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The controlled creation of dark-bright (DB) soliton trains in multi-component Bose-Einstein con-
densates (BECs) is a topic of ongoing interest. In this work we generalize earlier findings on the
creation of dark soliton trains in single-component BECs [1] to two-component BECs. By choosing
suitable filled box-type initial configurations (FBTCs) and solving the direct scattering problem for
the defocusing vector nonlinear Schrödinger equation with nonzero boundary conditions we obtain
analytical expressions for the DB soliton solutions produced by a general FBTC. It is found that the
size of the initial box and the amount of filling directly affects the number, size, and velocity of the
solitons, while the initial phase determines the parity (even or odd) of the solutions. Our analytical
results are compared to direct numerical integration of the coupled Gross-Pitaevskii equations, both
in the absence and in the presence of a harmonic trap, and an excellent agreement between the two
is demonstrated.

I. INTRODUCTION

Nonlinear phenomena in Bose-Einstein condensates
(BECs) have become a focus of attention during the last
couple of decades [2, 3], and solitary waves stemming
from the balance between dispersion and the nonlineari-
ties of the system have been a topic of intense investiga-
tion [4]. In single-component BECs, these macroscopic
nonlinear excitations can have the form of local density
suppressions (dark solitons [4, 5]) or local density humps
(bright solitons [6]) depending on whether the nonlinear
interaction is repulsive or attractive, respectively.

The experimental realization of two-component
BECs [7–9] has opened a window towards the study of
more complex solitonic structures [10–19]. In repulsive
two-component BECs, a fundamental excitation takes
the form of a dark-bright (DB) soliton [10]. A single
DB soliton consists of a dark soliton that acts as an ef-
fective potential in which the bright soliton is trapped
and, consequently, waveguided. Importantly, bright soli-
tons cannot be sustained (unless under such waveguid-
ing) in self-repulsive BECs. The concept of waveguiding
has its origin in nonlinear optics [20, 21] (see also ref-
erences therein), where DB solitons have been an active
topic of theoretical and experimental research [22–24]. In
this context, the DB soliton dynamics is described by the
defocusing vector nonlinear Schrödinger (VNLS) equa-
tion [4], while in the context of BECs DB solitons sim-
ilarly obey the so-called coupled Gross-Pitaevskii equa-
tion (CGPE) [2, 25, 26].

The first experimental realizations of DB solitons in
BECs almost a decade ago [14, 27–31], as well as sub-
sequent experimental realizations of their variants and
generalizations [15, 19, 32–35], have motivated a sig-
nificant amount of interest in studying their dynamics

and interactions [18, 36–48]. In particular, several meth-
ods have been proposed to create DB soliton structures.
For instance, the combination of phase imprinting tech-
niques [49, 50], to create the dark soliton, and a local
population transfer by means of a Raman process [51],
to create the bright counterpart, allows the creation of
individual DB solitons [27]. Other population transfer
methods demonstrated how an alternating spatial dis-
tribution of the two components, via the creation of a
winding pattern, can lead to the formation of DB soliton
trains [31]. Additionally, counterflow techniques which
involve a dynamical mixing of both components also give
rise to DB soliton trains [14, 30]. More recently, the
controllable creation of DB pairs could generate the con-
ditions for a systematic observation and measurement of
their interactions, including in BECs with a higher (e.g.,
three) number of components [35].

Following the counterflow concept, matter-wave in-
terference methods have been highly used in single-
component BECs to generate dark soliton trains [52–56].
This method is based on the collision of two separated
condensates, and allows for the systematic nucleation of
a desired number of solitonic entities upon tailoring the
initial separation of the colliding condensates and their
relative phase. In this counterflow setting, exact results
were originally derived for the defocusing NLS equation
in the seminal work of Ref. [57] for a box-type pulse by
means of the inverse scattering transform (IST) [58–62].
More recently, some theoretical works have exploited the
integrable nature of the defocusing VNLS model and fur-
ther developed an IST formalism with non-zero-boundary
conditions (NZBC) [42, 63, 64].

In view of our previous work in single-component
BECs [1] and the analytical tools provided by the di-
rect scattering method and the IST with NZBC, in this
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work we exploit the unprecedented level of control that
the ultracold environment offers [7–9, 65, 66] to study the
response of a two-component, one-dimensional (1D), har-
monically trapped BEC with repulsive intra- and inter-
component interactions, when a general filled box-type
configuration (FBTC) is considered as an initial condi-
tion. In particular, in our setup the wave function of
the first component is a box-type pulse whose sides play
the role of the two colliding condensates in the matter-
wave interference mechanism. On the other hand, the
wave function of the second component is an inverted
box that fills the space between the two sides of the box
of the first component (see Fig. 1). A somewhat similar
configuration (albeit with differences in the bright com-
ponent) was considered in nonlinear optics to study vec-
tor soliton interaction dynamics [23]. First, we consider
the integrable version of the problem, i.e, the defocusing
VNLS equation with NZBC. Here, we solve analytically
the direct scattering problem for the aforementioned box-
type configuration and provide the discrete eigenvalues of
the scattering problem for distinct parametric variations.
The latter characterize the amplitudes and velocities of
the ensuing DB solitons, whose exact waveform can be
then extracted via the IST.

Having at hand the exact analytical expressions for the
DB solitons, we then compare them with direct numeri-
cal simulations of the CGPE with a FBTC in the absence
of confinement, finding remarkable agreement, as should
be expected on the basis of the exact nature of the IST
analysis. Moreover, to showcase the broader, as well as
physical relevance of our results, we extend our analytical
findings to the case involving the presence of a harmonic
confinement. Using the expressions for the eigenvalues
from the direct scattering problem, we design analytical
estimates to describe the in-trap oscillation dynamics of
the generated DB solitons. Here, we provide explicit ex-
pressions accounting for the oscillating size of the dark
and bright counterparts of a DB soliton in a trap. The
latter is a feature that is absent in the single-component
case, which we attribute to the intercomponent inter-
action. An excellent agreement between the analytical
estimates and the numerical simulations confirms the ex-
tension of the predicted solutions of the direct scattering
problem from the homogeneous setup to the harmonically
trapped scenario. This also justifies the particular rele-
vance and usefulness of the detailed IST analysis of the
integrable case with a view towards the more physically
relevant confined setting.

Our presentation is organized as follows. In Sec. II
we introduce the model and solve the direct scattering
problem for the defocusing VNLS equation with a general
FBTC. Additionally, we discuss some analytical consider-
ations regarding the eigenvalues of the scattering problem
and the DB soliton solution. In Sec. III we present our
findings. First, we extract the eigenvalues of the scatter-
ing problem for a wide range of different initial configu-
rations. Then, we perform a direct comparison between
our analytical findings and the numerical integration of

the CGPE, both in the absence and in the presence of a
harmonic trap. Finally, in Sec. IV we summarize our re-
sults and discuss possible directions for future study. In
Appendix A we provide further details on the DB soli-
ton solutions. In Appendix B we describe the change of
amplitude of oscillating DB solitons in the presence of a
trap.

II. NONLINEAR SCHRÖDINGER EQUATION
AND DARK-BRIGHT SOLITON SOLUTION

We consider a one-dimensional (1D) pseudo-spinor
BEC consisting of two different spin states, e.g., |F,m⟩ =
|1,−1⟩ and |F,m⟩ = |2, 2⟩, of the same atomic species of
87Rb [7], confined in a highly anisotropic trap with lon-
gitudinal and transverse trapping frequencies satisfying
the relation ωx ≪ ω⊥. In such a cigar-shaped geometry,
the condensate wavefunction along the transverse direc-
tion, being the ground state of the respective harmonic
oscillator, can be integrated out. This, in turn, leads to
the following pair of coupled Gross-Pitaevskii equations
(CGPEs) [4]:

iℏ∂tΨj = H0Ψj +

2∑︂
k=1

g
(1D)
jk |Ψk|2Ψj , (1)

with j = 1, 2, which, in the mean-field framework, gov-
erns the BEC dynamics for the longitudinal part of the

wavefunction. In the above expression, H0 = − ℏ2

2m∂2
x +

V (x) is the single-particle Hamiltonian, where m denotes
the atomic mass and V (x) = mω2

xx
2/2 denotes the ex-

ternal harmonic potential. Also, g
(1D)
jk = 2ajkℏ2/ma2⊥

accounts for the effective one-dimensional repulsive in-
teraction strengths, with ajk > 0 denoting the 1D scat-

tering length and a⊥ =
√︁

ℏ/mω⊥ being the transverse
harmonic oscillator length. Under the following transfor-
mations, t̃ = tω⊥, x̃ = xa−1

⊥ , and q̃j = Ψj

√
2a⊥, Eq. (1)

can be rewritten in the dimensionless form

i∂tqj =

[︃
−1

2
∂2
x +

1

2
Ω2x2

]︃
qj +

2∑︂
k=1

g
(1D)
jk |qk|2qj . (2)

Here, Ω ≡ ωx/ω⊥ and g
(1D)
jk = ajk/a⊥. Note that for

convenience we dropped the tildes and that energy, time
and length are now measured in units of ℏω⊥, ω

−1
⊥ and

a⊥ =
√︁

ℏ/mω⊥, respectively.

In this work, we consider g
(1D)
jk = 1, i.e., we work with

the classical Manakov model [67] in the case of the ab-
sence of confinement. Then, Eq. (2), with Ω = 0, reduces
to the vector nonlinear Schrödinger (VNLS) equation,
namely

iqt +
1

2
qxx − ∥q∥2q = 0 , (3)

to which we can further perform the rescaling q̃(x, t) =

q(
√
2x, t) exp

{︁
−2iq2ot

}︁
that leads, by dropping the tilde,
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to

iqt + qxx − 2(∥q∥2 − q2o)q = 0 , (4)

which is subject to the following time-independent NZBC
at infinity

lim
x→±∞

q(x, t) = q± = qoe
iθ± . (5)

Hereafter, q ≡ q(x, t) and qo are two-component vectors,
∥·∥ is the standard Euclidean norm, qo = ∥qo∥ > 0, θ±
are real numbers, and subscripts x and t denote partial
differentiation with respect to space and time hereafter.

Building on our recent investigation of scalar BECs [1],
here we consider a box-type initial configuration in the
first component whose box is being filled by the second
component (so that the latter can induce the formation
of bright solitons) in the following manner

q(x, 0) =

⎧⎨⎩ (qoe
−iθ, 0)T x < −L ,

(heiα, H)T |x| < L ,
(qoe

iθ, 0)T x > L .
(6)

A schematic illustration of Eq. (6) is given in Fig. 1(a).
Here, 0 ≤ h ≤ qo refers to the height of the box of the first
component, and 0 ≤ H ≤ qo refers to the height of the
filling box of the second component. qo is the amplitude
of the box, θ± are the phases on each side of the box
and α is the phase of the first component inside the box.
The phase invariance of the VNLS equation allowed us to
define θ+ = −θ− = θ without loss of generality in Eq. (6).
For convenience we further introduce the quantities

∆θ = 2θ , ∆θ− = θ + α , ∆θ+ = θ − α , (7)

to denote the distinct phase differences in each of the
different regions of the box. We will refer to the cases
∆θ = 0 and ∆θ = π as in-phase (IP) and out-of-phase
(OP) configurations, respectively, and to the special case
having h = 0 as the “zero-box” configuration, which de-
scribes the absence of atoms of the first component inside
the box.

Additionally, L corresponds to the half width of the
box and it is the parameter that controls the distance
between the two sides of the box playing the role of
the two-colliding condensates in the matter-wave interfer-
ence mechanism. A schematic illustration of the latter is
shown through snapshots in Figs. 1(c)–(e) at t1 < t2 < t3,
respectively. At t1 the two sides of the box are spreading
towards each other and form an interference pattern in-
side the box. Then, at t2, some of the fringes formed due
to the interference process stabilize and start acting as
effective potentials for the second component filling the
box. Finally, at t3 the stabilized fringes develop into dark
solitons, while the second component trapped inside the
latter becomes bright solitons, giving rise to a DB soliton
train.

Figure 1. Schematic illustration of the box-type configura-
tion utilized herein, for arbitrary L, qo, θ, h, α and H in the
absence (a) and in (b) the presence of a harmonic trapping po-
tential. Here, L is the parameter that controls the separation
between the two sides of the box which play the role of the
two colliding condensates in a matter-wave interference pro-
cess. The matter-wave interference process is also schemati-
cally illustrated through snapshots in (c), (d) and (e) at times
t1 < t2 < t3, respectively. Note that the quantities shown are
measured in transverse oscillator units.

A. The direct scattering problem

The defocusing VNLS equation, see Eq. (4), corre-
sponds to a coupled system of integrable nonlinear partial
differential equations that can be solved analytically by
means of the IST in terms of a Lax pair. The 3× 3 Lax
pair associated with Eq. (4) is

ϕx = Xϕ , ϕt = Tϕ , (8)

where ϕ is a 3× 3 matrix eigenvector,

X(x, t, k) = ikJ+Q , (9)

T(x, t, k) = 2ik2J− iJ(Qx −Q+ q2o)− 2kQ , (10)

with

J =

(︃
−1 0T

0 I

)︃
, Q(x, t) =

(︃
0 qT

q∗ 0

)︃
, (11)

and I and 0 are the appropriately sized identity and zero
matrix, respectively. The first equation in Eq. (8) is re-
ferred to as the scattering problem and k ∈ C as the
scattering parameter.

Under fairly general conditions on q(x, t), as x → ±∞
the solutions of the direct scattering problem are ap-
proximated by those of the asymptotic scattering prob-
lems ϕx = X±ϕ, where X± = ikJ + Q± and Q± =
limx→±∞ Q(x, t). The eigenvalues of X± are ik and ±iλ,
where

λ(k) =
√︁
k2 − q2o . (12)
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These eigenvalues have branching, and therefore we intro-
duce the two-sheeted Riemann surface defined by λ(k).
As in Refs. [61–63, 68], we take the branch cut along
the semilines (−∞,−qo) and (qo,∞), and we label those
sheets such that Imλ(k) ≥ 0 on sheet I and Imλ(k) ≤ 0
on sheet II.

We also define the Jost solutions, ϕ±(x, t, k), as the
simultaneous solutions of both parts of the Lax pair sat-
isfying the boundary conditions

ϕ±(x, t, k) ≡ Y±(k)e
iΘ(x,t,k) +O(1) (13)

as x → ±∞, where Θ(x, t, k) = Λx − Ωt with Λ =
diag(−λ, k, λ), Ω = diag(2kλ,−(k2 + λ2),−2kλ), and
Y±(k) are the simultaneous eigenvector matrices of X±
and T± = limx→±∞ T(x, t, k). The two sets of Jost so-
lutions are related to each other through the scattering
relation

ϕ−(x, t, k) = ϕ+(x, t, k)S(k) , (14)

valid for all k ∈ (−∞,−qo)
⋃︁
(qo,∞). Moreover, the fact

that ϕ± are simultaneous solutions of both parts of the
Lax pair implies that the scattering coefficients and the
discrete eigenvalues of the scattering operator are time-
independent. Therefore, hereafter we will consider the
scattering problem at t = 0 and we will omit the time
dependence from the eigenfunctions.

At t = 0 the scattering problem in each of the three
regions x < −L, |x| < L, and x > L takes the form
ϕx = (ikJ+Qj)ϕ with the index j = c,± and constant
potentials Q± and Qc given by

Q± =

⎛⎝ 0 qoe
±iθ 0

qoe
∓iθ 0 0
0 0 0

⎞⎠ , (15a)

Qc =

⎛⎝ 0 heiα H
he−iα 0 0
H 0 0

⎞⎠ . (15b)

One can then easily find explicit solutions for the scat-
tering problem in each of the aforementioned regions,
namely

φl(x, k) = Y−(k)e
iΛx x ≤ −L (16a)

φc(x, k) = Yc(k)e
iMx |x| ≤ L (16b)

φr(x, k) = Y+(k)e
iΛx x ≥ L (16c)

where M = diag(−µ, k, µ), µ =
√︁
k2 − (h2 +H2) and

Y±(k) =

⎛⎝ λ+ k 0 λ− k
iqoe

∓iθ 0 −iqoe
∓iθ

0 iqoe
±iθ 0

⎞⎠ , (17a)

Yc(k) =

⎛⎝ µ+ k 0 µ− k
ihe−iα −iH −ihe−iα

iH iheiα −iH

⎞⎠ . (17b)

Eqs. (16) yield explicit representations for the Jost
solutions ϕ±(x, 0, k) in their respective regions, i.e.:

ϕ−(x, 0, k) ≡ φl(x, k) for x ≤ −L, and ϕ+(x, 0, k) ≡
φr(x, k) for x ≥ L. At the boundary of each region one
can express the fundamental solution on the left as a lin-
ear combination of the fundamental solution on the right,
and vice versa. In particular, we can introduce scattering
matrices S−(k) and S+(k) such that

φ−(−L, k) = φc(−L, k)S−(k) , (18a)

φc(L, k) = φ+(L, k)S+(k) . (18b)

As a consequence, we can express the scattering matrix
S(k) relating the Jost solutions ϕ±(x, k) as

S(k) = S+(k)S−(k)

= e−iΛLY−1
+ Yce

2iMLY−1
c Y−e

−iΛL . (19)

Computing the right-hand side of Eq. (19), we obtain the
following expression for the first element, s11(k), of the
scattering matrix S(k)

4λµqo(h
2 +H2)e−2iλLs11(k) =

= 4ih(h2 +H2)q2oe
iθ cosα sin(2µL)

+ 2qoh
2e2iθ(λ− k)[µ cos(2µL) + ik sin(2µL)]

+ 2qo(h
2 +H2)(λ+ k)[µ cos(2µL)− ik sin(2µL)]

+ 2qoµH
2(λ− k)e2iθe2ikL . (20)

The discrete eigenvalues of the scattering problem are
the zeros of s11(k) for all k ∈ C with Imλ(k) > 0, where
s11(k) is analytic [63]. It is important to remark that, in
general, for the defocusing VNLS equation the eigenval-
ues of the scattering problem are not only single zeros,
but double zeros can also occur [62]. However, for the
particular configuration used in this work [see Eq. (6)]
all zeros will turn out to be simple.

B. The Dark-Bright soliton solution

In view of the inverse problem, it is convenient to in-
troduce a uniformization variable z defined by

z = k + λ , (21)

which is inverted by

k =
1

2

(︃
z +

q2o
z

)︃
, λ =

1

2

(︃
z − q2o

z

)︃
. (22)

Thereby, sheet I and sheet II of the Riemann surface
are mapped onto the upper and lower half-planes of the
complex z-plane, respectively; the continuous spectrum
is (i.e., the semilines (−∞,−q0) ∩ (q0,∞) are) mapped
onto the real z-axis, while the spectral gaps (−q0, q0) on
both sheets are mapped onto the circle of radius q0 (see
Ref. [63] for further details). The discrete eigenvalues are
found as zeros of s11(z) := s11(k(z), λ(z)), and in this
case a zero of s11(z) on the upper semicircle of radius qo
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corresponds to a dark-dark soliton, i.e, a dark soliton in
each component, while a zero inside the upper semicircle

of radius qo corresponds to a DB soliton. In the presence
of a single such zero, the inverse scattering problem yields
the following DB soliton solution [63]:

qd(x, t) =
{︂
qo cosβo − iqo sinβo tanh

[︁
νo(x− x0 + 2ξot)

]︁}︂
ei(βo+φd+2q2ot) , (23a)

qb(x, t) = −i sinβo

√︂
q2o − |zo|2 sech

[︁
νo(x− x0 + 2ξot)

]︁
ei(ξox−(ξ2o−ν2

o)t+φb+2q2ot) , (23b)

as a solution of Eq. (4). Here, qd is the dark soliton
component and qb is the bright one. Also, x0 is the cen-
ter of the soliton and φd,b are arbitrary constant phases.
The DB solution of Eq. (23) is expressed in terms of the
spectral parameter zo = |zo|eiβo ≡ ξo + iνo, with

ξo = |zo| cosβo , νo = |zo| sinβo . (24)

Therefore, the relevant soliton parameters can be
uniquely specified in terms of zo, i.e.,

Ad = qo sinβo ≡ qo
|zo|

Im zo , (25a)

Ab =
√︁
q2o − |zo|2 sinβo ≡ Im zo

√︄
q2o
|zo|2

− 1 , (25b)

v = −2|zo| cosβo ≡ −2Re zo , (25c)

where Ad and Ab are the dark and bright soliton ampli-
tudes, respectively, and v denotes the DB soliton velocity.

Equivalently, the soliton parameters can be directly
expressed in terms of ko (see Appendix A). Given a zero
ko, one can substitute zo = ko + λo into Eqs. (25) with

the caveat that λo =
√︁
k2o − q2o must be chosen with the

appropriate branch cut, and on the appropriate branch
where Imλo > 0. Then, Eqs. (25) become

Ad =
2γ Imλo

γ2 + 1
, (26a)

Ab = − 2 Im ko√︁
γ2 − 1

, (26b)

v = −4Re ko
1 + γ2

, (26c)

where

γ =
qo
|zo|

> 1 .

To get some physical insight on the DB solutions, we
illustrate in Fig. 2 the dependence parameters γ, Ad, Ab

and v on the scattering parameter k, for the solutions
provided by Eq. (A5b) and for qo = 1. Here, one can see
that indeed γ > 1∀k. Also, Ad ≤ qo∀k, as expected, since
dark solitons cannot have amplitudes greater than the
background. Similarly, Ab < Ad ∀ k. Obviously, larger
(deeper) dark solitons can host larger bright solitons, but

Figure 2. γ and the soliton parameters amplitudes, Ad, Ab,
and velocity, v, as functions of the scattering parameter k
for qo = 1. Note that the quantities shown are measured in
transverse oscillator units.

in turn the DB soliton itself becomes slower. In fact, v
has a minimum (v = 0) at Re ko = 0, where Ad has a
maximum (Ad = qo). The latter is known as a black
soliton, and it can host a bright soliton of any smaller
size, which explains why v and Ad are independent of
Im k at Re k = 0. On the other hand, v always has its
maximum (absolute) value at k = 2qo, coinciding with
the speed of sound of the condensate, c = 2qo [note that
c =

√
gn [69, 70], where n is the peak density of the BEC,

in the dimensionless units adopted herein for the CGPE
[Eq. (2)]. Yet, no soliton solution exists with v = c.
Further details on the soliton parameters are discussed
in Sec. III A.

III. DARK-BRIGHT SOLITON GENERATION
AND DYNAMICS

A. Analytical results for the discrete spectrum

In this section, we aim at finding the zeros of s11(k) [see
Eq. (20)] and analytically characterizing the DB solitons
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produced by the FBTC in Eq. (6), upon considering dif-
ferent variations of the system parameters. In particular,
our initial FBTC is defined by six different parameters:
the half width, L, the amplitude, qo, the side phases, ±θ,
the height, h, of the first component in the box, its phase,
α, and the filling of the second component in the box, H.
The corresponding values of our parameter exploration
are the following:

L ∈ [1, 9] , θ =
{︂
0,

π

2

}︂
,

h ∈ [0, qo] , α = {0, π} , H ∈ [0, qo] ,

together with qo = 1. Furthermore, we introduce the
filling angle, σ ∈ [0, π], which relates the heights h and
H with the amplitude background qo as follows:

h = qo cosσ , (27a)

H = qo sinσ . (27b)

Introducing σ allows us to explore different filling con-
figurations using a single parameter. Notice that h > 0
in the regime 0 ≤ σ < π/2, while h < 0 in the regime
π/2 < σ ≤ π, which is equivalent to h = |qo cosσ| > 0
with α = π (see Fig. 1).

Since we are mostly interested in effects driven by the
presence of the second component, we choose σ as our
main parameter. We are also interested in considering
the effect of distinct initial configurations, and we take L
as our second representative parameter since it controls
the separation between the colliding sides of the conden-
sate. Thus, below we will vary σ for different values of
L, denoting such variation as L[σ].
To classify all spectra, we choose two different case sce-

narios. The first one consists of a zero-box configuration
(h = 0), where the second component is the only compo-
nent present inside the box. The second case is a full-box
configuration, with the box being fully filled either by a
single or by both components, i.e., q2o = h2(σ) + H2(σ)
[see Eqs. (27)]. We start exploring IP-FBTCs (θ = 0),
followed by OP-FBTCs (θ = π/2).
The corresponding spectra of zeros are presented in

Figs. 3, 5, 6 and 8. All these figures share the same ar-
rangement. In particular, each figure consists of ten pan-
els, (a)–(j), distributed along two rows and five columns.
The latter correspond to five different values of L, rang-
ing from L = 1 to L = 9. The top row shows the zeros of
s11(k) in the Re k−σ plane with Im k depicted as a color
gradient in a logarithmic scale. This representation pro-
vides a clearer disposition of the zeros. Additionally, ze-
ros corresponding to α = 0 (α = π) are shown on a white
(gray) background [see, e.g., Fig. 3 (Fig. 6)]. In con-
trast, bottom-row panels depict the zeros in the complex
k-plane, which can be directly mapped onto Fig. 2, con-
taining the relevant physical information of the solitons,
such as their amplitudes and velocities. In this case, σ is
illustrated as a color gradient. Blue tones (0 ≤ σ ≤ π/2)
correspond to α = 0, while red tones (π/2 ≤ σ ≤ π) cor-
respond to α = π. Recall that, in all cases, σ is the main

varying parameter and both rows can be easily compared
by following their common Re k axis. Also, when looking
at the zeros, e.g. in Fig. 3, one should keep in mind that
in this system under consideration the zeros are single-
valued, i.e., ki ̸= kj , where i, j denote different zeros,
for any choice of parameters (see Sec. II A). This means
that although some of the zeros appear to be on top of
each other they never intersect, i.e. coincide, which is
the case since our two-dimensional representation of the
zeros, e.g. in Fig. 3, is a projection of a three-dimensional
space (Re k, Im k, σ). Finally, if both spatial and phase
symmetries of the FBTC are preserved the zeros appear
in pairs k±, i.e., Re k+ = −Re k− and Im k+ = Im k−.
Note that the FBTC is always spatially symmetric [see
Eq. (6)], and thus only FBTCs with θ ̸= 0 and h ̸= 0 can
present asymmetric solutions (Fig. 8). In those cases, we
say that the phase symmetry of the system is broken.
Therefore, whenever θ = 0 (Fig. 3 and Fig. 6) or both

symmetries are preserved (Fig. 5), only ko with Re ko ≥ 0
are shown.

1. Zero-box configuration

For the zero-box configuration we set h = 0, so that
only the second component is present inside the box of
the FBTC. At the same time, for our particular choice of
parameters, the FBTC preserves both spatial and phase
symmetries, independently of θ, and thus also do its so-
lutions. In particular, IP-FBTCs (θ = 0) always present
an even number of paired zeros (k±). On the other hand,
for this zero-box configuration, OP-FBTCs (θ = π/2) al-
ways possess a particular zero, k0 ∈ I, which is unpaired,
resulting in an odd number of zeros. More specifically, as
we later explain, k0 corresponds to a static DB soliton,
with the dark counterpart being a so-called black soliton
(v = 0 and Ad = qo). Also note the distinct subscript 0
used when compared to o introduced for a general solu-
tion.

a. In-phase background. We begin by exploring
the spectra of an IP zero-box configuration, for which
qo = 1, θ = 0 and h = 0 (α = 0) are held fixed.
Additionally, L ∈ [1, 9] and σ ∈ [0, π/2], and thus
H(σ) ∈ [0, qo]. The corresponding spectra of zeros are
presented in Fig. 3.

From Figs. 3(a)–(e) (top row), it can be directly in-
ferred that increasing L increases the number of zeros,
and thus the number of solitons, an outcome analogous
to the single-component case [1]. In particular, L = 1
has only one pair of zeros, k1, while L = 5 has up to
four pairs, k1, . . . , k4, and L = 9 has up to six pairs,
k1, . . . , k6. On the other hand, increasing σ (or equiv-
alently increasing H) reduces the number of zeros. For
example, in Fig. 3(c) the spectrum of solutions goes from
four pairs of zeros at σ = 0 (H = 0) to two at σ = π/2
(H = 1). Here, k4 ceases to exist right above σ = π/8,
and k3 is absent for σ > 3π/8. We attribute this effect
to an increase of the second component in the box, hin-
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L[σ] : qo = 1, θ = 0, h = 0, H = H(σ)
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Figure 3. Zeros of s11(k) as a function of σ for different values of L in the zero-box IP background configuration. The parameters
qo = 1, θ = 0, h = 0 (α = 0) remain fixed. The upper row shows the location of the zeros in the Re k − σ plane whereas
the bottom row shows the location of the zeros in the complex k-plane. The complex k-plane can be mapped onto Fig. 2 to
retrieve the relevant physical information about the soliton solutions. The color coding shows the corresponding complementary
quantity Im k (upper row) and σ (bottom row). Only Re ko > 0 are shown due to the symmetry of the zeros. Red circles in (c)
and (h) correspond to the zeros shown in Fig. 9. Note that the quantities shown are measured in transverse oscillator units.
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Figure 4. Amplitudes Ad, Ab, and velocity v of k1, k3, k4 and
k5 shown in Figs. 3(e) and 3(j) (see legend) as a function of
σ. The local maximum of v defines the transition point from
LIC to HIC solutions for k1, k3 and k5. Note that v is halved
to depict all parameters in the same scale. Note also that the
quantities shown are measured in transverse oscillator units.

dering the emergence of solitonic structures due to the
repulsive intercomponent interaction.

It is also important to understand how these paramet-
ric variations affect the characteristics of the solitonic
entities, in particular their amplitudes and velocities [see
Eq. (26)]. In this regard, Figs. 3(f)–(j) (bottom row) are

key towards easily mapping the zeros onto the relevant
physical parameters of the solitons, shown in Fig. 2. Al-
though in the complex k-plane most of the zeros with
a low imaginary contribution fall on top of each other
(without intersecting), we can still use Figs. 3(a)–(e) to
follow, respectively, the zeros in Figs. 3(f)–(j) by means
of their common Re k axis. It is clear that Re ko increases
with σ. However, to infer about the behaviour of Im ko
it is convenient to distinguish between solutions with a
high imaginary contribution (HIC) and those with a low
imaginary contribution (LIC). We empirically define as
HIC the solutions whose zeros have | Im ko| > 0.1, and
LIC the ones having | Im ko| < 0.01.

First, let us focus on the LIC solutions. In Figs. 3(f)–
(j), LIC solutions lay on Im ko ≈ 0, indiscernible from one
another. All solutions belong to this group when σ ≈ 0
since Im ko is a quantity directly related to the presence
of the second component. In particular, LIC solutions
correspond to DB solitons with a negligible bright contri-
bution (see Fig. 2), i.e, they are almost pure dark solitons
(see also Fig. 10 below). However, as σ increases, v in-
creases but Ad decreases. Similarly, Re ko also increases
with σ and some LIC solutions cease to exist right be-
fore reaching Re ko = 1 and Im ko = 0, or equivalently,
before the solitons acquire the speed of sound. In order
to avoid this point, a LIC solution must transition into
a HIC one. In Fig. 3(c), the former zeros are k3 and k4,
and the latter are k1 and k2. Additionally, in the zero-
box configuration, LIC solutions present localized drops
of the imaginary contribution as σ increases. At these
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L[σ] : qo = 1, θ = π/2, h = 0, H = H(σ)
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Figure 5. Zeros of s11(k) as a function of σ for different values of L in the zero-box OP background configuration. The
parameters qo = 1, θ = 0, h = 0 (α = 0) remain fixed. The upper row shows the location of the zeros in the Re k − σ plane
whereas the bottom row shows the location of the zeros in the complex k-plane. The complex k-plane can be mapped onto
Fig. 2 to retrieve the relevant physical information about the soliton solutions. The color coding shows the corresponding
complementary quantity Im k (upper row) and σ (bottom row). Only Re ko > 0 are shown due to the symmetry of the zeros.
k0 is an unpaired solution. Red circles in (c) and (h) correspond to the zeros shown in Fig. 10. Note that the quantities shown
are measured in transverse oscillator units.

drops, the imaginary contribution drastically decreases
to Im ko ≈ 0 to rapidly increase again. The drops are de-
picted by the logarithmic colorscale of Im ko, where Im ko
drops from | Im ko| ≲ 10−3 (black) to | Im ko| ≲ 10−6

(red and yellow), given our numerical precision (e.g., for
L = 3, an increase in the numerical precision leads to
Im k2(σ = 1.4839988) = 1.98648 × 10−18). For example,
in Fig. 3(e), k2 presents three drops (the region where
the drops take place is mostly magenta). The first drop
takes place at σ ≈ 0.17π

2 . Note that as σ increases, drops
of k3, k4 and k5 follow. The second drop of k2 appears at
σ ≈ 0.45π

2 . Again, drops of k4 and k5 follow. Notice that
in this case, k3 has already transitioned into a HIC solu-
tion (blue tones). The last drop takes place at σ ≈ 0.72π

2 .
In this case, neither k4 nor k5 present a drop since the
former ceases to exist shortly after and the latter transi-
tions into a HIC solution. Nevertheless, these drops do
not represent any major additional change to the soli-
tonic structures, since Ad is almost independent of Im ko
when |Re ko| < 1 and Im ko ≈ 0 (see Fig. 2), and Ab is
almost negligible. A visualization of the above discus-
sion is presented in Fig. 4 for the LIC solution k4. Here,
the effect of the drops is clearly visible on Ab, which de-
creases (almost) to zero at each drop. Additionally here,
one can appreciate how k4 becomes sonic, i.e., v ≈ c, at
σ ≈ 3π/8 with a fast decrease of Ad towards Ad = 0,
characteristic of the LIC solutions.

Next we focus on HIC solutions and take again as
representative examples Figs. 3(e) and 3(j) as reference.

Here, the HIC solutions are k1, k3 and k5, which become
more evident after they transition from LIC to HIC solu-
tions as σ increases. Mapping the zeros of Fig. 3(j) onto
Fig. 2 reveals that HIC solutions are DB solitons with a
higher bright contribution than LIC ones. Recall that the
bright contribution increases with Im k. As stated before
for LIC solutions, when σ increases Ad decreases and v in-
creases, while Ab increases or decreases depending on the
increase or decrease of the imaginary contribution. How-
ever, the behaviour of HIC solutions is different. Indeed,
by following k1, which is a HIC solution already from
low values of σ, it is obvious that this zero highly differs
from the LIC solutions presented before. In particular,
it quickly reaches a regime where the ratio Re ko/ Im ko
is almost constant independently of σ. This regime is
where we start to consider a zero as a HIC solution and,
when mapped onto Fig. 2, we observe that k1 has an
almost constant Ad. On the other hand, in this regime
Ab always increases while v always decreases. The latter
directly shows that DB solitons with the same dark com-
ponent but a bigger bright counterpart are slower than
those with a smaller bright contribution. In the case of
k3, it is found that this solution transitions from a LIC
to a HIC one for σ > π/8. From this point onwards, the
ratio Re ko/ Im ko also becomes almost constant, and so
does again the Ad related to it. In this case, Ab increases
and v decreases as well. The same holds true for k5,
which transitions from a LIC to a HIC solution around
σ = 3π/8.
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Also in this case, Fig. 4 offers a visualization of the
HIC solutions, i.e., k1, k3 and k5. Here, it can be seen
that, once all LIC solutions have transitioned into HIC
ones, they present an Ad plateau. On the other hand,
it is also clear that the increase of Ab directly affects v,
which starts decreasing right before Ad reaches its con-
stant value. Therefore, it is possible to define the tran-
sition point from LIC to HIC solution not only by the
saturation of Ad, but also from the local maximum of v.

b. Out-of-phase background. We next explore
the OP zero-box configuration, again for qo = 1, L ∈
[1, 9], h = 0 (α = 0), and σ ∈ [0, π/2], corresponding to
H(σ) ∈ [0, qo]. However, we now fix θ = π/2, namely
setting the sides of the box out-of-phase (∆θ = π). The
corresponding spectrum of zeros is illustrated in Fig. 5.
Again, the choice of parameters presents a symmetric dis-
tribution of the zeros and thus only Re ko > 0 are shown.
In the zero-box configuration, the peculiarity of an OP-

FBTC with θ = π/2 is that it gives rise to an odd number
of solutions due to the presence of an unpaired static DB
soliton, labeled k0. Note that k0 is a HIC solution with
Re k0 = 0. Therefore, it is straightforward to map its
velocity and amplitudes. Indeed, from Fig. 2 one ob-
tains that v = 0 and Ad = 1 independently of the value
of σ. On the other hand, Ab increases with σ. Besides
this extra unpaired solution, OP-FBTCs have an addi-
tional difference when compared to the IP-FBTC case.
With the OP-FBTC, as L increases, the emergence of the
paired zeros, k1, . . . , k6, is slightly delayed (parametri-
cally) when compared to the IP-FBTC case. This means
that for some values of L, there are less paired zeros in
the OP case than in the IP case. For example, for L = 5
[Fig. 5(c)] there exist three paired zeros, i.e., k1, k2 and
k3, contrary to the IP case [Fig. 3(c)] where also a fourth
paired solution, i.e., k4, was identified.
Lastly, before proceeding to the full-box configuration,

it is worth commenting on how the presence of a second
component in the box affects the solutions when com-
pared to the single-component case. As discussed before,
when σ = 0 (H = 0) the single-component case is re-
trieved and the zeros identified herein coincide with the
ones found in Ref. [1], for both the IP and the OP case.
However, as σ increases (H increases) and the box is
filled with the second component, the interaction between
the components prevents the emergence of all the single-
component solutions, an effect which is more enhanced
for overlapping components, as we will see in what fol-
lows.

2. Full-box configuration

For the full-box configuration we use Eq. (27). This
implies that the box of the FBTC is always fully filled,
either with one or both components, q2o = h2(σ)+H2(σ).
By doing so, we are able to explore several configurations
and elucidate the effect of the second component inside
the box. In this regard, it is important to distinguish the

regimes where H > |h| or H < |h| and h > 0 or h < 0.
Besides, for σ = π/2 (H = qo and h = 0) we recover
the zeros from the zero-box configuration. As before,
below we explore both IP-FBTC and OP-FBTC using
the previously introduced notation and labelling. Recall
that in the former case θ = 0 and thus the symmetry
of the system is preserved, leading to a symmetric set of
solutions. On the other hand, θ = π/2 breaks the phase
symmetry of the system, leading in turn to asymmetric
solutions.

a. In-phase background. We once more begin our
investigation by exploring the spectra of an IP but full-
box configuration. Also here, qo = 1 and θ = 0 are
held fixed, while σ ∈ [0, π] and L ∈ [1, 9] are varied.
Recall that now H(σ) ∈ [0, qo] and h(σ) ∈ [−qo, qo]. The
corresponding spectrum of zeros is presented in Fig. 6.
Since an IP configuration preserves symmetry, only the
zeros of the pair with Re ko > 0 are shown.

Let us first discuss the changes in the spectrum under
an L variation. As in the zero-box configuration, increas-
ing L increases the number of zeros, and thus the soliton
solutions. This is readily seen in Figs. 6(a)–(e) (top row).
In Fig. 6(a), having L = 1, k1 is the only pair of zeros,
while for L = 5 [Fig. 6(c)] already three different pairs
of zeros, k1, k2 and k3, are potentially present. Finally,
for L = 9 [Fig. 6(e)], up to six different pairs of zeros,
k1, . . . , k6, occur. Notice though that, in the latter panel,
there is not a single value of σ where all six solutions co-
exist at the same time. Moreover, most of the zeros at
large L values, i.e., L = 7 and L = 9 (see Figs. 6(d) and
6(e), respectively), remain around Re ko = 1, some of
which having | Im ko| < 0.01. However, and in contrast
to the zero-box configuration, the drops that character-
ized LIC solutions are absent in this setting.

Now, let us monitor the changes in the spectra as σ in-
creases. Focusing initially on Figs. 6(a)-(e) (top row) it is
observed that, in contrast to the zero-box configuration,
Re ko does not always increase with σ. This becomes ap-
parent upon inspecting k1, whose Re k1 always decreases
as σ increases. Other examples are k2 in Fig. 6(d), or k4
in Fig. 6(e), as well as the bifurcation close to σ = 3π/4,
seen in Figs. 6(c)–(e). We also need to distinguish be-
tween the regimes σ ∈ [0, π/2) (white background) and
σ ∈ (π/2, π] (gray background). The former corresponds
to h > 0 (and α = 0), while the latter corresponds to
h < 0 or, equivalently, h > 0 and α = π [see Eq. (6)].

In the first regime (σ < π/2) h decreases from qo to
0, while H increases from 0 to qo. This implies that the
system starts as a homogeneous condensate (σ = 0) and,
as σ increases, the presence of the first component in the
box decreases while the presence of the second component
increases (see Fig. 1). Therefore, it is expected that no
soliton solution emerges until the FBTC reaches certain
conditions. For example, in Fig. 6(a) (L = 1), k1 is al-
ready present at very small values of σ. This means that a
small box is already enough to produce a soliton solution.
However, this soliton has a really low imaginary contribu-
tion, which means that the presence of the bright compo-
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L[σ] : qo = 1, θ = 0, h = h(σ), H = H(σ)

0

π
4

π
2

3π
4

π

−1.5

−1

−0.5

0

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

σ

0

π
4

π
2

3π
4

π

−10−10

−10−8

−10−6

−10−4

−10−2

−100
Im kL = 1

(a)

L = 3

(b)

L = 5

(c)

L = 7

(d)

L = 9

(e)

Im
k

Re k

−1.5

−1

−0.5

0

0 1 2 3
0

π
4

π
2

3π
4

π

σ

(f)

Re k
0 1 2 3

(g)

Re k
0 1 2 3

(h)

Re k

k1 k2 k3 k4 k5 k6

0 1 2 3

(i)

Re k

k1 k2 k3 k4 k5 k6

0 1 2 3

(j)

Figure 6. Zeros of s11(k) as a function of σ for different values of L in the full-box IP background configuration, with
q2o = h2(σ)+H2(σ) [see Eq. 27]. The parameters qo = 1 and θ = 0 remain fixed. The upper row shows the location of the zeros
in the Re k−σ plane whereas the bottom row shows the location of the zeros in the complex k-plane. The complex k-plane can
be mapped onto Fig. 2 to retrieve the relevant physical information about the soliton solutions. The color coding shows the
corresponding complementary quantity Im k (upper row) and σ (bottom row). Only Re ko > 0 are shown due to the symmetry
of the zeros. The gray background in the top row panels corresponds to the equivalent case h > 0 and α = π. Red circles in (c)
and (h) correspond to the zeros shown in Fig. 11. Note that the quantities shown are measured in transverse oscillator units.
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Figure 7. Amplitudes Ad, Ab, and velocity v of k1, k2, k3 and
k5 shown in Figs. 6(e) and 6(j) (see legend) as a function of
σ. Note that the quantities shown are measured in transverse
oscillator units.

nent is negligible. Moreover, it is created at Re k1 ≈ 1,
which translates into a shallow (Ad ≈ 0) fast moving
(v ≈ c) soliton (see Fig. 2). Then, as σ increases further
the box gets more and more filled by the second compo-
nent, and thus the bright component of the ensuing DB
soliton becomes dominant. Note also that as L increases
k1 emerges with larger Re k1, reaching almost Re k1 = 3

at L = 9 [see Fig. 6(e)]. It is also worth noticing that
most of the zeros emerge around σ = π/4. This is an im-

portant point, since h(σ = π/4) = H(σ = π/4) = 1/
√
2.

Basically, it shows that the presence of the second compo-
nent inside the box hinders the formation of soliton struc-
tures. It is not until h < H that the depth of the box is
big enough to enhance the formation of DB solitons. Ad-
ditionally there exist also cases where zeros occur before
σ = π/4. However, these zeros have a low imaginary con-
tribution and appear around Re ko = 1 which, as stated
above, corresponds predominantly to small disturbances
moving with velocities proximal to the speed of sound.
Nevertheless, at σ = π/2 we recover the zeros from the
zero-box configuration with h = 0 and H = qo.

On the contrary, in the second regime (σ > π/2) |h|
increases from 0 to qo and H decreases from qo to 0. Im-
portantly here, α = π, represents a situation where the
first component presents a phase difference between the
walls and the inside of the box [see Eq. (6)]. Although
this phase difference does not break the symmetry of the
system, it introduces a constant perturbation in the sys-
tem that needs to be taken into account, as we explain
later on. Similarly to the first regime, most of the zeros
are present also here while |h| < H (σ < 3π/4). Inter-
estingly enough, in this regime k1 exists for all σ, having
Re k1 ≈ 0 for a large range of σ, already from small L.
This is a direct cause of the phase difference α = π, which
forces the existence of at least one pair of solutions (see
Ref. [1] and references therein).
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To better understand the existence of all aforemen-
tioned zeros we inspect Figs. 6(f)–(j) (bottom row),
which can be directly connected to the soliton charac-
teristics shown in Fig. 2. In the complex k-plane only
the zeros with a high imaginary contribution are easily
visible. In this case, the most important difference with
respect to the zero-box configuration is the parabolically-
shaped trajectory of the zeros.

First, we focus on describing the zeros in Fig. 6(j) with
the aid of Fig. 2. Most of the zeros with a low imag-
inary contribution are merely dots around Re ko = 1
and Im ko = 0, i.e., small-amplitude nearly sonic DB
solitons with a negligible bright contribution. On the
other hand, k1, k3 and k5 possess a higher imaginary
contribution. For instance, k3 emerges at Re k3 = 1.2
and Im k3 ≈ 0 already at σ ≈ π/4. DB solitons with
Re ko > 1 and Im ko ≈ 0 are states that have extremely
small amplitudes but large widths. As an example, here
the DB soliton corresponding to k3 has Ad = 0.006 and
Ab = 0.005 at σ = 0.21π (when k3 initially emerges)
and a full-with-at-half-minimum for the dark (FWHMd)
and maximum for the bright component (FWHMb) that
read FWHMd = 560 and FWHMb = 837 (in H.O. units
presented in Sec. II). Of course, such structures are prac-
tically impossible to be seen. In addition, k3 moves in
this case with v = c/2. Then, as σ increases | Im k3|
rapidly increases and so do Ad and Ab, which at the
same time narrows the DB soliton. Of course, bigger
solitons move slower and k3 is no exception. Counterin-
tuitively, the maximum bright contribution is found past
σ = π/2, as indicated by the minimum of k3 in Fig. 6(j)
at σ = 0.585π. Past this point, Im k3 starts to rapidly
decrease, and so do Ad and Ab, reaching Re k3 = 3 and
Im k3 ≈ 0 before ceasing to exist at σ = 3π/4. Recall
that before disappearing, k3 ends up again being a small
wide DB soliton. Also, note that Re k3 is always an in-
creasing function of σ. The trajectory of k3 as σ is varied
can be better appreciated by inspecting Fig. 7, where the
mapping of k3 onto Fig. 2 is shown along with further ex-
amples, i.e., k1, k2 and k5. Here, Ad, Ab and v are plotted
against σ. Interestingly, v remains almost constant for
most of the values of σ in second regime (σ > π/2), an
outcome that is in turn related to the fact that Ad ⪆ Ab

in this regime.

A similar behaviour to the k3 one occurs also for k1
within the first regime (σ < π/2). Obviously, since k1
and k3 are on top of each other around Re ko = 3 [see
Fig. 6(j)], when k1 emerges for the first time it does
so as a small and wide DB soliton. Recall that differ-
ent zeros never intersect, i.e., ki ̸= kj . Also note that
Re k1 is a decreasing function with respect to a σ varia-
tion. Then, as σ increases, Re k1 decreases and | Im k1|
increases, which translates into larger Ad and Ab, with
Ad ⪆ Ab, and v remaining almost constant. Interestingly
here, slightly before σ = π/2, | Im k1| starts to decrease
and both Re k1 and Im k1 rapidly approach 0. However,
in this case only Ab decreases as σ keeps increasing. On
the contrary, Ad ≈ qo and v ≈ 0 independently of σ. In

Fig. 7 one can clearly discern the plateau of almost con-
stant v within the first regime and the constant values of
Ad and v within the second regime. The latter is a direct
consequence of α = π. As discussed for the OP zero-box
configuration, a phase difference of ∆θ = π between two
regions of a condensate will always lead to the formation
of a static soliton whose dark component is a black soli-
ton with Ad = qo and v = 0 [1]. Hence, once σ > π/2,
then h > 0 and α = π [see Eq. (6) and Eq. (27)], which
creates a phase-jump at the edges that separate the in-
side of the box from its walls. What is seen in Fig. 7
for k1 at large values of σ is a DB soliton formed by a
black soliton and a bright counterpart that decreases as
σ increases (H decreases). Remarkably, it seems that in
this case, when compared to the single-component sce-
nario [1], the presence of a second component does not
affect the emergence of the black soliton but only that of
the bright counterpart and the remaining solitons solu-
tions.

b. Out-of-phase background. Our last explo-
ration of the spectra of zeros of s11(k) is performed for an
OP full-box configuration. Here, qo = 1 and θ = π/2 are
held fixed, with the latter setting the two walls of the box
out-of-phase. Additionally, L ∈ [1, 9] and σ ∈ [0, π] are
varied. Recall that H(σ) ∈ [0, qo] and h(σ) ∈ [−qo, qo].
In this case the phase symmetry of the system is broken
since h ̸= 0 and θ ̸= 0, and the system yields asymmet-
ric solutions, with none of the zeros being paired for any
value of σ. The only exception here occurs for σ = π/2
(see below). Therefore, in Fig. 8 we show the entire spec-
trum of zeros, i.e., Re ko ∈ R.
It is worth noticing that given our particular choice of

θ = π/2 the zeros present an antisymmetry, evident in
Figs. 8(a)–(e), where the zeros are shown in the Re k–σ
plane. On the other hand, Figs. 8(f)–(j) illustrate the
zeros shown in the complex k-plane. Here, the zeros
are symmetric around Re k = 0 and the antisymmetry
is encoded in the color code introduced for the σ varia-
tion. The symmetry in the complex k-plane can be easily
understood when looking back to Eq. (7). In the first
regime σ < π/2, α = 0 and ∆θ± = ±θ, while in the
second regime, σ > π/2, α = π and ∆θ± = ∓θ. This
change of sign in ∆θ implies a spatial reflection around
x = 0 [see Fig. 1(a)] and gives rise to the (anti)symmetry
of the spectra in a system with broken phase symmetry.
Therefore, we use the same line style to identify antisym-
metric zeros, i.e., Re k+ > 0 and Re k− < 0 (see legend
in Fig. 8), and in what follows we will comment only the
zeros with Re ko > 0.

As in the previous cases, increasing L increases the
number of zeros. In Figs. 8(a)–(e) (top row) the number
of zeros increases from two, in Fig. 8(a), to seven, in
Fig. 8(e). Of course, in this case the number of zeros
also depends on σ. In general, increasing σ while σ <
π/2 (increasing H and decreasing h) also increases the
number of zeros. On the other hand, increasing σ while
σ > π/2 (decreasing H and increasing h) decreases the
number of zeros. Additionally, one needs to keep in mind
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L[σ] : qo = 1, θ = π/2, h = h(σ), H = H(σ)
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Figure 8. Zeros of s11(k) as a function of σ for different values of L in the full-box OP background configuration, with
q2o = h2(σ) + H2(σ) [see Eq. 27]. The parameters qo = 1 and θ = π/2 remain fixed. The upper row shows the location of
the zeros in the Re k − σ plane whereas the bottom row shows the location of the zeros in the complex k-plane. The complex
k-plane can be mapped onto Fig. 2 to retrieve the relevant physical information about the soliton solutions. The color coding
shows the corresponding complementary quantity Im k (upper row) and σ (bottom row). k+ (k−) corresponds to zeros with
Re ko > 0 (Re ko < 0). k0 is an unpaired solution. The gray background in the top row panels corresponds to the equivalent
case h > 0 and α = π. Red circles in (c) and (h) correspond to the zeros shown in Fig. 12. Note that the quantities shown are
measured in transverse oscillator units.

that σ > π/2 also implies that α = π (with h > 0). It is
also worth noticing that in some cases some of the zeros
are present only in the first (σ < π/2) or in the second
(σ > π/2) regime. For instance, in Fig. 8(e) k+5 is found
only for π/4 < σ < π/2 (first regime). Similarly, k+2

and k+6 are found only in the second regime. The former
appears for π/2 < σ < 7π/8 and the latter right before
σ = 3π/4. Recall that this feature, i.e., all zeroes do not
coexist at the same time, was also found in the full-box
IP case. Yet another similarity with the IP case is that
as L increases, most of the zeros appear only between
π/4 < σ < 3π/4 and are found mostly around Re ko ≈
±1.

There are two peculiarities of the OP case also worth
discussing. The first one is the emergence of a DB soliton
with a black soliton contribution, corresponding to k0
at σ = π/2. Notice that k0 is the only unpaired zero
and also the only zero bearing both positive and negative
Re ko values. The change of sign, which is directly related
to the velocity of the soliton [see Eq. (26)], happens at
σ = π/2 (H = qo and h = 0), which coincides with
the OP zero-box case discussed above (see Fig. 5). In
particular, at σ = π/2 we recover the solutions of the
zero-box OP configuration. The labeling of all ko is also
kept accordingly. The other peculiarity is found by k0
and k+1 in Figs. 8(b) and 8(c), k+1 and k+3 in Fig. 8(d),
and k+1 and k+4 in Fig. 8(e). At low values ofH, i.e., σ ≈
0 (or σ ≈ π for k−), both zeros are almost on top of each

other implying that both solutions are almost identical,
i.e., similar shape and velocity. Additionally, locally both
edges of the box (x = ±L) are equivalent, a situation
more pronounced as H → 0 and h → ±q0, which reduces
to the single component case. Basically, the formation
of such similar solutions is a direct consequence of our
choice of parameters which define an equivalent phase-
jump at both edges of the box, ∆θ− = ∆θ+ [see Eq. (7)].

Figs. 8(f)–(j) show the solutions in the complex k-
plane. Most of the properties for this representation are
already mentioned in the IP case, whose zeros look-a-
like. Yet, in this case, we were able to identify the only
case where the maximum bright soliton contribution of a
particular soliton solution coincides with the maximum
presence of the second component in the box. Of course,
this zero is k0 and the maximum contribution of its bright
component occurs at σ = π/2, precisely when the solu-
tion is the static DB soliton.

B. Nucleation of DB soliton trains: Without
confinement

In this section we intend to verify the analytical re-
sults captured by the discrete eigenvalues identified in
Section IIIA. Initially, we numerically solve the CGPE
[Eq. (2)] in the absence of a trapping potential, i.e., Ω =
0, by employing a forth-order Runge-Kutta integrator
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accompanied by a second order finite-differences method
accounting for the spatial derivatives. The spatial and
temporal discretizations are dx = 0.1 and dt = 0.001,
respectively, while the domain of integration used is lo-
cated at |x| = 2500 so as to avoid finite size effects. In
the following, we fix L = 5 and qo = 1, while θ = {0, π/2}
for both the zero- and the full-box configurations.

Below we present our findings regarding the dynam-
ical nucleation of DB solitons via the matter-wave in-
terference method of two condensates in the presence of
a second species in-between, also featuring the counter-
flow (see Fig. 1). It is important to note that the various
DB solitons nucleated when utilizing the initial condition
ansatz of Eq. (6) have finite velocities and, in general,
interact with each other. Therefore, the analytical find-
ings can be compared to the numerical ones only in the
asymptotic limit t → ∞. In this limit each DB soliton
can be considered well-separated and independent from
the rest of the solitary waves. In this sense, discrepancies
between the analytical DB soliton solutions of Eq. (23)
and the numerically formed ones are expected to decrease
as t → ∞, as it is found and discussed later on. Finally,
in the results to be presented below, the analytical DB
soliton solution is centered at x0 = 0, unless stated oth-
erwise.

1. Zero-box configuration

a. In-phase background. Our first result is pre-
sented in Fig. 9. It corresponds to the zero-box configu-
ration (h = 0) with an IP background (θ = 0). Here, we
have chosen σ = π/4 as a representative example. The
zeros of this particular initial configuration are shown in
Figs. 3(c) and 3(h), pinpointed with red circles. In par-
ticular, three pairs of DB solitons are predicted by our
analytical method and indeed found in the dynamical
process. For instance, in Fig. 9(a) the norm of the wave
function, |q|, of each component at t = 250 is shown, and
all three pairs of DB solitons are clearly formed. Note
that due to the symmetry of the solutions, only the left
moving solitons v < 0 are illustrated. The same holds
for their corresponding zeros shown in Fig. 9(b), where
only the pair with Re ko > 0 is depicted. In particular,
Fig. 9(b) is equivalent to Fig. 3(h), as can be inferred
from the location of the zeros in the complex k-plane.
Notice that for consistency the notation introduced here
follows that of Fig. 3.

A remarkably good agreement between the analytical
estimates and the numerically formed DB solitons oc-
curs already at t = 250 [see Fig. 9]. Particularly, both
the numerically found solutions (solid lines) and the ana-
lytically obtained ones (dot-dashed lines) fall almost per-
fectly on top of each other. This also confirms the va-
lidity of the numerical scheme, given the exact nature of
the IST analysis at the level of the integrable Manakov
model. The major discrepancy observed in this case cor-
responds to the shallower and faster DB soliton solution

Figure 9. Dark-bright soliton solutions stemming from a zero-
box configuration with an in-phase background having L = 5,
qo = 1, θ = 0, σ = π/4 and h = 0 [cf. Fig. 3(c) and 3(h)].
(a) Snapshot of |q| at t = 250 given by the CGPE (2) (solid
lines) and the analytical solutions (23) (dot-dashed lines), for
both dark (DS) and bright (BS) soliton counterparts. (b)
Contour plot of Re s11 = 0 (solid blue line) and Im s11 = 0
(dashed yellow line) on the complex k-plane. The zeros, ko,
are depicted with red circles and only the zeros of each pair
with Re ko > 0 are shown. The labeling of zeros is that of
Fig. 3, with k1 = 0.4456− i0.5455, k2 = 0.7535− i0.0339 and
k3 = 0.8751 − i0.0189. (c), (d) Spatiotemporal evolution of
the dark, |q1|, and bright, |q2|, soliton component. Temporal
evolution of (e) the instantaneous velocity, v, and (f) the dark,
Ad, and (g) bright, Ab, soliton amplitudes. The correspond-
ing asymptotic values are depicted with dotted black lines.
Note that the quantities shown are measured in transverse
oscillator units.

k3. There exist mainly three different sources that can
give rise to such a discrepancy: (i) as previously dis-
cussed, one should only expect both solutions to exactly
coincide at t → ∞ or, equivalently, for such traveling so-
lutions to x → ±∞. Yet, the bright solitons of the k2
and k3 solutions still bear a finite background reminis-
cent of the filling of the box in the initial configuration.
We attribute the presence of this background to the in-
tercomponent interaction, an effect which is enhanced for
initially overlapping components, as will be shown in the
full-box configuration results; (ii) k3 is the fastest DB
soliton, which implies that k3 is the wave that remains
for longer times coupled to the emitted radiation, some
of which is still visible around x ≈ 300. This effect is
enhanced the faster the soliton is; (iii) the interaction
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between the k2 and k3 DB solitons may play a role, since
both waves travel close to each other for a reasonable
long amount of time. Indeed, Fig. 9(c) [9(d)] shows the
spatiotemporal evolution of the wave function |q1| [|q2|],
which hosts the dark [bright] counterpart of the DB soli-
tons in question. Here, it is clear that k2 and k3, namely
the outermost traveling DB solitons, remain close to each
other during evolution.

Next, in order to extract the DB soliton characteristics,
we numerically follow the center of mass (CM) of each DB

soliton, i.e., xCM =
(︂∫︁ xr

xl
x|q|2dx

)︂
/
(︂∫︁ xr

xl
|q|2dx

)︂
with

xl,r defining the integration limits around each dark soli-
ton core. This also provides access to their instantaneous
velocity, v = dxCM/dt. To obtain the CM, we trace the
dark soliton minima. From the position of the latter,
we consecutively extract the dark, Ad, and bright, Ab,
soliton amplitudes, and compare them with their corre-
sponding asymptotic analytical values [Eq. (25)]. v, Ad

and Ab are depicted in Figs. 9(e)–(g), respectively, for
t > 10 since at the very beginning of the dynamics it is
not possible to identify any individual solitonic structure.
In all cases, it becomes apparent that the numerical pre-
dictions approach the analytical estimates (dotted black
lines) as t → ∞. Notice also the small amplitude oscilla-
tions performed by v, Ad and Ab around their asymptotic
value, attributed to the counterflow process that leads to
the soliton formation.

b. Out-of-phase background. Now, we present
the results for a zero-box configuration (h = 0) but with
an OP background (θ = π/2). The zeros of this initial
configuration were presented in Fig. 5(c) and 5(h), and
we have chosen σ = π/4 as the most relevant case for
this particular set of parameters. Our analytics predict,
in this case, four zeros: a static unpaired DB soliton and
three pairs of DB solitons. Such solutions are marked
with red dots in Figs. 5(c) and 5(h), and are also shown
in Fig. 10(b). Note that once more, the solutions are
symmetric with respect to the origin (x = 0) and for
clarity we only show those with Re ko > 0. Each of the
zeros illustrated in Fig. 10(b) corresponds to a particu-
lar DB soliton solution, shown in Fig. 10(a). Again, the
numerically observed waveforms (solid lines), obtained
upon solving the CGPE with this particular OP zero-box
configuration, fall on top of the analytical solutions (dot-
dashed lines) given by the zeros shown in Fig. 10(b). As
in the IP zero-box configuration, we find also here that
k3 is again the DB soliton that presents the larger de-
viation from its analytical state. Nevertheless, this OP
case features two interesting structures not seen in the IP
case. The first one is the occurence of a static DB soliton,
k0, located at x = 0. As we discussed in Section IIIA,
an OP configuration allows the formation of static DB
solitons consisting of a black soliton (v = 0) and its sym-
biotic bright counterpart. The second one is related to
the soliton k2 = 0.7726− i2.5× 10−5, which possesses an
almost negligible imaginary contribution. Recalling our
discussion of Section IIIA, the bright counterpart of a

Figure 10. Same as Fig. 9 but for L = 5, qo = 1, θ = π/2,
σ = π/4 and h = 0. This initial configuration corresponds to
a zero-box configuration with an out-of-phase background [cf.
Fig. 5(c) and 5(h)]. The labeling of zeros is that of Fig. 5 with
k0 = −i0.6590, k1 = 0.7287−i0.2744, k2 = 0.7726−i2.5×10−5

and k3 = 0.9622−i8.8×10−4. Note that the quantities shown
are measured in transverse oscillator units.

DB soliton solution is mostly defined by the imaginary
contribution of its corresponding zero. Therefore, since
in this case Im k2 ∼ 10−5 we expect and indeed confirm
the formation solely of a dark soliton. Notice however the
minuscule second component contribution that is in turn
related, as in the IP case, to a small background rem-
iniscent of the interaction between the two components
during the dynamics. Similarly, k3 with Im k3 ∼ 10−4

can also be practically treated as a dark soliton.

In Figs. 10(c) and (d), the spatiotemporal evolution of
|q1| and |q2|, respectively, clearly show a static DB soli-
ton at x = 0 and the three pairs of DB solitons moving
outwards. Note that, in Fig. 10(d), the bright component
of k2 is not seen and the bright component of k3 is barely
visible. Figures 10(e)–(g) demonstrate the evolution of
the numerically obtained v, Ad and Ab, respectively, to-
gether with their asymptotic analytical values (dotted
black lines). Yet, again, the numerical quantities asymp-
totically approach their corresponding analytical values.
In this case, small amplitude oscillations in v, Ad and Ab,
caused by the dynamical formation of the solitonic enti-
ties are also found, [cf. k1 in Figs. 10(e)–(g)]. In contrast,
the velocity of k3, the fastest DB soliton, features abrupt
and irregular oscillations. This is due to the fact that we
are computing the instantaneous velocity, v = dxCM/dt,
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Figure 11. Same as Fig. 9 but for L = 5, qo = 1, θ = π/2,
σ = 6π/8. This initial configuration corresponds to a full-
box configuration with an in-phase background [cf. Figs. 6(c)
and 6(h) ]. In this case the only relevant solutions are k±1 =
±0.0098 − i0.1737. We omitted k±2 = ±1.6237 − i0.0060
and k±3 = ±1.8440 − i0.0080 (see text). Note the long-time
dynamics in (a). Note also that the quantities shown are
measured in transverse oscillator units.

by integrating around each dark soliton core. A closer
inspection of Fig. 10(a) reveals that some noise is still
present around the DB structure at t = 250. Since this
noise is not constant, when calculating xCM small irreg-
ular changes lead to the irregular oscillations observed in
v.

2. Full-box configuration

a. In-phase background. In the full-box config-
uration, the center of the box is fully filled, i.e., q2o =
h2(σ) +H2(σ) for all values of σ [see Eq. (27)]. Initially,
we explore the IP background (θ = 0) upon choosing
σ = 6π/8. This in turn implies that the first component
inside the box is OP with respect to the two sides of the
box [see Eq. (7)]. The analytical solutions for this par-
ticular choice of parameters were presented in Figs. 6(c)
and 6(h), with the relevant zeros being marked by red
dots. In total, three pairs of DB soliton solutions are
found. However, in what follows we only discuss the pair
k±1. The other two pairs of solutions correspond to DB
solitons with FWHM ≳ 102 and amplitudes Ad,b ≲ 10−3

(see also the discussion in Section IIIA), and thus we

omit them.

Illustrated in Fig. 11(b) are the zeros k±1 = ±0.0098−
i0.1737, which lie almost on top of each other since
Re k±1 ≈ 0. In Fig. 11(a) we compare the numeri-
cally found DB solitons (solid lines), stemming from the
CGPE, with the analytical ones (dot-dashed lines), ob-
tained using our analytical tool presented in Section II.
Although, in this case, we show the DB soliton profiles at
later evolution times (t = 2000), the numerical solutions
do not completely coincide yet with the analytical ones.
The reason why this happens is not only that our ana-
lytical method provides solutions at x → ±∞ or, equiv-
alently, at t → ∞, but also the interaction between the
pair of DB solitons at early times. Additionally, note that
at these earlier times, shown in Figs. 11(c) and 11(d),
the pair of DB solitons does not emerge at xo = 0 but
at xo = ±5 [see Eqs. (23)]. As discussed in Sec. III A 2,
the phase-jump ∆θ± = π in the first component between
the inner and the outer sides of the box leads to the for-
mation of a pair of (almost) black-bright solitons where
the phase-jump takes place. Moreover, the latter implies
v ∼ 0, which enhances the interaction between the pair
of DB solitons for longer times than in the previously
discussed cases, as mentioned before.

However, despite the fact that we cannot properly cap-
ture the early stages of the dynamics for these pairs of DB
solitons, an interesting observation, absent in the previ-
ous explorations, can be made. For instance, during the
early dynamics, the presence of a non-negligible back-
ground in the minority species radically changes the be-
haviour of a typical DB soliton, and our numerically iden-
tified waveforms morph into beating DB solitons [14, 71].
Indeed, the spatiotemporal evolution of both the dark
and the bright soliton components [see Figs. 11(c) and
11(d), respectively] reveal the characteristic beating of
such solitonic entities. Importantly, these beating soli-
tons, however, are not “discernible” at the level of the
eigenvalues of the IST analysis. Here, we want to point
out that the bright solitons of the DB entity k±1 are
in-phase and therefore the DB solitons interaction is re-
pulsive [72], an effect that can be discerned by closely
inspecting Figs. 11(c) and 11(d) at later times.

Now, let us discuss Fig. 11(e) showcasing v. Since
∆θ± = π, and thus Re k±1 ≈ 0 (see Sec. III A 2),
the analytic velocities of such solitons are close to zero.
Also, since k±1 are a pair, their velocities have oppo-
site signs. However, the interesting phenomenon found
here is the beating performed by the DB soliton pair
due to the presence of the finite background in the sec-
ond component. Indeed, here we can clearly see how v
oscillates while asymptotically approaching its analytical
value, and that v undergoes damped oscillations while ap-
proaching its asymptotic value. The damping behavior is
inherently related to a progressive decrease of the finite
background over time. In order to reach their asymp-
totic velocities, one should wait for the finite background
of the second component to vanish and for the solitons
to be well separated from each other to avoid interact-
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Figure 12. Same as Fig. 9 but for L = 5, qo = 1, θ = π/2,
σ = 5/π8. This initial configuration corresponds to a full-box
configuration with an out-of-phase background [cf. Fig. 8(c)
and 8(h)]. In this case the zeros are not symmetric. The
labeling of zeros is that of Fig. 8 with k−2 = −1.0858−i0.2038,
k−1 = −0.7285 − i0.29769, k0 = −0.8843 − i0.6277, k1 =
1.5701 − i0.5708 and k2 = 1.0381 − i0.0127. Note that the
quantities shown are measured in transverse oscillator units.

ing. The same applies to the dark and bright amplitudes,
shown in Figs. 11(f) and 11(g), respectively. Nonetheless,
Figs. 11(f) and 11(g) provide a visual confirmation of the
symmetry of the solutions, where solitons undergo the
same amplitude oscillations, the latter being also a char-
acteristic of beating DB solitons [71] [see the discussion
around Eq. (33)].

b. Out-of-phase background. The last paramet-
ric selection consists on a full-box configuration, i.e.,
q2o = h2(σ) + H2(σ) [see eq. (27)], with an OP back-
ground (θ = π/2). The analytical solutions for such an
initial configuration were shown in Figs. 8(c) and 8(h).
Here, we choose as a case example σ = 5π/8, with the
relevant zeros pinpointed with red dots.

In Fig. 12(b) the five zeros corresponding to this partic-
ular initial configuration are depicted with a red circle. In
Fig. 12(a), the analytical solutions obtained using these
zeros (dot-dashed lines) are compared to the numerical
solutions (solid lines), obtained by solving the CGPE.
Both solutions almost fall on top of each other. Most of
the discrepancies found here can be attributed as in the
preceding sections to the presence of a finite background,
as well as DB-DB soliton interactions. In Fig. 12(a),
the most extreme case is that of k2 = 1.0381 − i0.0127,

where the dark component of the DB soliton cannot be
identified. This is a direct consequence of the fact that
Re k2 ≈ 1, as discussed in Sec. IIIA 2. Additionally,
the corresponding bright part of k2 is disturbed by the
spreading of the finite background.
The spatiotemporal evolution of the dark and bright

soliton components [see Figs. 12(c) and 12(d), respec-
tively] demonstrate the asymmetric nature of the ensuing
DB waves for this parametric selection. Of course, k2 is
not discernible in Fig. 12(c), while in Fig. 12(d) the finite
background on top of which the bright solitons are formed
is clearly visible. Among them, k0 and k−1 are seen to
undergo small amplitude oscillations, resembling beating
DB solitons. Unfortunately, the oscillations around their
CM are not pronounced enough so as to be captured by
the temporal evolution of the instantaneous velocity in
Fig. 12(e). Nevertheless, we are still able to follow the
CM of most of the evolved solitonic entities, showcasing
this way that they approach their asymptotic analytical
values (dotted black lines) as t → ∞. The only exception
here is the nearly sonic k2 soliton, whose CM cannot be
separated from the surrounding radiation. Yet, we left its
analytical value as a reference. Figures 12(f) and 12(g)
illustrate the evolution of Ad and Ab for each DB soliton
formed. Noteworthy here is the damping behaviour of
Ad and Ab associated with the beating solitons k0 and
k−1. Finally, it is worth commenting k−2 is still far be-
low its asymptotic value, while k1 closely approaches its
asymptotic value from above around t = 250.

C. Nucleation of DB soliton trains: With
confinement

In BEC experiments, harmonic confinement is natu-
rally introduced. For this reason, in this section we aim
to generalize our findings in the presence of a harmonic
trapping potential and, for the numerical considerations
to be presented below, we turn on the trapping potential
in Eq. (2). Hereafter, we fix Ω = 0.011. As in Sec. III B,
we will first present the results for the zero-box configu-
ration, and the results for the full-box configuration will
follow.

Before proceeding to the results, first we want to re-
mark that in the presence of a harmonic confinement our
analytical estimates, obtained by solving the direct scat-
tering problem (see Sec. II), are not expected to pro-
vide valid solutions. For example, we assumed NZBC
which in turn define the asymptotic behaviour of the
solitons formed in terms of velocity and amplitude. It is
clear that in the presence of the harmonic potential such
NZBC cannot be fulfilled. However, with an appropri-
ate choice of parameters, the analytical solutions of the
untrapped scenario (see Sec. III B) can be used as ap-
proximate solutions for the trapped scenario as we shall
later show. For instance, our choice of a wide trapping
potential (Ω = 0.011) provides a ground state of the first
component flatter around the center of the trap, which
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can at least locally resemble a constant background like
that of the homogeneous case.

To induce the dynamics in our system, we first find
the ground state of a single component BEC by means of
imaginary time propagation. Then, we embed on top of
the ground state our initial configuration [see Eq. (6)]. A
schematic illustration of the aforementioned initial state
is provided in Fig. 1(b). Moreover, to offer a direct com-
parison between the untrapped and the trapped scenar-
ios, our choice of parameters is the same as in Sec. III B,
i.e., L = 5, qo = 1, σ = π/4 with θ = {0, π/2}, and
σ = {6π/8, 5π/8} with θ = {0, π/2}, respectively (see
also the relevant discussion around Figs. 9–12).

In order to characterize the solutions, we compute in
each case the oscillation frequency of the DB solitons
using the following, well-established expressions [10] (see
also, e.g., [17]):

ω2
o = Ω2

(︃
1

2
− χ

χo

)︃
, (28a)

χo = 8

√︃
1 +

(︂χ
4

)︂2
, χ ≡ Nb

qo
, (28b)

Nb ≡
∫︂ ∞

−∞
|qb(x, t)|2dx = 2

(︃
q2o
|zo|2

− 1

)︃
Im zo , (28c)

and describe the motion of the center of the DB solitons
as

xc(t) =
vo
ωo

sin(ωot+ ϕo) + xo , (29)

Here, the amplitude of the oscillation is related to the
velocity of the DB solitons [see Eq. (25c)] and the fre-
quency of the trap [see Eq. (28a)]. Additionally, xo is
the equilibrium position, and ϕo is an additional phase
factor. Both xo and ϕo are fixed to zero unless stated
otherwise.

It is important to remark here that, contrary to the
single component dynamics of dark and bright solitons
in the presence of a harmonic potential, the amplitudes
of each dark and bright counterpart of a DB soliton are
not constant over time, but oscillate. Hence, we propose
the following DB soliton estimate accounting for the am-
plitudes’ dynamics (see Appendix B):

q
(n)
d (x, t) = qo cosβn(t)− iqo sinβn(t) tanh

[︁
ν(t)(x− xc(t))

]︁
,

(30a)

q
(n)
b (x, t) = −i sinβn(t)

√︂
q2o − |zn|2 sech

[︁
ν(t)(x− xc(t))

]︁
,

(30b)

where we found that the angle parameter is now time
dependent with the form

cos2 βn(t) = cos2 βn cos
2(ωot) +

1

2q2o
Ω2

(︃
vn
ωo

)︃2

sin2(ωot) .

(31)

From here, the uniformization variable can be expressed
as z(t) = |zo|eiβ(t). The other time dependent parame-
ters can be obtained by substituting Eq. (31) in Eq. (24).
Of course, if we turn off the trap (Ω = 0 and ωo = 0) we
recover β(t) = βo.

Last, we design in-trap analytical estimates of the dark
and bright soliton solutions as follows,

|q1(x, t)|2 =

⃓⃓⃓⃓
⃓⃓q2o
⃓⃓⃓⃓
⃓∏︂

n

q
(n)
d (x, t)

qo

⃓⃓⃓⃓
⃓
2

−
(︁
q2o − |qgs(x)|2

)︁⃓⃓⃓⃓⃓⃓ ,
(32a)

|q2(x, t)|2 =

⃓⃓⃓⃓
⃓∑︂

n

q
(n)
b (x, t)

⃓⃓⃓⃓
⃓
2

. (32b)

In Eq. (32a), the first term on the right-hand side cor-
responds to a dark soliton train solution in the absence
of a trapping potential having a background amplitude
qo, where the product is performed over all the different
solutions of a set of zeros ko = {k−n, . . . , kn}. The sec-
ond term properly shapes the former onto the trapped
ground state, qgs(x). Lastly, the absolute value on the
right-hand side is introduced so as to assure the positivity
required by the left-hand side.

Our results are summarized in Fig. 13 and Table I. In
Fig. 13 we show the spatiotemporal evolution of |q1| (left
column) and |q2| (middle column), each of which hosts,
respectively, the dark and bright soliton counterparts of
the dynamically generated DB solitons. Additionally, to-
gether with |q1| are depicted the DB soliton trajectories
provided by Eq. (29) using the eigenvalues of the homoge-
neous solutions presented in Sec. III B (dashed red lines).
Note here that each row corresponds to a different set of
parameters, but with L = 5 and qo = 1 fixed. For clar-
ity, the dynamical evolution of the DB solitons formed is
monitored up to times t = 1000 but the solitons remain
intact while oscillating for times up to t = 3000. To of-
fer a head-on comparison between the numerical results
and the analytical in-trap estimates of Eq. (32) we also
show a snapshot of |q1| and |q2| at t = 201 (right column)
where both the numerical and the analytical results are
placed on top of each other.

In Table I the analytically obtained oscillation fre-
quency, ωo, of each DB soliton illustrated in Fig. 13 is
compared with the corresponding numerically identified
frequency, ωnum. The latter is measured by following the
CM of each DB soliton and performing a fast Fourier
transform on each obtained trajectory. In some cases,
however, the presence of radiation hindered tracing the
DB soliton CM and a manual fitting of ωnum was re-
quired. Since ωo mostly depends on the number of parti-
cles hosted in the bright soliton, Nb [see Eq. (28)], we also
compare Nb to Nnum

b . In order to obtain the number of
particles of each bright soliton, Nnum

b , from the numeri-
cal solution, a numerical integration with the integration
limits properly taken around the bright soliton maxima
is carried out [see Eq. (28c)]. Yet, in the full-box case
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scenarios, the presence of a nonzero background makes
the choice of the integration limits difficult, which adds
a slight error to our calculation. Overall, in most of the
cases the relative error, εω = |ωo − ωnum|/ωo (idem for
Nb), is pretty low, suggesting that our analytical solu-
tions, obtained by solving the direct scattering problem
in the homogeneous setting, are a good approximation to
characterize the solutions in the trapped scenario. Some
exceptions are also discussed below.

1. Zero-Box configuration

The first case example, shown in Figs. 13(a)–(c), cor-
responds to an initial IP (θ = 0) zero-box configuration
(h = 0) with σ = π/4, analogous to the homogeneous
case shown in Fig. 9. Here, three pairs of DB solitons are
generated, as expected. Moreover, the motion of each
DB soliton is near perfectly captured by Eq. (29), as de-
picted by the dashed red lines in Fig. 13(a). Also, in
Fig. 13(c) we find a very good match between the nu-
meric and analytic DB solitons, bearing our in-trap esti-
mate solution (30).

The second case corresponds to an initial OP (θ = π/2)
zero-box configuration (h = 0) with σ = π/4. The lat-
ter is almost analogous to the homogeneous case shown
in Fig. 10, featuring a static DB soliton formed at the
center of the trap, surrounded by a pair of DB solitons
and two pairs of (almost) pure dark solitons. The result-
ing dynamics are shown in Figs. 13(d)–(f). In Fig. 13(d),
the analytic trajectories capture pretty well the dynamics
of the two most external pairs of dark solitons. Recall
that in the homogeneous scenario the fastest DB soli-
ton pair (k3) presented a non-zero bright counterpart,
almost nonexistent in Fig. 13(e). Additionally, the in-
trap estimates present a very good agreement with the
numerical results. A noticeable discrepancy concerns the
central pair of DB solitons. The comparison between ωo

and ωnum
o for this pair is shown in the second column set

of Table I (see k±1). Despite the relative error being not
greater than 5%, the long-time dynamics clearly captures
its effect.

Also, although we use analytical estimates to describe
the in-trap dynamics, a possible source of error is Nb

(see Eq. 28). However, for the same DB soliton solution
(k±1), in Table I it is shown that the relative error be-
tween Nb and Nnum

b is of about 2%. The latter suggests
that additional sources of error might be present. For
instance, the emitted radiation produced during the in-
terference process might be taken into account. In this
sense, some approximations to Eq. (6), e.g. the sigmoid
function, have been used to smoothen the step-like shape
of the box, decreasing the amount of emitted radiation
and showing a small improvement towards the analytical
solution (dynamics not shown for brevity).

2. Full-box configuration

In Sec. III B, we found how a homogeneous setup with
an initial full-box configuration, where the two compo-
nents overlap inside the box, leads to the presence of
a nonzero background in the component hosting bright
solitons (see Fig. 11 and Fig. 12).
In Figs. 13(g)–(i) we present the dynamics resulting

from an initial IP (θ = 0) full-box configuration with
σ = 6π/8, which is the in-trap analog of the homogeneous
case example shown in Fig. 11. The homogeneous case
resulted into a pair of almost static DB solitons (v ∼ 0)
traveling nearly parallel to each other and performing os-
cillations around their own CM, i.e., beating. Here, we
identified the same pair of beating DB solitons. More-
over, their beating behavior can be characterized by the
following expression [71]

ωβ =
1

2
(κ2 +D2) , (33)

with κ2 = v2 and D2 = µ cos2 ϕ − η2 = A2
d − A2

b . Using
the expressions from Eq. (25) we can rewrite Eq. (33) in
terms of zo,

ωβ = 2(Re zo)
2 +

1

2
(Im zo)

2 , (34)

yielding ωβ = 0.3539. On the other hand, we numeri-
cally followed the CM of our DB soliton pair during the
dynamics using the previous procedure described and ob-
tained ωnum

β = 0.3537. Comparing ωβ with ωnum
β , we find

an extremely good agreement.
Furthermore, in the presence of a harmonic confine-

ment an additional oscillation mode is present in the dy-
namics, driving both DB solitons to perform out-of-phase
oscillations around the center of the trap. In particular,
the out-of-phase mode of the oscillations stems from the
presence of the trap and the DB-DB soliton repulsive in-
teraction, characteristic of DB soliton pairs with in-phase
bright counterparts [72]. Of course, Eq. (29) assumes an
oscillation frequency for single DB solitons, and thus it
cannot provide a valid description of the motion of this
DB soliton pair because it is coupled.
Nonetheless, in Ref. [44] explicit expressions of the en-

ergy of the interactions of a pair of DB solitons is pro-
vided. This allows us to derive the expression of the
forces involving the dark-dark, bright-bright, and dark-
bright interactions, Fjk(x) = −∂xEjk(x) where j, k =
{D,B}, and numerically solve the equations of motion for
our particular DB soliton pair, i.e., ẍ = −ω2

ox−FDD(x)−
FBB(x)−2FDB(x). By doing so, we obtain the trajectory
of the DB soliton pair and find the out-of-phase oscilla-
tion frequency, ωOP = 0.0188, which nicely captures the
numerically identified one ωOPnum = 0.0195. The latter
presents only a relative error εOP = 3%. Therefore, we
can fully characterize the trajectories of the beating pair
of DB solitons by the following expression:

x±(t) =∓Aβ cos(ωβt+ φβ)
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Figure 13. Dark-bright solitons generated in the presence of a harmonic trap with a characteristic frequency Ω = 0.011 for
distinct choices of the involved parameters L, qo, θ, σ (see legends). Each row, from top to bottom, has an initial configuration
analogous to the FBTC from Figs. 9–12, respectively (see Sec. III B). Left (middle) column: Spatiotemporal evolution of |q1|
(|q2|) hosting the dark (bright) solitons. Red dashed lines correspond to the analytical trajectories using the eigenvalues from
the untrapped scenario. Right column: Snapshots of |q1| and |q2| at t = 201 given by the CGPE (solid lines) and the analytic
in-trap estimates of Eq. (32a) (dash-dotted lines), for both dark (DS) and bright (BS) soliton counterparts. Note that the
quantities shown are measured in transverse oscillator units.

±AOP cos(ωOP t+ φOP )± xo , (35)

where Aβ,OP are the amplitude of the beating and out-of-
phase oscillations, respectively, and φβ,OP are additional
phases. Although the expressions provided in Ref. [44]
were derived by means of perturbation theory and predict
the oscillation frequency and amplitude of small pertur-
bations, they still provide a good approximations for ωOP

in this case. On the contrary, since perturbation the-
ory cannot provide the amplitude of oscillation, we fitted
Aβ,OP in Eq. (35) to obtain the trajectories in Fig. 13(g).
We also set φβ,OP = 0.

It is worth noticing in Fig. 13(i), also in this case, the
good performance of our analytic in-trap estimates at
capturing both the DB soliton profiles, regardless of the
presence of the background.

Lastly, we comment on the dynamics of an initial OP
(θ = π/2) full-box configuration with σ = 5π/8. The
resulting spatiotemporal evolution of |q1| and |q2| are
shown in Figs. 13(j) and 13(k), respectively, and snap-

shots of |q1| and |q2| at t = 201 are depicted in Fig. 13(l).
First, one can notice that, in Fig. 13(j), the analytic solu-
tions (red dashed lines) fail to appropriately capture the
dynamics of the DB solitons. By inspecting once more
the analogous homogeneous case shown in Fig. 12, it is
observed that the main quantities, i.e., v, Ad and Ab [see
Figs. 12(e)–(g), respectively], are still way off from their
asymptotic values at t = 250. Consequently, the gener-
ated DB solitons monitored in the dynamics do not cor-
respond to the analytically expected ones since the for-
mer started the in-trap oscillations at earlier times than
t = 250, which interrupted their natural approach to the
expected asymptotic solutions. For instance, from the
expected five DB soliton solutions only four are dynam-
ically generated and, as mentioned above, ωo and ωnum

differ significantly, with errors well above 14%.

Nevertheless, with an appropriate fit of the parame-
ters to Eq. (29), it can be shown that despite not having
the predicted DB solitons, the dynamically formed struc-
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h = 0, σ = π/4, θ = 0 h = 0, σ = π/4, θ = π/2 σ = 6π/8, θ = 0 a σ = 5π/8, θ = π/2

ko ωo ωnum εw ko ωo ωnum εw k±1 ωo ωnum εw ko ωo ωnum εw

k0 0 0 0 ωβ 0.3539 0.3537 0.0006 k−2 6.958 6 0.14

k±1 5.615 5.548 0.025 k±1 6.670 6.35 0.048 ωOP 0.0188 0.0195 0.032 k−1 6.578 4.575 0.30

k±2 7.645 7.745 0.013 k±2 7.778 7.989 0.027 k0 5.323 6.283 0.18

k±3 7.704 7.813 0.014 k±3 7.775 8.015 0.031 k1 5.523 3.725 0.33

ko Nb Nnum
b εNb ko Nb Nnum

b εNb k±1 Nb Nnum
b εNb ko Nb Nnum

b εNb

k0 2.636 2.648 0.005 0.695 0.790 0.14 k−2 0.815 0.887 0.088

k±1 2.182 2.201 0.008 k±1 1.098 1.120 0.020 k−1 1.188 1.277 0.075

k±2 0.135 0.137 0.009 k±2 0.0001 0.0003 2 k0 2.511 2.524 0.005

k±3 0.0756 0.0831 0.099 k±3 0.0035 0.0034 0.034 k1 2.283 2.601 0.13

a See the discussion around Eqs. (34)

Table I. Comparison between the analytically and numerically obtained oscillation frequencies, ωo and ωnum, and the number
of particles of a bright soliton, Nb and Nnum

b , respectively, for each identified DB soliton solution shown in Fig. 13. From left
to right, each column set corresponds, from top to bottom, to each row in Fig. 13. Each soliton pair k±i, with i = 1, 2, . . . , is
identified using the notation introduced in Sec. III B. The relative error is defined as εω = |ωo − ωnum|/ωo (idem for εNb). The
frequencies ωo and ωnum have an additional ×103 factor. Other parameters used are L = 5, qo = 1 and Ω = 0.011. Note that
the quantities shown are measured in transverse oscillator units (see text).

tures perfectly follow the DB soliton trajectories (fitting
not shown for brevity). Additionally, the fitted param-
eters applied to our analytical estimates provide a very
accurate description of the DB soliton profiles. However,
for consistency, in Figs. 13(j)–(l) we compare the numer-
ically obtained results with the analytical ones, rather
than with the fitted estimates.

For completeness, we also considered in-trap dynam-
ics beyond the Manakov limit, i.e., gjk ̸= 1 (results not
shown here for brevity). In particular, and motivated
by relevant studies such as those of Refs. [73, 74], we
first used for the intra- and intercomponent interaction
strengths g11 = 1.004, g22 = 0.95, and g12 = g21 = 0.98,
respectively, corresponding to a system of 87Rb atoms
in the |1,−1⟩ and |2, 1⟩ hyperfine states. This choice of
parameters corresponds to a weakly immiscible mixture,
i.e., g11g22 < g12g21. Additionally, we also considered
a weakly miscible regime, g11g22 > g12g21, by tuning
g12 → g12 = 0.95. Experimentally this could be achieved
by means of a Feshbach resonance [66].

In both cases the results are qualitatively similar to the
ones presented in the Manakov limit (see Fig. 13), and the
dark-bright soliton structures emerging in these more re-
alistic setups survive even for long times. Not only that,
the overall picture is well preserved and the analytical es-
timates presented in the manuscript describe with great
fidelity most of the cases, at least during the early-time
dynamics. Some of the major differences when compar-
ing these results with the dynamics in the Manakov limit
are (i) the presence of a non-negligible amount of noise
in the condensates, mostly caused by the overlap of the
two-components, and (ii) slightly faster dynamics than
those in the Manakov limit.

IV. CONCLUSIONS AND FUTURE
PERSPECTIVES

In this work, we have investigated the on-demand
generation of DB soliton trains arising in a 1D two-
component BEC both in the absence and in the presence
of a harmonic trap. We have shown that it is possible to
fully characterize a DB soliton array dynamically gener-
ated from a box-type initial configuration when a second
component is present inside the box. In particular, we
have analytically solved the direct scattering problem for
the defocusing VNLS equation utilizing the aforemen-
tioned ansatz and obtained expressions for the discrete
eigenvalues of the scattering problem. The latter are di-
rectly related to the amplitudes and velocities of the con-
forming DB solitons and allowed us to construct the exact
DB soliton waveforms making use of the IST.

In order to better understand the role of the geometry
of the initial box-type configuration in the generation of
DB solitons, we explored a wide range of parametric se-
lections. In general, a wider box generates a higher num-
ber of DB soliton structures. However, the presence of
the second component inside the box hinders the appear-
ance of such entities, compared to the single-component
case. If instead both components are present inside the
box, the intercomponent interactions practically prevent
the emergence of soliton structures unless the presence
of the second component overcomes the presence of the
first one. Moreover, we also investigated the effect of a
possible phase difference between the distinct regions of
the box. If all regions are in-phase, the number of soli-
tons formed is even, and all of them are paired. Specif-
ically, each pair consists of DB solitons that share the
same characteristics but travel with opposite velocities.
On the contrary, when the sides of the box are out-of-
phase, the number of DB solitons is odd and at least one
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DB soliton appears to be unpaired. In particular, if the
second component is the only one present in the inner
box region, the unpaired DB soliton is static. However,
if the majority component is also inside the box, there
exists an extra phase-jump at the inter-phase separating
the inner and the outer regions of the box, breaking the
phase symmetry of the system and leading to the creation
of asymmetric DB soliton arrays. In such a situation, all
solutions are unpaired and the number of solitons formed
depend on the presence of the components inside the box.

To test our analytical findings we performed direct
numerical integration of the multi-component system at
hand. In all the cases in the absence of confinement,
we have found that the dynamically produced solitons
approach asymptotically the analytically predicted DB
amplitudes and velocities. In those cases where the initial
configuration mixes both components inside the box, we
found that the intercomponent interaction stimulates the
presence of a finite background surrounding the bright
solitons, which leads to the emergence of other exotic
structures such as beating DB solitons. Moreover, we
also designed approximate expressions using the analyt-
ical solutions of the homogeneous setup to describe the
dynamics of DB solitons in the presence of a harmonic
trap. Also, we provided expressions for the oscillations of
the amplitudes of the dark and bright solitons. Our esti-
mates showed in most cases a remarkably good agreement
with the observed dynamics, with deviations not larger
than 5%.

An immediate extension of this work points towards
richer systems, e.g., spinor BECs [75–77]. These systems
are already experimentally realizable [78–80], and sev-
eral works have already exposed the existence of stable
solitonic structures both experimentally [32] and theoret-
ically [81–85]. Yet, another possibility for future study is
the construction of more complex initial configurations,
consisting, for example, of multiple boxes in order to
mimic phase structures such as the dark anti-dark soli-
tons realized in the experiments of Refs. [19, 31]. The
latter case, however, requires the scenario of miscibility
between the two components. Finally, the generalization
of considerations to higher dimensions and, e.g., vortex-
bright solitons therein [17] could be another fruitful di-
rection for future exploration.
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Appendix A: Further insights of the DB soliton
solutions

Since we are finding the eigenvalues as zeros of s11(k),
it is important to relate Re ko and Im ko to zo. From the
definition of the uniformization variable one has zo =
ko + λ(ko), but this relationship requires dealing with
the branches of λ(k0). However, this can be bypassed as
follows. From Eqs. (22) we have

Re k =
1

2

(︃
1 +

q2o
|z|2

)︃
Re z , (A1a)

Im k =
1

2

(︃
1− q2o

|z|2

)︃
Im z , (A1b)

and

Reλ =
1

2

(︃
1− q2o

|z|2

)︃
Re z , (A2a)

Imλ =
1

2

(︃
1 +

q2o
|z|2

)︃
Im z . (A2b)

The second relation shows that Imλ > 0 ⇐⇒ Im z > 0,
which restricts the eigenvalues as zeros of s11(z) in the
upper-half plane of z, and β ∈ (0, π]. Additionally, when
Im z > 0, |z| < qo ⇐⇒ Im k < 0. Thus, given that the
upper half of the circle of radius qo in the z-plane is in
one-to-one correspondence with the lower half plane of
the upper sheet of the Riemann surface, ko eigenvalues
can have any Re k and Im k < 0, provided that Imλ(k) >
0. Note that the latter differs from the scalar case of
Ref. [1] where −qo < k < qo.
In Eq. (26) it remains to express γ in terms of ko,

which can be done as follows. Let us for brevity intro-
duce x = Re ko and y = Im ko. Then, from Eqs. (A1)
one has Re zo = 2x/(1 + γ2), Im zo = 2y/(1 − γ2), and
|zo|2 = q2o/γ

2 = (Re zo)
2 +(Im zo)

2 which upon substitu-
tion yields

4
x2

(1 + γ2)2
+ 4

y2

(1− γ2)2
=

q2o
γ2

, (A3)

namely a (simplified) quartic equation for Γ ≡ γ2

Γ4 − 4

q2o
(x2 + y2)Γ3 − 2(1− 4

q2o
x2 +

4

q2o
y2)Γ2 − 4

q2o
(x2 + y2)Γ + 1 = 0 . (A4)
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The solutions of Eq. (A4) are:

q2oγ
2
± = |ko|2 − β ±

√
2
√︁

|ko|4 − 2q2o(Re ko)
2 + |ko|2(q2o − β) , (A5a)

q2oγ
2
± = |ko|2 + β ±

√
2
√︁

|ko|4 − 2q2o(Re ko)
2 + |ko|2(q2o + β) , (A5b)

with

β =

√︂
(q2o + |ko|2)2 − 4q2o Re

2 ko . (A6)

The pair of solutions in Eq. (A5a) are complex conjugate,
while those in Eq. (A5b) are real. We are interested in
real solutions with γ > 1, which are then given by γ+
in Eq. (A5b). Notice that γ+ involves only real square
roots, thus avoiding complex branches. Hence, using γ+
in Eq. (26) provides all the soliton parameters in terms of
ko = Re ko + i Im ko for arbitrary Re ko ∈ R and Im ko <
0.

At this point, it is also possible to retrieve the soliton
parameters for the single-component case. Recall that,
for the scalar defocusing NLS equation, the zeros are real
and simple, belonging to the spectral gap k ∈ (−qo, qo) [1,
58]. This directly implies that |zo| = qo ∀ ko. Therefore,
Eqs. (25) read

Ad = qo sinβo ≡
√︁

q2o − k2o , (A7a)

Ab = 0 , (A7b)

v = −2qo cosβo ≡ −2ko . (A7c)

For completeness, we note here that it is also possible
to obtain the zeros ko given the soliton parameters Ad, Ab

and v. In particular, using Eqs. (25) we obtain

A2
b = A2

d

(︄
1− |zo|2

q2o

)︄
, (A8a)

cosβo = ±

√︄
1−

A2
d

q2o
, (A8b)

sinβo =
Ad

qo
. (A8c)

Recalling now that

zo± ≡ |zo|(cosβo + i sinβo)

= qo

√︄
1−

A2
b

A2
d

(︄
±

√︄
1−

A2
d

q2o
+ i

Ad

qo

)︄
, (A9)

|zo| < qo is automatically satisfied and the sign of cosβo is
determined by Eq. (25c). If v > 0 then cosβo > 0, while
if v < 0 then cosβo < 0. Now, substituting Eq. (A9) into
Eq. (A1) yields

Re ko = sgn(v)
qo
2

√︄
1−

A2
d

q2o
×

Figure 14. Trajectory, x, and dark, Ad, and bright, Ab,
amplitudes of the DB soliton solution k1 shown in Fig. 9. The
numerical magnitudes, obtained by following the CM (solid
blue line), are compared to the analytical estimates in Eq. (29)
and in Eqs. (25) (with βo → β(t)) given by the analytical
in-trap oscillation frequency, ωo [see Eq. (28)] (dash-dotted
red lines), and the numerically obtained one, ωnum (dashed
yellow lines). Note that the quantities shown are measured in
transverse oscillator units.

×

[︄(︃
1− A2

b

A2
d

)︃− 1
2

+

(︃
1− A2

b

A2
d

)︃ 1
2

]︄
, (A10a)

Im ko = −Ad

2

[︄(︃
1− A2

b

A2
d

)︃− 1
2

−
(︃
1− A2

b

A2
d

)︃ 1
2

]︄
. (A10b)

It is clear from the above expression that Im ko < 0, and
since Im zo > 0 it follows that Imλ(ko) > 0.

Appendix B: Dark-bright soliton amplitudes in the
presence of a harmonic trapping potential

One important characteristic of solitons is that they
preserve their shape. Also, it is well known that, in the
presence of a harmonic trapping potential, DB solitons
can undergo oscillations of frequency ωo (see Eq. 28).
However, here we found that DB solitons change size as
they perform such oscillations in the trap. This partic-
ular feature is attributed to the intercomponent interac-
tion, g12, coupling the dark and bright counterparts, and
to their constraints with the DB soliton velocity. Below
we derive the expressions to describe such amplitude os-
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cillations, but the role of g12 = 1 will be hidden in the
equations.

At the turning points of their oscillatory trajecto-
ries (xt = ±Re zo/ωo) the DB soliton velocity must be
0, which implies that its amplitudes are maximal [see
Eqs. (25)]. In particular, for the dark counterpart that
resides on top of the density background of the conden-
sate A2

d(max) = |qgs(xt)|2. Following the same lines, at

the center of the trap (x = 0) the velocity of the DB soli-
ton is maximal, and thus its amplitudes are minimal and,
more precisely, coincide with those of the homogeneous
setup, i.e., A2

d(min) = q2o sin
2 βo.

Having now at hand the extremes of Ad, only the fre-
quency of such oscillations is missing. In this case, it is
enough to notice that in half of a trap oscillation period
the dark amplitude would perform a full cycle. There-
fore, it is straightforward to express the amplitude of the
dark counterpart as

A2
d(t) =

1

2
(A2

d(max) +A2
d(min))

−1

2
(A2

d(max) −A2
d(min)) cos (2ωot) , (B1)

which after some algebra yields

A2
d(t) = q2o sin

2 βo cos
2(ωot) + |qgs(xt)|2 sin2(ωot) . (B2)

Now, comparing Eq. (25a) to Eq. (B2), we obtain

sin2 β(t) = sin2 βo cos
2(ωot) +

|qgs(xt)|2

q2o
sin2(ωot) ,

(B3)

which is equivalent to Eq. (31), as shown below. From
here, by replacing βo → β(t) in Eqs. (23), Eq. (24), and
Eqs. (25), the DB soliton solution for in-trap oscillations
follows [see Eq. (30)].

It is also important to notice that |z(t)| = |zo| does not
change over time, since the uniformization parameter z
is unique to each DB soliton. Additionally, β(t) satisfies
the condition required by 0 < βo ≤ π which restricts the
eigenvalues in the upper-half plane of z. For instance,

β(t) = arcsin Ad(t)
qo

and, since 0 < Ad(t) ≤ qo ∀ t, then

0 < β(t) ≤ π/2 ∀ t. Note that the values π/2 < β(t) ≤ π,
which are missing due to the arcsin(), only affect the sign
of the velocity of the soliton (25c). However, Eq. (25c) is
not valid to define the DB soliton velocity in the presence
of a trap, which instead is derived from Eq. (29).

One could also try to derive Ad(t) from the velocity
of the in-trap oscillations of the DB soliton provided by
Eq. (29). It reads

v(t) ≡ dxc

dt
= vo cos(ωot) . (B4)

Then, by comparing Eq. (B4) to Eq. (25c) we obtain

cosβ(t) = cosβo cos(ωot) , (B5)

and therefore,

A2
d(t) = q2o sin

2 β(t) = q2o − q2o cos
2 βo cos

2(ωot) . (B6)

In this case, we see that A2
d(min) ≤ A2

d(t) ≤ q2o , with

A2
d(min) = q2o sinβo. Obviously, A2

d(t) cannot be equal to

q2o since |qgs(x)|2 ≤ q2o and the only case with A2
d(t) =

q2o corresponds to a static dark soliton centered at x =
0. Consequently, deriving Ad(t) from Eq. (29) is clearly
missing information about the trap geometry.
In particular, it would be enough to add the term

−V (xt) sin
2(ωot) into Eq. (B6), where xt = ±vo/ωo is the

turning point of the in-trap oscillations of the DB soliton.
After some trivial calculations we recover Eq. (B2),

A2
d(t) = q2o sin

2 βo cos
2(ωot)

+ (q2o − V (xt)) sin
2(ωot) , (B7)

where (q2o − V (xt)) = |qgs(xt)|2 is the well-known
Thomas-Fermi approximation [86, 87].
To adequately approach this problem, we can define a

complex trajectory

x̃(t) =
vo
ωo

(︃
sin(ωot) +

i√
2γ

Ω

ωo
cos(ωot)

)︃
, (B8)

where the soliton trajectory is xc(t) = Re x̃(t), and the
trap geometry is taken into account by the imaginary
term. From here, we derive x̃(t) over time to obtain the
(complex) velocity,

ṽ(t) = vo

(︃
cos(ωot)−

i√
2γ

Ω

ωo
sin(ωot)

)︃
. (B9)

Then, comparing (B9) to Eq. (25c) we obtain our final
expression (31),

cos2 β(t) = cos2 βo cos
2(ωot) +

1

2q2o
Ω2

(︃
vo
ωo

)︃2

sin2(ωot) ,

(B10)

containing the information of the trap geometry. Again,
Eq. (B3) can be retrieved by performing an appropriate
manipulation of Eq. (B10).
In order to compare the analytical estimate of

Eq. (B10) with numerical DB soliton dynamics, the DB
soliton k1 from Fig. 9 is placed alone at the center of a
BEC trapped in the harmonic confinement used in this
work (see Sec. III C). Since vk1(t = 0) ̸= 0 it undergoes
oscillations. By following its CM, we monitor its posi-
tion, x, and its dark, Ad, and bright, Ab, amplitudes
over time.
In Fig. 14, the trajectory and amplitudes of k1 ob-

tained from following its CM (solid blue lines) are com-
pared to the analytical estimates in Eq. (29) and in
Eqs. (25) (with βo → β(t)) given by the analytical in-trap
oscillation frequency, ωo [see Eq. 28] (dash-dotted red
lines), and the numerically obtained one, ωnum (dashed
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yellow lines). Here, the oscillations of Ad and Ab are
clearly identified. Also, our analytical estimates are in
good agreement with the numerical findings, with rel-
ative errors not larger than 1% at the instant of max-

imum discrepancy. In this case we define the relative
error as ε(A) = |ACM − Aωnum

|/ACM , which yields
ε(Ad) = 0.0015 and ε(Ab) = 0.0079.
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