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Abstract: Connected automated vehicles (CAVs), built upon advanced vehicle control and 

communication technology, can improve traffic throughput, safety, and energy efficiency. 

Previous studies on CAVs control focus on instability and stability properties of CAV platoons; 

however, these analyses cannot reveal the damping platoon oscillation characteristics, which 

are important for enhancing CAV platoon reliability against variant continuous perturbations. 

To this end, this research seeks to characterize the damping oscillations of CAVs through 

exploiting the platoon's unforced oscillatory, i.e., damping behavior. Inspired by the mechanical 

vibration theory, this research proposes an approach to analyze the platoon oscillation 

characterization by formulating the oscillatory dynamics as vibrations in a mechanical system. 

The proposed approach is applied to a CAV platoon with the linear car-following behavior 

formulated as Helly's model and the predecessor-following communication topology. 

Numerical analysis results show that a periodic perturbation with the resonance frequency of 

the CAV platoon will amplify the oscillation and lead to the severest oscillatory traffic. Our 

analysis highlights the importance of preventing platoon oscillations from resonance in 

ensuring CAV platooning reliability.  
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1. Introduction 

Connected automated vehicles (CAVs) are expected to improve traffic mobility, safety, and 

sustainability through vehicle automation and connectivity technologies (Shladover, 2018). 

These technologies enable vehicles to share information through communications to improve 

travel safety and comfort (Dong et al., 2021), increase traffic capacity (Papadoulis et al., 2019) 

and reduce pollution (Saxena et al., 2019). To achieve such goals, it is critical for individual 

CAVs to coordinate with their neighboring vehicles while maintaining stable and safe travel. 

Therefore, analyzing CAV traffic behavior is of great importance (Jia and Ngoduy, 2016). 

Among the research on CAV traffic behaviors, stability, instability, and oscillation are 

attracting more and more attention. For example, some research investigated the vehicle platoon 

performance, such as local stability and string stability (Ding et al., 2020; Zhou et al., 2020). 

Note that local stability is usually used to describe a single vehicle's movement over time under 

the influence of a small disturbance, e.g., deviation from uniform space gap, velocity, or 

acceleration; while string stability is used to describe how the disturbance is decayed over a 

vehicle platoon (Sun et al., 2018). In contrast to stability-focused studies, other research aims 

to investigate instability (Daganzo et al., 2011). The objective of instability analysis is to 

understand how badly the system could perform. The string instability describes whether the 

perturbation on the first vehicle will be amplified through the vehicle platoon (Herman et al., 

2015). However, neither stability nor instability analysis is sufficient to characterize the 

damping oscillations of a vehicle platoon. The reason is that string stability (or instability) 

means that a perturbation imposed on the leader is decayed (or amplified) over the vehicle 

platoon. However, the damping oscillatory behavior is one of the natural characteristics of the 

vehicle platoon, which is independent of the imposed perturbation. 

Focusing on the damping oscillations of the CAV platoon, this paper introduces a method to 

characterize the damping oscillations of the vehicle platoon, which is inspired by the 

mechanical vibration in a spring-mass system. To analyze the performance of a CAV platoon 

exposed to ubiquitous perturbations, this research exploits the CAV platoon's damping behavior 

(i.e., unforced oscillatory) by formulating platoon oscillations as vibrations in a mechanical 

system. To facilitate theoretical derivations, this research employs Helly's model (Helly, 1959) 

to describe linear car-following dynamics and adopts the predecessor-following (PF) 

communication scheme to capture the potential perturbations from communications. Upon 

Helly's model, this paper derives the damping characteristics of the CAV platoon based on the 

mechanical vibration theory.  
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Furthermore, this study differentiates damping-based oscillation analysis from existing 

stability/instability analyses and proposes a new approach to reveal the damping characteristics 

of CAV platoons using the mechanical vibration theory. The resonance frequency of a CAV 

platoon, derived based on its damping characteristics, is shown as a function of vehicle control 

parameters, enabling a quick evaluation involving both the CAV platoon's stability and its 

damping behavior under perturbation. The analytical characterization of damping behavior, 

supported by simulation results, shows that a CAV platoon is most vulnerable to periodic 

perturbations with the same frequency as its inherent fluctuation frequency, also known as 

resonance. Overall, the oscillation analysis of the CAV platoon conveys the insight that 

preventing perturbations from resonance is crucial to enhance the CAV platooning reliability 

and suppress large amplitude oscillations.  

This study is organized as follows. Section 2 presents the related work about (in)stability and 

oscillation analysis. Section 3 proposes the oscillation analysis approach to reveal the damping 

characteristics. Section 4 carries out a simulation study to verify the effectiveness of the 

proposed method and compare the platoon's oscillations to its stability properties. The last 

section concludes our findings and suggests future research directions. 

2. Related Work 

Stability could provide insights into the parametric influence on traveling safety and 

oscillation propagation. Extensive studies have conducted analyses on CAV stability. For 

example, Naus et al. (Naus et al., 2010) analyzed the string stability of a CAV platoon via a 

frequency domain approach. Xiao and Gao (Xiao and Gao, 2011) studied the string stability of 

homogeneous and heterogeneous platoons for vehicles equipped with adaptive cruise control. 

Ngoduy (Ngoduy, 2013) analyzed the string stability of vehicles equipped with cooperative 

adaptive cruise control using linear and nonlinear stability methods. Zhou et al. (Zhou et al., 

2019) presented a predictive control strategy for CAVs and analyzed platoon's local stability 

and string stability. Ding et al. (Ding et al., 2020) pointed out that local stability and string 

stability are necessary to ensure the performance reliability of the controller and the platoon. 

Zhou et al. (Zhou et al., 2020) formulated a H  control to synthesize control parameters for a 

mixed vehicular platoon that consists of CAVs and human-driven vehicles and derived a string 

stability criterion for the mixed vehicular platoon. Herman et al. ((Herman et al., 2015) 

investigated harmonic stability of the platoon, which is a term for exponential scaling of the 

H  norm of the transfer function of the platoon as the number of the platooned vehicles 



4 
 

increases.  

Note that various types of stability have been explored, such as local/asymptotic stability 

(Chandler et al., 1958; Herman et al., 1959), platoon stability (Wilson and Ward, 2011), and 

string stability (Swaroop and Hedrick, 1996). To avoid ambiguity, the name 'platoon stability' is 

also called 'local stability' (Montanino and Punzo, 2021), and 'asymptotic stability' in traffic flow 

modeling is also called 'string stability' (Ploeg et al., 2014; Qin and Li, 2020). In addition, there 

exist various stability analysis methods, such as H  norm of the transfer function, leading to various 

stability conditions. More detailed stability analysis methods and their corresponding stability 

conditions are presented in (Wilson and Ward, 2011)(Montanino and Punzo, 2021). 

By contrast, instability has been widely used to investigate traffic performance under 

ubiquitous perturbations (Jiang et al., 2018). For example, Montanino and Punzo (Montanino 

and Punzo, 2021) found that the degree of string instability is higher in a homogeneous platoon 

than in a heterogeneous one. Treiber and Kesting (Treiber and Kesting, 2018) proposed a 

generic instability analysis mechanism by introducing white acceleration noise. Jiang et al. 

(Jiang et al., 2018) conducted an experiment to analyze traffic flow instability based on a 

platoon consisting of 51 vehicles.  

Besides stability and instability, traffic/platoon oscillation is another important performance 

to study CAV traffic behaviors. When traffic/platoon oscillation occurs, vehicles exhibit 

repetitive deceleration and acceleration operations owing to interactions between slow-moving 

and fast-moving vehicles. Negative effects of oscillations include driving discomfort, delay, 

pollution, excessive energy consumption, and increased risk of accident (Li et al., 2010). 

Meanwhile, such oscillations can easily be triggered by a local perturbation such as lane-

changing operations near a bottleneck (Ahn and Cassidy, 2007), cyberattacks on vehicles 

(Wang et al., 2020), and the abrupt acceleration/deceleration of the human driver or the CAV 

control system.  

Acknowledging the similarity between vehicle platoon oscillation and mechanical vibration 

of the spring-mass system, researchers have introduced the mechanical vibration theory to 

modeling and analyzing car-following behaviors. For example, Yanakiev and Kanellakopoulos 

(Yanakiev and Kanellakopoulos, 1996) employed a simple spring-mass-damper system to 

capture the longitudinal control of vehicles' behaviors and analyzed the string stability of the 

vehicle platoon. Li et al. (Li et al., 2017) designed a novel car-following model derived from 

the fundamental physical law of the spring-mass system. They analyzed the stability of the 

proposed model, in which the quotient of the spring constant and mass represents the sensitivity 
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coefficient in their proposed car-following model. Munigety et al. (Munigety, 2018) proposed 

a car-following model to describe the longitudinal behaviors of vehicles by using the spring-

mass-damper mechanical system. Horn and Wang (Horn and Wang, 2018) applied the spring-

mass system to design a bilateral control model of a vehicle platoon. Bang and Ahn (Bang and 

Ahn, 2020) adopted the spring-mass-damper system to formulate CAVs' behaviors. 

Furthermore, Li et al. (Li et al., 2020) proposed a car-following model that captures the ego 

vehicle's resistance to large variations in relative speed and special gap when following the 

preceding vehicle. Unfortunately, all these mentioned studies focus on applying the spring-mass 

system to formulate car-following behaviors rather than analyzing the vulnerability of vehicle 

platoon. 

However, most of existing studies focus on analyzing the system's (in)stability, and less effort 

has been conducted on interpreting the damping behaviors. In this study, the damping behavior 

analysis exploits the platoon's unforced oscillatory dynamics and reveals the inherent oscillation 

frequency and the damping intensity of the vehicle platoon system, which are important for 

enhancing CAV platoon reliability against variant continuous perturbations.  

3. Damping behavior Oscillation Analysis  

This section first discusses the similarity between the mechanical vibration and the vehicle 

oscillation and presents basic fundaments of the mechanical vibration, then proposes an 

approach to uncover damping oscillation characteristics and further explore the difference 

between the proposed damping-based oscillation analysis and classical string stability analysis. 

The derivation of the damping oscillation characteristics is based on the mechanical vibration 

theory (Shabana, 2019).  

3.1 Preliminaries 

This section illustrates the similarity between a vehicular platoon oscillation behavior and 

the mechanical vibration (e.g., a spring-mass-damper system). Figure 1a shows that, if one 

person exerts an external force on an object and stretches or contracts the spring away from the 

equilibrium location, the object will vibrate back and forth around its unstretched location once 

removing the external force. Due to the damping force, the vibration eventually stops.  

Similar to mechanical vibration, Figure 1b presents a vehicular platoon's oscillation behavior. 

Specifically, if the space gap between two consecutive vehicles is too large, the follower will 

accelerate to shrink the space gap; otherwise, the follower will decelerate to increase the space 

gap. The reduplicative acceleration/deceleration makes the vehicles' dynamics unstable and 
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induces stop-and-go waves. Due to the continuous adjustment of the vehicular control system, 

the stop-and-go waves gradually die out. The decreasing oscillation magnitude reveals that the 

vehicle platoon is a damped system, where vehicles dynamics help them achieve the consensus 

of velocity and space gap. 

  

(a) Mechanical variation patterns of an object (b) Platoon oscillation patterns of a vehicle 

Figure 1 Schematics of similarities between the mechanical vibration and platoon oscillation  

Before we apply the mechanical vibration theory to analyze CAV platoon vulnerability, some 

major conclusions in mechanical vibration are provided as follows (Kelly, 2012; Schmitz and 

Smith, 2011). 

Consider a system consisting of a rigid mass m  and a spring with a recovery constant k . 

The spring is fixed at one end and attached to the rigid mass at the other end. Suppose that the 

mass movement is linearly damped by a friction force with coefficient c . The dynamics of this 

system is modeled by the following second-order differential equation  

 ( ) ( ) ( ) 0mx t cx t kx t+ + = , (1) 

where ( )x t , ( )x t  and ( )x t  are the acceleration, velocity, and position of the mass at time t .  

Dividing Eq. (1) by the mass m  leads to  

 ( ) ( ) ( ) 0
c k

x t x t x t
m m

+ + = . (2) 

Denote 0 k m =  and 2c km = , and substitute them into Eq. (2). Eq. (2) is then 

rewritten as  

 2

0 0( ) 2 ( ) ( ) 0x t x t x t + + =  (3) 

Eq. (3) is the standard form of the differential equation for mechanical vibration systems, 

where 0  is the natural frequency of the motion and  is a dimensionless parameter and also 

called the damping ratio. 
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Because Eq. (3) is a linear, ordinary homogeneous differential equation with constant 

coefficients, a solution of Eq. (3) can be assumed to be the form of ( ) stx t Ae= . Substitute it 

into Eq. (3) leads to  

 ( )22

0 02 0sts es A + =+  (4) 

If 0stAe = , no motion has occurred and this is referred to as the trivial solution. The 

characteristic equation is quadratic in s and has two roots, i.e.,  

 ( )01,2

2 1s   = − −  (5) 

Hence, the total solution for the system vibration is the sum of the two harmonic responses 

defined by the two roots, i.e.,  

 ( )1
2

02
2

00 1 1

1 2 1 2( ) =
s t s t

x t X e X e e X e X e
     − − −−

= + + . (6) 

In Eq. (6), the first term in the product (i.e., 0e
 −

) describes the damping envelope that 

bounds the decaying oscillation and the second term (i.e., 
2 2

0 01

1 2

1
X e X e

   − − −
+ ) defines the 

oscillatory part (Schmitz and Smith, 2011). Owing to Eq. (6), there are three domains for  , 

which lead to different solutions to Eq. (1).  

Based on the above preliminaries, we have the following fundamentals of the mechanical 

vibration theory.  

Definition 1 (Natural frequency). Natural frequency is the frequency at which a system 

tends to oscillate in the absence of any driving or damping force. 

Definition 2 (Resonance freqeuncey). Resonance frequency is identified where the forcing 

frequency is equal to or close to the natural frequency, which could lead to the largest vibration 

amplitude. 

Remark 1. The mechanical vibration system Eq. (1) is the general form of the differential 

equation for the displacement of an object in a linear system with viscous damping. Based on 

Eq. (6), different solutions of this equation have different vibration characteristics (Kelly, 2012):  

1) If 1  , the roots of Eq. (1) are real, it is called the overdamped system. In this case, the 

motion of this system is nonoscillatory.  

2) If =1 , the roots of Eq. (1) are equal, it is called the critically damped system. In this case, 

the motion of this system is also nonoscillatory.  

3) If <1 , the roots of Eq. (1) are complex conjugates, it is called the underdamped system. 

In this case, the motion of this system is oscillatory.  
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Note that the complex roots of Eq. (1) will introduce the oscillatory component. Any 

complex number can be written in exponential form iz re = . A time-dependent complex 

number can be denoted as ( ) co sis ni t t ir tz t re r  += =  (Hahn, 1994). At time t, ( )z t  is at 

a point on the circle of radius r  at angle t  to the x-axis. Namely, ( )z t  is circling at a 

steady angular velocity  , i.e., ( ) co sis ni t t ir tz t re r  += = . These trigonometric 

functions can be used to describe harmonic oscillations, because harmonic oscillations can 

be regarded as the projection of the circling complex number on a straight line (Schmitz 

and Smith, 2011). In the context of a CAV platoon, the communication between two vehicles 

can be regarded as a spring between them. Then the object's acceleration ( )x t , velocity ( )x t , 

and position ( )x t  are similar to the CAV's acceleration, velocity, and position. The following 

will apply the mechanical vibration theory to derive the CAV's damped oscillation 

characteristics. 

3.2 Analysis approach 

This section aims to derive the damping oscillation characteristics of a CAV platoon by using 

the mechanical vibration theory. As discussed above, the process of the oscillation amplitude 

decay is similar to the mechanical vibration of the spring-mass system. Therefore, based on this 

similarity, we will apply the vibration theory, i.e., Definitions 1 and 2 and results in Remark 1, 

to investigate the damping oscillation characteristics of the platoon system.  

 

Figure 2 Illustration of the platooned vehicles on a single lane 

In our theoretical derivation, we consider a platoon of homogeneous CAVs moving on a 

single lane, as depicted in Figure 2, where nx  represents the position of vehicle n , nv  

represents the speed of vehicle n , and 1n nn x xx −= −  represents the space headway or distance 

between vehicle n  and vehicle 1n− . To capture the vehicle's longitudinal dynamics, a car-

following model is formulated as follows:  

 
( )

( ),

( ) , , .

n n

n n n

x v t

v t f s v v

=

= 
 (7) 
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where 1 1n n n ns x x l− −= − −  represents the space gap between vehicle n  and vehicle 1n−  with 

1nl −  indicating the length of vehicle 1n− , and 1nn nv vv − = −  represents the relative velocity 

between vehicle n  and vehicle 1n− . 

For any vehicle  1, ,n m , a perturbation to vehicle n  could affect nv , nx  and ns . These 

changes can be expressed as deviations n  and ny  from the equilibrium values ev , es , i.e.:  

 
e

e( ) ( ) ( )

( ) ( ) ( ),

,n

n

n

ns

v t v t

t s y

t

t t



+

+

=

=
 (8) 

where e

1 1( ) ( ) ( ) ( )n n n ny t x t x t l s t− −= − − −  and e( ) ( ) ( )nn t v t v t = − .  

When a change in the gap and/or velocity occurs on vehicle n , in this time, the velocity of 

vehicle 1n−  keeps its steady velocity and is a constant, and es  is also a constant. Based on Eq. 

(8), we can derive 

 1d ( ) d ( ) d ( )
( ) ( ) ( )

d d d

en
n

n n
n

y t x t x t
v t v t t

t t t
−= − = − = − . (9) 

Hence, based on Eqs. (7) and (9), we can derive the following equations.  

 

( ).

d

,
d

,
d

,

e

n

e

nn

n

n
nf s

y

t

y v
t

d



 

= −

= + +

 (10) 

By employing the first-order Taylor expansion to Eq. (10), we can find that 

 .
d

(
d

, )s vn
n n n n n n n

v

n f y ff y
t


   += + +  (11) 

Ignoring the high-order terms in Eq. (11), the linear part can be written as:  

 ( )
2

2
.

d d
0v vn n s

n n n n

y y
y

d dt
f f

t
f − =++  (12) 

Defining ( ) 0=2v

n n

vf f  +−  and 2

0

s

nf = , Eq. (12) can be rewritten as 

 
2

2

0 02
02n n

n

d y dy
y

dt dt
  + + =  (13) 

where ( )
1

2

vv s

n n nf f f = − + and 2

0

s

nf = . 

Note that Eq. (13) is akin to the mechanical vibration system, which is also a general form 

of the differential equation for the displacement of a particle in a linear system with viscous 

damping (Thomson, 2018). Herein, referring to Definition 1, 0  represents an inherent 

oscillation frequency, at which the system oscillates independently of any external excitation. 

Furthermore, the inherent oscillation frequency is also called resonance frequency. If the 
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perturbation is exerted on vehicles with the resonance frequency, as presented in Definition 2, 

this could lead to the largest vibration amplitude (Shabana, 2019). 

Notation   in Eq. (6) represents the damping intensity of a system against vibration. In 

particular, in the field of mechanical vibration, as presented in Remark 1, 1   indicates an 

underdamped system; and 1   indicates an overdamped system. Based on the definition of 

damping dynamics in mechanical vibration, for a vehicle platoon system, 1   represents the 

scenario that the perturbed platoon oscillates back and forth around the equilibrium state; and 

1   represents that the perturbed platoon can converge to its equilibrium state without 

overshoots. Therefore, a platoon control strategy that ensures 1   can enable the platoon to 

resist external perturbation more effectively. Such resistance is helpful in enhancing platoon 

reliability in a complex travel environment.  

3.3 Damping-based oscillation analysis for a platoon with linear following behavior  

This study applies the proposed approach to a vehicle dynamics model to illustrate its 

capability in uncovering a CAV platoon's damping oscillatory behavior. Over the years, a 

variety of car-following models have been developed, such as Pipes' model, Helly's model, 

optimal velocity model (OVM), and intelligent driver model (IDM) (Aghabayk et al., 2015). 

Among them, due to the simple and intuitive features, Helly's linear car-following model has 

been widely used to describe CAV's behaviors (Chen et al., 2021; Hu et al., 2021). Hence, this 

study adopts Helly's car-following model to capture the longitudinal acceleration of the CAV. 

The formulation of this model is expressed as below (Helly, 1959):  

 ( )0( ) ( )( ) ( ),x n n vn nt s t v t ts vv   − − = −  (14) 

where v  represents the sensitivity to relative velocity, x  represents the sensitivity to distance 

difference between two successive vehicles, 0s  is the minimum distance allowed as a safety 

gap, and   represents reaction time. Note that 0( )nv t s +  indicates the desired space gap. In 

this model, the acceleration of a vehicle presents a linear relationship with the deviation from 

the space gap and the relative velocity between two successive vehicles.  

In a steady state, each vehicle maintains an identical space gap and velocity. Therefore, Eq. 

(14) can be expressed as bellows. 

 e e

0=s v s +  (15) 

where ev  and es  represent the steady velocity and steady space gap, respectively.  

Furthermore, in addition to Helly's linear model, this study assumes a predecessor-following 
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communication scheme. In this way, we can better reveal the damping oscillation characteristics 

of a vehicle platoon. With the predecessor-following communication, each CAV can share its 

information and receive other vehicles' information. The communication topology defines the 

origins and destinations of information spreading among CAVs that can affect the vehicle 

dynamics, thereby playing a critical role in information exchange and sharing. Note that many 

communication topologies have been proposed for CAV platoons, e.g., predecessor-following, 

predecessor-leader-following, bidirectional, bidirectional-leader, two-predecessors following, 

two-predecessor-leader following, multiple-predecessor-following, and multiple-predecessor-

leader-following (Wang et al., 2019). However, those complex communication topologies 

introduce extra difficulties in the analytical derivation of oscillation characteristics, which will 

divert the focus of this research. To better elucidate our proposed approach to derive closed-

form formulas for the damping oscillation characteristics, we assume that the subject vehicle 

only receives its nearest preceding vehicle.  

Hence, based on the derivations of the partial derivatives in Section 3.2, the damping 

oscillation characteristics of Helly's linear model can be derived, i.e., 

 ( )0

1
and .,

2
x x xv      = +=  (16) 

Note that the oscillation damping performance analysis could also be applied to the general 

human-driven vehicle's longitudinal behavior. However, this study pays more attention to 

perturbations caused by cyberattacks (Wang et al., 2020) and communication information 

noises (Vegamoor et al., 2021) on the CAV platoon. Such effects are formulated as periodic 

perturbations in the numerical examples presented in Section 4. Hence, we would like to apply 

our proposed approach in the CAV context. Furthermore, this study is our first attempt to 

investigate the damping characterizes of the vehicle platoon system. To articulate the basics, 

we only adopt a simple linear model, i.e., Helly's model, for theoretical analysis. In fact, our 

proposed approach can also be applied to high-order models such as the optimal velocity model 

(OVM) and intelligent driver model (IDM) by using the linearization method (Ngoduy, 2015; 

Sun et al., 2018). Detailed work on high-order models is still under investigation and will be 

published in other papers in the future. 

3.4 Differences between damping-based oscillation and instability analysis 

It is necessary to differentiate the damping-based oscillation and (in)stability. First, through 

the (in)stability analysis on the linear model, we can obtain the (in)stability condition (Detailed 
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derivation of the instability analysis are presented in Appendix). The instability condition of 

Helly's model is shown below.  

 
1

.
2

x
v

 



 −  (17) 

When a perturbation is exerted on the vehicle platoon, the perturbation effect decays for a 

stable system; or the perturbation effect grows for an unstable system (Pueboobpaphan and van 

Arem, 2010). However, such instability analysis focuses on the propagation of the perturbation 

effect (Yao et al., 2020) and cannot characterize the damping oscillation. 

More importantly, from Eqs. (16) and (28), we can visually compare the instability and 

damping-based oscillation conditions, as shown in Figure 3. In the instability analysis, Figure 

3a shows that a curve divides the regions into stable and unstable regions. The area above the 

curve denotes the stable region, while the area below the curve denotes the unstable region. 

Figure 3b indicates that the whole plane is divided into underdamped and overdamped regions. 

The region above the curve is overdamped, and the region below the curve is underdamped 

regions. These two figures clearly illustrate the difference between instability analysis and 

damping-based oscillation analysis. 

  
(a) Stable and unstable regions (b) Underdamped and overdamped regions 

Figure 3 Instability and damping-based oscillation analysis on a linear model 
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Figure 4 Regions for the instability and damping-based oscillation analysis when 1 = . The 

magenta line indicates the boundary of the stable and unstable regions, and the blue curve 

indicates the boundary of the underdamped and overdamped regions. 

The instability boundary line and the damping characteristic curve divide the whole plane 

into four regions, as shown in Figure 4. In detail, Region I represents the unstable and 

underdamped region, Region II represents the unstable and overdamped region, Region III 

represents the stable and overdamped region, and Region IV represents the stable and 

underdamped region. In this figure, each region has the dual features of stability and damping 

oscillation. For example, if the parameters x  and v  are selected from Region I, the vehicle 

platoon presents unstable and underdamped oscillation properties, which means the 

perturbation amplifies as it propagates to the vehicle platoon and the oscillations resulting from 

perturbations present back-and-forth fluctuations around the equilibrium. The oscillation 

properties of other regions can be described accordingly.  

The above analyses help us derive an approach to reveal the damping oscillation 

characteristics of the vehicle platoon and elucidate the difference between the proposed analysis 

approach and the existing string (in)stability analysis methods. Overall, the damping process is 

an inherent property independent of external perturbations exerted on the platoon, meaning that 

the system has an instinct to resist the oscillation. The damping behavior of a system refers to 

the characteristic of how a perturbation, when applied to a system, dissipates over time. The 

damping oscillation properties, including the inherent oscillation frequency and damping 

intensity, will convey profound knowledge in understanding oscillations and designing 

effective traffic management strategies to help traffic against various perturbations. Through 

the proposed approach, we derive two parameters, i.e., the inherent oscillation frequency or called 

resonance frequency (i.e., 0 ) of the CAV platoon and the damping intensity (i.e.,  ) of the 
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platoon system against vibration. If the perturbation is exerted on vehicles with the resonance 

frequency, this could lead to the largest vibration amplitude. The underdamped condition (i.e., 

1  ) represents that the perturbed platoon oscillates back and forth around the equilibrium 

state; and the overdamped condition (i.e., 1  ) represents that the perturbed platoon can 

recover back to its equilibrium state without overshoots.  

Instead, string stability relates to the characterization of how the perturbation dissipates along 

a string of vehicles. To demonstrate the differences, we derive the stable or unstable conditions 

using the classical string stability analysis approach. Stable or unstable conditions mean that a 

perturbation imposed on the leader is decayed or amplified over the vehicle platoon. As our 

proposed method focuses on platoon oscillation characterization, it differs from the classical 

string stability analysis methods. The following section will illustrate the significance of 

applying our proposed approach to analyze the impact of perturbation on platoon system 

performance through simulation.  

4. Numerical Analysis 

A CAV platoon consisting of 10 vehicles and traveling in a single lane is assumed in our 

numerical analysis. The first leading vehicle remains its initial velocity during the entire 

simulation that is 100 s. Each vehicle's parameters are set as bellow: the desired free-flow speed 

0 33 m/sv = , vehicle length 5 ml = , the minimum safety distance 0 2 ms = , the maximum 

acceleration 
25 m/sa = , and the desired deceleration 

26 m/sb =  (Milanes and Shladover, 

2014; Niroumand et al., 2020). The velocity and position are updated by the following 

kinematic equation.  
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where t  is the sampling time step and set as 0.1s.  

Note that no overtaking is allowed. If the following vehicle exceeds its preceding vehicle, 

then a rear-end collision occurs. Next, to verify the theoretical results presented in Section III, 

we conduct three simulation scenarios on the CAV platoon: without perturbation, with periodic 

perturbation, and with the human-driven vehicle trajectory. Scenario I is defined as the base 

case without external perturbation after time 0 and focuses on illustrating how the vehicle 

platoon behaviors are affected by different values of x  and v  without external perturbation. 

Scenario II characterizes the platoon behaviors affected by a periodic perturbation after time 0. 

Scenario III presents more realistic platoon behaviors impacted by a human-driven vehicle 
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trajectory. To be consistent with Figure 4, the reaction time,  , is set as 1s. 

4.1 Scenario I: Without perturbation 

As Eq. (16) shows, inherent oscillation frequency 0  and damping intensity   are 

determined by parameters ,x v  . Hence, to understand the joint impact of 'damping behavior' 

and 'stability' behavior, we conduct a multiple experiments, four cases are presented.  

(i) Case 1 describes the vehicle platoon behaviors in Region II, whose parameters correspond 

to three red asterisks in Region I of Figure 3. 

(ii) Case 2 describes the vehicle platoon behaviors in Region II, whose parameter corresponds 

to the red asterisk in Region II of Figure 3.  

(iii) Case 3 describes the vehicle platoon behaviors in Region III, whose parameter 

corresponds to the red asterisk in Region III of Figure 3.  

(iv) Case 4 describes the vehicle platoon behaviors in Region IV, whose parameter 

corresponds to the red asterisk in Region IV of Figure 3.  

Case 1: Unstable and underdamped condition in Region I  

For consistency, we assume that at the initial stage, each vehicle's speed is 15 m/s, and each 

vehicle's space gap is set as 10 m. At equilibrium, each vehicle remains the same velocity as 

the first leading vehicle, i.e., 15 m/s, and each following vehicle has an identical space gap, i.e., 

the stable space gap is 17 m/s. Indeed, the space gap can also be obtained according to Eq. (15)

. In Figure 5, the parameters 0.2x =  and 0.3v =  are selected from Region I. Meanwhile, 

based on Eq. (16), we can derive 0 0.4472 =  rad/s and 0.5590 1 =  , which indicates the 

vehicle platoon system is underdamped. As we can see from this figure, the perturbation grows 

as it propagates to the following vehicles. In other words, the system is said to be unstable.  

Figure 6 and Figure 7 show the change of position, velocity, and space gap with time when 

0.5, 0.3x v = =  and 0.5, 0.5x v = = , respectively. Using Eq. (16), we can calculate 

0 0.7071 =  rad/s and 0.5657 1 =   for the case shown in Figure 6 and 0 0.7071 =  rad/s 

and 0.7071 1 =   for the case shown in Figure 7. All these figures show unstable traffic, i.e., 

the perturbation grows over the vehicle platoon. Among them, we found that with the increase 

of  , the oscillation amplitude of the vehicle platoon turns smaller. This also demonstrates that 

the damping intensity   can be used to describe the system performance, and the larger  , the 

smaller oscillations.  
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(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 5 Unstable and underdamped platoon's position, velocity, and gap evolution when 

0.2, 0.3x v = =  

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 6 Unstable and underdamped platoon's position, velocity, and gap evolution when 

0.5, 0.3x v = =  

   

(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 7 Unstable and underdamped platoon's position, velocity, and gap evolution when 

0.5, 0.5x v = =  

Case 2: Unstable and overdamped condition in Region II 

In this case, we present the vehicle platoon behaviors under unstable and overdamped 

conditions. Herein, we select 0.1, 0.6x v = =  which lies in Region II. Herein, 0 0.3162 =  

rad/s and 1.2649 1 =  . When 1  , it means the system is overdamped. This case aims to 

discuss the impact of these parameters on oscillations of the vehicle platoon. Figure 8 shows 

the evolution of position, velocity, and space gap with time for this case. Compared with Figure 

5-7, the vehicle platoon hardly oscillates, and the changes of velocity and gap are relatively 

small. The reason is that a large   yields a strong ability to resist the oscillation. This result is 



17 
 

in accordance with the theoretical result discussed in Section 3, i.e., 1   represents that the 

perturbed platoon can converge to its equilibrium state without overshoots. These figures also 

show that the oscillation amplitude increases with the length of the vehicle platoon, 

demonstrating an unstable system.  

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 8 Stable and overdamped platoon's position, velocity, and gap evolution when 

0.1, 0.6x v = =  

Case 3: Stable and overdamped condition in Region III 

Figure 9 presents the change of position, velocity, and space gap with time when 

0.8, 1.2x v = = . At this moment, we can derive that 0 0.8944 =  rad/s and 1.1180 1 =  , 

which means that the platoon system is overdamped. Based on Eq. (17), we can calculate that 

the platoon system is stable. The changes in velocity and spacing gap are relatively smooth. 

This case shows that the initial perturbation recovers back to its equilibrium state without 

overshoots. The reason is that the overdamped system hardly oscillates, and for a stale system, 

the perturbation decays with the vehicle platoon.  

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 9 Stable and overdamped platoon's position, velocity, and gap evolution when 

0.8, 1.5x v = =  

Case 4: Stable and underdamped condition in Region IV 

Figure 10 presents the change of position, velocity, and space gap with time when 

0.8, 0.7x v = = . Then we can find that 0 0.8944 =  rad/s and 0.8385 1 =  , which means 

the platoon system is underdamped. Based on Eq. (17), we can derive that the platoon system 

is stable. Similar to Figure 9, the initial unsteady state makes the vehicle platoon return to an 
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equilibrium state after a string of oscillations of mild amplitudes. The reason is that the larger 

  means the system has a significant ability to resist the oscillation.  

   

(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 10 Stable and underdamped platoon's position, velocity, and gap evolution when 

0.8, 0.7x v = =  

From the above simulations, we can find that different parameters ,x v   could determine the 

oscillation behaviors of the vehicle platoon. For example, the unstable platoon system shows a 

larger oscillation than the stable system. Furthermore, the perturbation oscillates back and forth 

in an underdamped system and hardly oscillates in an overdamped system. In addition, we also 

find that the larger the value of the damping intensity   for a platoon system, the smaller the 

oscillation behaviors of the vehicle platoon. These cases demonstrate that the damping intensity 

  can be regarded as a performance index to evaluate the oscillation amplitude of the vehicle 

platoon.  

4.2 Scenario II: With periodic perturbation 

This scenario assumes that a periodic perturbation with specified frequency and amplitude is 

exerted on the CAV platoon. The purpose of this scenario is twofold. First, it clarifies the 

different oscillation behaviors with different sets of ,x v   by comparing with Scenario I. 

Second, it explores the occurrence and impact of resonance when different periodic 

perturbations are exerted on vehicles. 

Noted that periodic perturbation is a ubiquitous event or process in nature, such as sound, 

noise, and vibration, occurring on varied spatial and temporal scales, which can immediately 

influence system stability (Norton and Karczub, 2003). For a vehicle platoon system, such a 

periodic perturbation may be from the control system's noise (Treiber and Kesting, 2018) or 

malicious cyberattack (Wang et al., 2020). When stable conditions are satisfied, the 

perturbations are not amplified. However, under extreme conditions, a small perturbation can 

amplify vehicle platoon oscillation. If a periodic perturbation is released with different 

frequencies, then the oscillation pattern of the vehicle platoon changes. Therefore, to capture 
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abnormal platoon vehicle behaviors, especially to uncover the damping oscillation 

characteristics of the vehicle platoon, a series of simulations are conducted as follows. 

Same as Scenario I, in the steady-state, each vehicle's velocity is 15 m/s, and each following 

vehicle has an identical space gap, i.e., 17 m. Hence, to exclude the impact of transition from 

an unstable state to an equilibrium state of the vehicle platoon, the initialized velocity is set as 

15 m/s, and the space gap is 17 m. Without loss of generality, we assume the space gap error of 

the 1st vehicle is disturbed in a sinusoidal fashion, i.e., 
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Besides, we assume that the perturbation happens at 10 s and ends at 20 s. For comparison, 

we also present four cases that are consistent with Scenario I. Each case shows the impact of a 

perturbation with low frequency, resonance frequency, and high frequency on the CAV platoon, 

i.e., 0.2 =  rad/s, 0 =  and 2=1.  rad/s, respectively, where 0.6Y = m. The perturbation 

period is indicated by two vertical dashed lines in these figures. 

Case 5: Unstable and underdamped condition in Region I 

Same as Figure 4, herein, 0.2, 0.3.x v = =  As this time, the inherent oscillation frequency 

0  is 0.4472 rad/s, and the damping intensity   is 0.5590<1. Figure 11-13 show the impact of 

a perturbation with low frequency, resonance frequency, and high frequency on the CAV 

platoon, i.e., 0.2 =  rad/s, 0 0.4472  ==  rad/s, and 2=1.  rad/s, respectively. These 

figures present a larger oscillation amplitude. The reason is that the platoon system is unstable 

and underdamped. In particular, the oscillation amplifies with the number of vehicles, and the 

oscillation fluctuates around the equilibrium state. Compared to Figure 11&13, the perturbation 

with the resonance frequency in Figure 12 causes the most significant oscillation. Furthermore, 

the perturbation amplitudes of velocity and space gap in Figure 12 are much larger than those 

in Figure 11 or Figure 13. Moreover, even a rear-end collision happens in Figure 12. Hence, 

through this case, we found that under the same conditions, the perturbation with the resonance 

frequency on the vehicle platoon can have serious consequences.  
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(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 11 Unstable and underdamped platoon's position, velocity, and gap evolution under 

0.2 =  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 12 Unstable and underdamped platoon's position, velocity, and gap evolution under 

0 0.4472  ==  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 13 Unstable and underdamped platoon's position, velocity, and gap evolution under 

1.2 =  rad/s 

Case 6: Unstable and overdamped condition in Region II 

For the same as Case 2 of Scenario I, herein, we select 0.1x =  and 0.7v = , then we can 

derive 0 0.3162 =  and 1.2649 1 =  . The vehicle platoon system with the given parameters 

represents an unstable and overdamped system. Figure 14-16 present the impact of a 

perturbation with different frequencies on the CAV platoon. These figures present a platoon's 

dynamics with mild oscillation. Because this system is unstable and overdamped, the oscillation 

grows with the propagation of the vehicle platoon, and the platoon hardly oscillates. Compared 

to Figure 14&16, the perturbation with the resonance frequency in Figure 15 causes the largest 

oscillation. In addition, as shown in Figure 15(c), the perturbation with the resonance frequency 

results in a rear-end collision.  

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 
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Figure 14 Unstable and overdamped platoon's position, velocity, and gap evolution under 

0.2 =  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 15 Unstable and overdamped platoon's position, velocity, and gap evolution under 

0 0.3162  ==  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 16 Unstable and overdamped platoon's position, velocity, and gap evolution under 

1.2 =  rad/s 

Case 7: Stable and overdamped condition in Region III 

In this case, 0.8x =  and 1.2v = . We can derive that 0 0.8944 =  rad/s and 1.1180 1 = 

, which means the platoon system is stable and overdamped. Figure 17-19 present the impact 

of a perturbation with various frequencies on the CAV platoon. These figures show a relatively 

mild oscillation. Among Figure 17-19, the perturbation with a resonance frequency in Figure 

18 results in the largest oscillation. The amplitudes of velocity and space gap in Figure 18 are 

larger than those of other figures. Besides, because the vehicle platoon system is stable, all these 

figures present that perturbation decays as it propagates to the vehicle upstream.  

       
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 
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Figure 17 Stable and overdamped platoon's position, velocity, and gap evolution under 

0.2 =  rad/s 

    
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 18 Stable and overdamped platoon's position, velocity, and gap evolution under 

0 0.8944  ==  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 19 Stable and overdamped platoon's position, velocity, and gap evolution under 

1.2 =  rad/s 

Case 8: Stable and underdamped condition in Region IV 

In this case, we choose 0.8x =  and 0.7v = . Then we can compute 0 0.8944 =  rad/s and 

0.8355 1 =  , which means the platoon system is stable and underdamped. The stable vehicle 

platoon system presents the magnitude of the perturbation damps out through the vehicle 

upstream. The underdamped system shows a back and force oscillation around the equilibrium 

state. Consistent with the above result, the oscillations of the vehicle platoon in Figure 21 are 

severest than the other two figures. This case also demonstrates that the perturbation with 

resonance frequency could cause the largest oscillatory amplitudes in velocity and space gap.  

      
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 
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Figure 20 Stable and underdamped platoon's position, velocity, and gap evolution under 

0.2 =  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 21 Stable and underdamped platoon's position, velocity, and gap evolution under 

0 0.8944  ==  rad/s 

   
(a) Position vs. time (b) Velocity vs. time (a) Gap vs. time 

Figure 22 Stable and underdamped platoon's position, velocity, and gap evolution under 

1.2 =  rad/s 

The simulation results show that different vehicle control parameters ,x v   could affect 

different oscillation patterns. The vehicle platoon presents a larger oscillation amplitude if the 

system is underdamped; otherwise, the vehicle platoon presents a smaller oscillation, and 

vehicles converge to a steady-state quickly. Meanwhile, these results also show that the periodic 

perturbations would lead to platoon oscillations and stop-and-go waves. Furthermore, among 

various periodic perturbations, the one with resonance frequency causes the severest 

oscillations and even rear-end collisions. This is also in line with the result of the mechanical 

vibration theory.  

4.3 Scenario III: With human-driven vehicle trajectory from NGSIM 

To analyze platoon oscillation in a more realistic situation, this scenario assumes that the first 

vehicle obeys a human-driven vehicle's trajectory from the NGSIM dataset (US Department of 

Transportation-FHWA, 2008). To date, the NGSIM data is the largest set of empirical 

microscopic traffic data available to the research community. Researchers have used these data 

to interpret traffic phenomena, support theories, benchmark, calibrate, and validate traffic flow 
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models (Montanino and Punzo, 2013; Zhou et al., 2020). The NGSIM includes four data sets, 

i.e., two from freeways (I-80 and US-101) and two from arterial corridors (Lankershim and 

Peachtree). Each data set includes complete vehicle trajectories for all vehicles over the freeway 

or arterial from the entrance to the exit.  

In this scenario, we adopt the NGSIM trajectory data for I-80 in California to analyze the 

vehicle platoon's oscillation behaviors under different values of x  and v . Same as Scenarios 

I and II, the vehicle platoon consists of ten vehicles, in which the first leading vehicle follows 

the human-driven vehicle's trajectory and the other nine CAVs obey the linear (Helly's) car-

following model. Moreover, each CAV's car control parameters remain unchanged. Due to the 

noise in the trajectory data, we used the dataset filtered and reconstructed by (Montanino and 

Punzo, 2015) and (Punzo et al., 2011). Without loss of generality, the first leading vehicle 

adopts the trajectory data of vehicle #1845 in the reconstructed NSGIM data, which is in Lane 

2 from 4:00 p.m. to 4:15 p.m. on April 13, 2005. Figure 23 plots this vehicle's dynamic status. 

   
(a) Position vs. time (b) Velocity vs. time (c) Acceleration vs. time 

Figure 23 Profiles of vehicle #1845 from I-80 data set (4:00-4:15 p.m.) of NGSIM data 

Same as Scenarios I and II, we present four cases, corresponding to unstable and 

underdamped condition in Region I ( 0.2x =  and 0.3v = ), unstable and overdamped 

condition in Region II ( 0.1x =  and 0.7v = ), stable and overdamped condition in Region III 

( 0.8x =  and 1.2v = ), and stable and underdamped condition in Region IV ( 0.8x =  and 

0.7v = ), respectively. Most importantly, when the platoon system is unstable, the nine CAVs 

would cause rear-end collisions, as illustrated in Figure 24c and Figure 25c where the negative 

gaps represent collisions. By contrast, when the platoon system is stable, these vehicles do not 

collide, as illustrated in Figure 26c and Figure 27c. These results are in agreement with the 

theoretical results; namely, the perturbation effect decays for a stable system; otherwise, the 

perturbation effect grows for an unstable system (Pueboobpaphan and van Arem, 2010).  

On the other hand, we can find that the underdamped system presents significantly back and 

forth oscillations, and the overdamped system presents slightly when comparing Figure 24 with 
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Figure 25 for unstable systems. In addition, the oscillation in the overdamped system decays 

over the vehicle platoon, while the oscillation in the underdamped system does not decay over 

the vehicle platoon when comparing Figure 26 with Figure 27 for stable systems.  

This scenario also shows the complex platoon dynamics in a more realistic environment. In 

this scenario, parameters x  and v  selected from the unstable region could result in rear-end 

collisions. Furthermore, parameters x  and v  that make the vehicle platoon underdamped 

presents reciprocating oscillations. 

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Figure 24 Unstable and underdamped platoon's position, velocity, and gap evolution when 

0.2x =  and 0.3v =  

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Figure 25 Unstable and overdamped platoon's position, velocity, and gap evolution when 

0.1x =  and 0.7v =  

   
(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Figure 26 Stable and overdamped platoon's position, velocity, and gap evolution when 

0.8x =  and 1.2v =  
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(a) Position vs. time (b) Velocity vs. time (c) Gap vs. time 

Figure 27 Stable and underdamped platoon's position, velocity, and gap evolution when 

0.8x =  and 0.7v =  

Through all three scenarios, we demonstrate how parameters x  and v  characterize the 

system's oscillations in addition to their impact on system stability. Some common features 

have been illustrated. For instance, the unstable platoon system shows a larger oscillation than 

the stable system. Even worse, the unstable platoon system with particular settings could result 

in collisions. On the other hand, the overdamped platoon system hardly oscillates, and the 

underdamped platoon system oscillates back and forth. Furthermore, these scenarios show 

unique results. For example, Scenario I presents that the larger the value of the damping 

intensity   for the platoon system, the smaller the oscillation behaviors of the platoon. Scenario 

II shows that, among various periodic perturbations, the one with resonance frequency causes 

the severest oscillations and even rear-end collisions. And Scenario III shows that our proposed 

approach is effective to analyze vehicle platoon damping behavior in a more realistic travel 

environment. which presents for the unstable platoon, an accident happens; for the stable system, 

the oscillation in the (over)underdamped system (does not)decays over the vehicle platoon. 

These scenarios help deepen our understanding of platoon systems' damping behavior and 

stability.  

5. Conclusions 

This research presents the damping-based oscillation analysis and illustrates the differences 

between oscillation and instability. The instability is used to decide whether the vehicle platoon 

system is stable or unstable. In contrast, the damping-based oscillation analysis reveals the 

inherent characteristics of platoon oscillation. In this study, to better derive the damping 

oscillation characteristics, a classic linear car-following model, Helly's model, is adopted and 

reformulated as a mathematical representation of the mechanical vibration based on the 

similarity between mechanical vibrations and platoon oscillations. The theoretical results reveal 

that the oscillation of a CAV platoon is mainly associated with its resonance frequency, through 
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which a small perturbation can amplify its effect to increase the platoon oscillation amplitude. 

The paper demonstrates that resonance could lead to the severest oscillations among various 

periodic perturbation frequencies through simulation. As a result, protecting the platoon from 

resonance is crucial to enhance the CAV platooning reliability and suppress large amplitude 

oscillations. These results also demonstrate the effectiveness of our proposed approach to 

characterize the damping oscillation properties of the CAV platoon and the importance of 

analyzing platoon oscillation behavior. 

The current research can be further extended in several directions. First, the derived damping 

conditions only focus on the linear car-following model. It will be interesting to investigate the 

oscillation frequency and damping parameter for nonlinear car-following models, such as the 

Intelligent Driver Model. Also, the theoretical derivation for the vehicle platoon with the simple 

communication scheme ignores the communication attributes, such as communication topology 

and delay, which affect the platoon stability as proved in the literature. Third, this study adopts 

a classical frequency-domain method to demonstrate the differences between the string stability 

and the proposed vulnerability analysis approach. Other stability analysis methods, such as 2L  

and L , and their differences to our proposed approach, are worth further investigation. 
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APPENDIX  

This study adopts the linear stability analysis method (Bando et al., 1995; Kesting and 

Treiber, 2013; Ngoduy, 2015; Wilson, 2008) to analyze the (in)stability of Helly's model. When 

the velocity deviation n  and a space gap deviation ny  are small enough, employing the first-

order Taylor expression, Eq. (7) can be rewritten as  
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The velocity deviation n  and the space gap deviation ny  are set as two exponential 

functions i n t

n Ae   +=  and i n t

ny Be  += , in which ,A B  are constant. A prevailing reason is 

that their k-th derivations are proportional to these functions themselves.  

Given that 1n n ns v v−= − ,  we have 
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Submitting Eq. (21) into Eq. (20), we can derive the characteristic equation as below. 
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coefficients. Then submitting it into Eq. (22), we have 
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The platoon is linearly stable if 2 0  . These partial differential equations in Eq. (23) satisfy 

the following conditions,  

 0, 0, 0.v s

n n n

vf f f     (24) 

In fact, Eq.(24) presents a practical meaning. In a close-following situation, a larger space 

gap would lead to the following vehicle's more acceleration since the preceding vehicle is 

leaving away; a larger velocity difference would lead to more deceleration due to the fact that 

the following vehicle is quickly close to the vehicle ahead; the larger its own velocity, its 

deceleration tendency accelerate would be more. In particular, 0s

nf =  and 0v

nf
 =  mean that 

no following relationship between two successive vehicles (Wilson and Ward, 2011).  

Hence, we can derive the stable condition as follows.  
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Similarly, the unstable condition is obtained, i.e., 

 0.
2

s v

n n
nv

n

vf f
f

f

− + +   (26) 

Furthermore, we can get the analytic expressions of partial differential equations of Helly's 

model:  

 , = , .v s

n n n

v

x x vf f f   = − = −  (27) 
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Then applying the instability criteria Eq. (26) to Helly's model, we can get its instability 

condition, i.e.,  

 
1

.
2

x
v

 



 −  (28) 
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