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Abstract. The periodic, traveling wave solutions of all four versions of the Davey-
Stewartson system (namely the focusing and the defocusing cases of both the Davey-Stewartson
I and the Davey-Stewartson II equations) are derived and classified. For all four versions,
these solutions are described in terms of elliptic functions. Special reductions and limit-
ing cases, including harmonic limits, soliton limits, and one-dimensional solutions, are also
explicitly discussed.
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1. Introduction and background

Equations of nonlinear Schrödinger (NLS) type arise as physical models in a number of
different physical contexts, ranging from water waves, to optics, Bose-Einstein condensates,
plasmas and more [11, 31, 35, 39]. The simplest and most well-known case is of course that of
the cubic NLS equation itself in one spatial dimension. There are also many physical contexts,
however, in which the system is not confined to just one coordinate, and two spatial dimensions
are necessary to accurately describe the dynamics. In these situations, more general systems
of equations of NLS type often arise, in which the dynamics of an NLS-type weakly nonlinear
envelope to that of a “mean field” [10,14,54]. One such case is that of the equations that model
the evolution of wave packets in shallow water [10], a special limit of which gives rise to the
Davey-Stewartson system [20]. Similar systems of NLS-type equations with coupling to mean
fields have also been derived in optical materials with quadratic nonlinearity [1, 2].

Like the NLS equation [56, 57], the Davey-Stewartson system of equations is also an inte-
grable system [6]. As such, it possesses a deep mathematical structure (e.g., see [6]), including
the existence of a Lax pair, the Painlevé property [8, 9, 47, 49], the amenability of its initial
value problem to inverse scattering [26, 27], the existence of a rich family of solutions, in-
cluding solitons as well as exponentially localized objects called dromions [17,28], even more
exotic solutions [48] and more. Because of this, the Davey-Stewartson system continues to a
very active topic of study [12,29,36,37,42,52,53]. Nonlocal variants of the Davey-Stewartson
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system have also been a subject of study in recent years (e.g., see [25,43,44,50] and references
therein).

Like most other integrable evolution equations, the one-dimensional NLS equation also
admits a rich family of traveling wave periodic solutions [13, 32–34], which are expressed in
terms of elliptic functions. The well-known soliton solutions are simply the limiting case of
this more general family of solutions. In turn, these solutions provide the starting point for
further investigations such as stability [18, 19, 21] as well as dispersionless or semiclassical
limits [12, 36, 37]. It would be safe to expect that a similar class of solutions also exists for
the Davey-Stewartson system. Surprisingly, however, no such solutions have been presented in
the literature to the best of our knowledge. Further compounding the issue is that four variants
of the Davey-Stewartson system exist, and that different authors write the system in different
ways, which can often create confusion. The present work aims at addressing this issue and
presenting the periodic, traveling wave solutions of all four variants of the Davey-Stewartson
system in a concise but self-contained manner.

This work is organized as follows. In section 2 we introduce the four variants of the
Davey-Stewartson and we briefly review their Lax pair, invariances, and reductions, and one-
dimensional reductions. In section 3 we derive the periodic, traveling wave solutions of the
defocusing DSII system. In section 4 we present various examples, and in section 5 we discuss
various distinguished limits, including one-dimensional reductions, the plane-wave and soliton
limits, and trivial-phase solutions. In section 6 we generalize the calculations to all four vari-
ants of the Davey-Stewartson system, and in section 7 we end this work with a few concluding
remarks.

2. Preliminaries: Davey-Stewartson systems, Lax pair, symmetries and
reductions

The four variants of the Davey-Stewartson system. The general Davey-Stewartson equa-
tions are the system

iqt +
1
2 (qxx − σqyy) + ψ q = 0 , (2.1a)

ψxx + σψyy = −ν(|q|2)xx + σν(|q|2)yy , (2.1b)

for a complex-valued function q and a real-valued function ψ of x, y and t. The parameters
σ = ±1 and ν = ±1 determine the four possible variants of the system. Specifically, the
values σ = −1 and σ = 1 denote respectively the so-called Davey-Stewartson I (DSI) and
the Davey-Stewartson II (DSII) systems. Likewise, the values ν = −1 and ν = 1 identify the
focusing and defocusing cases, although in this case the distinction is more ambiguous, since
in this case one has focusing or defocusing behavior depending the particular spatial reduction
is considered (see below for further details). For convenience, we list the four variants of the
Davey-Stewartson system explicitly:

(i) Focusing DSI equation (σ = −1 and ν = −1):

iqt − 1
2 (qxx + qyy) + ψ q = 0 ,

ψxx − ψyy = (|q|2)xx + (|q|2)yy ,
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(ii) Defocusing DSI equation (σ = −1 and ν = 1):

iqt − 1
2 (qxx + qyy) + ψ q = 0 ,

ψxx − ψyy = −(|q|2)xx − (|q|2)yy ,

(iii) Focusing DSII equation (σ = 1 and ν = −1):

iqt +
1
2 (qxx − qyy) + ψ q = 0 ,

ψxx + ψyy = (|q|2)xx − (|q|2)yy ,

(iv) Defocusing DSII equation (σ = ν = 1):

iqt +
1
2 (qxx − qyy) + ψ q = 0 ,

ψxx + ψyy = −(|q|2)xx + (|q|2)yy .

Note that the Davey-Stewartson equations appear written in many different ways in the
literature. For example, the equations are often written using the auxiliary field

p(x, y, t) = ψ(x, y, t)− ν|q(x, y, t)|2 (2.2)

instead of ψ; e.g., see [6], which we will also employ later. Different sign choices for the
dependent and independent variables are also quite common. It might therefore be useful to
briefly review how the above four versions are obtained from their Lax pair, since this might
make it easier to switch from the present normalization choice to others. We do so next.

Lax pair. The Davey-Stewartson system (2.1) is simply the reduction r(x, y, t) = νq∗(x, y, t)
of the following more general system:

iqt +
1
2 (qxx − σ2

o qyy) + ψ q = 0 , (2.3a)

−irt +
1
2 (rxx − σ2

o ryy) + ψ r = 0 , (2.3b)

ψxx + σ2
o ψyy = −(qr)xx + σ2

o (qr)yy , (2.3c)

where the star denotes complex conjugation and σ = σ2
o , so that the DSI system corresponds

to σo = i and the DSII system to σo = 1, respectively. We next show that the Lax pair for the
system (2.3) is given by

vx = Qv− iσo Jvy , (2.4a)

vt = Av + σo
(
Qvy − iσo J vyy

)
, (2.4b)

where

J =
(

1 0
0 −1

)
, Q(x, y, t) =

(
0 q
r 0

)
, A(x, y, t) =

(
a11 a12
a21 a22

)
,
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and with

ψ = i(a22 − a11) , (2.5a)

(∂x + iσo J∂y)Ad = − 1
2 i J(∂x − iσo J∂y)(qr) . (2.5b)

Above and below, the matrices Ad and Ao denote respectively the diagonal and off-diagonal
parts of a matrix A = Ad + Ao. That is, we show that (2.3) is equivalent to the compatibility
condition vtx = vxt of (2.4), together with the constraints (2.5a) and (2.5b). (Note that one
does not have the freedom to assign Ao, since Ao is already determined by the requirement that
the two parts of the Lax pair be compatible, see (2.7) below.)

It is immediate to verify that (2.3c) follows from (2.5a) and (2.5b). We must therefore show
that (2.3a) and (2.3b) are equivalent to the constraint vtx = vxt. To this end, note that

[Q, Ad] = (a22 − a11)JQ , [Q, Ao] = (a21q− a12r)J ,

where [M, N] = MN − NM is the matrix commutator. Direct computation yields

vxt =
(
Qt + QA− iσo JAy

)
v + σo

(
Q2 − iσo JQy − i JA

)
vy − σ3

o vyyy ,

vtx =
(

Ax + AQ + σoQQy − iσ2
0 JQyy

)
v + σo

(
Qx + Q2 − iAJ − 2iσo JQy

)
vy − σ3

o vyyy .

The compatibility condition vxt = vtx is therefore equivalent to the two equations

iQt + i[Q, A]− i(∂x + iσo J∂y)A− iσoQQy − σ2
o JQyy = 0 , (2.6a)

[A, J] + i(∂x − iσo J∂y)Q = 0 . (2.6b)

(Note that terms containing higher derivatives of v cancel automatically.) Since [A, J] =
−2JAo, it then follows from (2.6b) that

Ao =
1
2 i J(∂x − iσo J∂y) Q , (2.7)

which shows that, as anticipated, Ao is not an independent quantity. In turn, using (2.7), we
have

[Q, Ao] =
1
2

(
σo(qry − qyr)− i(qr)x

)
J .

Splitting (2.6a) into its diagonal and off-diagonal parts then yields

1
2

(
iσo(qry − qyr) + (qr)x

)
J − i(∂x + iσo J∂y)Ad − iσoQQy = 0 (2.8a)

iQt + i(a22 − a11)JQ− i(∂x + iσo J∂y)Ao − σ2
o JQyy = 0 (2.8b)

One can now verify that the left-hand-side of (2.8a) is equivalent to (2.5b). Similarly, using
(2.5a) and (2.7) one can simplify (2.8b) to yield

i JQt + ψQ + 1
2 (∂xx − σ2

o ∂yy)Q = 0 ,

whose off-diagonal entries are precisely (2.3a) and (2.3b).
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Symmetries. All four cases of the DS equations are invariant under a number of transforma-
tions. Specifically, if q(x, y, t) and ψ(x, y, t) are any solutions of (3.1), so are the following,
where all the transformation parameters are assumed to be real:

(i) Space-time translations:

q̃(x, y, t) = q(x− x0, y− y0, t− t0) ,
ψ̃(x, y, t) = ψ(x− x0, y− y0, t− t0) .

(ii) Galilean transformations:

q̃(x, y, t) = q(x− kt, y + σlt, t) ei(kx+ly− 1
2 (k

2−σl2)t) , (2.9a)

ψ̃(x, y, t) = ψ(x− kt, y + σlt, t) . (2.9b)

(iii) Phase rotations:

q̃(x, y, t) = q(x, y, t) eiCt , (2.10a)

ψ̃(x, y, t) = ψ(x, y, t) + C . (2.10b)

(iv) Scaling:

q̃(x, y, t) = aq(ax, ay, a2t) ,

ψ̃(x, y, t) = a2ψ(ax, ay, a2t) .

The above symmetries will allow us to easily identify the physical meaning of the param-
eters appearing in the periodic solutions. Importantly, however, unlike the two-dimensional
NLS equation, none of the variants of the Davey-Stewartson system are rotationally invariant.

One-dimensional reductions of the Davey-Stewartson system. The Davey-Stewartson sys-
tem (2.3) admits self-consistent reductions to various one-dimensional systems, as we discuss
next.

Let us first consider fields that are independent of y. In this case (2.3c) yields simply (for
bounded solutions and up to phase rotations) ψ = −qr, and (2.3a) and (2.3b) become

iqt +
1
2 qxx − q2r = 0 , −irt +

1
2 rxx − r2q = 0 .

The self-consistent reduction r = νq∗ then yields the one-dimensional defocusing and focusing
nonlinear Schrödinger equation when ν = 1 and ν = −1, respectively, as usual.

Now consider the reduction to fields that are independent of x. In this case (2.3c) yields
ψ = qr, and now (2.3a) and (2.3b) become

iqt − 1
2 σqyy + q2r = 0 , −irt − 1

2 σryy + r2q = 0 .

Interesting, whether one gets the defocusing or the focusing NLS equation now also depends
on the sign of σ, and not only on whether r = q∗ or r = −q∗. Specifically, let r = νq∗ with
ν = ±1 as before. When σ = 1 the cases ν = 1 and ν = −1 yield respectively the defocusing
and focusing NLS equation, as before. However, when σ = −1 the situation is reversed, and
ν = 1 and ν = −1 yield respectively the focusing and defocusing NLS equation.
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Periodic solutions of the y-independent reductions of the Davey-Stewartson system. As
discussed above, when q and ψ are independent of y both the DSI and the DSII systems reduce
to the one-dimensional NLS equation. For later purposes, it is useful to briefly recall the
periodic solutions of these one-dimensional systems.

Specifically, when ν = 1 and q and ψ are independent of y, both DSI and DSII reduce to
the defocusing NLS equation:

iqt +
1
2 qxx − |q|2q = 0 . (2.11)

Equation (2.11) has stationary solutions of the form (e.g., see [18])

q(x, t) = R(x) ei(φ(x)−ωt) , (2.12)

where the relevant functions and the corresponding parameters read

R2(x) = A−m cn2 (x, m) , φ(x) =
∫ x

0

J1

R2(s)
ds , (2.13a)

ω = 1
2 (3A− 2m + 1) , J2

1 = A(A−m)(A−m + 1) , (2.13b)

together with the constraint A ≥ m. Conversely, when ν = −1, the y-independent reduction
of the DSI and DSII system yields the focusing NLS equation

iqt +
1
2 qxx + |q|2q = 0 . (2.14)

Stationary solutions of (2.14) in the form (2.12) yields (e.g., see [21])

R2(x) = A + m cn2 (x, m) , φ(x) =
∫ x

0

J1

R2(s)
ds ,

ω = − 1
2 (3A + 2m− 1) , J2

1 = −A(A + m)(A + m− 1) ,

with the constraint 0 ≤ A ≤ 1−m. We will recover all of the above solutions as reductions
of the more general solutions of the focusing DSII system.

3. Periodic traveling wave solutions of the defocusing DSII equation

For concreteness, we begin by considering the case of σ = ν = 1, namely, the defocusing
DSII equation, of the general Davey-Stewartson system, which we now find it convenient to
rewrite using the auxiliary field p(x, y, t) introduced in (2.2) as

iqt +
1
2 (qxx − σqyy) + σ(p + ν|q|2)q = 0 , (3.1a)

pxx + σpyy + 2ν(|q|2)xx = 0 . (3.1b)

Later on we will see in section 6 that similar calculations can be carried out for all four variants
of the Davey-Stewartson system.
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Stationary solutions. Taking advantage of the Galilean invariance of the Davey-Stewartson
system, we first look for stationary solutions for the defocusing DSII equation, i.e., solutions
for which both |q|2 and p are independent of time. That is, we look for solutions in the form:

q(x, y, t) = R(z) ei(φ(z)−ωt) , (3.2a)

p(x, y, t) = P(z) , (3.2b)

z = ax + by , (3.2c)

with R, φ and P real functions of z and a, b and ω are real parameters. We also look for the
functions R and P to be periodic.

Using the definitions of q and p in the form of (3.2), (3.1b) becomes (a2 + b2)P′′ +
2a2(R2)′′ = 0 , which in turn yields

(a2 + b2)P + 2a2R2 = E1z + E2 . (3.3)

Since we want the left-hand side of (3.3) to be periodic, we need to take E1 = 0. Also,
without loss of generality, the phase rotation symmetry allows us to neglect the constant E2, or
equivalently take E2 = 0, thus obtaining simply

P(z) = − 2a2

a2 + b2 R2(z) . (3.4)

Note that P is time-independent, as anticipated. Next, substituting (3.4) in (3.1a), using (3.2a)
and separating the real and imaginary parts yields, respectively,

ωR + 1
2 (a2 − b2)(R′′ − R(φ′)2)− a2 − b2

a2 + b2 R3 = 0 , (3.5a)

Rφ′′ + 2R′φ′ = 0 . (3.5b)

Equation (3.5b) can be solved immediately for φ′, to give

φ′(z) =
J1

R2(z)
, (3.6)

where J1 is an arbitrary integration constant. In turn, substituting (3.6) in (3.5a) reduces it to

ωR + 1
2 (a2 − b2)

(
R′′ − J2

1
R3

)
− a2 − b2

a2 + b2 R3 = 0 . (3.7a)

Multiplying by 2R′, integrating, multiplying by 4R2 again and letting g(z) = R2(z) yields

(a2 − b2)(g′)2 + 4
[

b2 − a2

a2 + b2 g3 + 2ωg2 + 2J2g− (a2 − b2)J2
1

]
= 0 , (3.7b)

where J2 is another arbitrary integration constant. Equation (3.7b) is a differential equation of
the form (g′)2 = 4P3(g), where P3(·) is a cubic polynomial. Looking for solutions in the form
g(z) = A + BY2 maps (3.7b) into the ODE

(Y′)2 = c−2/Y2 + c0 + c2Y2 + c4Y4 , (3.7c)



8 G. Biondini and D. Kireyev

where the coefficients are

c4 =
B

a2 + b2 , (3.8a)

c2 =
3A(a2 − b2)− 2ω(a2 + b2)

a4 − b4 , (3.8b)

c0 =
3A2(a2 − b2)− (4ωA + J2)(a2 + b2)

(a4 − b4)B
, (3.8c)

c−2 =
(a2 − b2)A3 − (2ωA2 + J2A)(a2 + b2)− (a4 − b4)J2

1
(a4 − b4)B2 . (3.8d)

Imposing that (3.7c) matches the ODE satisfied by the Jacobian elliptic cosine [41], namely,
(Y′)2 = (1−Y2)(1−m + mY2), yields

c−2 = 0 , c0 = 1−m , c2 = 2m− 1 , c4 = −m . (3.9)

This way we finally obtain

R2(z) = A + B cn2(z, m) , (3.10)

where

B = −m(a2 + b2) , (3.11a)

ω =
(a2 − b2)(3A + (1− 2m)(a2 + b2))

2(a2 + b2)
, (3.11b)

J2
1 =

A(A−m(a2 + b2))(A + (1−m)(a2 + b2))

a2 + b2 , (3.11c)

J2 = − a2 − b2

a2 + b2

(
3A2 + 2A(1− 2m)(a2 + b2) + m(m− 1)(a2 + b2)2) . (3.11d)

Therefore, the stationary solution (3.2) is completely determined by four parameters: a ,b,
A and m. Importantly, however, self-consistency requires that some of the parameters must
satisfy certain constraints. In particular, J2

1 and R2(z) must be positive [cf. (3.6) and (3.10)]. It
is easy to see that both requirements are satisfied when

A ≥ m(a2 + b2) . (3.12)

It should be noted that (3.11c) leaves the sign of J1 undetermined. However, both sign choices
for J1 yield valid solutions. This is because changing the sign for J1 is equivalent to changing
the sign of z (as per (3.6), since (3.10) imples that R(z) is even in z), and the Davey-Stewartson
system is invariant under x 7→ −x and/or y 7→ −y.

Traveling wave solutions. Next we use the invariances presented in section 2 to generalize
the above stationary solutions and obtain the most general periodic solutions of the defocusing
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DSII equation. Specifically, applying Galilean invariance (2.9) yields the following family of
traveling wave solutions:

q(x, y, t) = R(Z) ei(φ(Z)+kx+ly−Ωt) , (3.13a)

p(x, y, t) = − 2a2

a2 + b2 R2(Z) , (3.13b)

Z(x, y, t) = ax + by− (ak− bl)t , (3.13c)

where

Ω = ω + 1
2 (k

2 − l2) , (3.13d)

φ(·) is still determined by (3.6), R(·) is still determined by (3.10), and the solution parameters
are determined by (3.11) together with the constraint (3.12). We should note that, even though
we used the symbol Z for the similarity variable in (3.13c), for simplicity we will usually still
denote it as z below. The proper meaning should be clear from the context, and will anyhow
be uniquely determined by the value of the parameters k and l.

Summarizing, up to inessential phase rotations and space translations (which altogether
would add three additional free parameters), the periodic solutions of the defocusing DSII
equations are determined by six independent parameters: a, b, k, l, A and m. Importantly, each
of these parameters has a direct physical interpretation. Specifically:

• a and b are the scaling parameters for the x and y coordinates, respectively. Namely,
higher values of a and/or b yield thinner solutions with respect to x and/or y.

• k and l are the wavenumbers for the x and y coordinates, respectively, which (by Galilean
invariance) also determine the speed of propagation with respect to x&y. As a special
case, setting k = 0 and/or l = 0 yields solutions that are stationary with respect to x
and/or y.

• A and m determine the solution profile. Indeed, it should be obvious from (3.10) that the
maximum and minimum values of |q(x, y, t)|2 are respectively A and A−m(a2 + b2).

We will show below that, as with the focusing and defocusing NLS equations, the limiting
case m = 0 yields solutions with constant amplitude, whereas the limiting case m = 1 yields
the soliton solutions of the Davey-Stewartson system.

4. Examples

In this section and the following one, we elaborate on the traveling wave solutions q(x, y, t)
and p(x, y, t) derived in section 3. We begin by first presenting some concrete examples.

The profile of |q(z)| as a function of z only depends on a2 + b2, not on the individual
values of a and b. Figures 1 and 2 show plots of |q| and p as a function of z for k = l = 0
and different values of m and different values of a and b satisfying the constraint a2 + b2 = 1.
With these choices, (3.13a) and (3.13b) yield

|q(z)|2 = A−m cn (z, m)2 , p(z) = − 2a2

a2 + b2 (A−m cn (z, m)2) . (4.1)
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Figure 1: Plots of |q(z)| (top row) and p(z) (bottom row) in the reduction A = 1, a = 1, b = 0, k = l = 0.
Left: m = 1/4. Center: m = 1/2. Right: m = 1. Note p(z) was shifted upward by 2 via (2.10) so that all
its values are non-negative.

Figure 2: Same Fig. 1, but now with a = b = 1/
√

2 and A = 2.

In the limit m = 0, both |q| and p reduce to a constant, whereas, in the opposite limit m =
1, one obtains the familiar cusp-shaped profile of the black solitons of the defocusing NLS
equation. Both these limits are discussed in detail in section 5, where we we also show that,
with the above parametrization, gray solitons are obtained when A > 1. This is illustrated by
Fig. 2, which shows the same kind of plots as in Fig. 2 but now with A = 2.

While choosing different values of a and b subject to a2 + b2 = 1 leaves |q(z)| unaffected,
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Figure 3: Plots of |q(x, y, 0)| (top row) and p(x, y, 0) (bottom row) in the reduction A = 1, k = l = 0, and
with (a, b) = (1, 0). Left: m = 1/4. Center: m = 1/2. Right: m = 1. Note p(z) was shifted upward by 2
via (2.10) so that all its values are non-negative.

Figure 4: Same as Fig. 3, but with (a, b) = (0, 1). Since p(x, y, t) is identically zero for all (x, y, t) in this
reduction, the corresponding plots have been omitted for brevity.

it is important to realize, however, that doing so does amount to a rescaling of p(z), as is
easily seen in (4.1). The most dramatic manifestation of this phenomenon occurs when a = 0
and b = ±1, in which case p(z) is identically zero. This is an important consequence of the
Davey-Stewartson system not being invariant under rotations of the spatial coordinates.

Similarly, even though the value of |q(z)| as a function of z only depends on the value of
a2 + b2, the spatial profile of |q(x, y, t)| as a function of x and y does depend on the individual
values of a and b. This phenomenon is clearly illustrated in Figs. 3, 4 and 5 which show plots
of |q(x, y, t)| and p(x, y, t) as functions of x and y at t = 0 for different choices of a and b
corresponding to the profile for |q(z)| shown in Fig. 1. (Recall that all the solutions presented
in this work are traveling wave solutions; therefore their spatial profile is independent of t.)
Similarly, Fig. 6 shows plots of |q(x, y, t)| and p(x, y, t) corresponding to the profile for |q(z)|
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Figure 5: Same as Fig. 3, but with (a, b) = (1/
√

2, 1/
√

2). As in Fig. 2, the plots of p(x, y, t) are shifted
by 1.

Figure 6: Same as Fig. 5, but with A = 2. As in Fig. 2, the plots of p(x, y, t) are shifted by 1.

shown in Fig. 2.

5. Special cases, reductions and distinguished limits

We now discuss several reductions and distinguished limits of the general traveling wave
solutions (3.13).
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One-dimensional solutions. A special case of the traveling wave solutions (3.13) is that
of effectively one-dimensional solutions, namely, solutions whose modulus is independent of
either x or y. Specifically, |q(x, y, t)| is independent of y when b = 0. Note the expression
for q(x, y, t) is still y-dependent if l 6= 0. However, this y-dependence is trivial, as it is simply
a linear exponential (corresponding to a plane wave), and one could also take l = 0 without
loss of generality thanks to Galilean invariance. In any case, (3.13) with b = 0 yields, up to
Galilean boosts in y, the general periodic solutions of the defocusing NLS equation (2.11) as

q(x, y, t) = R(z) ei(φ(z)+kx+ly−Ωt) , (5.1)

where R(z) and φ(z) are given by Eqs. (3.10) and (3.6), respectively, with z = a(x− kt) and
B, Ω and J1 as before. When a = 1 and k = 0, the above parameter dependencies reduce to
(2.13). Also, in the limiting case m = 1, the above yield the soliton solutions of the defocusing
NLS equation as discussed in detail below. Similarly, solutions whose modulus only depends
on y and t are obtained when a = 0, in which case the solution q(y, t) is given by a similar
expression as before, namely

q(x, y, t) = R(z) ei(φ(z)+kx+ly−Ωt) , (5.2)

where now z = b(y + lt), and B, Ω and J1 as before.

Trivial-phase solutions. Another distinguished limiting case is that of trivial-phase (or “flat-
phase”) solutions, which, as with the focusing and defocusing NLS equations [18, 21], are
obtained J1 = 0. As can be seen from (3.11c) (and again similarly to the case of the defocusing
NLS equations), for the defocusing DSII system there is only one family of flat-phase solutions,
which is obtained when

A = m(a2 + b2) , (5.3)

in which case φ(Z) is identically zero (cf. (3.6)) and the solution reduces simply to

q(x, y, t) = m
√

a2 + b2 sn(Z, m) ei(kx+ly−Ωt) ,

with Z and Ω given by (3.13) with (5.3).

Limit m = 0, plane-wave solutions. Next we discuss the reductions of the periodic traveling
wave solutions obtained in the limiting cases m = 0 and m = 1, starting with the former. When
m = 0, the radial part of the field q(x, y, t) reduces simply to R2 = A. Neglecting the choice
of sign (which can always be taken into account via spatial reflections) we then have

q(x, y, t) =
√

A ei
(

J1
A z+kx+ly− 1

2 (k
2−l2+2ω)t

)
,

p(x, y, t) = − 2a2

a2 + b2 A ,

where J1 and ω are given by (3.11) with m = 0.
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Limit m = 1, soliton solutions. At the opposite limit, when m = 1, one obtains the soliton
solutions of the defocusing DSII system. For m = 1, the radial part of (3.13) becomes

R2(z) = A− (a2 + b2) sech2(z) , (5.4)

where the constraint (3.12) reduces to

A > a2 + b2 , (5.5)

and the other solution parameters are

ω = 1
2
(a2 − b2)(3A− (a2 + b2))

a2 + b2 , J1 = δA

√
(A− (a2 + b2))

a2 + b2 , (5.6)

where δ = ±1. (Recall that both signs of δ lead to acceptable solutions.) Integrating (3.6) with
m = 1 from 0 to z and using (5.4), the phase φ(z) reduces to

φ(z) = δ

√
A− (a2 + b2)

a2 + b2 z + arctan
(

δ

√
a2 + b2

A− (a2 + b2)
tanh z

)
.

Thus, putting everything together, we can write the soliton solutions of the defocusing DSII
equation as

q(x, y, t) =
(
δ
√

A− (a2 + b2) + i
√

a2 + b2 tanh z
)

exp
[
i
(

J1z + kx + ly− 1
2 (k

2 − l2 + 2ω)t
)]

,

(5.7a)

p(x, y, t) = − 2a2

a2 + b2 (A− (a2 + b2) sech2 z) , (5.7b)

with
z(x, y, t) = ax + by− (ak− bl)t ,

J1 and ω given by (5.6), and where A satisfies the constraint (5.5).

Reduction to the dark solitons of the defocusing NLS equation. It is instructive to see how,
in the special case b = l = 0, the soliton solutions (5.7) reduce to the well-known dark soliton
solutions of the defocusing NLS equation up to Galilean transformations. Setting b = l = 0
reduces the constraint (5.5) further to A > a2. To ensure that the resulting solutions tend to
constant values as x → ±∞, we then set

k = −δ sgn(a)
√

A− a2

in (5.7) (where the signum function sgn(a) takes value +1 for a > 0, −1 for a < 0 and 0 for
a = 0), which yields

q(x, t) = (δ
√

A− a2 + i|a| tanh(z)) e−iAt, (5.8)
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where
z = a(x + δ sgn a

√
A− a2 t) . (5.9)

Specifically, the asymptotic values of the solution (5.9) are

q±∞(t) = lim
x→±∞

q(x, t) = (δ
√

A− a2 ± i|a|) e−iAt .

We can therefore rewrite (5.8) by introducing the angle 0 ≤ β ≤ π such that

cos β = δ

√
1− a2

A
, sin β =

√
a2

A
.

This allows us to write (5.8) in the familiar form of the dark solitons solutions of the defocusing
NLS equation [57]:

q(x, t) =
√

A
[

cos β + i sin β tanh
(√

A (x sin β + t cos β)
)]

e−iAt .

A wider class of stationary solutions. The stationary solutions derived in section 3 corre-
spond to setting k = l = 0 in the general expression of the traveling wave solutions (3.13). A
wider class of stationary solutions, however, can be obtained instead by enforcing the constraint

ak− bl = 0 (5.10)

in (3.13), which allows one to eliminate one solution parameter. The possible cases can be
classified as: (i) k = 0, (ii) l = 0, and (iii) k 6= 0 and l 6= 0. We next discuss each of these
cases.

(i) If k = 0, the constraint (5.10) implies l = 0 or b = 0. If k = l = 0, the solutions
reduce back to the stationary ansatz (3.2). If k = b = 0, however, then z = ax, the constraint
reads A > ma2, and the periodic solutions (3.13) reduce to the y-independent solutions (5.1).

(ii) A similar situation is obtained if the constraint (5.10) is satisfied by taking l = 0, in
which case the periodic solutions (3.13) reduce to the x-independent solutions (5.2) (including
the stationary solutions as a special case).

(iii) If k 6= 0 and l 6= 0, the stationary solutions are still given by the general traveling wave
expression (3.13), but where Z = ax+ by is now independent of time, and the constraint (5.10)
allows one to eliminate one of the four parameters a, b, k and l in terms of the other three.

Summarizing, the defocusing DSII equation posesses a five-parameter class of stationary
solutions, which generalizes the four-parameter class of solutions found earlier. (This situa-
tion should be compared to that of the defocusing NLS equation, which has a three-parameter
family of stationary solutions, parametrized by A, a and m).

6. Periodic traveling wave solutions of all four variants of the DS system

We now extend the calculations of section 3 to find periodic traveling wave solutions for
all four Davey-Stewartson equations written in the form (2.3) using the modified auxiliary field
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p(x, y, t) defined in (2.2). We begin as before from the ansatz (3.2) for the stationary solutions.
Using the same steps as for the defocusing DSII equation, (3.1b) yields

P(z) = − 2νa2

a2 + σb2 R2(z) .

Upon substitution into (3.1a), the imaginary part can be solved for φ′(z) as before, to obtain

φ′(z) =
J1

R2(z)
(6.1)

In turn, substituting (6.1) into (3.1a) yields an ODE which is then integrated once to obtain

1
2 (a2 − σb2)(R′)2 +

(a2 − σb2)J2
1

2R2 + J2 + ωR2 − 1
2 ν

a2 − σb2

a2 + σb2 R4 = 0

Multiplying this by R2, setting R2 = A + BY2 and performing the same steps as in the defo-
cusing DSII case now reduces the above equation to the same form as (3.7c), but where now

c4 =
Bν

a2 + σb2 , c2 =
3Aν(a2 − σb2)− 2ω(a2 + σb2)

(a2 − σb2)(a2 + σb2)
(6.2a)

c0 =
3ν(a2 − σb2)A2 − 4ω(a2 + σb2)A− 2(a2 + σb2)J2

B(a2 − σb2)(a2 + σb2)
, (6.2b)

c−2 =
1

B2

(
ν(a2 − σb2)A3 − 2ω(a2 + σb2)A2 − 2J2(a2 + b2σ)A

(σa2 − b2)(a2 + b2σ)
− J2

1

)
(6.2c)

If σ = ν = 1, (6.2) reduce to (3.8). By requiring that the ODE (3.7c) matches that for the
elliptic cosine, as before, one obtains (3.10), and, solving for the parameters, (6.2) yield (3.11).
In the other three cases, by applying the same approach of defocusing DSII, the above setting
allows us to express the periodic solutions in all four cases in the same form as (3.10). By the
same approach (and after some simplification) the general parameter dependencies read

B = −mν(a2 + b2σ) ,

ω =
(σa2 − b2)(3νA + (1− 2m)(a2 + σb2))

2(a2 + σb2)
,

J2
1 =

Aν(A−mν(a2 + b2σ))(A + ν(1−m)(a2 + b2σ))

a2 + b2σ
,

J2 = −ν(σa2 − b2)

2(a2 + b2σ)

(
m(m− 1)(a2 + b2σ)2 − 2ν(2m− 1)(a2 + b2σ)A + 3A2) .

The above calculations show that, for all four variants of the Davey-Stewartson system, the
stationary solutions are completely determined by four independent parameters: A, m, a, b. The
most significant difference between the various cases lies in the precise parameter dependence
(as specified by the above equations) and in the parameter constraints. Specifically, as with the
defocusing DSII equation, we have two such constraints: (i) R2(z) must be non-negative for
all z, and (ii) J2

1 must also be non-negative. If σ = ν = 1, these constraints obviously reduce
to (3.12). Next we proceed to discuss the remaining three cases in detail, and we will see that
in some cases, the constrains end up being considerably more complicated.
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Focusing DSII. Here σ = 1 ν = −1, and the matching yields

B = −m(a2 + b2)

with the constraint
0 ≤ A ≤ (1−m)(a2 + b2).

Defocusing DSI. Here σ = −1 ν = 1, and the matching yields

B = −m(a2 − b2)

with the constraints

A−m(a2 − b2) ≥ 0,
A−m(a2 − b2)

a2 − b2 ≥ −1 .

Focusing DSI. Here σ = −1 ν = −1, and the matching yields

B = m(a2 − b2)

with the constraints

A + m(a2 − b2) ≥ 0,
A + m(a2 − b2)

a2 − b2 ≤ 1 .

Traveling wave solutions, reductions and limiting cases. Now that the stationary solutions
of all four variants of the Davey-Stewartson system have been found, the traveling wave solu-
tions are generated by taking advantage of the Galilean invariance of the system, namely (2.9).
Since the transformation is identical to the one presented in section 3, we omit the resulting
formulae. Also, one can study the reductions and limiting cases of these solutions in a similar
way as for the defocusing DSII system. Again, since the calculations are very similar to those
presented in section 5, we omit them for brevity.

7. Concluding remarks

In conclusions, we presented the full class of periodic solutions of all four versions of
the Davey-Stewartson system, we illustrated these solutions with examples, and we discussed
several distinguished limits, including one-dimensional, linear and solitonic reductions.

The results of this work should pave the way for further investigations on several different
fronts. A first obvious question is that of the stability of all these periodic solutions. One
can expect that establishing linear stability should be relatively straightforward, even though it
involves the study of solutions of a linearized PDE, as opposed to an ODE. Indeed, since the
periodic solutions are essentially one-dimensional, it should be possible to carry it out using
similar techniques as for the KP equation [40, 55]. On the other hand, the study of nonlinear
stability might be considerably more difficult than for one-dimensional systems [18, 19, 21].
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Another possible avenue for further study will be the study of the semiclassical (i.e., small-
dispersion) limit of the Davey-Stewarston system. Indeed, various studies have already re-
vealed the emergence of nearly periodic oscillations over small spatial scales [12, 37], which
indicates that periodic solutions will play a key role in the analysis.

Yet a further direction for further study will be the development of Whitham modula-
tion theory [24, 51] for the Davey-Stewartson system, following the recent development of
the Whitham modulation equations for the Kadomtsev-Petviashvili equation [3] and other
(2+1)-dimensional equations of KP type [4, 5]. We note that the availability of Whitham mod-
ulation theory has allows researchers to effectively study a variety of phenomena, both for
one-dimensional systems (e.g., see [7, 15, 16, 22–24, 30, 38]) as well as for (2+1)-dimensional
ones [45,46]. We hope that this will also prove to be the case for the Davey-Stewartson systems.
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