
Atmos. Meas. Tech., 14, 7079–7101, 2021
https://doi.org/10.5194/amt-14-7079-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

The University of Washington Ice–Liquid Discriminator (UWILD)
improves single-particle phase classifications of hydrometeors within
Southern Ocean clouds using machine learning
Rachel Atlas1, Johannes Mohrmann1, Joseph Finlon1, Jeremy Lu1,�, Ian Hsiao1,�, Robert Wood1, and
Minghui Diao2

1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
2Department of Meteorology and Climate Science, San Jose State University, San Jose, CA, USA
�These authors contributed equally to this work.

Correspondence: Rachel Atlas (ratlas@uw.edu)

Received: 2 May 2021 – Discussion started: 21 May 2021
Revised: 14 August 2021 – Accepted: 28 August 2021 – Published: 11 November 2021

Abstract. Mixed-phase Southern Ocean clouds are challeng-
ing to simulate, and their representation in climate models
is an important control on climate sensitivity. In particular,
the amount of supercooled water and frozen mass that they
contain in the present climate is a predictor of their plan-
etary feedback in a warming climate. The recent Southern
Ocean Clouds, Radiation, Aerosol Transport Experimental
Study (SOCRATES) vastly increased the amount of in situ
data available from mixed-phase Southern Ocean clouds use-
ful for model evaluation. Bulk measurements distinguish-
ing liquid and ice water content are not available from
SOCRATES, so single-particle phase classifications from
the Two-Dimensional Stereo (2D-S) probe are invaluable
for quantifying mixed-phase cloud properties. Motivated by
the presence of large biases in existing phase discrimina-
tion algorithms, we develop a novel technique for single-
particle phase classification of binary 2D-S images using a
random forest algorithm, which we refer to as the University
of Washington Ice–Liquid Discriminator (UWILD). UWILD
uses 14 parameters computed from binary image data, as well
as particle inter-arrival time, to predict phase. We use liquid-
only and ice-dominated time periods within the SOCRATES
dataset as training and testing data. This novel approach to
model training avoids major pitfalls associated with using
manually labeled data, including reduced model generaliz-
ability and high labor costs. We find that UWILD is well
calibrated and has an overall accuracy of 95 % compared
to 72 % and 79 % for two existing phase classification algo-

rithms that we compare it with. UWILD improves classifica-
tions of small ice crystals and large liquid drops in particular
and has more flexibility than the other algorithms to iden-
tify both liquid-dominated and ice-dominated regions within
the SOCRATES dataset. UWILD misclassifies a small per-
centage of large liquid drops as ice. Such misclassified par-
ticles are typically associated with model confidence below
75 % and can easily be filtered out of the dataset. UWILD
phase classifications show that particles with area-equivalent
diameter (Deq) < 0.17 mm are mostly liquid at all temper-
atures sampled, down to −40 ◦C. Larger particles (Deq >

0.17 mm) are predominantly frozen at all temperatures be-
low 0 ◦C. Between 0 and 5 ◦C, there are roughly equal num-
bers of frozen and liquid mid-sized particles (0.17<Deq <

0.33 mm), and larger particles (Deq > 0.33 mm) are mostly
frozen. We also use UWILD’s phase classifications to esti-
mate sub-1 Hz phase heterogeneity, and we show examples
of meter-scale cloud phase heterogeneity in the SOCRATES
dataset.

1 Introduction

1.1 Southern Ocean cloud phase and climate

Mixed-phase processes within Southern Ocean clouds mod-
erate cloud radiative effects (Bodas-Salcedo et al., 2016; Mc-
Coy et al., 2014a) and cloud–climate feedbacks associated
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with the stormy region (McCoy et al., 2014b). The pres-
ence of small amounts of ice within liquid-dominated mixed-
phase clouds can substantially increase precipitation as com-
pared with warm clouds with similar thickness, due to ef-
ficient cold precipitation formation (Bergeron, 1928; Field
and Heymsfield, 2015). Increased precipitation can reduce
cloud lifetime (Albrecht, 1989) and increase aerosol scav-
enging (Radke et al., 1980).

The distribution of liquid and frozen hydrometeors within
Southern Ocean clouds will change as the climate warms
(Mitchell et al., 1989; Storelvmo et al., 2015). Climate mod-
els that simulate a relatively high ice-to-liquid ratio within
Southern Ocean clouds in the present climate, or base state,
exhibit a negative cloud radiative feedback in future climates
(McCoy et al., 2015). One explanation for this is that as the
climate warms, fewer ice particles form, and clouds become
both brighter (Sun and Shine, 1994) and longer lived. This
feedback, known as the cloud phase feedback, has a large
impact on the climate sensitivity, and its weakening has been
suggested as an explanation for an increase in climate sen-
sitivity going from CMIP5 (Coupled Model Intercomparison
Project) to CMIP6 (Zelinka et al., 2020; Bjordal et al., 2020).

Given that the strength of the cloud phase feedback in cli-
mate models is related to the base state representation of
cloud phase within Southern Ocean clouds, we can constrain
the cloud phase feedback by assessing how realistic the base
state of each climate model is. Historically, due to a lack
of in situ measurements over the Southern Ocean, satellite
data have been used to evaluate cloud phase within climate
models. Tan et al. (2016) retrieved cloud phase from Cloud–
Aerosol Lidar with Orthogonal Polarization (CALIOP) to
show that climate models with strong cloud phase feedbacks
typically underestimate the fraction of supercooled water in
present-day extra-tropical, mixed-phase clouds. McCoy et al.
(2014a) combined retrievals from the International Satel-
lite Cloud Climatology Project (ISCCP), Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), and Multi-angle
Imaging Spectroradiometer (MISR) to connect seasonally
varying cloud radiative fluxes with mixed-phase cloud prop-
erties. Satellite products have been invaluable for constrain-
ing cloud radiative effects and identifying model biases over
the Southern Ocean, but they provide almost no informa-
tion on hydrometeor phase other than at the cloud top. For
this reason and because of low vertical and horizontal reso-
lution and large retrieval uncertainties, satellite products are
not sufficient to support process-oriented studies of mixed-
phase microphysics in models.

Recent in situ measurements of summertime Southern
Ocean clouds from the Southern Ocean Clouds, Radiation,
Aerosol Transport Experimental Study (SOCRATES; Mc-
Farquhar et al., 2020) make it possible to quantify cloud mi-
crophysical properties through the full depth of the cloud
and to create a dataset for evaluating models and remote
sensing retrievals. Since measurements of bulk ice water
content (IWC) are not available during SOCRATES, single-

particle classification is the most viable way to quantify ice
properties within SOCRATES-sampled clouds. Furthermore,
single-particle phase classifications are useful for making di-
rect comparisons of simulated and observed liquid and frozen
particle size distributions (PSDs). During SOCRATES, opti-
cal array probes (OAPs) such as the Two-Dimensional Stereo
(2D-S) instrument (Lawson et al., 2006) collected binary im-
ages of single particles that can be used for phase classifi-
cation. However, there is no standard procedure for identi-
fying the phase of 2D-S imaged particles, and existing algo-
rithms, which are described in Sect. 1.2, have substantial bi-
ases. Here, we introduce a novel machine-learning-based al-
gorithm, the University of Washington Ice–Liquid Discrimi-
nator (UWILD), and show that it has greater skill in discrim-
inating liquid and ice particles than two pre-existing algo-
rithms.

1.2 Existing methods for phase classification

Single-particle phase classification techniques for binary
OAP images typically distinguish liquid from frozen hy-
drometeors using particle shape and/or particle roughness.
Cober et al. (2001a) used four different ratios computed from
particle length, width, perimeter, and area to estimate particle
sphericity and discriminate between liquid and ice particles.
McFarquhar et al. (2013) proposed using area ratio, defined
as the particle area divided by the area of the smallest cir-
cle bounding the particle, to classify the phase of particles
with maximum dimensions between 35 and 60 µm. Using
area ratio alone is the simplest technique for phase classi-
fication and has been implemented in the Earth Observing
Laboratory’s (EOL) OAP processing code. Throughout this
study, we compare UWILD’s performance with this tech-
nique, which we refer to simply as “area ratio”. We include a
schematic of area ratio in Fig. 1a.

A limitation of using area ratio alone is that quasi-
spherical frozen particles, such as graupel, may be classified
as liquid. Using particle surface roughness is an attractive
alternative. Czys and Schoen Petersen (1992) fit a fourth-
degree polynomial to quasi-spherical 2D particle images
(with particle circumference represented in polar coordi-
nates) to estimate surface roughness and distinguish between
graupel particles and liquid drops. Other studies (Hunter
et al., 1984; Moss and Johnson, 1994; Bower et al., 1996;
Yang et al., 2016) have used Fourier analysis to quantify the
sphericity and roughness of imaged particles and to classify
them as liquid drops or frozen particles with particular habits.
Holroyd (1987) also used a combination of particle shape and
surface roughness to classify particle habit. They quantified
surface roughness using the fine-detail ratio, defined as the
perimeter multiplied by maximum dimension and divided by
particle area, and used that and other particle properties to
classify frozen hydrometeors into 10 habits, which we refer
to as Holroyd habits. McFarquhar et al. (2018) modified this
algorithm for use in mixed-phase clouds by classifying par-
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Figure 1. Schematic comparing the three-phase classification al-
gorithms compared in this study. Using single-particle properties
derived from the 2D-S probe as input, each panel describes the al-
gorithm decision tree used to classify a particle as liquid or ice.

ticles labeled as tiny or spherical from the Holroyd (1987)
scheme as liquid and all other particles as ice. Furthermore,
for particles with maximum dimensions < 300 µm, the pres-
ence or absence of a light spot in the center of the particle,
known as the Poisson spot (Arago and Gay-Lussac, 1819;

Heymsfield and Parrish, 1978), is recorded. If particles ex-
hibit this diffraction pattern, they are classified as liquid and
their Holroyd habit is not taken into account. This technique
has been applied to SOCRATES data (Wu et al., 2019), and
Wang et al. (2020) used the resulting phase classifications
to compute number concentrations and water contents of
droplets and frozen hydrometeors in SOCRATES-sampled
clouds. Throughout this study, we compare UWILD’s perfor-
mance with this technique as well, which we refer to as “Hol-
royd” for simplicity, although it employs the Holroyd (1987)
habit classification in conjunction with other techniques. We
include a schematic of Holroyd in Fig. 1b.

Machine learning is attractive for single-particle phase
classification because it allows for the use of multiple particle
parameters without incurring the labor and time costs associ-
ated with handpicking thresholds for those parameters. Ad-
ditionally, many machine learning algorithms produce both a
classification and a model confidence for each particle, which
can be regarded as the uncertainty in the phase classification
for a well-calibrated model. Machine learning has been used
to classify airborne particle probe images in many studies
over the last decade (Lindqvist et al., 2012; Nurzynska et al.,
2012, 2013; O’Shea et al., 2016; Praz et al., 2017, 2018; Xiao
et al., 2019; Wu et al., 2020; Korolev et al., 2020; Touloupas
et al., 2020), but to our knowledge, it has never been used to
directly predict hydrometeor phase for binary OAP images.

The remainder of the article is arranged as follows. In
Sect. 2, we describe the SOCRATES dataset and the de-
velopment of our training, testing, and validation dataset.
In Sect. 3, we introduce UWILD, and in Sect. 4, we eval-
uate UWILD and compare its performance with two pre-
existing phase classification algorithms. In Sect. 5, we show
how concentrations of liquid and frozen hydrometeors vary
with size and temperature, and we investigate sub-1 Hz cloud
phase heterogeneity in the SOCRATES dataset. A summary
of UWILD and its implications for identifying particle phase
in Southern Ocean clouds is discussed in Sect. 6.

2 Processing SOCRATES data for single-particle phase
classification

2.1 SOCRATES observations and description of the
2D-S

Between 15 January and 25 February 2018, the US Na-
tional Science Foundation (NSF) supported the SOCRATES
campaign to sample diverse boundary layer clouds between
Hobart, Tasmania, and the Antarctic continent (McFarquhar
et al., 2020). SOCRATES employed the NSF–National Cen-
ter for Atmospheric Research (NCAR) Gulfstream V (G-V)
aircraft outfitted with three OAPs including the 2D-S, the
Two-Dimensional Cloud (2DC) probe, and the Precipitation
Imaging Probe (PIP). The 2DC and the PIP both suffered
from quality control issues (Finlon et al., 2020), so we use
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the 2D-S particle images to develop single-particle phase
classifications for the SOCRATES dataset. The SOCRATES
campaign included 15 6–8 h flights. We use 14 out of the 15
SOCRATES flights, omitting RF15 due to an anomalously
high occurrence of corrupted 2D-S particle images. Figure 2
shows the SOCRATES flight tracks and the distribution of
1 Hz in-cloud temperatures from the 14 SOCRATES flights
used here. The majority (85.5 %) of the cloudy flight data
occur within the temperature range that can support mixed-
phased clouds,−40 to 0 ◦C, while 15.1 % of the cloudy flight
data are warmer than 0 ◦C, and the remaining 0.4 % of the
flight data are colder than −40 ◦C.

The 2D-S uses a 128-element photodiode array in conjunc-
tion with high-speed electronics to generate shadowgraphs of
particles with 10 µm pixel resolution as they enter the instru-
ment’s sample volume (Lawson et al., 2006). Particle shad-
owgraphs, or images, are thus composed of 10 µm× 10µm
square pixels. Particles with maximum dimensions smaller
than 0.01 mm have areas smaller than that of a single pixel
and cannot be detected by the 2D-S. Particles with maximum
dimensions greater than 1.28 mm (the length of the photo-
diode array) have a higher likelihood of being partially cut
off by the image buffer depending on their habit and orienta-
tion. The 2D-S has a sample volume between 10 and 16 Ls−1

for typical SOCRATES aircraft speeds and can record com-
pressed data at rates associated with particle concentrations
up to about 100 cm−3 (Lawson et al., 2006), as they typ-
ically were during SOCRATES. We use the University of
Illinois/Oklahoma OAP Processing Software (UIOOPS; Mc-
Farquhar et al., 2018) to compute particle properties of in-
dividual particles from the horizontal channel of the 2D-S.
Due to optical limitations of the 2D-S, quasi-spherical out-
of-focus particles exhibiting Poisson spots are size-corrected
following Korolev (2007). We apply several criteria to fil-
ter particles for use in this study. First, we only use particles
whose center is within the 2D-S field of view to minimize
uncertainties in determining the reconstructed particle size
(Heymsfield and Baumgardner, 1985; Field, 1999). Due to
uncertainties in defining the probe’s depth of field and sam-
ple area (Heymsfield and Parrish, 1978; Baumgardner and
Korolev, 1997; Jackson et al., 2012) and limited shape infor-
mation to support robust classification for smaller particles
(Korolev et al., 1991; Baumgardner et al., 2017), particles
with fewer than 25 pixels are excluded from this study. Be-
cause of this, there are no particles classified as tiny (defined
as< 25 pixels) using the Holroyd scheme (Fig. 1a), and only
the right subtree of area ratio (Fig. 1b) is relevant. Through-
out this study, we will use area-equivalent diameter (Deq) to
represent particle size. For the 2D-S, Deq in millimeters is
computed from the number of pixels as follows:

Deq = 2× 10−2
×

√
number of pixels×π−1. (1)

We use 15 particle features, listed in Table 1, to train our
machine learning model. These 15 features represent a sub-

set of all of the particle properties that UIOOPS computes.
We visually define the particle features using example par-
ticles in Fig. A1, and we show histograms of the particle
features for the SOCRATES dataset in Fig. A2. We use the
common logarithm of inter-arrival time (log10(iat)), which
is the time elapsed since the previous particle was imaged
within the 2D-S sample volume, instead of the absolute inter-
arrival time because machine learning models are optimized
to train on normally distributed variables. Inter-arrival time
is the only feature that is substantially non-normally dis-
tributed and requires normalization. We show distributions
of log10(iat) for liquid and ice-dominated particles from our
training dataset in Fig. 3a. We discuss how we prepare our
training dataset in Sect. 2.2. The clear separation in the peaks
of the two distributions, with liquid particles associated with
smaller inter-arrival times, indicates that inter-arrival time is
useful for phase classification. The distribution for the ice-
dominated particles is bimodal, and the smaller mode in the
smaller inter-arrival times may be a signature of shattered
artifacts (Korolev et al., 2013). These suspected shattered ar-
tifacts with inter-arrival times < 10−5 s represent 7 % of the
ice-dominated particles and are thus expected to minimally
affect how UWILD uses inter-arrival time for phase discrim-
ination. We retrained UWILD with log10(iat) excluded as a
sensitivity test and found that UWILD’s skill in identifying
small ice particles sharply decreased, while its skill at iden-
tifying other particles decreased only slightly. This result is
described in greater detail in Sect. 4.

2.2 Preparation of training, validation, and test data

Classification problems are a type of supervised machine
learning that require a dataset with known classifications to
use for model training, cross-validation during hyperparam-
eter (i.e., model configuration parameter) tuning, and model
testing. Creating this dataset, hereafter referred to as the TTV
(for train–test–validate) set, is the biggest challenge asso-
ciated with this particular machine learning problem. Us-
ing manual inspection to build a TTV set, as most stud-
ies using machine learning for particle image classification
have done, would limit the scope of our TTV set to par-
ticles large enough to identify by eye that have an unam-
biguous phase. This would result in our TTV set being sub-
stantially different from a set of randomly sampled particles
from SOCRATES and would thus reduce the generalizabil-
ity of our machine learning model for the whole SOCRATES
dataset. Instead, we use in situ flight data, including tempera-
ture from the Harco heated total air temperature sensor (EOL,
2019), water vapor mixing ratio from the Vertical-Cavity
Surface-Emitting Laser (VCSEL) hygrometer (Zondlo et al.,
2010; Diao, 2021), and voltage from the Rosemount Icing
Detector (RICE; EOL, 2019), to identify flight periods where
the hydrometeors are most likely to be all or mostly the same
phase.
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Figure 2. (a) SOCRATES flight tracks from RF01–RF14 (the flights analyzed in this study); (b) 1 Hz in-cloud temperature histograms for
RF01–RF14 (hatched, left y axis), with ice-dominated data from the TTV set (blue, right y axis) and liquid-only data from the TTV set (red,
right y axis). In-cloud data include all samples with at least one particle that satisfy our selection criteria (described in Sect. 2.1).

Figure 3. Distributions of the common logarithm of inter-arrival time (a) and particle size (b) for the liquid-only (red) and ice-dominated
(blue) data from the TTV set.

The RICE is an oscillating probe that is sensitive to mass
buildup from supercooled drops that have frozen onto its
sensing cylinder. When supercooled water is present at tem-
peratures lower than −5 ◦C with a mass concentration above
the theoretical detection limit of 0.025 gm−3 (D’Alessandro
et al., 2021), sufficient ice builds up on the sensing cylinder
to decrease its oscillating frequency, which is converted to a
positive voltage. Thus, a changing RICE voltage indicates the
presence of supercooled water. A near-constant RICE volt-
age indicates that supercooled water is not present in a suffi-
cient quantity to trigger an instrument response.

Equations of saturation pressure with respect to liquid and
ice (Murphy and Koop, 2005) were used to calculate relative
humidity with respect to liquid (RH) and ice (RHi). Uncer-
tainties in RH and RHi can be derived based on the uncer-
tainties associated with temperature and water vapor. Uncer-
tainties range from 6.4 % to 6.8 % for RH and from 6.5 % to
6.9 % for RHi, from 0 to −40 ◦C, respectively. Identifying
liquid phase regions of clouds is simple because frozen hy-
drometeors rarely persist at temperatures above 5 ◦C (Yuter
et al., 2006; Oraltay and Hallett, 2005). Thus, we select a

5 min flight period where the temperature varies between
6 and 12 ◦C as a liquid-only period. We show time series
of 1 Hz temperature, RH, particle count, and liquid fraction
from UWILD for this region in Fig. 4a. There is only RH
data available towards the end of the period, and the RH is
close to 100 % there. UWILD classifies most particles as liq-
uid throughout the flight period, but its accuracy decreases
towards the end of the period. We explain how UWILD clas-
sifies particles in Sect. 3, and we quantify UWILD’s perfor-
mance and identify biases in its classifications in Sect. 4.
A histogram of temperature for the liquid-only period is
shown in Fig. 2b, and normalized histograms of Deq and
log10(iat) are shown in Fig. 3. Small particles (< 100 pixels
or Deq < 0.1 mm) dominate the liquid-only dataset.

Supercooled water can persist at all temperatures above
the homogeneous nucleation threshold of −40 ◦C (Korolev
et al., 2017) and below 0 ◦C. Since there are no multi-second
periods of in-cloud data from SOCRATES with temperatures
below −40 ◦C (Fig. 2b), we cannot be certain that all parti-
cles within any given SOCRATES flight period are frozen.
However, we can use the aforementioned atmospheric pa-
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Table 1. Description of particle features used in UWILD. Features have units of numbers of pixels except where different units are specified.

Particle feature Description [units]

length Pixels in time dimension
width Pixels in photodiode dimension
area Projected area from the number of shadowed pixels (1 pixel= 0.0001 mm2) [mm2]
perimeter Perimeter following the particle boundary [mm]
max_dimension Maximum dimension of the smallest circle bounding the particle [mm]
area_equivalent_diameter Diameter of a circle with an area equal to the particle area [mm]
area_ratio Ratio between particle area and the area of the smallest circle bounding the particle
percent_shadow_area Ratio between particle area and the length×width
touching_edge Binary depicting whether the particle is entirely within the photodiode array [0] or touches an edge

of the array [1]
max_top_edge_touching Maximum number of times the top diode is shadowed in succession
max_bottom_edge_touching Maximum number of times the bottom diode is shadowed in succession
edge_at_max_hole Number of pixels between the top and bottom edges of the particle for the slice containing the

largest gap inside the particle
max_hole_diameter Diameter of the largest hole inside the particle
fine_detail_ratio Ratio between perimeter×maximum dimension and particle area following Holroyd (1987)
log10(iat) Log of the inter-arrival time between particles [log10(s)]

Figure 4. Time series of atmospheric parameters and particle properties for the liquid-only period (a), the two ice-dominated periods (b, c),
and the two example mixed-phase periods (d, e). Voltage from the RICE (row 1), relative humidity with respect to liquid (solid line) and
ice (dashed line) (row 2), the number of particles that satisfy our selection criteria (row 3), and liquid fraction as determined by the UWILD
algorithm (row 4) are shown for each flight period. A RICE response is expected when the supercooled water content exceeds 0.025 gm−3.
Missing data are indicated with grey. The temperature range sampled in each period is shown on the plot of RICE voltage in the top row.
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rameters and particle probe images to identify periods where
we have very high confidence that over 99 % of the parti-
cles are frozen. We refer to these as ice-dominated periods.
We use temperature, RH with respect to ice and liquid water,
voltage from the RICE, and particle images from the 2D-S
to identify two ice-dominated periods, from flights RF01 and
RF04, which we show in Fig. 4b and c, respectively. The ice-
dominated periods are defined as having no RICE response,
are subsaturated with respect to liquid, and are supersatu-
rated with respect to ice. A RICE response, which consists
of the 1 Hz voltage oscillating over a 20 s period, is expected
when the supercooled water content exceeds 0.025 gm−3.
RF04 is the source of 70 % of particles in the combined ice-
dominated dataset, and RF01 is the source of the remain-
ing particles. A histogram of temperature for the combined
ice-dominated dataset is shown in Fig. 2b, and normalized
histograms of Deq and log10(iat) for the same dataset are
shown in Fig. 3. The ice-dominated dataset is composed pri-
marily of medium-sized and large particles (≥ 100 pixels or
Deq ≥ 0.1 mm).

We manually inspected 1000 2D-S particle images from
the combined ice-dominated dataset with 0.2mm<Deq <

0.8 mm, which account for 87 % of the particles in the ice-
dominated dataset, and found that 0.6 % of the particles
are likely liquid. Thus, if UWILD classified all particles in
the ice-dominated region correctly, it would have a slightly
higher performance than what is reported here (Sect. 4) be-
cause we compute performance metrics assuming that all
particles in the ice-dominated region are frozen.

The SOCRATES payload also included the Particle Habit
Imaging and Polar Scattering (PHIPS) probe, which records
high-quality images of particles with a maximum imaging
rate set at 3 Hz for SOCRATES and measures particle scat-
tering phase functions at a maximum rate of 3.5 kHz (Ab-
delmonem et al., 2016; Schnaiter et al., 2018). The PHIPS
dataset (Schnaiter, 2018b) includes manual classifications of
particle phase based on particle images and automated clas-
sifications of particle sphericity based on particle scattering
phase functions (Waitz et al., 2021). Because the maximum
scattering phase function data acquisition rate is greater than
the maximum imaging rate, there are more automated classi-
fications than manual classifications. Particle sphericity is a
good indicator of particle phase for small and medium-sized
particles. However, large liquid drops are typically aspherical
or elongated because they are distorted due to pressure differ-
ences in the instrument’s inlet, as discussed in Supplement 4
of Waitz et al. (2021).

We examine manual and automated classifications for the
PHIPS to further evaluate our liquid-only and ice-dominated
periods. The PHIPS automated classification algorithm iden-
tified 132 particles as spherical and 45 particles as aspherical
during our liquid-only period, while manual classifications
of 106 images are universally liquid. While the PHIPS was
not available for RF01, the PHIPS algorithm automatically
classified 3905 particles as aspherical and only 4 particles as

spherical during our ice-dominated period from RF04. Man-
ual classifications of 320 images are universally frozen.

We compare the liquid-only period and two ice-dominated
periods with two examples of mixed-phase periods in Fig. 4.
The first mixed-phase period (Fig. 4d) samples a stratocumu-
lus cloud within the boundary layer. The RICE voltage oscil-
lates throughout the period, and the liquid fraction is greater
than 75 % most of the time. The cloud is saturated with re-
spect to liquid. The second mixed-phase period (Fig. 4e)
sampled near the top of altostratus cloud. This period is
colder and, on average, subsaturated with respect to liquid
water and saturated with respect to ice. The RH is subsatu-
rated even though the cloud is liquid-dominated in the sam-
pled region because the aircraft is skirting a horizontally vari-
able cloud top. The liquid fraction is close to 1.0, and the
RICE voltage oscillates until 00:23:00 UTC (∼ 0.4 UTC), af-
ter which the liquid fraction decreases abruptly, and the RICE
voltage stabilizes. The change in phase occurs because the
aircraft is initially sampling the cloud top and transitions to
sampling below the cloud top.

The liquid-only period includes 90 000 particles that pass
our size threshold, while the ice-dominated periods include
55 000 particles in total. All particles drawn from the liquid-
only period are labeled liquid, and all particles drawn from
the ice-dominated periods are labeled ice. These labels are
taken as truth for the purposes of model training and eval-
uation (Sect. 4). We partition the particles into three size
categories: small (corresponding to 25–99 pixels or Deq of
approximately 0.056–0.1 mm), medium (100–699 pixels or
0.1–0.3 mm), and large (> 700 pixels or > 0.3 mm). In the
remainder of this study, all references to particle size will
be in terms of Deq. We then randomly subsample the liq-
uid particles down to have an equal total number of ice and
liquid particles, preserving the ratio between the three size
categories for each phase separately. These particles are then
partitioned into training (60 %), test (20 %), and validation
(20 %) sets, again preserving the original ratios between the
three size categories for each phase separately and including
an equal number of particles from each phase, in each set.
We refer to the combined training, test, and validation sets
as the TTV set. We explicitly preserve these rough size dis-
tributions to ensure that the test set has a reasonable number
of small ice crystals and large liquid drops for evaluation, as
these particles are rare enough in the full TTV dataset that
a completely random partition risks having them undersam-
pled in the test set. Having the same number of liquid and ice
particles in the test set simplifies interpretation of model per-
formance summary statistics, as discussed at the beginning
of Sect. 4. The composition of the TTV set is broken down
in Table 2. We show histograms of particle features from the
TTV set and from the whole SOCRATES dataset (14 flights)
in Fig. A2, and we discuss out of sample particles in Ap-
pendix A.
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Table 2. Number of particles by size class in the training, validation, and test sets.

Phase Particle size class Training Validation Test

Ice Small (0.056mm≤Deq < 0.1 mm) 1.7 k 0.59 k 0.6 k
Medium (0.1mm≤Deq < 0.3 mm) 12.6 k 4.2 k 4.2 k
Large (Deq ≥ 0.3 mm) 18.6 k 6.2 k 6.2 k

Liquid Small (0.056mm≤Deq < 0.1 mm) 20.1 k 6.7 k 6.7 k
Medium (0.1mm≤Deq < 0.3 mm) 11.4 k 3.8 k 3.8 k
Large (Deq ≥ 0.3 mm) 1.5 k 0.5 k 0.5 k

3 UWILD: description and interpretation

A key consideration for all machine learning applications
is the choice of machine learning model. One approach
to analyzing particle probe images is to apply deep learn-
ing directly to the captured image (e.g., Xiao et al., 2019;
Touloupas et al., 2020; Wu et al., 2020; Korolev et al., 2020).
Here, we take a simpler approach and employ a random for-
est model (Breiman, 2001; Pedregosa et al., 2011), which
requires a preprocessing step to extract relevant image fea-
tures (e.g., particle area or perimeter; full list in Table 1).
Classification is then carried out using these features as in-
puts (Lindqvist et al., 2012; Nurzynska et al., 2012, 2013;
O’Shea et al., 2016; Praz et al., 2018, 2017). An advantage
of this approach is that it simplifies the inclusion of features
not directly related to particle appearance; in particular, we
show that inter-arrival time is a valuable discriminator of liq-
uid and ice particles. Random forests can also provide more
interpretable results, as the trained model can be analyzed
to investigate relative feature importance. Another advantage
(shared by many machine learning approaches) is the deter-
mination of classification confidence, which can be useful in
filtering out more uncertain classifications, or estimating un-
certainties in calculated bulk properties such as liquid water
content.

For a decision tree trained using a supervised learning ap-
proach, the training set is split by thresholding features (e.g.,
whether area ratio is more or less than 0.8); precisely which
feature and which value is determined by whatever “best”
splits the dataset into distinct categories (for UWILD the max
Gini impurity reduction criterion is used). This process is re-
peated on each data subset until the data are entirely parti-
tioned into distinct categories. In a random forest, multiple
such trees (100 for UWILD) are trained using random sub-
sets of data features. Randomness is introduced here to re-
duce overfitting to the training set and improve model gen-
eralizability. For a given test data point, each tree provides a
classification, and the plurality vote of all trees is the over-
all category assigned to the data point, with the proportion
of trees voting for that category as the model confidence. We
include a simple schematic of UWILD in Fig. 1c.

A model is well-calibrated if its model confidence (internal
prediction probability) accurately reflects its performance.

Figure 5. UWILD confidence is plotted against UWILD accuracy
with a black solid line (this is referred to as the calibration curve)
in the top row, and a histogram of model confidence is shown in
the bottom row on a shared x axis. This analysis is done on the test
set. The proximity between the calibration curve and the one-to-one
blue dashed line implies that UWILD confidence can be used as a
proxy for the uncertainty in UWILD’s classifications.

Figure 5 shows this relationship between model confidence
(from the random forest votes) and model accuracy (how
likely the model was to correctly classify particles), evalu-
ated on the test set. A one-to-one relationship is ideal be-
cause it indicates that we can directly use model confidence
as an estimate of prediction uncertainty. For example, a par-
ticle classified as ice with a model confidence of 75 % should
be seen as 75 % likely to be ice, and 25 % likely to be liquid.
Figure 5 also shows that UWILD has a confidence of 95 %
or higher for 73 % of the particles in the TTV set.

To better understand how the UWILD classifier deter-
mines particle phase, we quantify how much it relies on each
of the 15 different features (listed in Table 1) using permu-
tation feature importance analysis. This technique measures
how much a model relies on the information encoded in a
particular feature by calculating model accuracy on a test
set, randomly shuffling a given feature, and measuring how
much the accuracy decreases. The random shuffling of a fea-
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Figure 6. Permutation feature importance for the 10 most important
features is shown for all particles (black squares) and for the 3 size
classes separately. Features are shuffled 10 times, and the mean fea-
ture importance from the 10 trials is shown here.

ture renders that feature useless to the model classification,
and the model accuracy will decrease substantially for a very
significant feature. This analysis can be rapidly performed
multiple times for each feature. Another advantage of per-
mutation feature importance is that it is a function of the
dataset being used for evaluation as well as the model, so
it can be calculated separately for different subsets of the
data or for entirely new test datasets. Other measures of fea-
ture importance (such as impurity-based feature importance)
are functions only of the model and do not share this advan-
tage. A relevant drawback to all measures of feature impor-
tance is that they are affected by correlations between fea-
tures. As correlated features share information, model per-
formance may not decrease as much when a particular fea-
ture is shuffled, as a (previously) correlated different feature
may still encode the relevant information. However, decor-
relating variables prior to use, which would address this is-
sue, complicates model interpretation (while not significantly
affecting model performance), and so we chose to preserve
original features and caution against too minute a dissection
of the permutation feature importance.

Figure 6 shows the permutation feature importance of the
top 10 features, split by particle size and evaluated on the
model test set. Overall, we see that width, area ratio, and
log10(iat) are the most important. The next two features (max
dimension and length) both encode size and correlate well
with width, while the remaining features have low impact
on model accuracy. Put another way, the model primarily re-
lies on these first three features for classification. Consider-
ing differences between size classes, we note that width and
all other size-related features are most important for medium
particles, which is to be expected, as larger particles are pre-
dominantly ice, and smaller particles are predominantly liq-
uid, with medium particles varying the most. For small parti-

cles, log10(iat) is most important, and for large particles, area
ratio is most important (likely because small and medium
particles are mostly quasi-spherical irrespective of phase).
Regarding correlated features, the results in Fig. 6 should not
be taken to mean that width in particular is a key discrimi-
nator as opposed to length or max dimension but rather that
width is a good estimator of particle size, which is the par-
ticle characteristic that matters in determining its phase. If
particle width were removed from the feature set, then an-
other size-encoding feature would appear more important.

4 Comparison between phase classification schemes

For quantitative evaluation of a classification model, an in-
tuitive summary metric is model accuracy (the ratio of cor-
rect classifications to total classifications). The overall ac-
curacy of UWILD, Holroyd, and area ratio on our test set
is 94.9 %, 78.5 %, and 71.8 %, respectively, indicating that
UWILD is performing quite well. However, accuracy is most
suitable for balanced classification problems (i.e., when data
are spread evenly across categories). In the case of highly
unbalanced problems, high accuracy can be achieved by sys-
tematically erring in favor of the dominant category. For ex-
ample, small particles in the test set are overwhelmingly liq-
uid (Fig. 3b), so high accuracy can be achieved by predicting
that all small particles are liquid at the expense of correctly
classifying small ice particles.

Model performance, especially for unbalanced classifica-
tion problems, can be better measured by calculating preci-
sion (the ratio of all particles correctly classified as liquid to
all particles classified as liquid) and recall (the ratio of all
particles classified as liquid to all true liquid particles). Both
scores range from 0–1, and they penalize false positives and
false negatives, respectively, for a particular category. These
scores are unified in the F1 score, which is their harmonic
mean:

F1 =
2× precision× recall

precision+ recall
. (2)

The F1 score is a conservative measure of model perfor-
mance because the lesser of recall and precision will dom-
inate the harmonic mean, and it can be calculated for various
data subsets. We show the F1 scores for Holroyd, area ratio,
and UWILD in Fig. 7 as a function of phase and size class.
This analysis is performed on our test set. UWILD outper-
forms Holroyd and area ratio for all phases and size classes.
It has the best performance for small liquid (F1= 0.982) and
large ice (F1= 0.992) particles and performs less well with
small ice (F1= 0.765) and large liquid (F1= 0.893) parti-
cles. While UWILD performs least well when classifying
small ice and large liquid, it nevertheless has a particularly
large performance advantage over Holroyd and area ratio for
those categories. Holroyd outperforms area ratio for medium
and large ice particles, whereas area ratio outperforms Hol-
royd for small ice particles and liquid particles of all sizes.
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We tested the sensitivity of UWILD’s performance to the
inclusion of log10(iat) by retraining UWILD without it. We
found that the F1 score for small ice particles dropped from
0.765 to 0.475, whereas the F1 scores for the other phase and
size classes dropped only slightly.

The TTV set only includes ice particles occurring
at the lowest temperatures (<−23 ◦C) sampled during
SOCRATES, which may have different average ice proper-
ties than ice crystals occurring at higher temperatures. To ac-
count for this, we generated a hand-labeled dataset to eval-
uate UWILD’s ability to detect ice crystals at higher tem-
peratures. We manually classified 1000 randomly sampled
images with 0.2<Deq < 0.8 mm, occurring at temperatures
higher than −23 ◦C. The resulting dataset contained 861 ice
particles, 78 liquid particles, and 61 ambiguous particles
(which were discarded). We found that UWILD, Holroyd,
and area ratio had F1 scores of 0.63, 0.44, and 0.26, respec-
tively. For UWILD, broken down by phase, the F1 scores
were 0.97 (ice) and 0.63 (liquid). Thus, UWILD still outper-
forms the other two algorithms despite all three exhibiting
lower F1 scores for the hand-labeled set. This lower perfor-
mance is consistent with lower model confidences for this
size and temperature range, as discussed below. In the rest of
this section, we identify differences between the algorithms
and biases within each algorithm to explain the discrepancies
in their performances. We use the whole SOCRATES dataset
(14 flights), which includes 5.76 million classified 2D-S im-
ages, for our analysis from hereon.

Table 3 shows how many particles each algorithm clas-
sified as liquid and ice for each size class and in total. In
general, Holroyd classifies the most particles as ice, and area
ratio classifies the most particles as liquid. UWILD and area
ratio both classify over 90 % of the small particles as liq-
uid, whereas Holroyd classifies only 70 % of them as liquid.
Area ratio classifies three-quarters of the medium particles
and half of the large particles as liquid. In contrast, the other
two algorithms classify about 40 % of the medium particles
and 0 % (Holroyd) to 2.7 % (UWILD) of the large particles
as liquid.

In Fig. 8, we show the fraction of particles classified as liq-
uid, from the three-phase discrimination algorithms, in the
phase spaces of temperature vs. particle size (left column)
and RH vs. particle size (right column). In the first row, we
show a 2D histogram of the number of classified particles;
in the second row, we show a 2D histogram of the confi-
dence from UWILD; in the third, fourth, and fifth rows, we
show 2D histograms of the fraction of particles classified as
liquid by the three-phase discrimination algorithms. At tem-
peratures greater than −20 ◦C, UWILD confidence is lowest
in areas where UWILD transitions between having a high
liquid fraction and a low liquid fraction (Fig. 8b). UWILD
confidence is also low for small particles at temperatures be-
low−20 ◦C, which can have high or low liquid fractions. All
three algorithms show a decrease in liquid fraction for small
particles at temperatures between −20 and −30 ◦C and an

increase in the liquid fraction at temperatures below −30 ◦C
(Fig. 8c–e). This behavior is a consequence of small sample
size, as the liquid-dominated data below −30 ◦C come from
just one flight that sampled the top of an altostratus cloud,
whereas the ice-dominated data at higher temperatures come
from several flights that sampled the middle of altostratus
clouds.

Since temperature and RH are not inputs to any of the al-
gorithms, we can use them to gauge whether the particle clas-
sifications make physical sense. In other words, we can use
these atmospheric parameters to make broad predictions of
hydrometeor phase and determine which algorithm is most
consistent with these predictions. We expect that small parti-
cles will be entirely liquid above 0 ◦C and that large particles
will be primarily liquid above 0 ◦C and entirely liquid above
5 ◦C due to having longer melting timescales (Oraltay and
Hallett, 2005). Furthermore, we expect that if the liquid frac-
tion is not already 1.0 at 0 ◦C, then it will increase as temper-
ature increases above 0 ◦C, for any particle size. We note that
the abrupt disappearance of particles with Deq > 0.5 mm at
0 ◦C is a signature of ice particles melting.

Ice and liquid precipitation formation mechanisms have
been observed to operate simultaneously at temperatures as
low as −28 ◦C (Huffman and Norman, 1988; Cober et al.,
2001b; Kajikawa et al., 2000; Korolev et al., 2002; Silber
et al., 2019), so we cannot use temperature alone to make
a prediction for the liquid fraction of particles at tempera-
tures below 0 ◦C. However, we do expect to see a size depen-
dence in the liquid fraction. To our knowledge, the largest
liquid particle associated with supercooled drizzle forma-
tion (as opposed to melting frozen hydrometeors) that has
been noted in the literature has a maximum dimension of
0.625 mm (Cober et al., 2001b). Most SOCRATES data were
collected in conditions that could not support the relofting of
melted frozen hydrometeors. Furthermore, melted frozen hy-
drometeors are rarely lofted to temperatures below −5 ◦C in
environments that do support relofting (Oraltay and Hallett,
2005). Thus, we expect that medium-sized and large droplets
at temperatures below−5 ◦C are primarily formed via super-
cooled drizzle formation and will not be present at the largest
sizes (0.625–1 mm).

Holroyd and UWILD classify many medium-sized
(0.1 mm <Deq < 0.3 mm) and large (Deq > 0.3 mm) parti-
cles as ice at high temperatures (> 0 ◦C). Liquid fractions for
Holroyd sharply decrease to near 0.0 for particles with Deq
between 0.2 and 0.3 mm at all temperatures (Fig. 8e). This
strong size dependence arises from the fact that Holroyd only
considers the presence or absence of a Poisson spot for par-
ticles with maximum dimensions less than 0.3 mm (Fig. 1b).
Particles exceeding that maximum dimension threshold must
be nearly spherical in shape to be classified as liquid be-
cause the presence of a Poisson spot is not factored into the
phase classification. A near-0.0 liquid fraction for Holroyd
for Deq > 0.3 mm is unrealistic for temperatures above 0 ◦C,
where the liquid fraction should increase with temperature.

Atmos. Meas. Tech., 14, 7079–7101, 2021 https://doi.org/10.5194/amt-14-7079-2021



R. Atlas et al.: University of Washington Ice–Liquid Discriminator (UWILD) 7089

Figure 7. F1 scores are shown for UWILD (green), Holroyd (red), and area ratio (blue) for different size classes. F1 scores for small and
medium particles may be slightly underestimated due to the presence of liquid drops in the ice-dominated TTV set.

Table 3. Total particles and number of particles classified as liquid from the three-phase discrimination algorithms for each size class.
Numbers in parentheses are the percentage of total particles classified as liquid. SOCRATES flights RF01–RF14 are used.

Particle size class Total UWILD Holroyd Area ratio

Small (0.056mm≤Deq < 0.1 mm) 2 788 219 2 641 062 (94.7) 1 867 682 (70.0) 2 563 437 (91.9)
Medium (0.1mm≤Deq < 0.3 mm) 1 710 833 674 648 (39.4) 636 655 (37.2) 1 252 175 (73.2)
Large (Deq ≥ 0.3 mm) 1 265 670 34 040 (2.7) 0 (0.0) 614 144 (48.5)
All particles 5 764 722 3 349 750 (58.1) 2 504 337 (43.4) 4 429 756 (76.8)

UWILD’s liquid fraction for particles with Deq between 0.2
and 0.5 mm at temperatures between 0 and 5 ◦C is approxi-
mately 0.5 (Fig. 8c). This is unrealistically low particularly
for the warmer end of this temperature range, where most
frozen particles would have melted. We note that UWILD,
unlike Holroyd, achieves a liquid fraction near 1.0 for tem-
peratures above 5 ◦C.

Holroyd also classifies many small particles (Deq <

0.1 mm) as ice (Fig. 8e) at all temperatures. Its liquid fraction
never exceeds 0.86 for small particles at temperatures above
−20 ◦C, whereas area ratio and UWILD have a liquid frac-
tion near 1.0 (Fig. 8c and d). Holroyd’s relatively low liquid
fractions for small particles are unrealistic for temperatures
above 0 ◦C.

Area ratio classifies many large particles (Deq > 0.3 mm)
as liquid at low temperatures (Fig. 8d). Area ratio’s liq-
uid fraction rarely drops below 0.8 for particles with Deq >

0.2 mm and temperatures below −5 ◦C, whereas Holroyd
and UWILD have liquid fractions near 0.0 (Fig. 8c and e).
While a liquid fraction between 0.5 and 0.8 for these par-
ticles is not physically impossible, the fact that there is no
decrease in the liquid fraction with increasing particle size
for particles with Deq between 0.5 and 1 mm, where parti-
cle sizes and temperatures are inconsistent with supercooled
drizzle formation, implies that area ratio’s higher liquid frac-
tions may be unrealistic.

There are also clear differences between the three algo-
rithms’ classifications in RH vs. particle size space (Fig. 8h–
j). UWILD and area ratio both have liquid fractions near
1.0 for small particles (Deq < 0.1 mm) near liquid saturation
(RH= 100 %), whereas Holroyd has a liquid fraction closer
to 0.75 for the same region. Uncertainty in RH is around
7 %, so while high liquid fractions are most common at liq-
uid saturation, they occur at a wide range of RH values. Ad-
ditionally, fluctuations in RH from dry-air entrainment and
in-cloud circulation can lead to deviations from liquid satu-
ration at 1 Hz resolution. UWILD classifies fewer particles
as liquid in subsaturated air than either area ratio or Holroyd.
In the mid-sized particle range (0.1<Deq < 0.2 mm), which
includes drizzle, the liquid fraction is near 1.0 when the RH
is close to 100 %, and it drops down to 0.2 when the RH de-
creases to 50 %.

Liquid particles can persist in subsaturated air at or below
the cloud base, and these regions were purposefully sampled
within the boundary layer during SOCRATES. Drizzle drops
falling below liquid clouds evaporate in the subsaturated en-
vironment, reducing their size. Subsaturated air can also be
associated with ice-dominated clouds, as RHi is higher than
RH throughout the mixed-phase temperature range. In ice-
dominated clouds, cloud droplets are produced at the tur-
bulent cloud top and tend to freeze before forming drizzle
drops. For both of these reasons, we expect the average size
of liquid particles to decrease as the RH decreases below liq-
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Figure 8. A 2D histogram of the number of particles meeting our criteria (row 1), UWILD confidence (row 2), and phase classifications
for the three algorithms (rows 3–5) are shown in temperature–particle size phase space in the left column and relative-humidity–particle-
size phase space in the right column. A threshold of 100 total particles per 2D histogram bin is used for both plots. SOCRATES flights
RF01–RF14 are included.

uid saturation. UWILD is the only algorithm for which the
50 % liquid fraction (in white) shifts to smaller sizes as RH
decreases below 100 %. Thus, UWILD’s lower liquid frac-
tions in regions with RH< 100 %, for particles in the mid-
sized particle range (0.1<Deq < 0.2 mm), are more realistic
than Holroyd’s and area ratio’s higher liquid fractions.

UWILD is the only algorithm of the three that can achieve
liquid fractions near 0.0 and near 1.0, in both temperature vs.
particle size space (Fig. 8c) and RH vs. particle size space
(Fig. 8h). Thus, it has the flexibility to represent both (i) the
liquid-only regions that we expect at the highest temperatures
and near-liquid saturation and (ii) the ice-dominated regions

that we expect at the lowest temperatures and the largest par-
ticles sizes, and in subsaturated regions.

The dashed boxes labeled a–d on the 2D histograms in
the left column of Fig. 8 highlight areas of disagreement
between the models, whereas box e highlights agreement
between the models regarding the presence of supercooled
water at −35 ◦C. Figure 9 shows randomly sampled images
from each of the five regions within the dashed boxes. Each
particle image has the UWILD confidence displayed above
the particle and the phase classifications from all three algo-
rithms displayed below the particle. Since we have chosen
to primarily focus on areas of disagreement between the al-
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gorithms, there are more misclassifications in these regions
than in the dataset as a whole.

Box a highlights a region where area ratio has a liquid frac-
tion near 1.0 across all size categories, Holroyd has a liquid
fraction of about 0.75 for small particles and 0.0 for large par-
ticles, and UWILD has a liquid fraction of 1.0 for the highest
temperatures and 0.5 for temperatures near 0 ◦C. Since tem-
perature ranges from 0 to 10 ◦C here, we expect that the par-
ticles are mainly liquid, although large ice particles can per-
sist at temperatures above 0 ◦C. Furthermore, quasi-spherical
frozen particles can have a close resemblance to large liquid
drops, and the two cannot necessary be distinguished by eye
from 2D-S images.

Randomly sampled particles from this region appear to be
predominantly liquid due to the absence of rough edges along
the perimeter and the high prevalence of quasi-spherical
habits (Fig. 9a). Out of 50 randomly sampled images, area
ratio classifies 1 particle as ice, Holroyd classifies 21 parti-
cles as ice, and UWILD classifies 12 particles as ice. Of the
sampled particles classified by UWILD with a confidence
≥ 75 %, all but one of them appear to be properly identi-
fied as liquid. The only exception is one particle with a con-
fidence of 81 %, which is likely misclassified due to being
truncated at the end of the image buffer and having a lower
area ratio as a result. A greater proportion of particles with a
confidence below 75 % are classified as ice by UWILD but
are likely liquid, comprising about 55 % of the sampled par-
ticles for these lower confidences. The misclassifications can
be removed from UWILD, if desired, by filtering out parti-
cles that have a confidence of less than 75 % and/or are touch-
ing the edge of the image buffer. Holroyd misclassifies nine
more liquid particles as ice than UWILD but does not pro-
vide a measure of confidence that can be used to assess the
likelihood of misclassification. Of the particles that UWILD
likely misclassifies as ice, many have particularly large Pois-
son spots. Area is computed from shadowed diodes exclu-
sively, so Poisson spots are not included. Additionally, parti-
cles with Poisson spots are resized following Korolev (2007).
Both of these factors affect the calculation of area ratio and,
thus, the phase classification of the particle.

Box b highlights a temperature and size range where
UWILD and area ratio are in agreement that the liquid frac-
tion is near 1.0 but where Holroyd has a lower liquid fraction
of about 0.75. The 50 randomly sampled images shown in
Fig. 9b appear to be mostly liquid with some irregular small
ice crystals also present. UWILD performs better for these
temperatures and particle size ranges than in Box a; it clas-
sifies four particles as ice, of which one is clearly liquid and
three are unidentifiable by eye. Holroyd classifies 20 parti-
cles as ice, of which most are likely misclassifications.

Boxes c and d (Fig. 9c and d) both highlight regions where
UWILD and Holroyd are in agreement that the liquid fraction
is near 0.0 but where area ratio has a higher liquid fraction.
The discrepancy is larger for box d, where area ratio has a
liquid fraction of about 0.75. Out of 45 randomly sampled

images, area ratio misclassifies 8 quasi-spherical ice crystals
as liquid for box c and at least 13 quasi-spherical ice crys-
tals as liquid for box d. Particles in box c primarily come
from boundary layer clouds, and most have columnar habits
with small area ratios, although there are a smaller number
of large quasi-spherical frozen particles with large area ratios
present as well. Many of the particles in box d come from the
atmospheric-river case described in Finlon et al. (2020) and,
thus, are more likely to have quasi-spherical heavily rimed
habits with large area ratios. The different particle habits ex-
plain the discrepancy in area ratio’s performance in the two
different regions.

In both boxes c and d, UWILD and Holroyd likely mis-
classify several large particles as ice, and those particles are
largely associated with low confidence in UWILD. It is dif-
ficult to quantify this bias because there are several particles
that could be either quasi-spherical frozen particles or large
droplets and cannot be distinguished by eye. This does not
mean that UWILD cannot classify those particles because it
uses inter-arrival time in addition to image-derived parame-
ters to make classifications.

Box e (Fig. 9e) highlights a region where all three-
phase discrimination algorithms have liquid fractions greater
than 0.5 despite sampling very low temperatures (−33 to
−36 ◦C). Randomly sampled images with high confidence in
UWILD have spherical habits, and most have Poisson spots
as well, suggesting that the particles in this region are pri-
marily liquid. UWILD and area ratio classify all 20 randomly
sampled images as liquid, whereas Holroyd classifies 4 par-
ticles in the sample as ice. These particles are particularly
small and lack Poisson spots, so we cannot identify their
phase by eye. Nevertheless, it is clear that all three algorithms
correctly identify this region as liquid-dominated. These par-
ticles were sampled during a period from RF03 that is plotted
in the second half of Fig. 4e, where the aircraft skirted the top
of an altostratus layer.

5 Applications

5.1 Particle size distributions

We use UWILD’s classifications and confidences to com-
pute median 1 Hz liquid and frozen particle size distri-
butions (PSDs) and uncertainties for all SOCRATES data
(14 flights). We show average PSDs for five different temper-
ature ranges and for the whole dataset, in Fig. 10. The x axis
is Deq (consistent with other figures) and the y axis is the
particle concentration normalized by the common logarithm
of the bin width. Both axes are plotted on a log scale. The
dashed lines are deterministic distributions, which means
they are generated using the UWILD classifications without
taking the model confidence into account. All classified par-
ticles are used for this analysis regardless of model confi-
dence. The solid lines and shaded areas around them are the
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Figure 9. Randomly sampled images are shown for the five regions overlaid on the temperature–particle-size phase space in Fig. 8. UWILD
confidence is displayed above each particle, and, from left to right, UWILD phase (green), area ratio phase (blue), and Holroyd phase (red)
are displayed below each particle. The time dimension is vertical, and the photodiode dimension is horizontal.

median and interquartile range of 30 bootstrapped samples
which are generated using the model confidence. For exam-
ple, if a particle is classified as ice with 75 % confidence then
it is considered an ice particle for the deterministic distribu-
tion, but, on average, it will be considered an ice (liquid) par-
ticle in 75 % (25 %) of the bootstrapped samples. Note that
due to the log scale on the y axis, the effect of bootstrapping
is mainly noticeable where concentrations are small and is
strongest where the differences between ice and liquid con-
centrations span orders of magnitude. Note also that the boot-
strapped distributions fall entirely between the determinis-

tic distributions. This can be understood by considering, for
example, the smallest particles just below 0 ◦C, where there
are approximately 100 times as many liquid particles as ice.
If, when taking into consideration model confidence, 2 % of
the liquid particles are reclassified as ice, this is barely no-
ticeable in the liquid particle concentration but results in a
tripling of the ice particle concentration (Fig. 10c). The boot-
strapped PSDs are better representations of the true PSDs, so
considering model confidence is most essential in the areas
in Fig. 10 where there are large discrepancies between the
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deterministic and bootstrapped distributions (e.g., estimating
sub-millimeter ice particle concentrations around 0 ◦C).

Within the SOCRATES dataset, small particles (Deq <

0.1 mm) are more likely to be liquid at all temperature
ranges but have much higher concentrations and are more
liquid-dominated above −20 ◦C (Fig. 10b–e). The concen-
trations of medium-sized (0.1 mm <Deq < 0.3 mm) and
large (Deq > 0.3 mm) particles decrease as temperature in-
creases. Medium-sized particles are ice-dominated between
−40 and −20 ◦C (Fig. 10a) and liquid-dominated above
−5 ◦C (Fig. 10c–e). Large particles are liquid-dominated
above 5 ◦C (Fig. 10e), where drizzle formation becomes
the dominant mode of precipitation. The largest particles
(Deq > 1 mm) are ice-dominated at all temperatures but
have small concentrations (< 2× 10−4 cm−3) above 5 ◦C
(Fig. 10e). The crossover point, or the Deq at which the
PSDs transition from being liquid-dominated to being ice-
dominated, is 0.1 mm for temperatures between −40 and
−20 ◦C (Fig. 10a), 0.17–0.33 mm for temperatures between
−20 and 5 ◦C (Fig. 10b–d) and 0.7 mm at higher tempera-
tures (Fig. 10e). The crossover point for the whole dataset is
0.17 mm (Fig. 10f), which is in agreement with the phase
classifications from the PHIPS for all SOCRATES flights
(Waitz et al., 2021, figure 8). Small ice crystals and large
liquid drops are associated with the most uncertainty at all
temperature ranges.

In Sect. 4, we showed that UWILD misclassifies some
large liquid particles as ice. We examined 200 randomly sam-
pled images of particles with Deq > 0.16 mm from temper-
atures between 0 and 5 ◦C and found that 16 % of parti-
cles classified as ice are actually liquid (not shown). These
misclassified particles universally lack Poisson spots. Thus,
large particles within that temperature range are indeed ice-
dominated but to a lesser extent than what the PSDs sug-
gest. We also examined 200 randomly sampled 2D-S images
of particles with Deq > 1 mm from temperatures between 5
and 40 ◦C and found that all particles are classified as ice but
are actually liquid (not shown). These particles have an elon-
gated shape due to being distorted by the instrument inlet,
lack a Poisson spot, and often touch the edge of the image
buffer so that they are partially cut off. We note that classi-
fication skill decreases in general for particles approaching
1 mm because particles of this size are less likely to be fully
imaged by the instrument. Thus, we caution that phase clas-
sifications for the largest particles may be less certain and
that the 5–40 ◦C temperature range is particularly affected
by misclassifications of large drops as ice. We note that there
are so few of these large misclassified liquid particles at high
temperatures that they do not show up in Fig. 8c, which uses
a threshold of 100 particles for each 2D histogram bin.

5.2 Cloud phase heterogeneity

We also use UWILD’s classifications and confidences to
compute a 1 Hz estimate of sub-1 Hz cloud phase hetero-

geneity. Cloud phase heterogeneity, or the degree to which
liquid and ice particles are evenly mixed within mixed-phase
clouds, can influence cloud radiative (Sun and Shine, 1994)
and thermodynamic properties (Korolev et al., 2017). It may
also modulate the rates of certain mixed-phase processes
such as the Wegener–Bergeron–Findeisen process (Tan and
Storelvmo, 2016) and has implications for how those pro-
cesses should be parameterized in microphysics models.
Most studies of cloud phase heterogeneity from in situ ob-
servations have computed heterogeneity metrics using 1 Hz
phase data (Cober et al., 2001a; Korolev et al., 2003; Field
et al., 2004; D’Alessandro et al., 2019, 2021). Field et al.
(2004) used PSDs from the Small Ice Detector in combina-
tion with other in situ measurements to identify cloud phase
and found that segments as short as 100 m could contain both
liquid and ice. They used 1 Hz data but could investigate rel-
atively small length scales due to low aircraft speeds (100–
120 ms−1). Here, we use single-particle phase classifications
to investigate sub-1 Hz cloud phase heterogeneity, and we
identify mixed-phase periods on the meter-scale.

We derive an estimate of sub-1 Hz heterogeneity by con-
sidering whether adjacent particles in the 2D-S image buffer
are of the same phase or of different phases, which we de-
note as a phase “flip” (from ice to liquid or from liquid to
ice). If, for a 1 s period, there are many phase flips given the
number of particles, that sample is more heterogeneous than
one where there are few (or no) phase flips for a population
of particles. We leverage the fact that our classifications are
probabilistic in determining phase flips and create a proba-
bilistic phase flip prediction as well. Given two adjacent par-
ticles p1 and p2,

P(flip)= P(p1 = ice)×P(p2 = liquid)

+P(p1 = liquid)×P(p2 = ice). (3)

We estimate the most likely number of flips over all parti-
cles within a given sample by adding these probabilities to-
gether. Thus a hypothetical sample containing 100 particles
may have between 0 flips (completely homogeneous sam-
ple with 100 % classification confidence on all particles) and
99 flips (particles are alternating 100 % likely ice and 100 %
likely liquid), although both of these extremes are unlikely
with our probabilistic estimate. A limitation of this hetero-
geneity estimate is that it implicitly assumes that phase flip
probabilities are independent. An advantage of this metric is
that it avoids using particle mass to compute phase hetero-
geneity. Ice particle mass estimated from 2D-S images can
vary over an order of magnitude depending on the assumed
mass–dimensional relationship (Wu et al., 2019), and more
reliable measurements from a Nevzorov instrument with a
deep cone (Korolev et al., 2003) were not available during
SOCRATES.

We create a 1 Hz heterogeneity measure, which we refer
to as the phase flip fraction, by dividing the number of prob-
abilistic phase flips described above by the total number of
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Figure 10. Particle size distributions are averaged over 1 Hz data from SOCRATES flights RF01–RF14 and shown for six different temper-
ature ranges. Dashed lines are deterministic predictions from UWILD. Solid lines and shaded areas are medians and interquartile ranges,
respectively, for 30 bootstrapped samples generated from UWILD confidences. Red dashed lines separate the three different size classes.

particles imaged by the 2D-S within 1 s. We implicitly as-
sume that all unclassified particles, which are mainly par-
ticles with fewer than 25 pixels and Deq < 0.056 mm, are
liquid, which is a reasonable extrapolation from our PSDs
(Fig. 10f), as only 1 % of the smallest particles are classified
as ice. However, this assumption may lead to an underesti-
mate in phase flips for the coldest samples (−40 ◦C< T <
−20 ◦C), where there are similar numbers of small droplets
and small ice crystals (Fig. 10a).

Figure 11 shows a 2D histogram with phase flips on the
x axis and the total number of 2D-S imaged particles on the
y axis, with white lines indicating lines of constant phase
flip fraction. We see two distinct modes in this phase space:
1 s samples with total particle counts below 1000 typically
have between 0.02 and 0.5 flips per particle, whereas 1 s sam-
ples with total particle counts between 3000 and 30 000 typi-
cally have between 0.002 and 0.0005 flips per particle. In the
SOCRATES dataset, high total particle counts generally in-
dicate the presence of many small droplets. Since these sam-
ples are dominated in number by the liquid phase, they have
low phase heterogeneity.

Figure 12 shows two examples of meter-scale phase het-
erogeneity. The statistics of the 1 s periods containing the
plotted segments are included to the right of the image strips.
Grey lines bound each particle, and all particles that are large
enough to be classified and are not suspected artifacts are la-
beled with their UWILD classifications and the model confi-
dence in parentheses. Red labels are used for ice classifica-
tions with confidence ≥ 75 %; blue labels for liquid classifi-

Figure 11. A 2D histogram of 1 Hz particle phase flips (y axis) and
1 Hz total particles (including both successfully classified particles
and unclassifiable particles) is shown in the large plot. A 1D his-
togram of 1 Hz total particles is shown on top, on a shared x axis,
and a 1D histogram of 1 Hz phase flips per second is shown on the
right, on a shared y axis. A value closer to the upper left of the plot
indicates a higher degree of particle heterogeneity. White lines in-
dicate lines of constant heterogeneity for varying particle counts.
SOCRATES flights RF01–RF14 are included.
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Figure 12. Short periods from two different cloud types highlight instances of meter-scale heterogeneity in the SOCRATES dataset. The
photodiode dimension is vertical, and the time dimension is horizontal, which is the reverse of Fig. 9. Particle labels show UWILD classi-
fications and UWILD confidences in parentheses. Red indicates ice classifications with confidences greater than 75 %; blue indicates liquid
classifications with confidences greater than 75 %; and purple indicates ice or liquid classifications with confidences less than 75 %

cations with confidence ≥ 75 %; and purple labels for ice or
liquid classifications with confidence < 75 %.

In the example in the first row, there is a pocket of small
droplets surrounded by large ice crystals within a 3.4 m seg-
ment of cloud. There are three particles within the pocket that
have low model confidence and thus may be small droplets or
small ice crystals. This example resembles the conditionally
mixed-phase condition described by Korolev et al. (2017),
where the cloud is single phase if you look at a small enough
length scale. For the segment of cloud shown, that length
scale is approximately 1 m. The second row shows alternat-
ing liquid and ice particles of similar size within a 2.8 m
segment of cloud. Here, there is a larger proportion of low-
confidence particles that could be either liquid or ice. This is
a result of UWILD’s tendency, described in Sect. 4, to clas-
sify some large liquid drops as ice. There is a sequence of
four particles classified as I–L–L–I, all with high confidence,
towards the center of the image strip. This example more
closely resembles the genuinely mixed-phase condition de-
scribed by Korolev et al. (2017) because the phase changes
every one or two particles. The difference in the heterogene-
ity between the two regions is captured in the 1 s flips per
particle, which is about twice as high for the period in the
bottom row than it is for the period in the top row. However,
there may be fewer or greater flips per particle in the periods
shown than in the 1 s periods if the periods shown are not
representative of the entire 1 s periods.

6 Conclusions

In situ observations of Southern Ocean cloud phases, vi-
tal for evaluating simulations and remote sensing products,
were sparse prior to the Southern Ocean Clouds, Radiation,
Aerosol Transport Experimental Study (SOCRATES) cam-

paign in January–February of 2018. The SOCRATES dataset
includes nearly 6 million Two-Dimensional Stereo (2D-S)
shadow images of particles with 25 or more pixels and
with area equivalent diameters (Deq) greater than 0.056 mm,
which are good candidates for single-particle phase classi-
fication. Here, we introduce the University of Washington
Ice–Liquid Discriminator (UWILD), a phase classification
algorithm that takes a random forest approach, and show that
it outperforms two existing phase classification algorithms
which have been applied to 2D-S images from SOCRATES.
In particular, UWILD has the flexibility to identify both
liquid-dominated and ice-dominated regions in the dataset,
whereas the other two algorithms both demonstrate strong
biases in favor of one phase. UWILD also returns a model
confidence for each classification, which is invaluable for
computing uncertainties on variables derived from its clas-
sifications and for filtering out particles that have a higher
likelihood of being misclassified. We believe that the perfor-
mance of UWILD is limited largely by the SOCRATES 2D-S
data quality (many particle images are out of focus) and the
challenges of building a train–test–validation (TTV) set and
not the choice of machine learning model. Thus, we would
expect to see only modest gains in performance from em-
ploying more sophisticated machine learning models.

Since many hydrometeors within mixed-phase clouds are
unidentifiable by eye, we use in situ observations of atmo-
spheric parameters to select liquid-only and ice-dominated
periods within SOCRATES to build a TTV set. If we had
limited the TTV set to particles identifiable by eye, as most
studies applying machine learning to airborne probe images
have done, the TTV set would be less representative of the
SOCRATES dataset. UWILD’s most prominent bias is the
misclassification of larger liquid particles (Deq > 0.2 mm)
as ice. A small percentage (∼ 0.6 %) of particles in the ice-
dominated training data are likely liquid, and this may con-
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tribute to this bias. UWILD’s lower skill in distinguishing
larger liquid drops from ice particles is shared by Holroyd
and by the automated Particle Habit Imaging and Polar Scat-
tering (PHIPS) algorithm which uses scattering phase func-
tions to identify particle sphericity. Thus, we posit that dis-
tinguishing drizzle droplets and raindrops from ice crystals is
a major outstanding problem in hydrometeor phase discrim-
ination within mixed-phase clouds. We also note that larger
liquid drops that are misclassified by UWILD typically have
model confidence below 75 % or are touching the edge of the
image buffer and can be easily filtered out of the dataset if
desired.

We use classifications and confidence from UWILD to
generate particle size distributions (PSDs) for the whole
SOCRATES dataset and find that hydrometeors with Deq
greater than 0.15 mm are ice-dominated and that smaller par-
ticles are liquid-dominated, which is in agreement with phase
classifications from the PHIPS for the SOCRATES dataset.
We also develop a novel estimate of sub-1 Hz phase hetero-
geneity by tallying the number of probabilistic phase flips
per particle within 1 s periods, which we refer to as the phase
flip fraction. This particle-number-based approach to esti-
mating heterogeneity avoids uncertainties in estimating par-
ticle mass. We use the phase flip fraction to identify two pe-
riods in the SOCRATES dataset exhibiting meter-scale phase
heterogeneity.

The SOCRATES campaign sampled mixed-phase South-
ern Ocean clouds with the goal of improving their represen-
tation in climate models. Here, we process SOCRATES in
situ observations from the 2D-S to create datasets that can
be more effectively compared with atmospheric models and
remote sensing datasets. Liquid and ice PSDs can be used to
evaluate microphysical model output. Single-particle phase
classifications can be coarsened and compared with cloud
top phase products from Himawari and MODIS. Single-
particle classifications from UWILD, as well as the 1 Hz
variables that we derive from them, are also useful for in-
forming the development of microphysics parameterizations.
Large droplets are necessary for Hallett–Mossop rime splin-
tering and droplet freezing, and estimating their concentra-
tions from liquid classifications of 2D-S images is useful for
determining an upper bound on the rate of these ice pro-
duction processes. Additionally, mixed-phase processes such
as the Wegener–Bergeron–Findeisen mechanism for rapid
ice growth and Hallett–Mossop rime splintering may oper-
ate more slowly in conditionally mixed-phase clouds, which
have a small number of flips per particle, than genuinely
mixed-phase clouds, which have a large number of flips per
particle. UWILD is publicly available, and we encourage
readers to adapt it for other in situ datasets to examine pro-
cesses controlling phase partitioning in mixed-phase clouds
globally.

Appendix A: Particle features used for phase
classification

Throughout this section, we use the term “particle property”
to refer to any quantity that is computed from the 2D-S
dataset. We use the term “particle feature” to refer to particle
properties that we input into UWILD. Figure A1 shows how
particle features are computed from 2D-S images. Particle
properties that can be represented visually are shown in the
top two boxes, using two example particles. Particle proper-
ties in the bottom box are functions of the particle properties
shown in the top two boxes and cannot directly be visual-
ized. All of the particle properties shown in Fig. A1 are parti-
cle features except “smallest bounding circle”, which is used
to compute max_dimension and area_ratio, and “perimeter”,
which is used to compute fine_detail_ratio. Underscores are
left out of the particle names in Fig. A1.

We show histograms of 14 particle features for the TTV
set and the 14 SOCRATES flights analyzed in this study, in
Fig. A2. We do not include the parameter touching_edge in
Figs. A1 or A2 because it is binary. The histograms are plot-
ted on a log scale so that the tails of their distributions are
visible. About 0.6 % of particle images from the SOCRATES
dataset that we analyzed here are out of sample. This means
that at least one particle parameter has a value that is out-
side of the range of the TTV set. Such particles are usually
out of sample because they are larger than all of the particles
in the TTV set. We examined 45 randomly sampled images
from the SOCRATES dataset that have an area-equivalent di-
ameter (Deq) greater than all particles in the TTV set. These
particles are mainly heavily rimed aggregates. All of them
are clearly frozen, and UWILD classifies them as such. Thus,
we do not believe that the small percentage of out-of-sample
particles present in the SOCRATES dataset reduces the per-
formance of UWILD.

Area ratio is greater than 1.0 about 25 % of the time.
This is because a correction is applied to the calculation of
the maximum dimension following Korolev (2007) when the
diode at the center of the minimum circle bounding the par-
ticle is unshadowed, which is the case for particles featuring
Poisson spots. In these cases, the area of a circle with a di-
ameter equal to the corrected maximum dimension can be
smaller than the particle area.
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Figure A1. Schematic showing how to compute particle features from 2D-S particle images. Particle features are listed in Table 1. Under-
scores are left out of the feature names. touching_edge is not shown here because it is a binary variable.

Figure A2. Histograms of particle features are shown for the TTV set (black) and for SOCRATES flights RF01–RF14 (blue), which are
analyzed in Sects. 4 and 5. touching_edge is not shown here because it is a binary variable.
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Code and data availability. The 2D-S (https://data.eol.ucar.edu/
dataset/552.009, EOL Data Support, 2020), VCSEL (https://
doi.org/10.26023/V925-2H41-SD0F, Diao, 2021), PHIPS (https:
//doi.org/10.5065/D62B8WWF, Schnaiter, 2018a; https://doi.org/
10.5065/D6639NKQ, Schnaiter, 2018b), and aircraft (https://doi.
org/10.5065/D6M32TM9, EOL, 2019) data used in this study are
found on the NCAR EOL data archive. The software packages used
to process the OAP data (https://doi.org/10.5281/zenodo.1285969,
McFarquhar et al., 2018) and to run the random forest
model (https://doi.org/10.5281/zenodo.5197777, Mohrmann et al.,
2021b) are publicly available as GitHub repositories (https:
//github.com/joefinlon/UIOPS/tree/v3.1.4 and https://github.com/
jkcm/UW-particle-phase-classifier/tree/v1.1, last access: 1 Novem-
ber 2021). The data containing 1 Hz phase-partitioned PSDs and
phase flip fraction estimates are publicly available on the NCAR
EOL data archive (https://doi.org/10.26023/PA5W-4DRX-W50A,
Mohrmann et al., 2021a).
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