zhou et al., 2020).
Note that local stability is usually used to describe a single vehicle's movement over time under
the influence of a small disturbance, e.g., deviation from uniform space gap, velocity, or
acceleration; while string stability is used to describe how the disturbance is decayed over a
vehicle platoon (Sun ef al., 2018). In contrast to stability-focused studies, other research aims
to investigate instability (Daganzo et al., 2011). The objective of instability analysis is to
understand how badly the system could perform. The string instability describes whether the
perturbation on the first vehicle will be amplified through the vehicle platoon (Herman et al.,
2015). However, neither stability nor instability analysis is sufficient to characterize the
damping oscillations of a vehicle platoon. The reason is that string stability (or instability)
means that a perturbation imposed on the leader is decayed (or amplified) over the vehicle
platoon. However, the damping oscillatory behavior is one of the natural characteristics of the
vehicle platoon, which is independent of the imposed perturbation.

Focusing on the damping oscillations of the CAV platoon, this paper introduces a method to
characterize the damping oscillations of the vehicle platoon, which is inspired by the
mechanical vibration in a spring-mass system. To analyze the performance of a CAV platoon
exposed to ubiquitous perturbations, this research exploits the CAV platoon's damping behavior
(i.e., unforced oscillatory) by formulating platoon oscillations as vibrations in a mechanical
system. To facilitate theoretical derivations, this research employs Helly's model (Helly, 1959)
to describe linear car-following dynamics and adopts the predecessor-following (PF)
communication scheme to capture the potential perturbations from communications. Upon
Helly's model, this paper derives the damping characteristics of the CAV platoon based on the

mechanical vibration theory.



Furthermore, this study differentiates damping-based oscillation analysis from existing
stability/instability analyses and proposes a new approach to reveal the damping characteristics
of CAV platoons using the mechanical vibration theory. The resonance frequency of a CAV
platoon, derived based on its damping characteristics, is shown as a function of vehicle control
parameters, enabling a quick evaluation involving both the CAV platoon's stability and its
damping behavior under perturbation. The analytical characterization of damping behavior,
supported by simulation results, shows that a CAV platoon is most vulnerable to periodic
perturbations with the same frequency as its inherent fluctuation frequency, also known as
resonance. Overall, the oscillation analysis of the CAV platoon conveys the insight that
preventing perturbations from resonance is crucial to enhance the CAV platooning reliability
and suppress large amplitude oscillations.

This study is organized as follows. Section 2 presents the related work about (in)stability and
oscillation analysis. Section 3 proposes the oscillation analysis approach to reveal the damping
characteristics. Section 4 carries out a simulation study to verify the effectiveness of the
proposed method and compare the platoon's oscillations to its stability properties. The last

section concludes our findings and suggests future research directions.

2. Related Work

Stability could provide insights into the parametric influence on traveling safety and
oscillation propagation. Extensive studies have conducted analyses on CAV stability. For
example, Naus et al. (Naus ef al., 2010) analyzed the string stability of a CAV platoon via a
frequency domain approach. Xiao and Gao (Xiao and Gao, 2011) studied the string stability of
homogeneous and heterogeneous platoons for vehicles equipped with adaptive cruise control.
Ngoduy (Ngoduy, 2013) analyzed the string stability of vehicles equipped with cooperative
adaptive cruise control using linear and nonlinear stability methods. Zhou et al. (Zhou et al.,
2019) presented a predictive control strategy for CAVs and analyzed platoon's local stability
and string stability. Ding ef al. (Ding et al., 2020) pointed out that local stability and string

stability are necessary to ensure the performance reliability of the controller and the platoon.
Zhou et al. (Zhou et al., 2020) formulated a A, control to synthesize control parameters for a
mixed vehicular platoon that consists of CAVs and human-driven vehicles and derived a string

stability criterion for the mixed vehicular platoon. Herman et al. ((Herman et al., 2015)

investigated harmonic stability of the platoon, which is a term for exponential scaling of the

H_ norm of the transfer function of the platoon as the number of the platooned vehicles



increases.

Note that various types of stability have been explored, such as local/asymptotic stability
(Chandler et al., 1958; Herman et al., 1959), platoon stability (Wilson and Ward, 2011), and
string stability (Swaroop and Hedrick, 1996). To avoid ambiguity, the name 'platoon stability' is
also called 'local stability' (Montanino and Punzo, 2021), and 'asymptotic stability' in traffic flow
modeling is also called 'string stability’ (Ploeg et al., 2014; Qin and Li, 2020). In addition, there

exist various stability analysis methods, such as / , norm of the transfer function, leading to various

stability conditions. More detailed stability analysis methods and their corresponding stability
conditions are presented in (Wilson and Ward, 2011)(Montanino and Punzo, 2021).

By contrast, instability has been widely used to investigate traffic performance under
ubiquitous perturbations (Jiang et al., 2018). For example, Montanino and Punzo (Montanino
and Punzo, 2021) found that the degree of string instability is higher in a homogeneous platoon
than in a heterogeneous one. Treiber and Kesting (Treiber and Kesting, 2018) proposed a
generic instability analysis mechanism by introducing white acceleration noise. Jiang et al.
(Jiang et al., 2018) conducted an experiment to analyze traffic flow instability based on a
platoon consisting of 51 vehicles.

Besides stability and instability, traffic/platoon oscillation is another important performance
to study CAV traffic behaviors. When traffic/platoon oscillation occurs, vehicles exhibit
repetitive deceleration and acceleration operations owing to interactions between slow-moving
and fast-moving vehicles. Negative effects of oscillations include driving discomfort, delay,
pollution, excessive energy consumption, and increased risk of accident (Li et al., 2010).
Meanwhile, such oscillations can easily be triggered by a local perturbation such as lane-
changing operations near a bottleneck (Ahn and Cassidy, 2007), cyberattacks on vehicles
(Wang et al., 2020), and the abrupt acceleration/deceleration of the human driver or the CAV
control system.

Acknowledging the similarity between vehicle platoon oscillation and mechanical vibration
of the spring-mass system, researchers have introduced the mechanical vibration theory to
modeling and analyzing car-following behaviors. For example, Yanakiev and Kanellakopoulos
(Yanakiev and Kanellakopoulos, 1996) employed a simple spring-mass-damper system to
capture the longitudinal control of vehicles' behaviors and analyzed the string stability of the
vehicle platoon. Li ef al. (Li et al., 2017) designed a novel car-following model derived from
the fundamental physical law of the spring-mass system. They analyzed the stability of the

proposed model, in which the quotient of the spring constant and mass represents the sensitivity



coefficient in their proposed car-following model. Munigety et al. (Munigety, 2018) proposed
a car-following model to describe the longitudinal behaviors of vehicles by using the spring-
mass-damper mechanical system. Horn and Wang (Horn and Wang, 2018) applied the spring-
mass system to design a bilateral control model of a vehicle platoon. Bang and Ahn (Bang and
Ahn, 2020) adopted the spring-mass-damper system to formulate CAVs' behaviors.
Furthermore, Li et al. (Li et al., 2020) proposed a car-following model that captures the ego
vehicle's resistance to large variations in relative speed and special gap when following the
preceding vehicle. Unfortunately, all these mentioned studies focus on applying the spring-mass
system to formulate car-following behaviors rather than analyzing the vulnerability of vehicle
platoon.

However, most of existing studies focus on analyzing the system's (in)stability, and less effort
has been conducted on interpreting the damping behaviors. In this study, the damping behavior
analysis exploits the platoon's unforced oscillatory dynamics and reveals the inherent oscillation
frequency and the damping intensity of the vehicle platoon system, which are important for

enhancing CAYV platoon reliability against variant continuous perturbations.

3. Damping behavior Oscillation Analysis

This section first discusses the similarity between the mechanical vibration and the vehicle
oscillation and presents basic fundaments of the mechanical vibration, then proposes an
approach to uncover damping oscillation characteristics and further explore the difference
between the proposed damping-based oscillation analysis and classical string stability analysis.
The derivation of the damping oscillation characteristics is based on the mechanical vibration

theory (Shabana, 2019).

3.1 Preliminaries

This section illustrates the similarity between a vehicular platoon oscillation behavior and
the mechanical vibration (e.g., a spring-mass-damper system). Figure la shows that, if one
person exerts an external force on an object and stretches or contracts the spring away from the
equilibrium location, the object will vibrate back and forth around its unstretched location once
removing the external force. Due to the damping force, the vibration eventually stops.

Similar to mechanical vibration, Figure 1b presents a vehicular platoon's oscillation behavior.
Specifically, if the space gap between two consecutive vehicles is too large, the follower will
accelerate to shrink the space gap; otherwise, the follower will decelerate to increase the space

gap. The reduplicative acceleration/deceleration makes the vehicles' dynamics unstable and



induces stop-and-go waves. Due to the continuous adjustment of the vehicular control system,
the stop-and-go waves gradually die out. The decreasing oscillation magnitude reveals that the
vehicle platoon is a damped system, where vehicles dynamics help them achieve the consensus

of velocity and space gap.

| Gap error

-------

(a) Mechanical variation patterns of an object  (b) Platoon oscillation patterns of a vehicle
Figure 1 Schematics of similarities between the mechanical vibration and platoon oscillation

Before we apply the mechanical vibration theory to analyze CAV platoon vulnerability, some
major conclusions in mechanical vibration are provided as follows (Kelly, 2012; Schmitz and
Smith, 2011).

Consider a system consisting of a rigid mass m and a spring with a recovery constant & .
The spring is fixed at one end and attached to the rigid mass at the other end. Suppose that the
mass movement is linearly damped by a friction force with coefficient ¢ . The dynamics of this
system 1s modeled by the following second-order differential equation

mx(t)+cx(t)+ kx(t) =0, (1)
where X(¢), x(¢) and x(¢) are the acceleration, velocity, and position of the mass at time ¢.

Dividing Eq. (1) by the mass m leads to
#(0)+L 10+ X x() =0, )
m m

Denote @, =+/k/m and & =c/ 2\km , and substitute them into Eq. (2). Eq. (2) is then
rewritten as
¥(t) + 2Ea, (1) + i} x(t) = 0 3)
Eq. (3) is the standard form of the differential equation for mechanical vibration systems,

where @, is the natural frequency of the motion and £is a dimensionless parameter and also

called the damping ratio.



Because Eq. (3) is a linear, ordinary homogeneous differential equation with constant
coefficients, a solution of Eq. (3) can be assumed to be the form of x(¢) = Ae” . Substitute it

into Eq. (3) leads to

(57 +2&mys + ;) de” =0 (4)
If 4e” =0, no motion has occurred and this is referred to as the trivial solution. The

characteristic equation is quadratic in s and has two roots, i.e.,

50 =w0(—§i\/ﬁ) 5)

Hence, the total solution for the system vibration is the sum of the two harmonic responses
defined by the two roots, i.e.,

xX(1)= X" + X, =e ™ (Xlew‘)w_1 + Xze“"’J‘fz_l) . (6)
In Eq. (6), the first term in the product (i.e., e ) describes the damping envelope that

bounds the decaying oscillation and the second term (i.e., X, 1e“"“/‘fz__' +X 2e"“"’j"ﬂ__l) defines the
oscillatory part (Schmitz and Smith, 2011). Owing to Eq. (6), there are three domains for &,

which lead to different solutions to Eq. (1).

Based on the above preliminaries, we have the following fundamentals of the mechanical

vibration theory.

Definition 1 (Natural frequency). Natural frequency is the frequency at which a system
tends to oscillate in the absence of any driving or damping force.

Definition 2 (Resonance freqeuncey). Resonance frequency is identified where the forcing
frequency is equal to or close to the natural frequency, which could lead to the largest vibration
amplitude.

Remark 1. The mechanical vibration system Eq. (1) is the general form of the differential
equation for the displacement of an object in a linear system with viscous damping. Based on
Eq. (6), different solutions of this equation have different vibration characteristics (Kelly, 2012):

1) If £>1, the roots of Eq. (1) are real, it is called the overdamped system. In this case, the

motion of this system is nonoscillatory.

2) If &=1, the roots of Eq. (1) are equal, it is called the critically damped system. In this case,

the motion of this system is also nonoscillatory.

3) If £<1, the roots of Eq. (1) are complex conjugates, it is called the underdamped system.

In this case, the motion of this system is oscillatory.



Note that the complex roots of Eq. (1) will introduce the oscillatory component. Any
complex number can be written in exponential form z =re”. A time-dependent complex
number can be denoted as z(t) = re” =rcoswt +irsinwt (Hahn, 1994). At time t, z(¢) is at

a point on the circle of radius r at angle wt to the x-axis. Namely, z(¢) is circling at a

steady angular velocity @ , i.e., z(t)=re” =rcoswt+irsinwt . These trigonometric
functions can be used to describe harmonic oscillations, because harmonic oscillations can
be regarded as the projection of the circling complex number on a straight line (Schmitz
and Smith, 2011). In the context of a CAV platoon, the communication between two vehicles
can be regarded as a spring between them. Then the object's acceleration X(¢), velocity x(z),
and position x(z) are similar to the CAV's acceleration, velocity, and position. The following

will apply the mechanical vibration theory to derive the CAV's damped oscillation

characteristics.

3.2 Analysis approach

This section aims to derive the damping oscillation characteristics of a CAV platoon by using
the mechanical vibration theory. As discussed above, the process of the oscillation amplitude
decay is similar to the mechanical vibration of the spring-mass system. Therefore, based on this
similarity, we will apply the vibration theory, i.e., Definitions 1 and 2 and results in Remark 1,

to investigate the damping oscillation characteristics of the platoon system.

r:+]"rﬁ\\ n A’-\r—-\\\nfl -~ “"*\\2"‘—“\\1

x?ll Ax.” |

Figure 2 Illustration of the platooned vehicles on a single lane

In our theoretical derivation, we consider a platoon of homogeneous CAVs moving on a

single lane, as depicted in Figure 2, where x, represents the position of vehicle n, v

n

represents the speed of vehicle »,and Ax, =x, | —x, represents the space headway or distance
between vehicle n and vehicle n—1. To capture the vehicle's longitudinal dynamics, a car-
following model is formulated as follows:

X, =v,(0),

v(t) = f(sn,vn,Avn ) )



where s, =x,_,—x, —/ , represents the space gap between vehicle » and vehicle n—1 with

n

[, indicating the length of vehicle n—1, and Av, =v, —v, | represents the relative velocity

n

between vehicle n and vehicle n—1.

For any vehicle n {1, ey m} , a perturbation to vehicle » could affect v, , x, and s, . These

&

changes can be expressed as deviations 4, and y, from the equilibrium values v°, s°, i.e.:
v, () =V (1) + p, (0),
Sn (t) = Se(t) + yn (t)3

where y, (1) =x, () =x,(0)~1, ,—s°() and 11,(1)=v, (1) V" (0).

(8)

When a change in the gap and/or velocity occurs on vehicle 7, in this time, the velocity of

vehicle n—1 keeps its steady velocity and is a constant, and s° is also a constant. Based on Eq.

(8), we can derive

dy, () _ dx, (1) de,(0) _

Vi) -v (t)=—p,(1). 9
" p " ()=, (1) =—p, (1) )
Hence, based on Egs. (7) and (9), we can derive the following equations.
d
;}t" = _lun >
(10)

%=f(se+yn,ve+ﬂ,,,ﬂn)-

By employing the first-order Taylor expansion to Eq. (10), we can find that

d v s 4
—éj” = fo by + 1+ 1, 0w, 3,). (11)
Ignoring the high-order terms in Eq. (11), the linear part can be written as:
d’y ady .
LT+ )=+ )y, =0. 12

Defining —( fr+ e )=2a)0§ and [’ =@}, Eq. (12) can be rewritten as

@ua)gdynmz =0 (13)
dtz 0 dt Oyn

where §=—;(fn”+fnm)/\/f7;and o) =f’.

Note that Eq. (13) is akin to the mechanical vibration system, which is also a general form

of the differential equation for the displacement of a particle in a linear system with viscous
damping (Thomson, 2018). Herein, referring to Definition 1, @, represents an inherent

oscillation frequency, at which the system oscillates independently of any external excitation.

Furthermore, the inherent oscillation frequency is also called resonance frequency. 1If the



perturbation is exerted on vehicles with the resonance frequency, as presented in Definition 2,
this could lead to the largest vibration amplitude (Shabana, 2019).

Notation & in Eq. (6) represents the damping intensity of a system against vibration. In
particular, in the field of mechanical vibration, as presented in Remark 1, &£ <1 indicates an
underdamped system; and & >1 indicates an overdamped system. Based on the definition of
damping dynamics in mechanical vibration, for a vehicle platoon system, & <1 represents the

scenario that the perturbed platoon oscillates back and forth around the equilibrium state; and

&>1 represents that the perturbed platoon can converge to its equilibrium state without
overshoots. Therefore, a platoon control strategy that ensures £ >1 can enable the platoon to

resist external perturbation more effectively. Such resistance is helpful in enhancing platoon

reliability in a complex travel environment.

3.3 Damping-based oscillation analysis for a platoon with linear following behavior

This study applies the proposed approach to a vehicle dynamics model to illustrate its
capability in uncovering a CAV platoon's damping oscillatory behavior. Over the years, a
variety of car-following models have been developed, such as Pipes' model, Helly's model,
optimal velocity model (OVM), and intelligent driver model (IDM) (Aghabayk et al., 2015).
Among them, due to the simple and intuitive features, Helly's linear car-following model has
been widely used to describe CAV's behaviors (Chen ef al., 2021; Hu et al., 2021). Hence, this
study adopts Helly's car-following model to capture the longitudinal acceleration of the CAV.
The formulation of this model is expressed as below (Helly, 1959):

v, ()=, (s,(0)=v,(t)=5,) = 4,4, (1), (14)

where A, represents the sensitivity to relative velocity, 4, represents the sensitivity to distance

X

difference between two successive vehicles, s, is the minimum distance allowed as a safety
gap, and r represents reaction time. Note that 7v, (¢)+s, indicates the desired space gap. In

this model, the acceleration of a vehicle presents a linear relationship with the deviation from
the space gap and the relative velocity between two successive vehicles.
In a steady state, each vehicle maintains an identical space gap and velocity. Therefore, Eq.
(14) can be expressed as bellows.
s =1V +5, (15)
where v and s° represent the steady velocity and steady space gap, respectively.

Furthermore, in addition to Helly's linear model, this study assumes a predecessor-following

10



communication scheme. In this way, we can better reveal the damping oscillation characteristics
of a vehicle platoon. With the predecessor-following communication, each CAV can share its
information and receive other vehicles' information. The communication topology defines the
origins and destinations of information spreading among CAVs that can affect the vehicle
dynamics, thereby playing a critical role in information exchange and sharing. Note that many
communication topologies have been proposed for CAV platoons, e.g., predecessor-following,
predecessor-leader-following, bidirectional, bidirectional-leader, two-predecessors following,
two-predecessor-leader following, multiple-predecessor-following, and multiple-predecessor-
leader-following (Wang et al., 2019). However, those complex communication topologies
introduce extra difficulties in the analytical derivation of oscillation characteristics, which will
divert the focus of this research. To better elucidate our proposed approach to derive closed-
form formulas for the damping oscillation characteristics, we assume that the subject vehicle
only receives its nearest preceding vehicle.

Hence, based on the derivations of the partial derivatives in Section 3.2, the damping

oscillation characteristics of Helly's linear model can be derived, i.e.,

a)O:\/Z, and fz%(@z%/lv/@). (16)

Note that the oscillation damping performance analysis could also be applied to the general
human-driven vehicle's longitudinal behavior. However, this study pays more attention to
perturbations caused by cyberattacks (Wang et al., 2020) and communication information
noises (Vegamoor et al., 2021) on the CAV platoon. Such effects are formulated as periodic
perturbations in the numerical examples presented in Section 4. Hence, we would like to apply
our proposed approach in the CAV context. Furthermore, this study is our first attempt to
investigate the damping characterizes of the vehicle platoon system. To articulate the basics,
we only adopt a simple linear model, i.e., Helly's model, for theoretical analysis. In fact, our
proposed approach can also be applied to high-order models such as the optimal velocity model
(OVM) and intelligent driver model (IDM) by using the linearization method (Ngoduy, 2015;
Sun et al., 2018). Detailed work on high-order models is still under investigation and will be

published in other papers in the future.

3.4 Differences between damping-based oscillation and instability analysis
It is necessary to differentiate the damping-based oscillation and (in)stability. First, through

the (in)stability analysis on the linear model, we can obtain the (in)stability condition (Detailed

11



derivation of the instability analysis are presented in Appendix). The instability condition of
Helly's model is shown below.

2 <Ll AT (17)
T 2

When a perturbation is exerted on the vehicle platoon, the perturbation effect decays for a

stable system; or the perturbation effect grows for an unstable system (Pueboobpaphan and van
Arem, 2010). However, such instability analysis focuses on the propagation of the perturbation
effect (Yao et al., 2020) and cannot characterize the damping oscillation.

More importantly, from Eqgs. (16) and (28), we can visually compare the instability and
damping-based oscillation conditions, as shown in Figure 3. In the instability analysis, Figure
3a shows that a curve divides the regions into stable and unstable regions. The area above the
curve denotes the stable region, while the area below the curve denotes the unstable region.
Figure 3b indicates that the whole plane is divided into underdamped and overdamped regions.
The region above the curve is overdamped, and the region below the curve is underdamped
regions. These two figures clearly illustrate the difference between instability analysis and

damping-based oscillation analysis.

Stable

Overdamped

< 1 ~
7=0.5
H 0.5+
057 —7-06 Underdamped — =08
—7=08 Unstable —7=1.0
—71=1.0
0 ! L L 0 ! | L
0 0.5 1 1.5 2 0 0.5 1 1.5 2
A A
X X
(a) Stable and unstable regions (b) Underdamped and overdamped regions

Figure 3 Instability and damping-based oscillation analysis on a linear model
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Figure 4 Regions for the instability and damping-based oscillation analysis when 7 =1. The
magenta line indicates the boundary of the stable and unstable regions, and the blue curve

indicates the boundary of the underdamped and overdamped regions.

The instability boundary line and the damping characteristic curve divide the whole plane
into four regions, as shown in Figure 4. In detail, Region I represents the unstable and
underdamped region, Region II represents the unstable and overdamped region, Region III
represents the stable and overdamped region, and Region IV represents the stable and
underdamped region. In this figure, each region has the dual features of stability and damping

oscillation. For example, if the parameters A, and A, are selected from Region I, the vehicle

platoon presents unstable and underdamped oscillation properties, which means the
perturbation amplifies as it propagates to the vehicle platoon and the oscillations resulting from
perturbations present back-and-forth fluctuations around the equilibrium. The oscillation
properties of other regions can be described accordingly.

The above analyses help us derive an approach to reveal the damping oscillation
characteristics of the vehicle platoon and elucidate the difference between the proposed analysis
approach and the existing string (in)stability analysis methods. Overall, the damping process is
an inherent property independent of external perturbations exerted on the platoon, meaning that
the system has an instinct to resist the oscillation. The damping behavior of a system refers to
the characteristic of how a perturbation, when applied to a system, dissipates over time. The
damping oscillation properties, including the inherent oscillation frequency and damping
intensity, will convey profound knowledge in understanding oscillations and designing
effective traffic management strategies to help traffic against various perturbations. Through

the proposed approach, we derive two parameters, i.e., the inherent oscillation frequency or called

resonance frequency (i.e., @, ) of the CAV platoon and the damping intensity (i.e., &) of the

13



platoon system against vibration. If the perturbation is exerted on vehicles with the resonance
frequency, this could lead to the largest vibration amplitude. The underdamped condition (i.e.,

& <1) represents that the perturbed platoon oscillates back and forth around the equilibrium
state; and the overdamped condition (i.e., £>1) represents that the perturbed platoon can

recover back to its equilibrium state without overshoots.

Instead, string stability relates to the characterization of how the perturbation dissipates along
a string of vehicles. To demonstrate the differences, we derive the stable or unstable conditions
using the classical string stability analysis approach. Stable or unstable conditions mean that a
perturbation imposed on the leader is decayed or amplified over the vehicle platoon. As our
proposed method focuses on platoon oscillation characterization, it differs from the classical
string stability analysis methods. The following section will illustrate the significance of
applying our proposed approach to analyze the impact of perturbation on platoon system

performance through simulation.

4. Numerical Analysis

A CAV platoon consisting of 10 vehicles and traveling in a single lane is assumed in our
numerical analysis. The first leading vehicle remains its initial velocity during the entire

simulation that is 100 s. Each vehicle's parameters are set as bellow: the desired free-flow speed

v, =33 m/s, vehicle length /=5m, the minimum safety distance s, =2 m, the maximum

acceleration @ =5m/s* | and the desired deceleration b=6m/s* (Milanes and Shladover,

2014; Niroumand et al., 2020). The velocity and position are updated by the following

kinematic equation.

v, (t+At) =v,(1)+0.5(a, () +a,(t+ A1) AL,
X, (t+At) = x, (1) +v, (A +0.5a, (1) (Ar) . (%)
where At is the sampling time step and set as 0.1s.
Note that no overtaking is allowed. If the following vehicle exceeds its preceding vehicle,
then a rear-end collision occurs. Next, to verify the theoretical results presented in Section III,
we conduct three simulation scenarios on the CAV platoon: without perturbation, with periodic

perturbation, and with the human-driven vehicle trajectory. Scenario I is defined as the base

case without external perturbation after time 0 and focuses on illustrating how the vehicle

platoon behaviors are affected by different values of 4. and A, without external perturbation.

Scenario II characterizes the platoon behaviors affected by a periodic perturbation after time 0.

Scenario III presents more realistic platoon behaviors impacted by a human-driven vehicle

14



trajectory. To be consistent with Figure 4, the reaction time, z, is set as 1s.

4.1 Scenario I: Without perturbation

As Eq. (16) shows, inherent oscillation frequency ®, and damping intensity & are
determined by parameters 4,4, . Hence, to understand the joint impact of 'damping behavior'

and 'stability' behavior, we conduct a multiple experiments, four cases are presented.

(1) Case 1 describes the vehicle platoon behaviors in Region II, whose parameters correspond
to three red asterisks in Region I of Figure 3.

(i1) Case 2 describes the vehicle platoon behaviors in Region I, whose parameter corresponds
to the red asterisk in Region II of Figure 3.

(ii1)) Case 3 describes the vehicle platoon behaviors in Region III, whose parameter
corresponds to the red asterisk in Region III of Figure 3.

(iv) Case 4 describes the vehicle platoon behaviors in Region IV, whose parameter
corresponds to the red asterisk in Region IV of Figure 3.
Case 1: Unstable and underdamped condition in Region I

For consistency, we assume that at the initial stage, each vehicle's speed is 15 m/s, and each
vehicle's space gap is set as 10 m. At equilibrium, each vehicle remains the same velocity as
the first leading vehicle, i.e., 15 m/s, and each following vehicle has an identical space gap, i.e.,

the stable space gap is 17 m/s. Indeed, the space gap can also be obtained according to Eq. (15)

. In Figure 5, the parameters A, =0.2 and A4 =0.3 are selected from Region 1. Meanwhile,

based on Eq. (16), we can derive @, =0.4472 rad/s and & =0.5590 <1, which indicates the

vehicle platoon system is underdamped. As we can see from this figure, the perturbation grows
as it propagates to the following vehicles. In other words, the system is said to be unstable.

Figure 6 and Figure 7 show the change of position, velocity, and space gap with time when
A, =054 =03 and A =0.54 =0.5, respectively. Using Eq. (16), we can calculate
@, =0.7071 rad/s and &=0.5657 <1 for the case shown in Figure 6 and @, =0.7071 rad/s
and £ =0.7071<1 for the case shown in Figure 7. All these figures show unstable traffic, i.e.,

the perturbation grows over the vehicle platoon. Among them, we found that with the increase

of &, the oscillation amplitude of the vehicle platoon turns smaller. This also demonstrates that
the damping intensity & can be used to describe the system performance, and the larger £, the

smaller oscillations.
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Case 2: Unstable and overdamped condition in Region 11
In this case, we present the vehicle platoon behaviors under unstable and overdamped

conditions. Herein, we select A, =0.1,4 =0.6 which lies in Region II. Herein, @, =0.3162

rad/s and £=1.2649 >1. When £ >1, it means the system is overdamped. This case aims to
discuss the impact of these parameters on oscillations of the vehicle platoon. Figure 8 shows
the evolution of position, velocity, and space gap with time for this case. Compared with Figure
5-7, the vehicle platoon hardly oscillates, and the changes of velocity and gap are relatively

small. The reason is that a large & yields a strong ability to resist the oscillation. This result is
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in accordance with the theoretical result discussed in Section 3, i.e., £>1 represents that the

perturbed platoon can converge to its equilibrium state without overshoots. These figures also
show that the oscillation amplitude increases with the length of the vehicle platoon,

demonstrating an unstable system.
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Figure 8 Stable and overdamped platoon's position, velocity, and gap evolution when
A,=0.1,4,=0.6

Case 3: Stable and overdamped condition in Region I1I
Figure 9 presents the change of position, velocity, and space gap with time when

A, =0.8,1 =1.2. At this moment, we can derive that @, =0.8944 rad/s and £ =1.1180>1,

which means that the platoon system is overdamped. Based on Eq. (17), we can calculate that
the platoon system is stable. The changes in velocity and spacing gap are relatively smooth.
This case shows that the initial perturbation recovers back to its equilibrium state without
overshoots. The reason is that the overdamped system hardly oscillates, and for a stale system,

the perturbation decays with the vehicle platoon.
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Figure 9 Stable and overdamped platoon's position, velocity, and gap evolution when

A, =081 =15
Case 4: Stable and underdamped condition in Region IV
Figure 10 presents the change of position, velocity, and space gap with time when

A, =0.8,4, =0.7. Then we can find that @, =0.8944 rad/s and & =0.8385 <1, which means

the platoon system is underdamped. Based on Eq. (17), we can derive that the platoon system

is stable. Similar to Figure 9, the initial unsteady state makes the vehicle platoon return to an
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equilibrium state after a string of oscillations of mild amplitudes. The reason is that the larger
& means the system has a significant ability to resist the oscillation.
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Figure 10 Stable and underdamped platoon's position, velocity, and gap evolution when
A,=08,4, =07

From the above simulations, we can find that different parameters 4,4, could determine the

oscillation behaviors of the vehicle platoon. For example, the unstable platoon system shows a
larger oscillation than the stable system. Furthermore, the perturbation oscillates back and forth
in an underdamped system and hardly oscillates in an overdamped system. In addition, we also
find that the larger the value of the damping intensity & for a platoon system, the smaller the
oscillation behaviors of the vehicle platoon. These cases demonstrate that the damping intensity
& can be regarded as a performance index to evaluate the oscillation amplitude of the vehicle

platoon.

4.2 Scenario II: With periodic perturbation
This scenario assumes that a periodic perturbation with specified frequency and amplitude is
exerted on the CAV platoon. The purpose of this scenario is twofold. First, it clarifies the

different oscillation behaviors with different sets of 4,4 by comparing with Scenario I.

Second, it explores the occurrence and impact of resonance when different periodic
perturbations are exerted on vehicles.

Noted that periodic perturbation is a ubiquitous event or process in nature, such as sound,
noise, and vibration, occurring on varied spatial and temporal scales, which can immediately
influence system stability (Norton and Karczub, 2003). For a vehicle platoon system, such a
periodic perturbation may be from the control system's noise (Treiber and Kesting, 2018) or
malicious cyberattack (Wang et al., 2020). When stable conditions are satisfied, the
perturbations are not amplified. However, under extreme conditions, a small perturbation can
amplify vehicle platoon oscillation. If a periodic perturbation is released with different

frequencies, then the oscillation pattern of the vehicle platoon changes. Therefore, to capture
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abnormal platoon vehicle behaviors, especially to uncover the damping oscillation
characteristics of the vehicle platoon, a series of simulations are conducted as follows.

Same as Scenario I, in the steady-state, each vehicle's velocity is 15 m/s, and each following
vehicle has an identical space gap, i.e., 17 m. Hence, to exclude the impact of transition from
an unstable state to an equilibrium state of the vehicle platoon, the initialized velocity is set as
15 m/s, and the space gap is 17 m. Without loss of generality, we assume the space gap error of

the 1st vehicle is disturbed in a sinusoidal fashion, i.e.,
s ()=s"+y (1)
v, ()= Ysin(a)ft)

Besides, we assume that the perturbation happens at 10 s and ends at 20 s. For comparison,

(19)

we also present four cases that are consistent with Scenario I. Each case shows the impact of a

perturbation with low frequency, resonance frequency, and high frequency on the CAV platoon,
ie.,w=0.2 rad/s, ®=w, and w=1.2 rad/s, respectively, where ¥ = 0.6 m. The perturbation

period is indicated by two vertical dashed lines in these figures.

Case 5: Unstable and underdamped condition in Region I

Same as Figure 4, herein, 4, =0.2, 4, =0.3. As this time, the inherent oscillation frequency

o, 1s 0.4472 rad/s, and the damping intensity & is 0.5590<1. Figure 11-13 show the impact of

a perturbation with low frequency, resonance frequency, and high frequency on the CAV
platoon, ie, ®=0.2 rad/s, ®=w,=0.4472 rad/s, and ®=1.2 rad/s, respectively. These

figures present a larger oscillation amplitude. The reason is that the platoon system is unstable
and underdamped. In particular, the oscillation amplifies with the number of vehicles, and the
oscillation fluctuates around the equilibrium state. Compared to Figure 11&13, the perturbation
with the resonance frequency in Figure 12 causes the most significant oscillation. Furthermore,
the perturbation amplitudes of velocity and space gap in Figure 12 are much larger than those
in Figure 11 or Figure 13. Moreover, even a rear-end collision happens in Figure 12. Hence,
through this case, we found that under the same conditions, the perturbation with the resonance

frequency on the vehicle platoon can have serious consequences.
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Case 6: Unstable and overdamped condition in Region II

80 100

For the same as Case 2 of Scenario I, herein, we select 4, =0.1 and 4 =0.7, then we can

derive @, =0.3162 and £ =1.2649 > 1. The vehicle platoon system with the given parameters

represents an unstable and overdamped system. Figure 14-16 present the impact of a
perturbation with different frequencies on the CAV platoon. These figures present a platoon's
dynamics with mild oscillation. Because this system is unstable and overdamped, the oscillation
grows with the propagation of the vehicle platoon, and the platoon hardly oscillates. Compared
to Figure 14&16, the perturbation with the resonance frequency in Figure 15 causes the largest

oscillation. In addition, as shown in Figure 15(c), the perturbation with the resonance frequency

results in a rear-end collision.
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Figure 14 Unstable and overdamped platoon's position, velocity, and gap evolution under

1400

1200

1000

Position (m)
[ P =) ®
g8 8 8 8

1st car

Z

Last car

Velocity (m/s)

= o o

)

@=0.2 rad/s

/AN

Last car

z

21d car

Gap (m)

2nd ca

Last car

h
&— Rear-end collisions

10 20 30 40 50

Timestep (s)

(a) Position vs. time

60 70 80

0 10 20 30 40 50

Timestep (s)

(b) Velocity vs. time

60

70

80

;s
10 20 30 40 50

Timestep (s)

(a) Gap vs. time

60 70
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Figure 16 Unstable and overdamped platoon's position, velocity, and gap evolution under

w=1.2 rad/s

Case 7: Stable and overdamped condition in Region I1I

80

In this case, 4, =0.8 and 4, =1.2. We can derive that @, =0.8944 rad/sand £=1.1180>1

, which means the platoon system is stable and overdamped. Figure 17-19 present the impact

of a perturbation with various frequencies on the CAV platoon. These figures show a relatively

mild oscillation. Among Figure 17-19, the perturbation with a resonance frequency in Figure

18 results in the largest oscillation. The amplitudes of velocity and space gap in Figure 18 are

larger than those of other figures. Besides, because the vehicle platoon system is stable, all these

figures present that perturbation decays as it propagates to the vehicle upstream.
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Figure 17 Stable and overdamped platoon's position, velocity, and gap evolution under

o =0.2 rad/s
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Figure 19 Stable and overdamped platoon's position, velocity, and gap evolution under

w=1.2 rad/s

Case 8: Stable and underdamped condition in Region IV

In this case, we choose 4, =0.8 and 4, =0.7. Then we can compute @, =0.8944 rad/s and

& =0.8355 <1, which means the platoon system is stable and underdamped. The stable vehicle

platoon system presents the magnitude of the perturbation damps out through the vehicle

upstream. The underdamped system shows a back and force oscillation around the equilibrium

state. Consistent with the above result, the oscillations of the vehicle platoon in Figure 21 are

severest than the other two figures. This case also demonstrates that the perturbation with

resonance frequency could cause the largest oscillatory amplitudes in velocity and space gap.
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Figure 20 Stable and underdamped platoon's position, velocity, and gap evolution under

1400

1200

1000

%
S
S

\

Position (m)
o
2
S

400

200

4
#@

Ist car

Last car

10

)
S

Timestep (s)

(a) Position vs. time

30 40 50 60 70 80

Velocity (m/s)

®=0.2 rad/s

2nd car

2nd car
Last car

0 10 20 30 40 50 60

Timestep (s)

(b) Velocity vs. time

10 20 30 40 50 60 70
Timestep (s)

(a) Gap vs. time

Figure 21 Stable and underdamped platoon's position, velocity, and gap evolution under
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Figure 22 Stable and underdamped platoon's position, velocity, and gap evolution under

w=1.2 rad/s

The simulation results show that different vehicle control parameters A , A, could affect

different oscillation patterns. The vehicle platoon presents a larger oscillation amplitude if the
system is underdamped; otherwise, the vehicle platoon presents a smaller oscillation, and
vehicles converge to a steady-state quickly. Meanwhile, these results also show that the periodic
perturbations would lead to platoon oscillations and stop-and-go waves. Furthermore, among
various periodic perturbations, the one with resonance frequency causes the severest

oscillations and even rear-end collisions. This is also in line with the result of the mechanical

vibration theory.

4.3 Scenario II1: With human-driven vehicle trajectory from NGSIM

To analyze platoon oscillation in a more realistic situation, this scenario assumes that the first
vehicle obeys a human-driven vehicle's trajectory from the NGSIM dataset (US Department of
Transportation-FHWA, 2008). To date, the NGSIM data is the largest set of empirical
microscopic traffic data available to the research community. Researchers have used these data

to interpret traffic phenomena, support theories, benchmark, calibrate, and validate traffic flow
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models (Montanino and Punzo, 2013; Zhou et al., 2020). The NGSIM includes four data sets,
i.e., two from freeways (I-80 and US-101) and two from arterial corridors (Lankershim and
Peachtree). Each data set includes complete vehicle trajectories for all vehicles over the freeway
or arterial from the entrance to the exit.

In this scenario, we adopt the NGSIM trajectory data for I-80 in California to analyze the

vehicle platoon's oscillation behaviors under different values of A, and 4,. Same as Scenarios

I and II, the vehicle platoon consists of ten vehicles, in which the first leading vehicle follows
the human-driven vehicle's trajectory and the other nine CAVs obey the linear (Helly's) car-
following model. Moreover, each CAV's car control parameters remain unchanged. Due to the
noise in the trajectory data, we used the dataset filtered and reconstructed by (Montanino and
Punzo, 2015) and (Punzo et al., 2011). Without loss of generality, the first leading vehicle
adopts the trajectory data of vehicle #1845 in the reconstructed NSGIM data, which is in Lane
2 from 4:00 p.m. to 4:15 p.m. on April 13, 2005. Figure 23 plots this vehicle's dynamic status.
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Figure 23 Profiles of vehicle #1845 from 1-80 data set (4:00-4:15 p.m.) of NGSIM data

Same as Scenarios I and II, we present four cases, corresponding to unstable and

underdamped condition in Region I (A, =0.2 and A4,=0.3), unstable and overdamped
condition in Region IT (4, =0.1 and 4, =0.7), stable and overdamped condition in Region IIT
(A, =0.8 and A4, =1.2), and stable and underdamped condition in Region IV (4 =0.8 and

A, =0.7), respectively. Most importantly, when the platoon system is unstable, the nine CAVs

would cause rear-end collisions, as illustrated in Figure 24c and Figure 25¢ where the negative
gaps represent collisions. By contrast, when the platoon system is stable, these vehicles do not
collide, as illustrated in Figure 26¢ and Figure 27c. These results are in agreement with the
theoretical results; namely, the perturbation effect decays for a stable system; otherwise, the
perturbation effect grows for an unstable system (Pueboobpaphan and van Arem, 2010).

On the other hand, we can find that the underdamped system presents significantly back and

forth oscillations, and the overdamped system presents slightly when comparing Figure 24 with
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Figure 25 for unstable systems. In addition, the oscillation in the overdamped system decays
over the vehicle platoon, while the oscillation in the underdamped system does not decay over
the vehicle platoon when comparing Figure 26 with Figure 27 for stable systems.

This scenario also shows the complex platoon dynamics in a more realistic environment. In

this scenario, parameters A, and A, selected from the unstable region could result in rear-end

collisions. Furthermore, parameters A, and A, that make the vehicle platoon underdamped
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Figure 24 Unstable and underdamped platoon's position, velocity, and gap evolution when
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Figure 25 Unstable and overdamped platoon's position, velocity, and gap evolution when

A, =0.1 and 4, =0.7

15 20
1st car 15 2nd car
10 Y
B I ~
2 s ]
Zos Last car 0
/= .
0 v -10
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s) Time (s)
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time

Figure 26 Stable and overdamped platoon's position, velocity, and gap evolution when
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Figure 27 Stable and underdamped platoon's position, velocity, and gap evolution when

A =08 and 4, =0.7

Through all three scenarios, we demonstrate how parameters A, and A, characterize the

system's oscillations in addition to their impact on system stability. Some common features

have been illustrated. For instance,

n—ecollistons—On-the-otherhand; the overdamped platoon system hardly oscillates, and the

underdamped platoon system oscillates back and forth. Furthermore, these scenarios show
unique results. For example, Scenario I presents that the larger the value of the damping
intensity & for the platoon system, the smaller the oscillation behaviors of the platoon. Scenario
IT shows that, among various periodic perturbations, the one with resonance frequency causes
the severest oscillations and even rear-end collisions. And Scenario III shows that our proposed
approach is effective to analyze vehicle platoon damping behavior in a more realistic travel

environment. s

These scenarios help deepen our understanding of platoon systems' damping behavior and

stability.

5. Conclusions

This research presents the damping-based oscillation analysis and illustrates the differences
between oscillation and instability. The instability is used to decide whether the vehicle platoon
system is stable or unstable. In contrast, the damping-based oscillation analysis reveals the
inherent characteristics of platoon oscillation. In this study, to better derive the damping
oscillation characteristics, a classic linear car-following model, Helly's model, is adopted and
reformulated as a mathematical representation of the mechanical vibration based on the
similarity between mechanical vibrations and platoon oscillations. The theoretical results reveal

that the oscillation of a CAV platoon is mainly associated with its resonance frequency, through
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which a small perturbation can amplify its effect to increase the platoon oscillation amplitude.
The paper demonstrates that resonance could lead to the severest oscillations among various
periodic perturbation frequencies through simulation. As a result, protecting the platoon from
resonance is crucial to enhance the CAV platooning reliability and suppress large amplitude
oscillations. These results also demonstrate the effectiveness of our proposed approach to
characterize the damping oscillation properties of the CAV platoon and the importance of
analyzing platoon oscillation behavior.

The current research can be further extended in several directions. First, the derived damping
conditions only focus on the linear car-following model. It will be interesting to investigate the
oscillation frequency and damping parameter for nonlinear car-following models, such as the
Intelligent Driver Model. Also, the theoretical derivation for the vehicle platoon with the simple
communication scheme ignores the communication attributes, such as communication topology
and delay, which affect the platoon stability as proved in the literature. Third, this study adopts
a classical frequency-domain method to demonstrate the differences between the string stability

and the proposed vulnerability analysis approach. Other stability analysis methods, such as L,

and L_, and their differences to our proposed approach, are worth further investigation.

Acknowledgments

This work was supported in part by the Young Scientists Fund of the National Natural
Science Foundation of China (52002013), China Postdoctoral Science Foundation
(BX20200036, 2020M680298), and the U.S. National Science Foundation via Grant CMMI-
2047793. The authors are solely responsible for the contents of this paper.

APPENDIX

This study adopts the linear stability analysis method (Bando et al., 1995; Kesting and
Treiber, 2013; Ngoduy, 2015; Wilson, 2008) to analyze the (in)stability of Helly's model. When

the velocity deviation u, and a space gap deviation y, are small enough, employing the first-

order Taylor expression, Eq. (7) can be rewritten as

ll“.ln :f;tvﬂn _{_f:yn +f;lAvAlun 2 (20)
0 0 0
where f,’ = 9 , )= al and [ = f
n (e, 5,0 S (2, 55,0 Vi (0, 5%,0)
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The velocity deviation 4, and the space gap deviation y, are set as two exponential

ion+At

functions p, = Ae and y = B, in which 4, B are constant. A prevailing reason is

that their k-th derivations are proportional to these functions themselves.

Given that s =v_, —v , we have
A(e™ =1)
B=———-. 21
7 21)
Submitting Eq. (21) into Eq. (20), we can derive the characteristic equation as below.
A =A(f A=) =(e™-1) £ =0. (22)

Extending A4 in a power series solution A =i, +®’A, +o(w), where A, and A, are real

coefficients. Then submitting it into Eq. (22), we have

_Sn
A=

=_(f;15)2+f;15f;1AV+ f;ls

20 N0 T
The platoon is linearly stable if 4, <0. These partial differential equations in Eq. (23) satisfy

(23)

the following conditions,
fr<0, f220, £ <0. (24)
In fact, Eq.(24) presents a practical meaning. In a close-following situation, a larger space
gap would lead to the following vehicle's more acceleration since the preceding vehicle is
leaving away; a larger velocity difference would lead to more deceleration due to the fact that

the following vehicle is quickly close to the vehicle ahead; the larger its own velocity, its
deceleration tendency accelerate would be more. In particular, f* =0 and f* =0 mean that

no following relationship between two successive vehicles (Wilson and Ward, 2011).

Hence, we can derive the stable condition as follows.

—fi+ffv+fi£0. (25)

A 2

Similarly, the unstable condition is obtained, i.e.,
—f—"+ff”+fi>0. (26)

1y 2

Furthermore, we can get the analytic expressions of partial differential equations of Helly's

model:

N P 27)
~fn X ~f7‘l X n v
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Then applying the instability criteria Eq. (26) to Helly's model, we can get its instability
condition, i.e.,
1 Az

A, <—=2= 28
VST, (28)
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