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Abstract

We propose a novel framework for creating large-scale

photorealistic datasets of indoor scenes, with ground truth

geometry, material, lighting and semantics. Our goal is to

make the dataset creation process widely accessible, trans-

forming scans into photorealistic datasets with high-quality

ground truth for appearance, layout, semantic labels, high

quality spatially-varying BRDF and complex lighting, in-

cluding direct, indirect and visibility components. This en-

ables important applications in inverse rendering, scene

understanding and robotics. We show that deep networks

trained on the proposed dataset achieve competitive perfor-

mance for shape, material and lighting estimation on real

images, enabling photorealistic augmented reality applica-

tions, such as object insertion and material editing. We

also show our semantic labels may be used for segmenta-

tion and multi-task learning. Finally, we demonstrate that

our framework may also be integrated with physics engines,

to create virtual robotics environments with unique ground

truth such as friction coefficients and correspondence to

real scenes. The dataset and all the tools to create such

datasets will be made publicly available.1

1. Introduction

Indoor scenes represent important environments for vi-

sual perception and scene understanding, for applications

such as augmented reality and robotics. However, their

appearance is a complex function of multiple factors such

as shape, material and lighting, and demonstrates phe-

nomena like significant occlusions, shadows, interreflec-

tions and large spatial variations in lighting. Reasoning

about these underlying, entangled factors requires large-

scale high-quality ground truth, which remains hard to ac-

quire. While ground truth geometry can be captured us-

ing a 3D scanner, it is extremely challenging (if not nearly

impossible) to accurately acquire the complex spatially-

varying material and lighting of indoor scenes. An alter-

native is to consider synthetic datasets, but large-scale syn-

1Webpage: https://ucsd-openrooms.github.io/

thetic datasets of indoor scenes with plausible geometry,

materials and lighting are also non-trivial to create.

This paper presents OpenRooms, a framework for syn-

thesizing photorealistic indoor scenes, with broad applica-

bility across computer vision, graphics and robotics. It has

several advantages over prior works, summarized in Ta-

ble 1. First, rather than use artist-created scenes and as-

sets, we ascribe high-quality material and lighting to RGBD

scans of real indoor scenes. Beyond just the data, we

provide all the tools necessary to accomplish this, allow-

ing any researcher to inexpensively create such datasets.

While prior works can align CAD models to scanned point

clouds [5, 26, 6], they do not explore how to assign mate-

rials and lighting appropriately to build a large-scale pho-

torealistic dataset. Second, we provide extensive high-

quality ground truth for complex light transport that is un-

matched in prior works. Our material is represented by a

spatially-varying microfacet bidirectional reflectance distri-

bution function (SVBRDF), and our lighting includes win-

dows, environment maps and area lights, along with their

per-pixel spatially-varying effects to account for visibility,

shadows and inter-reflections. Third, we render photoreal-

istic images with our data and tools, which include a custom

GPU-accelerated physically-based renderer.

We create an instance of such a dataset by building

on existing repositories: 3D scans from ScanNet [16],

CAD model alignment [5], reflectance [1] and illumination

[23, 24]. The resulting dataset contains over 100K HDR im-

ages with ground-truth depths, normals, spatially-varying

BRDF and light sources, along with per-pixel spatially-

varying lighting and visibility masks for every light source.

We also provide per-pixel semantic labels. Besides be-

ing publicly available, the dataset can be significantly ex-

tended through future community efforts based on our tools.

We also demonstrate applicability of our method to other

choices for material [4] and geometry [48].

We believe that our effort will significantly accelerate

research in multiple areas. Inverse rendering tasks are di-

rectly related, including single-view [17] and multi-view

[55] depth prediction, intrinsic decomposition [33, 11], ma-

terial classification [10] and lighting estimation [20, 21, 32].
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Figure 1: Our framework for creating a synthetic dataset of complex indoor scenes with ground truth shape, SVBRDF and SV-lighting,

along with the resulting applications. Given possibly noisy scans acquired with a commodity 3D sensor, we generate consistent layouts

for room and furniture. We ascribe per-pixel ground truth for material in the form of high-quality SVBRDF and for lighting as spatially-

varying physically-based representations. We render a large-scale dataset of images associated with this ground truth, which can be used to

train deep networks for inverse rendering and semantic segmentation. We further motivate applications for augmented reality and robotics,

while suggesting that the open source tools we make available can be used by the community to create other large-scale datasets too.

To demonstrate the efficacy of the dataset, we train a state-

of-the-art inverse rendering network and achieve accurate

results on real images. We also demonstrate that Open-

Rooms may be used for training semantic segmentation net-

works [60, 15], as well as multi-task learning to jointly es-

timate shape, material and semantics. Our high-quality and

extensive ground truth may help better understand complex

light transport in indoor scenes and enable new applications

in photorealistic augmented reality, where we demonstrate

object insertion, material editing light source detection as

examples, and may include light editing in the future.

Studies in robotics may also benefit by using our

ground truth to enhance existing simulation environments

[52, 43, 53, 37]. We demonstrate this possibility by com-

bining OpenRooms assets with the PyBullet engine [3] and

mapping our SVBRDFs to friction coefficients, to motivate

navigation and rearrangement under different material and

lighting. We also note that OpenRooms allows a one-to-one

correspondence between real videos and simulations, which

can be valuable for sim-to-real transfer [27].

In Figure 1 we illustrate the OpenRooms framework for

creating large-scale, high-quality synthetic indoor datasets

from commodity RGBD sensor scans and demonstrate

some of the applications that our work enables.

2. Related Work

Indoor scene datasets. The importance of indoor scene

reconstruction and understanding has led to a number of real

datasets [46, 16, 13, 53, 50]. While they are by nature pho-

torealistic, they only capture some scene information (usu-

ally images, geometry and semantic labels). However, we

are interested in studying geometry, reflectance and illumi-

nation, where the latter two are particularly challenging to

acquire in real datasets. Synthetic datasets provide an alter-

native [38, 49, 31], but prior ones are limited with respect

to rendering arbitrary data [31], scene layout [38], material

[49], or baselines [42], as summarized in Table 1.

Several methods build 3D models for indoor scenes from

a single image [26] or scans [5, 6, 12, 14]. However, our fo-

cus is beyond geometry, to assign real-world materials and

lighting to create photorealistic scenes. To the best of our

knowledge, the only existing dataset with complex mate-

rials and spatially-varying lighting annotations is from Li

et al. [32], but is built on artist-created assets that are not

publicly available [49]. We instead create photorealistic in-

door scene datasets that start with 3D scans to provide high-

quality ground truth for geometry, reflectance and lighting.

Several indoor virtual environments have also been pro-

posed for robotics and embodied vision [52, 43, 53, 37,

30]. Our work is complementary, where our photorealistic

ground truth and suite of tools could be used to enhance ex-

isting virtual environments and conduct new types of stud-

ies. In Sec. 4.3, we seek to motivate such adoption by il-

lustrating integration with a physics engine and computing

ground truth for friction coefficients.

Inverse rendering for indoor scenes. Indoor scene in-

verse rendering seeks to reconstruct geometry, reflectance

and lighting from (in our case, monocular) RGB images.

Estimating geometry, in the form of scene depth or sur-

face normals, has been widely studied [17, 7, 55, 36]. Most

scene material estimation methods either recognize material

classes [10] or only reconstruct diffuse albedo [33, 8, 29].

Scaling these methods to real-world images requires scene

datasets with complex physically-based materials. Li et

al. [32] augment a proprietary dataset [49] with ground-

truth SVBRDF annotations to train a physically-motivated

network. We demonstrate comparable inverse rendering

performance using their network, but trained on Open-
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Dataset
Available annotations Publicly available assets Corresponding

real images

and scenes

Geometry Material Lighting Segmentation Images CAD Baseline Tool
Light sources Per-pixel Visibility

PBRS [59] ✓ diffuse ✗ shading ✗ ✓ ✗ ✗ ✓ ✓ ✗

Scenenet [38] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗

CGIntrinsic [33] ✗ diffuse ✗ shading ✗ ✗ ✓ ✗ ✓ ✓ ✗

InteriorNet [31] ✓ diffuse ✗ shading ✗ ✓ ✓ ✗ ✓ ✓ ✗

CG-PBR [44] ✓ phong ✗ shading ✗ ✗ ✗ ✗ ✗ ✓ ✗

InvIndoor [32] ✓ microfacet ✗ envmap ✗ ✗ ✗ ✗ ✓ ✓ ✗

3D-Future [18] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

AI2-THOR [30] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

Structure3D [61] ✓ ✗ ✗ shading ✗ ✓ ✓ ✗ ✗ ✓ ✗

Hypersim [42] ✓ diffuse ✗ highlight ✗ ✓ ✓ ✗ ✗ ✓ ✗

OpenRooms ✓ microfacet ✓ envmap ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: OpenRooms is distinct

in providing extensive ground

truth for photorealism (espe-

cially material and lighting),

with publicly available assets

and tools. The tools in Open-

Rooms framework allow gener-

ating synthetic counterparts of

real scenes, with high-quality

ground truth.

Rooms, developed using publicly available assets.

Previous indoor scene lighting estimation methods only

predict shading (which entangles geometry and lighting)

[33], require RGBD inputs [8], or rely on hand-crafted

heuristics [28, 29]. More recently, deep network-based

lighting estimation methods have shown great progress for

estimating both global [20, 19] and spatially-varying light-

ing [21, 47, 32] from single RGB images. The latter set of

methods largely rely on proprietary synthetic data to gener-

ate spatially-varying lighting annotations; we demonstrate

comparable performance by training on our dataset.

3. Building a Photorealistic Indoor Dataset

We now describe our framework for building a syn-

thetic dataset of complex indoor scenes. We demonstrate

this using ScanNet, a large-scale repository of real indoor

scans [16], but our work is also applicable to other datasets

[48, 25], as shown in the supplementary. We briefly de-

scribe the geometry creation, while focusing on our princi-

pal novelties of photorealistic material and lighting.

3.1. Creating CAD Models from 3D Scans

While recent methods such as [6] are possible alterna-

tives, we demonstrate our dataset creation example utilizing

existing labels in ScanNet and initial CAD alignment [5] to

create the ground truth geometry robustly.

Reconstructing the room layout We fuse the depth maps

from different views of a scene to obtain a single point

cloud. We design a UI for fast layout annotation (Fig. 3),

which projects the 3D point cloud to the floor plane and a

polygon may be selected for the layout. While the anno-

tation needs less than a minute per scene, we also train a

Floor-SP network [14] on these annotations that users may

employ for their own scenes (shown in the supplementary).

Next we use RANSAC to determine the horizontal floor

plane. Since ScanNet views generally do not cover the ceil-

ing, we assign a constant room height of 3 meters.

Windows and doors Special consideration is needed for

doors and windows as they are important illuminants in in-

door scenes. We project the 3D points labeled as doors and

windows to the closest wall, then divide the wall into seg-

ments and merge connected segments with sufficient num-

ber of points, to which a ShapeNet CAD model is assigned.

Consistent furniture placement We use initial poses

from Scan2CAD [5] to align CAD models with furniture

instances. We do not require appearances to closely match

the input images, but generate plausible layouts and shapes

with as much automation as possible. Our tool automati-

cally moves bounding boxes for furniture perpendicular to

the floors and walls to resolve floating objects and intersec-

tions. Such geometric consistency is important since our

dataset may also be used for tasks such as navigation.

Semantic labels Given our geometry ground truth, it is

straightforward to obtain labels for semantic and instance

segmentation based on PartNet annotations, as shown in

Fig. 4. We demonstate in experiments that our labels can

be used to train single and multi-task deep networks.

3.2. Assigning Complex Materials to Indoor Scenes
One of the major contributions of our dataset is ground-

truth annotation of complex material parameters for indoor

scenes. Previous works typically provide material annota-

tions as simple diffuse or Phong reflectance [49, 45], while

we provide a physically-based microfacet SVBRDF.

Assigning materials to ShapeNet Many ShapeNet CAD

models do not have texture coordinates, so we use Blender’s

[2] cube projection UV mapping to compute texture coordi-

nates for them automatically. Inspired by Photoshape [41],

we split CAD models into semantically meaningful parts

and assign a material to each part. While Photoshape does

this for only chairs, we do so for all furniture types in indoor

scenes, using the semantically meaningful part segmenta-

tion of 24 categories of models provided by PartNet [40].

Material annotation UI We design a custom UI tool to

annotate material category for each part, as shown in Fig. 3.

It allows merging over-segmented parts which should be as-

signed the same material. To allow material annotation, we

group 1,078 SVBRDFs into 9 categories based on their ap-

pearances, similar to [34, 32], as shown in Fig. 3. Annota-

tors label a material category for each part, with a specific

material sampled randomly from the category. While we do

not pursue mimicking input appearances, we do seek that

photorealism and semantics be respected in the dataset. Ex-

periments show that our dataset created following the above

choices enables state-of-the-art inverse rendering perfor-

mances. Note our distinction from domain randomization,
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ScanNet image OpenRooms image Different lighting Different materials Different views

Figure 2: Images from ScanNet and our corresponding synthetic scene layouts rendered with different materials, different lighting, and

different views selected by our algorithm. A video is included in the supplementary. The third row shows the same scene as the second

one, but rendered with freely available Substance Share materials [4] instead of the public but non-free Adobe Stock materials [1].

!"#$%& '(")*($ +()", -"%.) -,"/)%& 01##($0213*4/)2.( 56(&1,"$4/)2.( 7228

Figure 3: UIs for annotating room layout (Left top) and mate-

rial category (Right top). (Bottom) Material examples from each

category. Please zoom in for better visualization.

since arbitrary choices for material and lighting might not

allow generalization on real scenes for extremely ill-posed

problems like material and lighting estimation. Our tools

and the annotations will be released for future research.

3.3. Ground Truth Lighting for Indoor Scenes

Lighting plays one of the most important roles in image

formation. However, prior datasets usually only provide

diffuse shading as their lighting representation [33, 59].

Recent work provides per-pixel environment maps by ren-

dering the incoming radiance at every surface point in the

camera frustum [32], which allows modeling shadows and

specular highlights, but not the complex interactions among

global light sources, scene geometry, materials and local

lighting. On the contrary, OpenRooms provides extra su-

pervision for visible and invisible light sources, the contri-

bution of each individual light source to the local lighting,

direct and indirect lighting, as well as visibility. Such rich

supervision may help better understand the complex light

transport in indoor scenes and enable new applications such

as editing of light sources and dynamic scenes.

Image Diffuse albedo Normal Roughness

Depth Semantic segmentation Instance segmentation

Figure 4: One of our rendered images with ground-truth geome-

try, spatially-varying material and segmentation labels.

Image
Light source 

segmentation
Direct shading

Direct shading 

no occlusion

Invisible 

lamp

Right 

window

Left 

window

Figure 5: Our ground-truth light source annotations. From left to

right: input and for each light source, its instance segmentation,

and direct shading with and without occlusion. Our annotations

reveal rich information about light transport in indoor scenes.

Light sources We model two types of light sources

in OpenRooms—windows and lamps—and we provide

ground-truth annotations for them. The annotations include

instance segmentation masks for visible light sources and a

consistent parameterized representation for both visible and

invisible light sources. More specifically, for each window,

we model its geometry using a rectangular plane and the

lighting coming through the window using an environment

map rendered at its center. We represent each lamp as a 3D

bounding box following the standard area light model. We
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Figure 6: We provide various types of supervision for lighting

analysis of indoor scenes, including per-pixel environment maps

with only direct illumination, or including indirect illumination.

visualize our light source annotations in Figure 5. Our light

source representation has clear physical meaning and can

model the full physics of image formation in indoor scenes.

Light source colors For environment maps, we use 414

high-resolution HDR panoramas of natural outdoor scenes,

from [24] and [23]. For indoor lamps, unlike previous syn-

thetic datasets that randomly sample the spectrum of area

lights [32, 59, 33], we follow a physically plausible black-

body model to determine the spectrum of the light source

by its temperature, chosen between 4000K to 8000K.

Per-pixel lighting Additionally, as in prior works [32, 33,

59], we render per-pixel environment maps and shading as a

spatially-varying lighting representation. However, we ren-

der both with direct, as well as combined direct and indirect

illumination. This will help to separately analyze the direct

contribution from light sources and indirect reflections from

the indoor scene. We visualize an example in Figure 6.

Per-light direct shading and visibility In order to un-

derstand complex light transport in indoor scenes, we also

provide the separate contribution of every individual light

source and its visibility map. For each image, we render the

direct shading of each light source, with and without con-

sidering the occlusion term, by turning on only that particu-

lar light source. The visibility map can be computed as the

ratio of the two direct shading images. We visualize these

annotations in Figures 5 and 6. These will allow new chal-

lenging light editing tasks not possible with prior datasets,

such as turning on and off a light or opening a window.

3.4. Rendering with a Physically­based Renderer
To minimize the domain gap between synthetic and real

data, we modify the physically-based GPU-accelerated ren-

derer from our prior work [32] to support ground-truth per-

light contribution and fast rendering of per-pixel environ-

ment map. Our renderer models complex light transport up

to 7 bounces of inter-reflection.

View selection ScanNet provides the camera pose of each

RGBD image. However, their distribution is biased towards

views close to the scene geometry, to optimize scanning.
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Figure 7: Dataset statistics for scene categories, images, materi-

als, lighting and semantic labels (please zoom for viewing).

On the contrary, we prefer views covering larger regions,

matching typical human viewing conditions. To achieve

this, we first sample different views along the wall, facing

the center of the room. For each view, we render its depth

and normal maps. Let dp and n̂p be the depth and normal

of pixel p, Grad(n̂p) be the sum of absolute gradients of

the normal in the three channels. We choose the view based

on computing a score defined as
∑

p∈P

Grad(n̂p) + 0.3
∑

p∈P

log(dp + 1). (1)

Views with higher scores are used to create the dataset. An

example of our view selection results is shown in Figure 2

(bottom right). Details are included in the supplementary.

Other renderers While our renderer will be publicly re-

leased, our assets (geometry, material maps, lights) are in

a standard graphics format that could be used in other ren-

dering environments. For example, common real-time ras-

terization engines like Unity or Unreal could be used for

applications (such as robotics) which prefer real-time per-

formance and do not require fully accurate global illumina-

tion. Furthermore, our per-pixel spatially-varying lighting

maps could be used as high-quality precomputed lighting

probes for photorealistic real-time rendering [39].

3.5. OpenRooms Dataset Statistics

Scene, image, semantic label distribution We pick

1,287 of the 1,506 ScanNet scenes to instantiate our dataset,

discarding those which cover very small portions of rooms.

We randomly choose 1,178 scenes for training and 109

scenes for validation. For each scene, we choose views us-

ing our view selection method. For each rendered image,

we render two others with different materials and lighting,

as shown in Fig. 2 (bottom-left). We render 118,233 HDR

images at 480 × 640 resolution, with 108,159 in the train-

ing set and 10,074 in the validation set. We render seman-

tic labels of all 44 classes of CAD models in OpenRooms.
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The distributions of scene categories and images, number

of objects per class and the percentage of pixels per class

are summarized in Figure 7. Note that the class distribution

follows that of real scans in ScanNet indoor scenes.

Material distribution We use 1,075 SVBRDFs from [1]

to build OpenRooms, corresponding to the 9 categories

shown in Fig. 3. The number of materials per-category and

their pixel distributions are summarized in Fig. 7.

Lighting distribution Figure 7 shows the distribution of

the two types of light sources (windows and lamps). Each

image has at least one light source “on” for rendering. For

all the 118K images, we render spatially-varying environ-

ment maps and shading, with direct illumination only and

with combined direct and indirect illumination. Moreover,

we provide a parameterized representation for every visible

and invisible light source, as well as render their individ-

ual direct shading contribution and visibility map. Com-

pared to all prior works, OpenRooms provides significantly

more extensive and detailed supervision for complex light-

ing, which may allow new applications such as light source

detection and editing.

Asset cost Almost all the assets used for creating our

dataset are publicly available and free for research use. The

only non-free (but also publicly available) assets are the

raw material maps from Adobe Stock [1] that cost less than

US$500, while the material parameters annotated with our

scenes are freely available. Note that photorealistic appear-

ances may also be achieved using our tools with freely avail-

able materials, such as Substance Share [4] in Fig. 2.

Dataset creation time It takes 30s to annotate one scene

layout and 1 minute to label materials for one object, lead-

ing to 64 hours for labeling the whole dataset, which was

accomplished by students with knowledge of computer vi-

sion. Almost all rendering time is spent to render images

and spatially-varying per-pixel environment maps, which

takes 600s and 100s per image, respectively, for our cus-

tom renderer on a single 2080Ti GPU. In principle, we can

render the dataset in 1 month using 40 GPUs.

4. Applications

4.1. Inverse Rendering

We verify the effectiveness for inverse rendering by test-

ing networks trained on our dataset on various benchmarks,

where both quantitative and qualitative results show good

generalization to real images. We use a state-of-the-art net-

work architecture for inverse rendering in indoor scenes that

handles spatially-varying material and lighting [32]. Please

refer to the supplementary material for more details.

Intrinsic decomposition. We compare our intrinsic de-

composition results with 3 previous approaches. The qual-

itative comparison is shown in Fig. 8 while quantitative re-

Input [Sen. et al 19] [Li. et al 20] Ours

Figure 8: Comparisons with previous state-of-the-art on intrinsic

decomposition (albedo prediction shown).

Training WHDR↓

Ours Ours + IIW 16.4

Li18[33] CGI + IIW 17.5

Sen.19[44] CGP + IIW 16.7

Li20[32] CGM + IIW 15.9

Table 2: Intrinsic de-

composition on IIW [9].

Method Mean(◦)↓ Med.(◦)↓ Depth↓

Ours 25.3 18.0 0.171

Li20[32] 24.1 17.3 0.184

Sen.19[44] 21.1 16.9 –

Zhang17[59] 21.7 14.8 –

Table 3: Nor-

mal and depth pre-

dictions on NYU

dataset [46].

Test on OpenRoom NYU2

Train on OR/NYU2 Yes/ No No/ Yes Yes/ Yes

bbox seg bbox seg bbox seg

AP(0.5:0.95) 80.2 70.1 17.1 15.3 23.5 21.6
AP-windows 85.8 63.2 11.9 12.7 20.5 20.6

AP-lamp 74.7 76.9 22.2 18.0 26.6 22.7

Table 4: Bounding box regression and mask AP on OpenRooms

and NYU2 [46] for light source (windows and lamps) detection.

sults are in Table 2, which are comparable to prior state-of-

the-art based on artist-created SUNCG dataset [49].

Depth and normal estimation. We evaluate the normal

and depth estimation on the NYU dataset. The quantitative

evaluation is in Table 3. We perform slightly worse than

Li et al.’s dataset, possibly because their SUNCG-based

dataset has more diverse and complex geometry compared

to our ShapeNet-based furnitures.

Light source detection We use a ResNeXt101 [54] and

FPN [35] pretrained model from Detectron2 [51] to train

an instance segmentation network for light source detec-

tion (windows and lamps). We evaluate on OpenRooms and

NYUv2 [46]. As shown in Tab. 4 and Fig. 10, training on

OpenRooms boosts accuracy on NYUv2 testing by around

5%, for both bounding box regression and segmentation.

Per-pixel lighting estimation The above network also

predicts per-pixel spatially-varying lighting, with qualita-

tive results shown in Fig. 9 and quantitative results in sup-

plementary. Note that we also provide ground truth for per-

pixel direct lighting, shading and visibility, which are not

predicted by our network but may be useful for studies in

light transport, editing and augmented reality.

Semantic segmentation We use DeepLabV3 [15] and

PSPNet(50) [60] to pre-train semantic segmentation models
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Figure 9: Inverse rendering results on a real example and a synthetic example. The insets in the bottom row are the ground truth.

Figure 10: Light source detection on OpenRooms (OR) and

NYUv2 [46]. Windows are better detected with OR training.
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Figure 11: Semantic segmentation on OpenRooms and

NYUv2 [46] using PSPNet(50) [60] and DeepLabV3 [15].
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Figure 12: Multi­task estimation on OpenRooms.

PSPNet(50) [60] DeepLabV3 [15]
mIoU mAcc mIoU mAcc

10K 50K 10K 50K 10K 50K 10K 50K

IN 41.1 41.2 53.3 53.4 41.7 42.2 53.6 54.4

OR 40.8 41.1 53.0 52.5 42.5 42.9 54.5 55.1

Table 5: Semantic segmentation trained on OpenRoom (OR) and

InteriorNet (IN) [31] and fine­tuned on NYUv2 [46] with PSP­

Net(50) and DeepLabV3, using different number of images.

on OpenRooms, then finetune and evaluate on NYUv2 [46]

with 40 labels [22]. We also compare the results pre­trained

on InteriorNet [31] with the same number of training im­

ages. As shown in Tab. 5 and Fig. 11, results are comparable

for the two models and register improvements with greater

number of images for the two pre­training datasets.

!"#$$%&'()'#*+',-. !/#$0&($'()'#*+',1. !/#$%&()'#*+',2.

!34'()'#*+'56. 78$9 /$%8&0:)$8);

Figure 13: Object insertion on a real benchmark dataset [21]. Our

dataset leads to photorealistic insertion results comparable to state­

of­the­art [32][21]. Please zoom in for more details.

!"#$% &'(%)'
Figure 14: Material editing in real images. Note that the net­

work trained on our dataset handles specular effects and spatially­

varying lighting well.

Multi­task estimation An advantage of OpenRooms is

the ground truth available for a range of both inverse ren­

dering and semantic tasks. This may be useful for learning

correlations among different vision tasks, and therefore can

be of great interest to researchers in multi­task and trans­

fer learning. As an illustration, we add a simple segmenta­

tion head to the inverse rendering network described above.

Qualitative results are shown in Figure 12. Quantitative re­

sults are shown in the supplemenatry. We hope such data

will motivate and be useful for studies in multi­task learn­

ing, such as [56, 57].

4.2. Applications to Augmented Reality

Object insertion Photorealistic virtual object insertion in

augmented reality requires high­quality estimation of ge­

ometry, material and lighting. We test our inverse network
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Figure 15: OpenRooms is integrated with a physics engine to create virtual scenes for robotics, potentially enabling studies for navigation

and rearrangement across varying lighting and material, with possible correspondence to real scenes.
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Figure 16: Ground-truth friction coefficients for the same scene

with different materials. Specular materials tend to have lower

coefficients of friction (darker).

Figure 17: OpenRooms enables novel studies in navigation and

rearrangement with material and lighting variations.
Barron13 [8] Gardner17 [20] Garon19 [21] Li20 [32]

Ours vs. 88.19% 66.16% 56.53% 54.77%

Table 6: User study on object insertion indicating the % of pair-

wise comparisons where human annotators thought we outper-

formed an alternative method; we outperform all prior methods.

More details and comparisons are in supplementary.

on the dataset from [21], which contains around 80 ground-

truth spatially-varying light probes. As shown in Fig. 13,

our network outperforms those methods that cannot handle

spatially-varying or high-frequency lighting well. It even

generates more consistent lighting compared to [32] which

is trained on a SUNCG-based dataset, probably because our

dataset has more diverse outdoor lighting and handles in-

door lighting in a physically meaningful way. The quan-

titative user study in Table 6 also suggests that a network

trained on our dataset performs better on object insertion.

Material editing We illustrate replacement of the mate-

rial of a planar surface in Fig. 14 using the method of [32].

We note that spatially-varying lighting effects and specu-

larity are handled quite well, with results comparable to

[32], even though our dataset is created from noisy scans

acquired with a commodity sensor.

4.3. Applications to Robotics and Embodied Vision
To facilitate research in robotics and embodied AI,

OpenRooms supports transforming a rich 3D indoor scene

model into an interactive environment, with realistic physi-

cal simulation through PyBullet [3]. A URDF file describe

physical properties, such as mass and friction coefficients,

for CAD models. This feature of OpenRooms establishes

direct connections between appearance and physical prop-

erties of the environment, to provide a learning testbed for

a range of topics including physics understanding from per-

ception and policy generalization across environment and

configuration changes. As an example, Fig. 15 shows a

classroom scenario where a robot is inserted into the scene

and may perform a navigation task. Furniture in the scene

can be rearranged, while the lighting and material properties

can also be changed. In Fig. 17, we show navigation and re-

arrangement where different frictions of coefficient for the

same scene lead to different pushing outcomes (see supple-

mentary for details). Since we create the scene from scans,

correspondence is available to real scenes, which may be

useful for sim-to-real transfer studies [27].

Ground truth for friction coefficients We use our albedo

and roughness ground truth to render reflectance disks

through a virtual equivalent of the acquisition in [58], then

do a nearest neighbor search to compute the friction coef-

ficients. Examples of per-pixel friction coefficients are in

Fig. 16, where specular materials have lower friction coef-

ficients. More details are included in the supplementary.

5. Conclusion and Future Work
We have proposed methods that enable user-generated

photorealistic datasets for complex indoor scenes, starting

from existing public repositories of 3D scans, shapes and

materials. We illustrate the process on over 1000 indoor

scenes from ScanNet. In contrast to prior works, we pro-

vide high-quality ground truth for complex materials and

spatially-varying lighting, including direct and indirect il-

lumination, light sources, per-pixel environment maps and

visibility. We demonstrate that inverse rendering and seg-

mentation networks can be trained on OpenRooms, to-

wards augmented reality applications like object insertion

and material editing. We also show our dataset can be in-

tegrated with physics engines and provide friction coeffi-

cients, which suggest interesting future studies in naviga-

tion, rearrangement and sim-to-real transfer. Our dataset

and all tools used for its creation will be publicly released.

Please refer to the supplementary material for further

details, extensive experimental results and videos.
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