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Abstract

The electrostatic potential (ESP) is a powerful property for understanding and pre-
dicting electrostatic charge distributions that drive interactions between molecules. In
this study, we compare various charge partitioning schemes including fitted charges,
density-based QM partitioning, charge equilibration methods, and our recently intro-
duced coarse-grained electron model, C-GeM, to describe the ESP for protein systems.

When benchmarked against high quality Density Functional Theory calculations of
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the ESP for tripeptides and the crambin protein, we find that the C-GeM model is
of comparable accuracy to ab initio charge partitioning methods, but with orders of
magnitude improvement in computational efficiency since it does not require either the

electron density nor the electrostatic potential as input.

INTRODUCTION

The electrostatic potential (ESP) is fundamental for understanding and predicting biomolec-
ular recognition between molecules!? For proteins in particular, the ESP is often crucial for
predicting contact sites of protein-protein association,?® and the electrostatic complementar-
ity between protein and small molecule ligands or peptide therapeutics is considered critically
important to obtain optimal affinity and selectivity in structure-based drug discovery.*?
An ESP is generated by evaluating the work to move a unit charge probe from infinity to
an area of interest on or near the protein surface. Numerically this is achieved by defining
a grid, either on the molecular surface of the protein or by drawing equipotential contours
in the region around the protein.® At each surface point r, the ESP energy of the probe
is calculated and the molecular surface is then displayed to indicate regions of negative or
positive electrostatic potential of the protein molecule. An accurate way of obtaining the

molecular ESP is through ab initio calculations, for which the ESP is defined as
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where Z4 and R4 are the charge and position of nucleus A, and p(r”) is the electronic density
at position r’. However, the computational cost of a full quantum mechanical (QM) ESP
increases rapidly with the number of atoms, and becomes prohibitive for systems such as
large macromolecules.

Instead a large macromolecule can be partitioned in such a way that the electrostatic po-

tential can be reproduced by assigning partial charges to every atom in a molecule, {¢ A}ﬁ:;m,
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Atomic charges derived from fitting a classical Coulomb model to reproduce the ab initio
molecular electrostatic potentials (so called ESP-charges) are frequently used in simulations

10 and they are the main electrostatic description used for all major

of macromolecules,,”
fixed charge force fields such as AMBER 2 and CHARMM, ! and utilized in large molecule
ESP solvers using the Poisson-Boltzmann equation such as APBS.* One widely used ESP
charge is the AM1-BCC model, !> which captures the underlying features of the electron dis-
tribution including formal charge and delocalization using the semi-empirical AM1 method,
and applies bond charge corrections (BCCs) that are fitted to ab initio ESP. While more cost-
effective than full QM, the ESP-charges are numerically ill-conditioned such as being overly
sensitive to conformational changes and restricted to applications where the electron density
changes are relatively small. ' While ESP-fitted charge models such as CHELPG!” can be
more robust, and can accurately reproduce the molecular ESP, they are not competitors to
the prediction application because they require the ESP as its input.

Alternatively, QM-based partitioning methods divide a molecule into atomic subsystems
by partitioning either the molecular wave-function in Hilbert space (i.e., orbital-based meth-
ods) or molecular electron density in real space (i.e., density-based methods). The first and

8 scheme which divides

most prevalent orbital-based partitioning method is the Mulliken?
each molecular orbital into its atomic pieces. The original Mulliken partitioning suffered
from excessive basis-set sensitivity, but subsequent refinement alleviated this shortcoming
by defining atomic pieces in more sophisticated ways.!%2! Unfortunately, the orbital-based
charges are generally inferior for reproducing the electrostatic potential, as compared to

density-based partitionings. 22

The density-based QM partitioning exhaustively divide the molecular electron density



distribution, p(r), between its constituent atoms according to

palr) = > wa)o(r) 3)
fs wa(r) =1 and wu(r) >0

where the electron density of atom A at point r in space, pa(r), is dictated by its share

wa(r) at that point. Subsequently, the atomic charge of atom A is computed by,

dn = 7 — / pa(r)dr ()

The quality of these charges in reproducing the electrostatic potential heavily depends on
the definition of atomic weights, w,(r). The atomic weights used in density-based methods
are either binary as in Bader’s Quantum Theory of Atoms in Molecules (QTAIM)?? or fuzzy

16222429 Among these,

as developed in the Hirshfeld partitioning schemes and its variants.
the latter results in nearly-spherical atomic regions, so they have rapidly converging atomic
multipole expansions and give a good approximation of V'(r) based on Eq. (2).

The Hirshfeld-family of methods use a set of proatom atomic densities {p%(r)}Y20™s to
assign the atomic weights through, 243032
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The original Hirshfeld?* method uses neutral proatom densities as the reference; this choice
is arbitrary and results in very small atomic charges. To fix these shortcomings, various
Hirshfeld-inspired methods have been developed to select optimal proatom densities. 16:22:25:32
The first, and most prevalent, method is Iterative Hirshfeld (HI),?® which refines the proatoms

self-consistently so that they have the same charges as the atoms. Two more recent and

promising methods are the Minimal Basis Iterative Stockholder (MBIS)?? and Additive



Variational Hirshfeld (AVH)!%32 which variationally optimize the proatom densities so that
they best reproduce the molecular density. When the atomic partial charges are determined
from the population of these atomic subsystems, the more accurate reproduction of V' (r) is a

16,22 a11d thus we consider them here.

measure of the partitioning scheme’s quality and utility,
Of course there is a very large and extensive number of ab initio charge partitioning methods
that we have not considered here, and the interested reader can refer to a recent review by
Martin and co-workers3? to learn more about these approaches. While QM based partition-
ing approaches have the advantage of being physically grounded and generally applicable to
a wide range of systems of interest, and have proven effective for modelling intermolecular
interactions,3* they still suffer from the underlying expense of QM calculations and thus are
not extensible to large systems such as proteins.

The electronegatitivy equalization methods (EEM) is an alternative approach that strad-
dles the boundary of empirical fitting but formulated within the QM foundations of atomic
hardness and electronegativity.3>3¢ It has been used as the electrostatic model for reactive
force fields®” and has been adapted for fast electrostatic screening applications for large
molecular databases as well as protein electrostatics applications due to its relative effi-
ciency.3¥ 4% However, although elegant, EEM has some significant shortcomings including
unphysical long-range charge transfer, non-integer molecular charge at large molecular sep-
arations, lack of out-of-plane polarization, poor parameterization, and lack of transferability
that makes EEM methods less accurate than desired but which are analyzed here for com-
pleteness. 4143

Hence, an accurate but fast method for protein ESP prediction is still highly desirable.
In this study, we evaluate the coarse-grained electron force field model, C-GeM for which
atoms are represented by a positive core and an electron shell described by Gaussian charge
distributions.* Integration of the Coulombic interactions of the Gaussian densities yields

an analytical form for the electrostatic energy between arbitrary core-core, core-shell, and

shell-shell interactions. By minimizing the electronic shell positions in the field of atomic



core positions, the model can provide accurate electrostatic properties of molecules and their

interactions. A schematic of this process is shown in Figure 1.
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Figure 1: Schematic illustration of how C-GeM generates the electrostatic potential from
given molecular geometry.

Previous models which share similarities to C-GeM include the core-shell model developed
to account for polarization in ionic crystals,?® the PQEq method which utilizes a Gaussian
Drude oscillator model together with charge equilibration,*® and the ACP method which
partitions the electron density according to the core and valance shell electrons.*” C-GeM
differs from these previous models through its unique ability to predict permanent electrostat-
ics, polarization, and charge transfer without having to perform computationally expensive
ab-initio calculations. While the C-GeM model has been previously parameterized for the
atomic elements carbon, hydrogen, oxygen and chloride, ** in this work we have expanded the
C-GeM parameterization for the nitrogen and sulfur atomic elements for a complete protein
level chemistry. When optimized with tripeptide and small molecule training data, C-GeM is
found to perform better than ESP-fitted charges, EEM, and Hirshfeld charges in reproducing
the ESP of the protein test set that is comprised of tripeptides of different sequences and
the crambin protein. To improve accuracy of the C-GeM model further we also introduce
atom typing, i.e. optimization of different parameters for aliphatic and polar carbon and
hydrogen atoms and for primary, secondary and tertiary amines for nitrogen. This atom
typing approach thus makes the C-GeM model as accurate as HI charges and competitive
with MBIS and AVH density partitioning methods when evaluated on the protein test set.

Altogether the C-GeM model offers a new way to do high-throughput electrostatic screening



with ab initio accuracy with orders of magnitude less computational expense since it does

not require the electron density or ESP but instead predicts these quantities.

Theory

The C-GeM model divides atoms into positive cores and negative shells, both of which are
represented as Gaussian distributed charges. The properties of a core depend on its atom
type i, while all of the electrons (shells) are treated equivalently. The charge density of a

core of atom type i (p;.) and that of a generic shell (ps) is given by the following functional

form
Qe —a; o(lr—r; ¢
Pie(r) = Qi,c(_ﬂ_ )3/2eiellr—rs, *)) (©)
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where (r) is an arbitrary position in space and r; . and r, are position vectors for the core and
shell centers, respectively. The shell charge (gs) is always set to -1, while the core charge(g; )
is usually set to +1 but can vary based on the chemical conditions of charge as we illustrate

below. The width of a Gaussian charge is controlled by «; . for cores and a; for shells:

A A
Qe = WZQC as = QRE (8>

where \ is a global fitting parameter, R; . is the atomic covalent radius? of atom type i that
is further fine tuned to reflect the atomic radii in actual molecules, and R is the effective
radius of the shells.

The Coulombic interaction between two elements (core-core, core-shell and shell-shell)

can be expressed as the integration over two Gaussian densities, which has the following



analytical form:
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where 7;; is the distance between the two elements. In the limit of r,; — 0, the pairwise

Coulombic interaction can be rewritten as

2q;q; , [ a;a
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In addition to electrostatics, a Gaussian energy term is used that reflects the strength of

core-shell or shell-shell interaction, taking into account the electronegativity of specific atom

types:
auss —ir2,
B (rig) = Bie” " + P(rij) (11)

where (; is a parameter accounting for the magnitude of the interaction energy, P(r;;) is a
penalty term for shell-shell distances that are too close, and ~ is a parameter that controls

the radial range of the interaction, which is defined as

(12)

for core-shell Gaussian interactions, controlled by a global parameter w. and atomic param-
eter R; . for atom type i. The radial range for shell-shell interaction is controlled by global
parameter ~ys.

With the theoretical idea that the C-GeM energy between a core of atom type i and its

shell j should match the ionization potential of that atom type (x;), we demand that

= Ef;ec(rij = O) —+ E%auw(rij = O) (13)



where Y; is the ionization potential of atom type i. In the case of a shell-shell interaction, we
use a global fitting parameter yguen to represent the effective shell-shell interaction energy

that leads to following definition for the magnitude of Gaussian interaction [;:

| peec
B = lim M9
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To avoid shell configurations that optimize to the exact same position and become insepara-

(14)

ble, we introduced a penalty term for shell-shell interaction at very short range. This term

effectively help shells avoid each other so that they experience distinct forces at all time.

10e=20%5 - if ¢ € shells and j € shells
P(ri;) = (15)

0, otherwise

The total C-GeM energy of a given system with fixed cores involves an optimization of

the shell positions to minimize the energy,
Ecgenr = Y Y Bij«(ry) + E5" (ry)) (16)
i j<i

as per a usual Born-Oppenheimer assumption. The resulting shell configurations is used to

generate the electrostatic potential on a set of given points using the following equation:
V= 3 oy G (17)
i€cores (‘I‘ o r2|> i€shells (‘I‘ o rl|>

where all of the core and shell Gaussian charges are approximated by point charges at their

center to speed up the ESP evaluation.



METHODS

To address both neutral and charged systems, we require an identification of the formal
charge on each atom. All neutral atoms are initialized with a +1 core and a -1 shell at
atomic center; a negatively charged atom receives an additional -1 charge shell based on its
formal charge, and these additional shells are randomly displaced within 1073 A distance to
avoid overlaps; a positively charged atom is initialized with an incremented core charge (g,
= 1 + formal charge) and a -1 shell at the atomic center.

C-GeM training and testing protocol. There are five global parameters (A Weore, Vshelts
Xsheu and Rge) and two atom-specific parameters per atom type (y; and R;) in the C-
GeM model. These parameters are fitted by minimizing the average mean absolute error
(MAE,, ) over the training set with respect to ab initio ESP, where the MAE for one molecule

is computed as:

1 n
MAFE = n Z \Ve—gem(ri) — Vprr(ri)| (18)

where n is the total number of grid points, Vo_gen (r;) and Vppr(r;) are the C-GeM and the
DFT ESP computed for a grid point at position r;.

The training set consists of 54 small molecules and 38 tripeptides, with an additional 19
tripeptides defining the validation set. The protein analogs are small molecules that repre-
sents the chemistry of amino acids, and a list of these molecule is provided in Supplementary
Table S3 and Table S4. The 57 larger and more complex tripeptides are formulated by
fragmentation of larger proteins culled from the PDB,* and uniformly sampled by amino
acid residue types to capture the diversity of peptides. Three models are trained by mini-
mizing the mean MAE of all of the small protein analogs and 2/3 of the tripeptides using
the Nelder-Mead algorithm,*® with one set of 19 tripeptides used as a validation set. The
final model is obtained by the average of parameters from these three training models. The
parameters for charge related atom types C.1, Ny, Ho, Co and O4 are optimized while

fixing all other parameters obtained from the neutral model with a charged training set (Ta-
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ble S5) of 17 molecules including small charged molecules and tripeptides, and tested on a
charged test set (Table S6) of 18 tripeptides that are positively charged, negatively charged
or zwitterionic. Finally we also test the various models on the crambin protein (PDB ID
1CRN™), whose hydrogens are added using the Reduce (3.23) software.5!

ESP generated by Gaussian charges vs point charges. There are two approaches to gen-
erate the ESP from a set of core and shell positions. One is the Gaussian charge approach,

where the ESP is computed by

cores shells
V(r) =Y Eie(le—ri) + Y Ee(lr — ) (19)
i J

where a point(k) in space is treated as a fictitious core with ¢z = +1 and «y, = 1569.8, which
is a Gaussian sharply peaked at position r. This approach is the natural approach arise
from the Gaussian definition of cores and shells. The other approach is to treat all cores and

shells as point charges when calculating the ESP:

N 4di di
V=2 oyt X e (20)

i1E€cores i€shells

Note that this treatment of approximate cores and shells as point charges at their Gaussian
center is only done in the process of generating the ESP, not in the optimization of shell
positions. The two approaches gives essentially indistinguishable prediction in ESP as shown
in Figure 2a), where the mean ESP generated with Gaussian charges aligns perfectly (R?
= 0.99999993) with that generated with point charges. The average MAE between ESP
generated with Gaussian charges and ESP generated with point charges is only 3.97 * 10~*
eV, which is trivial compared to the average magnitude of ESP at 0.755 eV. However,
the point charge approach is advantageous in terms of calculation speed as it avoids the
relatively expensive operation of erf function evaluation. This is demonstrated in Figure
2b), where the ESP time (the time to compute ESP from fixed core and shell positions) is

plotted against the number of grid points for all molecules used in for training and testing
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process for parameter optimization. The ESP time for the point charge treatment is clearly
faster than the Gaussian charge treatment by roughly a factor of 10. When the number of
points is a large number, this difference can be significant to influence the efficiency of ESP
evaluation. As both methods provide essentially the same accuracy and the point charge
treatment is clearly faster, in the following discussion of this paper, we will adopt the point
charge approach to calculate the ESP. In the cases where the ESP grid points of interest is

closer to the atomic center, we switch back to the Gaussian charge implementation.
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Figure 2: a) The mean ESP generated with Gaussian charges aligns perfectly with that
generated with point charges. b) The time to compute ESP from core and shell positions
with respect to number of grid points for different molecules using point charge and Gaussian
charge treatment.

DF'T reference and other methods for computing the ESP. The reference ab initio ESP for
all molecules except crambin are generated with the Q-Chem 5.2 software package® using the
wB97X-V functional®® with the def2-QZVPP basis set; the ESP of crambin is generated using
wBI7X-V with the cc-pVDZ basis set. We also compare the results of C-GeM with other
available methods including EEM, AM1-BCC, Hirshfeld, Iterative Hirshfeld, MBIS and AVH.
The EEM-derived charges are obtained from the LAMMPS?* ReaxFF 5 implementation of
EEM using the peptide and protein parameters.> The AM1-BCC charges are obtained from
antechamber tool part of AMBERTools. The Hirshfeld, Iterative Hirshfeld, MBIS and AVH

charges are computed with IOData,?” ChemTools®® and HORTON 2.1.1 software packages.?®
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In addition, the electrostatic potential for crambin has been performed with continuum
electrostatic calculations using the Adaptive Poisson-Boltzmann Solver (APBS) v3.0.0.
For APBS the hydrogen added crambin structure was prepared with PDB2PQR v3.1.0%°
using the AMBER force field, and enabling the generation of pqr files with atomic charges
and radii. APBS computations were carried out with the linearized PB equation with a
1.0 dielectric constant for solvent and solute (protein) to mimic the vacuum condition in
other calculations. Temperature was set to 298.15 K, and a single Debye-Hiickel boundary
condition was applied. The grid dimension was set to 353 x 353 x 353 such that the grid
spacing is 0.149 x 0.125 x 0.150 A, similar to the grid spacing in the molecular surface grid
we used in the ab initio calculations. The ESP generated with APBS was mapped onto the
molecular surface grid through the multivalue utility in APBS software package.

Grid resolution and timing metrics. The grid points on which electrostatic potentials are
evaluated are generated following the Merz-Singh-Kollman (MK) scheme” on 10 evenly dis-
tributed layers of range from 1.4-2.54 vdW radii distance. Here we report the ESP generated
on an average of 37,000 grid points for small protein analogs (average 12.4 atoms) and 90,000
grid points for tripeptides (average 37.4 atoms). The computation times are measured with
the timeit python module on a single core Intel XEON Gold 6230 CPU unless otherwise

mentioned. The times for DFT calculations are obtained from QChem output files.

RESULTS AND DISCUSSIONS

Neutral small protein analogs and tripeptides

In this study, we trained three protein C-GeM models that share common global parameters
Weores Vshells Ay Rsnenr and Xspen: 1) C-GeM without atom typing, where each element (H, C,
N, O, S, Cl) has its own atomic parameters for the ionization potential and atomic radius. 2)
C-GeM with C and H atom typed, where C is classified into polar carbon (C,4) and aliphatic

carbon (Cp) based on whether it has an electronegative neighboring atom (N,0,S,Cl), and
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H is classified into polar hydrogen (H4) and aliphatic hydrogen(Hp) in the same way. 3)
C-GeM with C, H and N atom typed, where on top of model 2, we further classify nitrogen
according to the number of H neighbors it has, into N4 for N with 2 H neighbors, Ng for N
with 1 H neighbor and N for N with no H neighbor. These three models are referred to as
CGem, CGem_CH and CGem_CHN respectively, and their parameters are shown in Table
1.

Table 1: Parameters for C-GeM models CGem, CGem_CH and CGem_CHN. H, for polar
hydrogen, Hp for aliphatic hydrogen, Hs for hydrogen directly bonded to positive atoms;
C.1 for carbon with a positive formal charge, C 4 for polar carbon, Cp for aliphatic carbon,
Ce for carbon directly bonded to positive atoms; N; for nitrogen with a positive formal
charge, N4 for N with 2 H neighbors, Ng for N with 1 H neighbor and N for N with no H
neighbor; O 4 for oxygens in negatively charged acetate group

global parameters

) A Raga(A) Xoneu (eV)

o

Weore (A_l) ’Yshell(A

0.152 5.220 2.103  0.708 19.956

C-GeM atomic parameters

CGem CGem_CH CGem_CHN
atom type R(A) x (eV) R(A) x (eV) R(A) x (eV)
H 0.67 -16.33 - - - -
C 0.59 -19.12 - - - -
N 0.44 -21.85 0.55 -23.08 - -
O 034 -2426 054 -2283 051 -23.35
S 0.66 -21.28 0.86 -18.43 0.84 -19.29
Cl 0.31 -2543 0.63 -21.73 0.56 -22.87
Hy - - 0.22 -1297 0.20 -13.79
Hpg - - 0.68 -16.42 0.65 -16.95
He 0.81 -1549 0.52 -13.35 057 -13.52
Ca - - 0.77 -15.12 0.75 -15.74
Cg - - 0.57 -19.48 0.57 -19.49
Ce 0.60 -19.52 0.71 -13.26 0.72 -14.32
Na - - - - 0.54 -23.65
Np - - - - 0.61 -20.04
N¢ - - - - 0.50 -24.43
Oa 0.62 -22.78 0.58 -23.50 0.60 -23.57
Ciy 0.55 -31.93 0.68 -30.15 0.74 -31.50
A\ 0.88 -2799 0.73 -38.02 0.72 -39.13
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To sample the protein chemistry space, we developed the models with data from small
protein analogs that covers the basic functional groups and scaffolds for peptides, along with
tripeptides that describe actual protein chemistry but are small enough for high quality
ab initio computation. The performance of these models was evaluated with respect to
MAE,,, and RMSE,,, between the ESP of the reference wB97X-V /def2-qzvpp theory and
the ESP generated by the various models, as well as the dipole error obtained as the norm
of the difference vector by subtracting the ab initio reference dipole from the approximate
dipole. In Figure 3 we present the MAE,,, and mean dipole error of the C-GeM models as
well as empirically derived partial charge method EEM and QM-calculation-based atomic
partial charge methods Hirshfeld, HI, MBIS and AVH. The statistics of the results including
RMSE,,, are listed in Table S1. Among the C-GeM models, atom typing hydrogen and
carbon improves the MAE,,, from 0.067 eV to 0.059 eV and RMSE,,, from 0.094 eV to
0.082 eV in terms of ESP quality for small protein analogs, and improves the MAE,,,, from
0.122 eV to 0.084 eV and RMSE,,, from 0.166 eV to 0.117 eV in terms of ESP quality for
tripeptides. Nitrogen atom typing further improves the ESP MAE,,, and RMSE,,, down to
0.053 eV and 0.077 eV for small protein analogs, and 0.070 eV and 0.101 eV for tripeptides
respectively. Oxygen atom typing were explored, but it showed minimal improvements on
the training molecules while introducing an overfitting problem that degrades the results for
the validation set. Therefore, oxygen was kept as its elemental type.

All three C-GeM models significantly outperform the EEM model (0.094 eV MAE,,,, for
small protein analogs and 0.185 eV MAE,,, for tripeptides), which is the only method of
comparable computational cost to C-GeM. The C-GeM models are also more accurate for
tripeptides than the AM1-BCC charges (0.96 eV MAE,,,) that relies on the semi-empirical
AM1 method and thus is computationally slower than C-GeM. All C-GeM models are sig-
nificantly better than Hirshfeld (0.106 eV and 0.176 eV MAE,,, respectively), whereas the
best CGem_CHN model also outperforms the AVH method(0.086 eV and 0.100 eV) by 30%,
and slightly outperforms the HI method (0.058 eV and 0.080 eV ), while MBIS (0.040 eV

15



and 0.053 eV) remains the best among all methods, albeit with much greater expense and

thus not affordable for proteins.
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Figure 3: Average mean absolute error electrostatic potential and average dipole error of
different atom typed C-GeM models, EEM, Hirshfeld, iterative Hirshfeld, MBIS and AVH
partial charges with respect to wB97X-V/ def2-qzvpp reference for a) 54 small protein analogs
and b) 57 tripeptides, labeled with the average error and standard deviation within the set.

While producing an accurate ESP description that is comparable to ab initio calculation
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based charges, the C-GeM models produce excellent prediction for molecular dipoles, which is
a property that the model was not parameterized for, but arises naturally from off-centered
shell positions. Atom typing improves the mean dipole errors for C-GeM models, from
0.525 Debye in CGem to 0.415 Debye in CGem_CH to 0.362 Debye in CGem_CHN for the
small protein analogs set, and from 1.755 Debye in CGem to 1.216 Debye in CGem_CH to
0.892 Debye in CGem_CHN for the tripeptide set, similar in trend as to how atom typing
improves the ESP MAE,,, and RMSE,,,. In the small protein analogs set, the mean dipole
error of CGem_CHN is only inferior to that of MBIS (0.158 Debye), and superior to all
other QM based or empirically derived methods including EEM (0.890 Debye), AM1-BCC
(0.397 Debye), Hirshfeld (0.751 Debye), HI (0.421 Debye) and AVH (0.433 Debye). For the
tripeptide set, CGem_CHN produces the best mean dipole error among all of the methods
including MBIS (1.028 Debye), HI (1.106 Debye), AVH (1.032 Debye), whereas EEM (3.788
Debye), Hirshfeld (2.623 Debye) and AM1-BCC (1.914 Debye), have errors larger than all
of the C-GeM models.

For all of the methods, the tripeptides are more challenging to predict than the small
protein analogs because of their intrinsically larger size. For instance, the mean absolute
ESP value is 0.190 eV for small protein analogs and 0.415 eV for tripeptides, and the mean
dipole magnitude is 1.569 Debye for small protein analogs but 7.389 Debye for tripeptides.
However, the relative performance among the methods we compared is quite stable across
the two different datasets. The fact that the performance of the C-GeM models are relatively
stable compared to QM based charge partitioning method, which are general methods that
does not distinguish sizes or specific protein chemistry, reflects that C-GeM is transferable
with respect to system size for protein like molecules.

While having similar accuracy, the C-GeM models are orders of magnitude faster than the
QM charge partitioning approaches that are based on high quality ab initio calculations. The
DFT benchmark calculation (wB97X-V/def2-qzvpp) on average takes 8.4 minutes and 6.9

hours per molecule for small protein analogs and tripeptides, respectively, even after taking
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advantage of OpenMP parallelization techniques, and the QM based charge partitioning
methods require additional steps to partition atomic densities on top of the QM calculation.
The AM1-BCC method takes 8.38 seconds for small protein analogues and 5.77 minutes
for tripeptides using antechamber program, and although more efficient than the QM-based

methods, is also 2-3 orders of magnitude slower than our C-GeM models.

Table 2: Computation time per molecule of C-GeM, CH atomtyped C-GeM, CHN atomtyped
C-GeM on small protein analogs and tripeptides. Charge time is the time to initialize and
optimize shell positions for C-GeM models, and ESP time is the time to map C-GeM cores
and shells onto predefined grid points for electrostatic potential.

Small Protein Analogs
Charge Time (sec) ESP Time (sec) Total Time (sec)

CGeM 0.053 0.010 0.064
CGeM_CH 0.047 0.009 0.057
CGeM_CHN 0.044 0.009 0.053
Tripeptides

Charge Time (sec) ESP Time (sec) Total Time (sec)
CGeM 0.126 0.081 0.207
CGeM_CH 0.133 0.080 0.213
CGeM_CHN 0.121 0.080 0.201

By contrast, the C-GeM models can predict the ESP on the order of tenth of a second
on a single core of Intel XEON Gold 6230 CPU, and all C-GeM models have very similar
computational timings for the ESP, about 0.01 seconds for small protein analogs and about
0.08 seconds for tripeptides (Table 2), which is comparable to the EEM class of methods. The
actual timing comparisons between EEM and C-GeM models are not directly comparable
because the EEM times were obtained with a C++ code in LAMMPS and the C-GeM times
were obtained with our in-house Python code, but EEM is the same order of magnitude
for the system sizes we've investigated until this point; we return to timings again later
in the crambin protein case. The internal comparisons among C-GeM models shows that
atom typing did not slow down the calculation, despite adding additional step to classify the

atoms. The charge time decreases in the order of CGem, CGem_CH, and CGem_CHN in
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both the small protein analogs set and the tripeptides set, which suggests that atom typing
of C,H and N helps the shell optimization process to converge faster.

To demonstrate that the C-GeM model can deal with the conformational variations of
a molecule, we compute C-GeM ESP for a tripeptide molecule randomly selected from the
PEPCONF® dataset. The error of C-GeM models relative to the wB97X-V / def2-qzvpp
reference on the 6 conformations of tripeptide LEU TYR_GLN(Figure S1) are shown in
Table 3, which supports the fact that all C-GeM models yield stable predictions on varied
conformations of the same molecule.

Table 3: Mean absolute error (MAE) in eV on electrostatic potential (ESP) of different atom
typed C-GeM models with respect to wB97X-V / def2-qzvpp reference on 6 conformations
of tripeptide LEU_TYR_GLN.

molecule CGem MAE CGem_CH MAE CGem_CHN MAE

CONF_1 0.087 0.072 0.063
CONF_2 0.108 0.067 0.083
CONF_3 0.105 0.073 0.075
CONF 4 0.109 0.077 0.078
CONF_5 0.088 0.064 0.061
CONF_6 0.114 0.075 0.081

Charged small protein analogs and tripeptides

In the previous section, we demonstrated that C-GeM models can predict the ESP of
molecules at accuracy comparable to ab initio generated charges but orders of magnitude
faster for neutral small protein analogs and tripeptides. However, proteins under physiologi-
cal conditions have residues that are charged under neutral pH, which would need specialized
treatment in the C-GeM models. We considered two residues that are negative under neutral
pH, aspartic acid (Asp) and glutamic acid (Glu), and two residues that are positive under
neutral pH, arginine (Arg) and lysine (Lys). For the negatively charged residues, an extra
shell is added onto the negatively charged atom (O 4 for negative oxygen) as shown in Figure

4(a), which creates a net charge of -1 localized around the negatively charged atom. For
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positively charged residues, the idea is to assign the core of the charged atom a +2 charge
and mark it as a different atom type(C,; for carbon and N for nitrogen as shown in Table

1), while still having a shell on that atom to allow for shell movements. As shown in Figure

a) Acetate b) ARG-LYS-ILE @
2 shells, 0 w9 L SH %, B 20
ol A N » rj v ﬁi e
> | y 18 ) %%
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Figure 4: Demonstration for C-GeM on charged molecules a) Methylammonium (net -1
charge) b) Tripeptide ARG-LYS-ILE (net 42 charge)

4(b) for Lys, the positive nitrogen carries a +2 core, and for Arg, we placed the +2 core on
the guanidino carbon instead of the formally charged nitrogen to account for the equivalence
of the two guanidino nitrogens. We also find it useful to have separate atom type for the
hydrogens (H¢) and carbons (C¢) that are directly bonded to the positive atoms.

With this protocol, we trained the parameters for the charged atoms, and fixing all
of the parameters we obtained from the neutral model, using a training set of 17 molecule
consisting of 4 small side chain analog molecules and 13 tripeptides that are positive, negative
of zwitterionic (Table S5). The resulting models were tested on another 18 tripeptides (Table
S6) with charged residues that the model has not seen. The MAE,,, and mean dipole errors
C-GeM models on the charged dataset compared to QM based charges are presented in Figure
5 and Table S2. EEM charges are not included because the LAMMPS implementation of
EEM fails to deal with non-zero charges. The charged molecules in general have larger

mean ESP values (2.26 eV for the charged training set and 2.24 eV for the charged test set)
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and much larger dipoles (78.1 Debye and 137.1 Debye for the charged training and test set,
respectively), which could make the prediction more difficult.

In general Figure 5 and Table S2 show that the C-GeM models exhibit a stable perfor-
mance on these difficult charged molecules that are not too far from their corresponding
performance on the neutral molecules. The basic CGeM model yields 0.102 eV MAE,,,
for the charged training set and 0.116 eV MAE,,, while the best CGem_CHN model yields
0.081 eV MAE,,, for the charged training set, and 0.076 eV MAE,,, for the charged test set.
This is a significant improvement in MAE,,, for charge training and test set, respectively,
over Hirshfeld charges (0.154 eV and 0.174 ¢V), and comparable to HI (0.060 eV and 0.071
eV), MBIS (0.060 eV and 0.065 eV) and AVH (0.078 eV and 0.086 ¢V). The dipole errors
exhibit a similar trend: the best C-GeM model CGem_CHN reports a dipole error of 1.34
Debye for the charged training set and 1.15 Debye for charged test set, which is comparable
to MBIS (1.33 Debye and 1.36 Debye) and significantly improved over Hirshfeld (1.96 Debye
and 2.50 Debye), but worse than HI (0.88 Debye and 1.10 Debye) and AVH (0.88 Debye and
0.88 Debye). Both the trend and the numbers are very similar across the charged training
set and testing set, which shows the generality of the models. The AM1-BCC charges are
relatively accurate in the neutral molecule case, but clearly have some difficulty in predicting
charged protein chemistry molecules, giving rise to a MAE of 0.161 eV and 0.149 eV, and
dipole error at 3.67 Debye and 3.36 Debye for the charged training and test set, respectively.

It is worth noting that the overall dipole error is amplified due to the large magnitude, as
we are defining dipole error as the norm of the difference vector between C-GeM or partial
charge derived dipoles and the DFT dipole |pprr — Meo—gens|, Which captures both the
magnitude and directional information. Hence with a large dipole, a small deviation in the
angle 6 between pppr and pppp can result in large errors in the norm of the difference
vector, even if the error in magnitude ||ppr| — [o_cens]| 18 small. For instance, the 1.23
Debye dipole error in CGem_CHN can be decomposed into 0.65 Debye error in magnitude
and 0.91 ° in 6.
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Figure 5: Mean absolute error (MAE) on electrostatic potential (ESP) and dipole error of
different atom typed C-GeM models, AM1-BCC, Hirshfeld, iterative Hirshfeld, MBIS and
AVH partial charges with respect to wB97X-V / def2-qzvpp reference for a) training set for
charged side chains b) testing set for charged side chains.
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Evaluation of C-GeM model on the crambin protein

As the C-GeM models worked well to reproduce the DFT benchmark for the ESP and dipole
directions in both the neutral and the charged cases of small molecules and protein fragments,
we precede to examine C-GeM models on a full protein, crambin, which is difficult in terms
of resources for the QM based partial charge methods, but totally accessible for C-GeM
models as they are orders of magnitudes faster.

The ESP map of crambin is shown in Figure 6 with their minimum and maximum ESP
value labeled. The C-GeM models give qualitatively correct predictions for the ESP com-
pared to the DFT reference computed ESP with wB97X-V / cc-pVDZ, with MAE of 0.13,
0.12 and 0.11 for CGem, CGem_CH and CGem_CHN respectively. These predictions are
superior to the EEM method (0.49 eV MAE), which fails to describe the ESP qualitatively
correctly due to unphysical long-range charged transfer, and APBS (0.25 eV MAE), which
essentially is due to the AMBER ESP fitted partial charges (the dielectric constant was set
to 1 to account for protein in vaccuum of all methods). The CGem_CHN predicts -4.26 eV
and 3.02 eV as minimum and maximum on the ESP surface, which is very close to -4.37
eV and 3.03 eV predicted by the DFT reference at the same position in space. By contrast
the EEM method yields a more featureless ESP, predicting a minimum and maximum of
-1.42 eV and 0.71 eV, whereas the APBS result exaggerates the extremes with -5.15 eV
and 3.67 eV for the minimum and maximum, respectively. Finally, the best C-GeM model
CGem_CHN also gives a relatively acceptable dipole error of 6.45 Debye compared to the
total 37.8 Debye for crambin as determined by the DFT benchmark. In this case the EEM

dipole moment is egregiously incorrect.
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Figure 6: Predicted ESP figure for crambin(1CRN) with wB97X-V / cc-pVDZ, HF /6-31G*,
EEM, CGem, CGem_CH, CGem_CHN and APBS. The electrostatic potential (in eV) at
points with maximum and minimum ESP value for wB97X-V / cc-pVDZ are labeled. The
table presents the MAE and RMSE on ESP and the dipole error of these methods with
respect to wBI7X-V / cc-pVDZ reference for crambin.

The advantage in computational efficiency for the C-GeM models is very significant in the
case of this larger molecule of more than 600 atoms. The C-GeM models can predict the ESP
on more than 500,000 grid points within 20 seconds, which is five orders of magnitude faster
than the wB97X-V / cc-pVDZ reference. The C-GeM models are also faster than APBS at
the same grid resolution, noting that the speed of APBS suffer from first computing the ESP

on a full-space grid of similar spacing, and then interpolation onto the molecular surface
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grid. The best C-GeM model, CGem_CHN (13.7 sec) is faster than CGem (15.6 sec) and
CGem_CH (17.4 sec) despite it requiring additional steps of atom typing, which again shows

that atom typing speeds up the convergence of the shell position in the optimization cycles.

CONCLUSIONS AND OUTLOOK

The ability to generate accurate electrostatic potential surfaces for predicting protein binding
motifs with high computational efficiency for high-throughput screening of drug molecules is
an important area for structural based drug discovery. At present this dual goal of accuracy
and efficiency has been difficult to achieve. Here we have introduced a new method for
generating the ESP that is both accurate and fast using the C-GeM approach. We have
shown that it offers accuracy comparable to the expensive ab initio methods with orders
of magnitude reduction in expense, and is far more accurate than cheaper computational
alternatives such as EEM or PBE approaches.

We have also shown that the EEM model and the density partitioning Hirshfeld schemes
are the least competitive in regards accuracy, which is not surprising, but are compared
here because of their continued popularity. The AM1-BCC model, usually thought of as
an efficient method, was found to be inferior to the C-GeM models in both efficiency and
accuracy, and is found to be unstable when computing charged protein fragments. While
more first principle approaches such as HI, MBIS, or AVH are relatively accurate, they are
computationally expensive and thus unsuitable for high-throughput computation on large
proteins or for the many molecules required for high throughput screening applications.

In summary, the C-GeM force field accuracy comes in part from eliminating unphysi-
cal long-range charge transfer, by accounting for out-of-plane polarization, and charges are
not required to be centered on atoms, thereby accounting for electrostatic features such as
sigma holes that define important binding motifs for biomolecules. The C-GeM model is

light-weight in parameters compared to other many-body force fields such as AMOEBA, 62
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which has many more atom types and many more parameters such as the atomic multipoles
up through quadrupoles, atomic polarizability parameters, and damping functions. By con-
trast the protein C-GeM model has at most 15 atom types each with 2 atomic parameters
that represent the electronegativity and ionization potential, and a common set of 5 global
parameters for all atoms. In future development work we will advance C-GeM further to
account for more complicated solvent environments and physiological salt conditions that are
important for biomolecular recognition, and apply the model to more diverse applications

beyond ESP predictions.
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