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We consider the Mean Field analog of the p-star model for homogeneous random networks, and
compare its behaviour with that of the p-star model and its classical Mean Field approximation in
the thermodynamic regime. We show that the partition function of the Mean Field model satisfies a
sequence of partial differential equations known as the heat hierarchy, and the models connectance
is obtained as a solution of a hierarchy of nonlinear viscous PDEs. In the thermodynamic limit,
the leading order solution develops singularities in the space of parameters that evolve as classical
shocks regularised by a viscous term. Shocks are associated with phase transitions and stable states
are automatically selected consistently with the Maxwell construction. The case p = 3 is studied
in detail. Monte Carlo simulations show an excellent agreement between the p-star model and its
Mean Field analog at the macroscopic level, although significant discrepancies arise when local
features are compared.
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1. INTRODUCTION

Networks provide an effective conceptual framework to
model complex systems where fundamental constituents
and interactions can be represented respectively by nodes
and links [1, 2]. Following a standard mathematical ter-
minology, a network is a graph where vertices correspond
to nodes and links to edges. Graph theory, introduced
by Leonard Euler in 1736 and inspired by the celebrated
problem of the seven bridges of Kénisberg, has further
developed into an established field of mathematics with
numerous applications in a variety of disciplines, such
as physics, technology and information sciences, biology,
sociology, epidemiology [1, 3-10]. However, understand-
ing real-world networks is particularly challenging, since
they exhibit specific features of complex systems, like for
instance absence of equilibrium, complex intrinsic topol-
ogy, geometry and dynamics, which make detailed analy-
sis and prediction of their behaviour a task currently out
of reach.

Random graph models are often introduced with the
aim to capture and provide a qualitative description of
macroscopic features of complex networks which may
arise independently of the specific microscopic detail of
their realisation. An important class of such models
are the Exponential Random Graphs Models (ERGMs).
ERGMs are specified by a probability distribution that
maximizes the Gibbs entropy subject to constraints on
expectation values of observables [1, 11]. In this paper,
ERGMs are defined in analogy to a well studied class
of statistical mechanical models for which the partition
function and the free energy satisfy suitable integrable
differential identities [12-14] (see also [15-17] for ear-
lier studies and [18, 19] for more recent extensions to
random matrix models). A special family of ERGMs is
represented by network models where interactions from
groups of up to p links sharing a common node are con-

sidered. These models are referred to as p-star models.
The Gibbs-Boltzmann (GB) probability distribution of
p-star models is of the form [1]
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where
Hy[A] = = 5 Si(A) 2)
k=1

is the graph Hamiltonian, p € N, A = (A;;)i j=1,..n 18
the n x n adjacency matrix of a simple undirected graph,
i.e. Aij S {0,1} if 4 75 7, A;; = 0 and Aij = Aji, T are
the coupling constants and

Z Aij, Aijy -+ A, (3)
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is the number of k-stars (sets of k links attached to the
same node). The partition function is defined in a stan-
dard way as

= Ze—Hp[AL (4)

{A}

where the sum is evaluated over the set {A} all possible
configurations of A.

In this paper we consider a Mean Field (MF) analog
of the p-star model (2) defined by the Hamiltonian

Hyr[A /é 2Nk 1(ZAZJ> ) (5)

which we refer to as MF model, where N = n(n — 1)/2
is the maximum number of links in a simple undirected



graph of n nodes. The MF model (5) is defined for a finite
size system and its applicability relies on the assumption
that all k-tuples of links interact via effective coupling
constant t;. We shall clarify the difference between the
mean field model represented by the Hamiltonian (5),
where pairs, triples and so on and so forth, interact re-
spectively with constant of t5, ¢3, etc. and the mean
field approximation (see remark at the end of Section 4),
where the Hamiltonian is replaced by a linear expres-
sion where each link interacts with the average link. The
Hamiltonian (5), unlike (2), accounts indeed for contri-
butions from all interactions of k-links for £ < p indepen-
dently on whether links share a node or not, and hence
is linearly extensive for large N, i.e. Hyr[A] = O(N) as
N — oco. We compare the qualitative features of both
models (2) and (5) at finite n and in the thermodynamic
limit (i.e. n — 00).

In this paper, we present the hydrodynamic formu-

lation of the MF theory for ERGMs. The approach
is analog to that introduced in the context of classical
fluid models [16, 20], magnetic models [12] and more re-
cently in the context of random matrix models [18, 19].
The main observation is that the partition function, and
therefore the state functions (obtained as derivatives of
the free energy w.r.t. the thermodynamic conjugated
variables), satisfy suitable differential identities which are
given by nonlinear integrable differential equations. The
study of the thermodynamic limit requires the analysis
of a system of nonlinear differential equations of hydro-
dynamic type.
We note that, in general, different models may be asso-
ciated to the same differential identity but each of them
will be specified by a particular initial condition. This
description allows to classify models via the differential
identities to which they are associated and their classi-
fication is based on the theory of normal forms and sin-
gularities of their solutions [21]. For example, the Curie-
Weiss model, generalised to p—spin interactions [12], and
the MF p-star model discussed in this paper, belong to
the same class, as they are associated to the same dif-
ferential identity (the heat equation and its hierarchy),
but they are specified by different initial conditions. The
universal critical behaviour of the order parameters cor-
responds to the universal critical behaviour of a non-
linear breaking wave obtained as solution of the asso-
ciated viscous nonlinear partial differential equation [21—
23]. We point out that although some of the examples
considered in the present work are amenable by direct
statistical considerations, the proposed formulation of-
fers a unifying classification framework for the models
based on the properties of the probability distribution
(and associated differential identities) rather than merely
on the critical behaviour of the order parameters. Fur-
thermore, the hydrodynamic formulation of the thermo-
dynamic asymptotic regime provides insightful analogies
between thermodynamics and the theory of nonlinear
waves [15, 16, 18, 20].

For the purposes of this work, it is crucial to write

the Hamiltonian (5) in terms of the connectance L =
Zij AU/(QN), that is

Hyp[L] = =) (2N)t; L*, (6)
k=1

where the notation emphasises the fact that the Hamil-
tonian only depends on the connectance of the given con-
figuration. We demonstrate that the partition function
associated to (6) satisfies a compatible hierarchy of linear
PDEs (the heat hierarchy), of which the heat equation is
the first member and in which the coupling constants ¢
play the role of independent variables. The large n limit
is singular and, with a suitable re-scaling, at the leading
order, the expectation value of the connectance satisfies a
hierarchy of quasilinear PDEs (the Hopf hierarchy). So-
lutions to the Hopf hierarchy develop singularity for finite
values of the independent variables t; and such singulari-
ties are associated to critical points and phase transitions
in the system. A comparison between the exact solution
of the heat hierarchy and Monte Carlo simulations of
both p-star models and their MF analogue shows that
the analytical solution provides an accurate quantitative
description of the system for sufficiently large n.

The paper is organised as follows: in Section 2 we show
that the partition function for the MF model satisfies the
heat hierarchy, and the free energy also satisfies a set of
nonlinear viscous PDEs known as the Burgers’ hierar-
chy. In Section 3 we compare MF networks and p-star
models in the thermodynamic limit by minimising the
Kullbach-Leibler divergence. In Section 4 we discuss the
properties of the network connectance, show that it satis-
fies the Hopf hierarchy, whose generic solution develops a
gradient catastrophe singularity and explore the critical
sector and singularity resolution. In Section 5 we provide
some thermodynamical considerations and discuss Monte
Carlo simulations performed to explore the landscape of
the free energy and reconstruct the corresponding profile
of the connectance. Section 6 is devoted to the compari-
son of local properties of MF and p-star models. Finally,
Section 7 offers some concluding remarks.

2. THE HEAT HIERARCHY

Following the approach outlined in [12], we observe
that the partition function for the MF model

2 () = 3 o el (™)
{A}

satisfies a set (hierarchy) of linear partial differential
equations of the form

(MF) k 7 (MF)
%:yk_lazin k=1,2,....p (8)
Oty otk

where v = (2N)~!. This statement can be verified by
direct substitution given the specific form of the Hamil-
tonian (6). It is straightforward to verify that equations



of the hierarchy (8) are compatible, that is

o (ozMF) o oz
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Equations (8) are referred to as the heat hierarchy, since
the first member of the hierarchy is the heat equation

azM) 92z
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The partition function of the MF model is given by
the solution of the hierarchy (8) that matches the initial
condition

Zfll?/([)F) (tl) = Zr(LMF)|tk:O Vsl = Z et 20 Aij (9)
{a}

We note that Eq. (9) represents the partition function of
the celebrated Erdos-Rényi (ER) model [24], with Hamil-
tonian

Hpr = —11 Z Ayij, (10)
i,
which defines an exponential random graph model for a
network of non-interacting links. Hence, the MF model
can be viewed as the “evolution” in the space of coupling
constants of the ER model according to the heat hierar-
chy.

As the partition function diverges exponentially in the
large n limit, in order to study the MF model in the
thermodynamic, i.e. in the limit n — oo, let us introduce
the function

Fp = vlog ZMF), (11)
In a statistical mechanical context one has
Fn=—0,/(27),

where ®,, is the analog of the specific Helmholtz free
energy and 7 is the temperature of the thermodynamic
systems. As the temperature plays the role of a scaling
factor in the GB distribution, we incorporate it into the
coupling constants. Hence, for an effective comparison we
can set 3 = T~! = 1. With this choice, ®,, is expressed in
terms of the specific internal energy F,, and the specific
entropy S, as

®, =FE,—S,.

For the sake of clarity in the use of terminology, we note
that due to the minus sign, the stable equilibrium as-
sociated to the minimum of the Helmholtz free energy
corresponds to a maximum of the function F,,.

Rewriting the heat hierarchy (8) in terms of F,, we
obtain the following hierarchy of nonlinear viscous equa-
tions, also known as the Burgers’ hierarchy

OFn _ ip [mfn

= — k=1,2,... 12
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where Py[f] denotes the Faa di Bruno polynomials which
are defined recursively as follows [25]

Prya[f] = M;ﬂf]

+ fP(f],  Plf] =1

We observe that, given a solution FME) (t) of the hier-
archy (12), the derivatives

o0F,
8tk = < k>n’ k:1’27""p’ (13)
where
Soiay LFe
B\ . ~—~{A}
(L4 = = —, (14

provide an effective way of calculating the expectation
valkue of the connectance (L), and its higher moments
(L% .

Equations for (L), follow from (12) by differentiating
both sides w.r.t. ¢; and the result leads to the so-called
Burgers’ hierarchy. For instance, the first two equations
of the hierarchy read as

o _ 0 (12,20,

ot ot
oLy, 0 (L) 0*(L) (15)
n _ Y 3 n 2 n
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To study the system in the thermodynamic limit, i.e.
n — oo (or equivalently ¥ — 0), we assume that F,
admits the expansion of the form

Fn=F+ Fv+ B +008. (16)

A similar expansion holds for the Helmholtz free energy
®, = ® + O(v). Substituting the expansion (16) into
(12), at the leading order one gets the hierarchy of the
Hamilton-Jacobi equations

OF  (9F\"

The expansion (16) implies (L), = (L) + O(v), and
in the thermodynamic limit the leading order term (L)
of the connectance satisfies the following hierarchy of hy-
perbolic PDEs (the Hopf hierarchy)

k
OL) _ 0Ly (18)
Oty otq
We note that the Hopf equation and its hierarchy emerge
in connection with a variety of models in statistical ther-
modynamics, e.g. van der Waals theory [16, 20] and p-
spin models [12], and different models are specified by a
different initial condition. The general solution of the hi-
erarchy (18) is obtained by the method of characteristics
and it is implicitly given by the equations

S R(LY N = F (L)), (19)
k=1



where the function f ((L)) is an arbitrary function of its
argument specified by the initial condition.

The general solution of (17) obtained by integration
along characteristics (on which (L) is constant) is given
by

= (@) + g (L)), (20)

k=1

where the function g is an arbitrary function of its argu-
ment.

In order to specify the arbitrary functions, we need
the explicit expression of the initial condition (9), that

is the partition function of the ER model (9). A direct
calculation gives
{A} {A}i<y
1
=1 Y e =T+ ) = (1+e)"
1<j Ai;=0 i<j

Therefore, the initial condition for F,, is given by

Fno(t1) =vlog (Z( R)) log (14 €*) (21)

from which, using the equation (13), we obtain the initial
condition, i.e. the connectance for the non interacting
model

(9]:%0 et

Ly,o= = .
< > 0 ot1 1+ e2ts

(22)

Importantly, F,, o and (L), o do not depend on n, hence
expressions (21) and (22) also give the initial conditions
for the hierarchies (17) and (18) respectively. Evaluating
the equations (19) and (20) at tx = 0 for £ > 1 we can
specify the functions f(z) and g¢(z), i.e

1 z

f(z)ziloglfz’

(23)

g(z) = f% log [zz (1— z)lfz} : (24)

Combining (19) and (23) we obtain the thermodynamic
equation of state for the MF model

1+ tanh (i ktk<L>’“_1>] . (25)
k=1

Combining (20) and (24) we construct the leading order
Helmholtz free energy

(L) =5

d=_2F (26)
where F' is the solution to the equation (17) matching
the initial condition (21), i.e

)4

= ()t~ glog [ (1 - ()= (@)

k=1

4

and (L) is a function of t implicitly defined by (25). The
expression (27) has the natural thermodynamic interpre-
tation where the first term in the r.h.s is proportional to
the internal energy E, i.e.

E=-2 i(L)’“tk (28)
k=1

and the second term is identified with the entropy of the
system, that is

§=—(L)log(L) — (1 = (L)) log (1 = (L)).  (29)

3. MF NETWORK AND p-STAR MODEL

As mentioned above, the MF model (5) is defined for
a finite size system and its applicability relies on the as-
sumption that all k-tuples of links interact via effective
coupling constant t;. This is fundamentally different
from the p-star model (2) where only k-tuples of links
sharing one and the same node interact with a coupling
constant 7 and all other k—tuples do not interact, i.e.
for k-tuples that do not share a link the coupling con-
stant vanishes. We show that the MF approximation of
the p-star model, expected to be valid at the equilibrium
in the thermodynamic limit, is mapped into the thermo-
dynamic limit of the MF model - and the solutions to the
Hopf hierarchy - by a rescaling of the coupling constant.

MF approzimation. Let us introduce the probability
distribution P associated to the p-star model Hamilto-
nian H, and the probability distribution @) associated to
the ER Hamiltonian of the form Hgr = —h E” A, ie.

e Hp e~ HEeR

P= = . 30
Q- (30)
Gibbs’ inequality establishes that [26]

=Y Qo2 >0 (31)
{a}

where D(h) is referred to as Kullback-Leibler divergence.
In particular equality holds only if P = (). As in our case
P # @, we look for a MF approximation for the distri-
bution P of the ER form @ as given in (30). @ is chosen
such that D(h) attains its minimum as a function of the
variational parameter h. Introducing the free energy in
the form

= Z Qlog % —log Z,, (32)

{A}
we observe that, as Z, does not depend on h, D(h) and
¢(h) simultaneously attain a minimum as a function of h.
Substituting the expressions of the probability distribu-
tions P and @ defined in (30) into the definition of D(h)
we have the following identity

Q
> Qlog 5 —log Z, = (Hy)q -
{a}

<HER>Q_10gZER (33)



where the notation (O)¢ is the expectation value of the
observable O w.r.t. the ER distribution @, i.e.

O)o =) _QO.
{A}

Hence, we can write

¢(h) = <HP>Q -

The advantage of the expression (34) compared with (32)
is that all terms can be evaluated explicitly as the expec-
tation values are calculated w.r.t. the ER probability

<HER>Q —IOgZER. (34)

distribution
(Hgr)g = —2Nh(L)q
P
T, n
(tg = =3 s n =) () Wi,
k=1

where as discussed above for ER model

log Zpr = Nlog(1 + e2"), (35)
e2h
(Lyg = Treh (36)

Hence the condition

9
oh

. Zmn: ()(15;’1)’“‘1. (37

Observing, as it follows from equation (36), that

=0

gives

h = arctanh(2(L)g — 1),

we obtain the self consistency equation

(L)o <1 +tanhz ka’“Z: 1( ><L>g—1> . (38)

In the thermodynamic regime, direct comparison of the
above self-consistency equation (38) and the equation of
state (25) lead to the identification

In particular, we have t; = 71. Observe that, for a large
network (n — 00), Eq. (39) implies that 7, ~ k!t;,. Thus,
the identification of the p-star model Hamiltonian (2) in
the MF regime with the MF model Hamiltonian (5), also
implies that H,[A] = O(N) = O(n?) and therefore

Sp = O(nkt1), n — oo.

4. CRITICAL SECTOR AND SINGULARITY
RESOLUTION

Gradient catastrophe. Based on the relation (13), the
expectation value of the connectance (L) is calculated as
the derivative of the free energy F,, w.r.t. its conjugated
variable t1, and therefore it is interpreted as an order pa-
rameter of the theory. According to the standard statis-
tical mechanical interpretation, singularities of the order
parameter are associated to the critical point of a phase
transition in the system. As demonstrated in the above
Section 2, the equation of state (25) (and therefore (L) as
a function of ¢;’s), can be interpreted as a solution of the
hierarchy of nonlinear hyperbolic PDEs (18) (the Hopf
hierarchy), whose generic solution is known to develop a
gradient catastrophe singularity in the (¢1,t;) plane for
any given k > 1 (see e.g. [27] and [16]). To obtain the
singularity loci in the space of coupling constants ¢, let
us re-write the equation (19) in the following equivalent
form

N =t + éktk@}kl - %log (L _ 0. (40)

1—(L)

The conditions that characterise the presence of a cusp
singularity are [28]

00 0%Q

o~ ap " )

which give, respectively,

- _ k-1 _ 1
u 2Ly -1

x>
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w

For example, if p = 2, Eq.s (42) and (40) admits
the single point simultaneous solution (t1,t2, (L)) =
(=1,1,1/2). For p > 2 the singular sector is a geo-
metric variety in the space of coupling constants. For
instance, in the case p = 3, the singular sector can
be expressed as a curve in the three dimensional space
(t1,t2,t3) parametrised by (L), that is

1 (L) A(L) -3
DT i@
~2-3(L)
LEana- e 9
2L) — 1
ty =

12(L)*(1 = (L))*

Figure 1 shows the projection of the curve (43) on the
(t1,t2) plane. The curve separates the region of the
plane where the solution (L) of the equation of state
(40) is single-valued, i.e. where the free energy admits
only one minimum, from the region where the solution



(L) is multi-valued as a function of coupling constants,
i.e. where the free energy admits three critical points. In
the latter region the system is bistable, as the analogue
of the Helmholtz free energy admits two local minima.
Figure 2 shows the profile of the Helmholtz free energy
® = —2F, where F is given by the equation (27), for a
choice of coupling constants (1, ta,t3) corresponding to
the point of gradient catastrophe. The profile of the con-
nectance as a function of ¢; clearly shows the occurrence
of the gradient catastrophe singularity.

2 Leos —— Ceritical curve
—— t3= — 1 singularities
1 —— t3 =0 singularities
—— t3=1 singularities
0 \ —— t3 =2 singularities

0.4
) 1)-0.3
ty =2 L)-0.2

FIG. 1: (Color online). Projection of the critical curve (43)
on the (¢1,t2) plane. The curve is parametrised by the
connectance (L) and each point represents the vertex of a
sector on the plane where the solution (L) of the
corresponding equation of state is multivalued. Examples of
sectors are shown for t3 = —1,0,1, 2.

Transition formula. The Hopf hierarchy (18) provides
the leading order asymptotics of the connectance (L) as
v — 0. The gradient catastrophe is associated to the
critical point of the phase transition, and multivaluedness
captures simultaneous stable and meta-stable states of
the system that are associated to multiple local minima
of the free energy. In the vicinity of the point of gradient
catastrophe, the viscous term represented by the highest
derivative in the equation (12) is no longer negligible in
the limit v — 0. In fact, the viscous contribution, arising
from the highest derivatives in (12) prevents the gradient
catastrophe and the occurrence of multivaluedness [27].

We now construct the solution F,, to the exact equa-
tion (12) and the corresponding connectance (L) =
OF, /0t that matches the solution (25) for v — 0 but re-
mains single-valued. For the sake of simplicity we present
the explicit calculations for p = 3.

Let us first observe that the equation (25) implies that

lim (L) =0,

t1——00

lim (L) = 1. (44)

t1—00

This is intuitive, as the parameter ¢; acts as an external
field enhancing or preventing the occurrence of links by
being largely positive or negative respectively. We seek a
solution that matchs these asymptotic values as the gra-
dient vanishes at ¢t; — +o0o. In particular, we look for

0.5
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FIG. 2: (Color online). Top panel: profile of the free energy
(26) in the case p = 3 for a choice of critical values of
coupling constants t1 = —1.342, to = 1.871 and t3 = —0.756.
The minimum (marked by a cross) corresponds to the value
of the connectance (L) = 0.3 at the critical point. Bottom
panel: profile of the connectance as a function of ¢;. It shows
the occurrence, at the critical point, of a gradient
catastrophe singularity. The agreement between the
analytical solution of the MF model and MC simulations for
both MF and 3-star model in the specified regime n = 10® is
compelling.

the heteroclinic solutions to the system of equations (15)
connecting two equilibrium states at ¢t; — +oco. Substi-
tuting a “travelling wave” ansatz of the form

<L>n = )\(0) 0 = t1 + cats + c3t3, (45)

into (15) and integrating once, one obtains the system of
ODEs
e A=N+vN +k
: 3 / ’ 211 (46)
c3A = X2+ 3v AN + v\ 4+,
where \' = d\/df. The boundary conditions (44) imply
02203:1, k():lozo.

The first equation in (46) is a separable ordinary partial
differential equation which yields

A(9) = % [1 + tanh (;V = c)ﬂ : (47)



and this solution is compatible with the second equation
n (46). Consistency with the initial condition (22) re-
quires that (L),(t = 0) = 1/2, from which it follows
that the integration constant is ¢ = 0. Finally we obtain
the transition formula

(L)(6) = % [1 + tanh (;V (b1 + o +t3)>} . 48)

which smoothly connects the asymptotic states specified
by the boundary conditions (44) and describes analyti-
cally a shock singularity at t; + to + t3 = 0 in the limit
v — 0. We note that formula (48) can be straightfor-
wardly extended to the case of generic p by extending
the sum of ¢t for k=1,...,p.

(0, 1)-bistability approxzimation. For any choice of cou-
pling constants t; such that the free energy of the p-star
model admits two sufficiently deep minima at values of
(L) sufficiently close to 0 and 1, as shown in Figure 3
and Figure 4, we can make the approximation that the
system is found in either of two configurations A®, corre-
sponding to the complete graph where all links are active,
or AP corresponding to the empty graph where all links
are inactive. Under these assumptions we have

p(AS) +p(AF) ~1, (49)
where

1 _ c
PAC) = Ze AT p(AT) =

and the partition function is
Z ~ e H(AT) | o—H(AT) (51)

The expectation value of the k-star Sy is therefore eval-
uated as

(Sk) ~Sk(AC)-

- n—1
=n k e

where we observed that Siy(AF) = 0. Using the expres-
sions (50) and the fact that, given the expression (2),
H(AP) =0 and

p(AY) + SK(AF) - p(AF)
o~ H(A) (52)
—H(AC) } o~ H(AE)

the expression (52) gives

(Sk) ~ 72L<n ; 1) 1 + tanh < p (Z) (;n:_sl) Ts>:| . (53)

Observing that (L) = (S1)/(2N), formula (53) above
gives

which, given the identification of the coupling constants
(39), is consistent with the equation (48). We point
out that the (0, 1)-bistability approximation for a p-star
model with p > 2 can be achieved only for particular
ranges of the coupling constants.

Remark. 1t is interesting to compare the MF approx-
imation of the p-star model obtained via the minimi-
sation of the Kullback-Leibler divergence and a com-
mon approach (see e.g. [1]) based on the assumption
that in each star a link is coupled with the average link
m = (A;;). Therefore, given the kth-star interaction term
(3), namely,

i g1 Jo#J1 Je#J
Joi =1, k-1
Jrk#i

and replacing A; ;, — (Ai;,) ~ m for s = 2,...,k for

js # 1 we have

Skzl(n—2)...(n—

o k)r*—1 Z A (56)

which leads to the Erdos-Rényi Hamiltonian of the form

with

Then the solution (22) and the hypothesis 7 = (L) give
the self-consistency equation

(L) = <1+tanhZTk 2—1 ( ><L>’“‘1>, (57)

leading to the identification

T n—k [n

= (n—1) <k‘> (58)
It is immediate to verify that, although the self-
consistency equations (57) and (38) are of the same form,
Eq. (54) is not consistent with (48) under the identifica-
tion (58). Hence, while the approximation (56) predicts
the same qualitative behaviours obtained from minimi-
sation of the Kullback-Leibler divergence, the positions
of the transition regions do not coincide, as the identi-
fication of the parameters (58) differs by a factor 1/k
compared with the expression (39). Hence, the MF ap-
proximations based respectively on the minimization of
Kullback-Leibler divergence and the one illustrate above
(based on the linearisation of the Hamiltonian by replac-
ing pairwise interactions with the mean field) are not
equivalent and only the former is consistent with the ex-
act travelling wave solution (48) of the Burgers equation.



1.0{ —— Free energy
5 le—3
0.8
0
—
=
~~0.6 _5
~ _0.00 0.25 0.50 0.75 1.00
N /// le-2
KA 0.4 // 5 le—d
///
///
0.2 / 0
//
/2 -5
/ 0.9990 0.9995 1.0000
0.0
0.0 0.2 0.4 0.6 0.8 1.0

(L)

FIG. 3: (Color online). Free energy (59) as a function of the
connectance for the 3-star model for a choice of the
parameters t1 = —3, t2 = 2, t3 = 1 such that connectance is
a multivalued function of the coupling constants. In this
example, the connectance admits two possible values
associated with the two minima (marked by crosses) of
almost equal depth located in the vicinity of (L) = 0 and
(Ly =1.

5. THERMODYNAMIC CONSIDERATIONS
AND MONTE CARLO SIMULATIONS

In this section we compare the above theoretical re-
sults with the outcomes of Monte Carlo simulations
for the case of p = 3. The code used in this
work is available at https://github.com/0legRS/
p_star_and_heat_hierarchy.git.

For the simulations described in this work, we use
a Markov chain based method known as Metropolis-
Hastings algorithm [29, 30]. This method is effective in
identifying the ground state in the region of parameters
where the free energy admits a single minimum. How-
ever, performing simulations in the region of coupling
constants such that the free energy admits multiple min-
ima requires a careful analysis. Meta-stable states, i.e.
local but not absolute minima of the free energy, behave
as attractors, and transitions to the stable state associ-
ated to the absolute minimum of the free energy may
require a long iteration time. Indeed, according to the
Néel relaxation theory [31], the typical transition time
from a meta-stable to a stable state grows exponentially
with the size of the energy barrier between the two states,
which in turn is proportional to the size N of the sys-
tem. Therefore, simulations of states fluctuating around
a meta-stable state produce a time series of autocorre-
lated states. Estimates obtained by averaging over the
time series of states generated from a given initial con-
dition are referred to as time averaging. Figure 4 shows
a comparison of the connectance obtained from time av-
eraging and the solution of the MF model (25) and the
transition formula (48).

For sufficiently small networks, it is possible to perform
a sufficient number of iterations such that the autocor-
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FIG. 4: (Color online). Comparison of the solution to the
equation of state (25) and MC (time averaging) simulations
for the corresponding 3-star and MF models with ¢35 = 2,
t3 = 1 and n = 10®. The theoretical formula (25) appears
accurate for both models apart from small deviations, in the
case of 3-star model, when approaching the multivaluedness
region. The branch of the MF solution on which (L)
decreases with ¢; is unstable due to the negative
susceptibility and corresponds to the (local) maximum of
the free energy (Figure 3) and therefore the corresponding
states can not be obtained via the simulations. The dashed
line corresponds to the transition formula (48) and shows a
good agreement with the MF solution and simulations apart
from a neighbourood of the point of discontinuity.

relation decays even in regimes where the system admits
meta-stable states. This allows us to obtain accurate re-
sults for the averages over the actual canonical ensembles.
Estimates of observables obtained by averaging over the
realisations of the system starting from random initiali-
sation are called ensemble averages. Ensemble averages
capture stable states of the system and provide results
that are consistent with the solution of the Burgers’ hi-
erarchy (15).

In this section we analyse the analog of the Helmholtz
free energy ® for the MF model, defined as,

P
® = —2F = -2 (L)*; +log [<L><L> (1 — (L) =27,
k=1

(59)
where (L) is a solution of Eq. (25). We then compare
the predicted observables with the Monte Carlo simula-
tions for the p-star model and its MF approximation. For
illustrative purposes we consider the case p = 3.

We should point out that the free energy (27) (or equiv-
alently (59)), expressed in terms of the solutions (25) of
the Hopf hierarchy, is derived under the assumption that
(L) is continuous and differentiable. This assumption is
fulfilled in the region of the space of coupling constants
ti such that the solution is single valued, but cannot be
continuously extended across the singular sector (as il-
lustrated for example in Figure 1), to the region where
the solution is multivalued. However, in the region where
the solution is multivalued, the expression (25) allows to
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FIG. 5: (Color online). Profiles of the free energy for the
3-star model and its MF analogue for ¢t; = 3,6,8,9.5;
to = —15 and ¢35 = 9 (lower panel) is compared with the
connectance (L) for the same values of > and t3 as t1
changes (upper panel). The lowest minima of the free energy
correspond to the stable branches of (L)(t). Meta-stable
states are associated to local minima and correspond to the
additional values of (L) in the region of multivaluedness.

calculate the free energy of the system by selecting the
branch where the free energy attains a minimum.

For instance, Figure 3 illustrates the free energy pro-
file as a function of (L) for a choice of coupling constants
such that (L) is multivalued. The free energy ® ((L)|t)
admits two local minima of different depth in the close
vicinity of 0 and 1. Based on the classical thermody-
namic description, the absolute minimum corresponds to
the stable state and the relative minimum is associated to
a meta-stable state. MC simulations show that the GB
distribution (1) realised via a Markovian dynamics is such
that, if the system is initialised in a meta-stable state, the
system will remain in that state for exponentially long
times as a function of the number of links IV [31]. There-
fore, for any finite time scale and for sufficiently large
N, a system can be considered as non-ergodic, which im-
plies that averages over time differ from averages over
ensembles.

In Figure 4 we compare the connectance for the MF
solution (25) (corresponding to the limit N — oo) and
p-star models in the thermodynamic regime. The com-
parison shows that the for n = 103 the p-star model is in

the thermodynamic regime. The analytic solution (25)
for the MF models in the thermodynamic limit is con-
sistent with time averages of MC simulations for both
models. In particular, the multivalued solution of the
equation (25) captures the meta-stable states observed in
MC simulations via suitable initialisation of the system.
The transition formula (48) accurately captures the sta-
ble states for both models in the thermodynamic regime.

Figure 5 shows the profile of the free energy ® ((L)|t)
for the 3-star model and its MF analogue for fixed values
of t1, to and t3, compared with the connectance (L) as a
function of ¢; for the same values of ¢5 and t3. The lowest
minimum describes the stable branch of the solution (L).
Meta-stable states are associated to local minima and
correspond to the additional valued of (L) in the region
of multivaluedness.

The position, the depth and number of local minima
of ® ((L)|t) change with t; and, when a local minimum
turns into a global one as ¢; increases, ensemble averages
of the observables develop a jump. The branches of the
curve (25) on which (L) decreases with ¢; correspond
to the (local) maxima of ® ((L)|t) and therefore are not
stable.

In Figure 6 we compare the expectation values, via
ensemble averages, of the density of k-stars in the p-star
model, defined as

o = 1(" ; 1>lSk € [0,1], (60)

n

and the moments (L") for the MF model. For illustrative
purposes we choose again p = 3. In the region of values
for the coupling constants where the free energy has a sin-
gle local minimum, the hierarchy of equations (17) holds
in the thermodynamic regime, and implies the equality
(L*y =(LY*  k=1,2,3,... (61)
In this regime, the k-star densities, estimated via MC
simulations, are well approximated by the corresponding
k-th moments of the MF model, for kK = 2 and £ = 3.
This result is consistent with existing studies on the MF
theory approximation in the thermodynamic limit, see
e.g., [32]. Furthermore, Figure 6, shows that, even for
small networks, the MF theory is accurate sufficiently far
from the transition region. In the case where the system
admits (0, 1)-bistability, formula (53) provides ensemble
averages of the observables in the transition region.

6. LOCAL PROPERTIES: MF VS p-STAR
MODEL

In order to further clarify the regime of validity of the
MEF theory as a devise to extract information on the exact
p-star model, it is interesting to compare the MF and p-
star models relative to some local features such as the
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FIG. 6: (Color online). Comparison of simulated densities
of 2-stars and 3-stars for the 3-star model and moments (L?)
and (L?) for the corresponding MF model for different sizes

n. For illustrative purposes we chose to = 2, t3 = 1.
Multivalued solution for the MF model in the
thermodynamic limit is also shown for reference. For the
chosen values of n, the figure shows that the MF model and
transition formula (48) provide an accurate description of
3-star model.

expectations (k;) of the node degree,

ki = z": Aij
=1

which give the number links attached to a given node,
and the expectation (c¢;) of the local clustering coefficient

(LCC)

ci(A) = 2 Aig A Ari (62)
' i A Au (1= 05)

which gives the ratio between triangles and 2-star in the
network. For illustrative purposes, the MC simulations
are performed for the case p = 3. Hence, we write the
Hamiltonian of the 3-star model in terms of the node
degree as follows

H(A):—ﬁzki—%zkf—wzkfv (63)
i=1 i=1

i=1
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where

61:7'1—;—%4-% 62:7'2—% €3 = T3. (64)
As observed in [33], the Hamiltonian of the general ho-
mogeneous ERGM with interactions among links sharing
a node can be written as sum of the Hamiltonian (2) and
a term proportional to the number of triangles in the
graph. It is therefore interesting to study how the LCC
behaves in the p-star model per se, in absence of extra
contribution from triangles.
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FIG. 7: (Color online). Degree distributions of 3-star and
MF models with 1000 (top panel) and 5000 (bottom panel)
nodes for ¢t; = 3284.58, to = —7500, t3 = 4500. The degree
distribution of the 3-star model is almost degenerate around
dominant degrees. Degree distribution for the MF model
follows instead the expression (66).

We have that the degree distribution of the MF model
follows a binomial distribution (as the ER model), i.e.,

o) = ("B )

which, for large graphs, and with moderate connectance
p(k|A)), is approximated by the Gaussian distribution

1 (k—Ln)2

~ 2nL(1—L)
(OIA)) = e FTE(66)
This is a consequence of the fact that the MF Hamilto-
nian (6) depends solely on the connectance, and there-
fore all possible graphs with the same total number of
links occur with the same probability. We also observe
that the p-star model does not have this kind of degen-
eracy and, at low temperatures, produces mostly regular
graphs, as shown in Figure 7. The LCC distributions
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FIG. 8: (Color online). LCC distributions of 3-star and MF
models with 1000 (top panel) and 5000 (bottom panel) nodes
for ¢ = 3284.58, {5 = —7500, {3 = 4500.

are qualitatively similar for both the p-star and the MF
model, as shown in Figure 8 although, as expected, for
the MF model triangles tend to be more dominant over
2-star compared to the p-star model.

Figure 9 shows that the degree distributions of the p-
star model may also be wider than predicted by (65).
This fact can be explained by the tendency of the p-star
model with positive couplings to create hubs [34], i.e.,
nodes with high degrees and, therefore, high numbers of
stars. However, the decay of the distributions appears to
be exponential for both models, as can be seen from the
log-log plots of Figure 9 (bottom).

We finally note that while the functional form of the
LCC distributions of the p-star and MF models shown in
Figure 9 and Figure 8 is different, both distributions get
narrower as n increases. As for the degree distribution,
depending on parameters, the LCC distributions of the
p-star model may be slightly wider (Figure 9) or narrower
(Figure 8) than that of the MF model. However, the tails
of the distributions are exponential for both models.

7. CONCLUDING REMARKS

A detailed comparison between p-star models defined
by the Hamiltonian (2) and their MF analogues defined
by the Hamitonian (5) shows that, in the thermody-
namic regime, the latter captures with high accuracy
both macroscopic qualitative and quantitative features of
the former. However, we have observed that discrepan-
cies arise at the microscopic level when local properties,
such as local clustering coefficients, are compared. This
is indeed not surprising, as the Hamiltonian of the MF
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FIG. 9: (Color online). Degree and local clustering
coefficient distributions for 3-star and MF models at
t1 = —0.5, t2 = 0.3, t3 = 0.1 (top row) and corresponding
log-log plots (bottorn row). The degree distribution of the
MF model is described well by the Gaussian (66) (dashed
curve on degree distribution plots). The vertical dashed lines
on LCC plots show the position of the average LCC found
from (62). Both degree and LCC distributions of the 3-star
model in this case are wider than the degree distribution of
the corresponding MF model, but the averages match well.
Decay is exponential in both cases as shown in log-log plots.

analogue admits an explicit expression in terms of global
variables such as the connectance and therefore it is not
devised to discern details of local properties.

MF models, i.e. models defined on a fully connected
graph with arbitrary degree of interaction, are interesting
in both the finite size and the thermodynamic regimes for
their formal as well as phenomenological properties. In-
deed, the MF model is a completely integrable system,
as the partition function satisfies a compatible system
of linear partial differential equations (differential iden-
tities) represented by the heat hierarchy and the solu-
tion is specified by an initial condition corresponding to
the Hamiltonian (5) evaluated at zero coupling constants.
Therefore, once the suitable differential identities for the
partition function, corresponding to the heat hierarchy,
are given, the solution of the model is reduced to the so-
lution of the ER model. The heat hierarchy leads to an
explicit formula for both the finite size and the thermo-
dynamic regime. The thermodynamic limit is calculated
based on the scaling properties of the heat hierarchy, and
the free energy satisfies a hierarchy Hamilton-Jacobi type
equations whose differential consequences allow to calcu-
late corresponding equations for the state functions and
the order parameters. In the thermodynamic limit, ex-
plicit equations of state are obtained by solving the hier-
archy via the method of characteristics.

We also observed that there is a one-to-one correspon-
dence between the thermodynamic solutions of the MF
models and the approximation of the p-star models ob-
tained from the minimisation of Kulbach-Leibler diver-
gence. The MC simulations confirm the qualitative and
quantitative agreement of the two models in the specified



regime. Hence, the asymptotic study of the thermody-
namic system via the heat hierarchy provides an effective
approach to the description of finite size effects leading to
the resolution of singularity in the thermodynamic limit
as well as the analytic description of order parameters in
the transition region. In comparison, obtaining the same
results via direct Metropolis-Hastings algorithm requires
extensive simulations due to slow convergence induced
by the presence of meta-stable states. We finally note
that the approach based on the use of differential iden-
tities described above applies to a variety of systems,
from classical magnetic systems [12-16, 20, 35] to ran-
dom matrix models [18, 19] and it proves to be effective
for the analytic description of systems of increasing com-
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plexity. A further natural direction of investigation is
concerned with the extension of the approach described
above, based on the differential identities for the partition
function, to solve more general network models beyond
the mean field theory. A particularly interesting model
currently being explored is that of a network model for-
mulated as random matrix model where, as discussed e.g.
in [18, 36, 37], differential identities still exists and can
be obtained for the sequence of partition functions Z,, of
an ensemble of n x n random matrices.
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