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a system of three (1+1)-dimensional quasilinear, hyperbolic equations for the soliton and
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modulation variables, it is possible to derive quantitative predictions regarding the evolution
of the line soliton within the mean flow. It is found that the interaction between an oblique
soliton and a changing mean flow leads to several novel features not observed in the (1+1)-
dimensional reduced problem. Many of these interesting dynamics arise from the unique
structure of the modulation equations that are nonstrictly hyperbolic, including a well-
defined multivalued solution interpreted as a solution of the (2+1)-dimensional soliton–mean
modulation equations, in which the soliton interacts with the mean flow and then wraps around
to interact with it again. Finally, it is shown that the oblique interactions between solitons and
dispersive shock wave solutions for the mean flow give rise to all three possible types of 2-
soliton solutions of the KPII equation. The analytical findings are quantitatively supported by
direct numerical simulations.
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1. Introduction

The study of interactions between rapidly-varying waves and a slowly-varying mean flow is
a problem of fundamental importance in fluid mechanics and other media. It arises naturally
in applications such as internal water waves [1, 2, 3], atmospheric waves [4, 5], and shallow
water waves [6, 7]. Wave–mean flow interactions are especially relevant in geophysical fluid
dynamics, as the typical scales of gravity waves are too small to be resolved in large-scale
numerical simulations, but these features can still affect the evolution of the system [8, 9].
A related problem of recent interest, especially pertaining to internal waves, is wave-current
interactions [10, 11]. Slowly-varying currents are ubiquitous in oceans, rivers, and canals, and
they can significantly influence the propagation of a disturbance through a fluid. Wave–mean
flow interactions can also be considered in other applications such as nonlinear optical and
matter waves [12, 13].

In many of these applications, the study of solitary waves is of particular importance,
as these objects move rapidly and can transfer large amounts of energy [10]. For example,
internal solitary waves [14]—frequently imaged via aerial photography [15, 16]—can have
both small-scale impacts on deep water objects [17] and large-scale effects on climates and
currents [10]. Internal solitons can also draw energy from or attenuate background flows
[18, 19]. Consequently, a number of recent studies have examined the interactions of solitons
with a changing background flow in the context of nonlinear, dispersive systems in one
space and one time dimension (referred to as (1+1)-dimensional), including the Korteweg-
de Vries (KdV) [20, 21], rotation modified KdV [18], rotation modified Benjamin-Ono [19],
focusing nonlinear Schrödinger (NLS) [12, 22], the defocusing NLS [13], and conduit [21, 23]
equations. The analysis of soliton–mean flow interactions for these long wavelength models
provides a foundation for investigating more complex, realistic flows [8].

The most fundamental soliton–mean flow problem considers a dynamic mean flow ū
that results from a Riemann problem [12, 20, 21], that is, a problem in which the initial
configuration consists of a discontinuous jump between two constant values [24, 25]. Most
commonly, solutions include rarefaction waves (RWs) for expansive initial conditions and
dispersive shock waves (DSWs) for compressive initial conditions. When a soliton is normally
incident to a RW or DSW, two possible outcomes have been identified [21]. First, the soliton
can pass entirely through the mean flow with some change in parameters, a phenomenon
known as soliton transmission or tunnelling. However, if the soliton has insufficient amplitude
and velocity to surmount the RW or DSW, the soliton remains trapped within the changing
mean flow, termed soliton trapping. Solutions to the Riemann problem form building blocks
that can be generalized to other types of mean flows.

Multiple-scale analysis is a natural tool for many wave–mean flow problems. Linear
wave–mean flow interactions were first studied by a scale separation technique in [26, 27],
which has been generalized to the nonlinear wave setting using Whitham modulation theory
[28]. This approach utilizes averaged conservation laws or an averaged Lagrangian to
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approximate nonlinear wave dynamics with a quasilinear, hyperbolic system of equations
for the wave parameters that vary on long space and slow time scales [26]. In general, it is
possible to calculate adiabatically invariant quantities across a changing mean flow, which can
then be used to determine parameters on either side of the RW or DSW. Whitham modulation
theory [29] has proven quite effective at predicting changes in wave parameters through the
mean flow [13, 21, 30].

However, previous studies of soliton–mean flow interactions have only considered
governing equations in one space and one time dimension. One important unanswered
question is how the transmission or trapping of solitons is affected by a spatial perturbation of
the soliton along a direction different from the propagation direction. In this study, we allow a
soliton to approach the mean flow at a nonzero incident angle and examine how this transverse
inclination affects the soliton-mean flow interaction. We will do this analysis in the framework
of the initial value problem for the Kadomtsev-Petviashvili (KP) equation, originally derived
to study the multidimensional stability of KdV solitons by introducing a generalization of the
KdV equation [31]:

(ut + uux + uxxx)x + βuyy = 0, (x, y) ∈ R, t > 0, (1)

subject to u(x, y, 0) = u0(x, y), where β = ±1. It is well known that only β = 1 (known as
KPII) leads to stable, travelling line soliton solutions, so that is the case we will exclusively
consider here [31]. KPII line solitons are a three-parameter family of travelling wave solutions
with amplitude a on a background or mean flow ū,

u(x, y, t) = ū + a sech2
(︃√︃

a
12

(x + qy − ct)
)︃

, c = ū +
a
3
+ q2, (2)

where q = tan φ is a measure of the transverse inclination of the soliton (see figure 1) and
c is the soliton propagation velocity in the x-direction. When q = 0, (2) reduces to the
well-known KdV soliton. The goal of this work is to understand and classify the interactions
of oblique line solitons (2) with one-dimensional mean flows, i.e. the solutions to the KdV
Riemann problem.

This problem has both physical and mathematical interest. The KP equation (1) has
been utilized to model surface water waves [32, 33, 34], internal water waves [35, 36],
and ion-acoustic waves in plasma [37]. The universal character of the KdV equation also
translates to the KP equation, and the general nature of the problem means that its principal
insights hold true over a wide variety of physical scenarios. Our method for solving this
problem—analyzing the y-independent KP soliton modulation equations—yields interesting
mathematical features as well. For example, this diagonalizable, 3-component, quasilinear
system is nonstrictly hyperbolic [38], causing some initial conditions to become multivalued.
In this scenario, we will need to appeal to the (2+1)-dimensional soliton modulation system
to determine regimes of validity for the (1+1)-dimensional multivalued solution.
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The addition of an oblique incident angle yields a rich variety of phenomena. Oblique
soliton transmission and trapping can both occur either from an initial soliton to the left or
the right of the mean flow, unlike one-dimensional solitons which have directionally limited
transmission or trapping. The trapping of a soliton starting to the right of a DSW is shown
to be closely related to the much-studied effect of line soliton resonance [39]. Another
novel effect is that large soliton amplitude alone is insufficient to guarantee transmission.
Line solitons can also experience “incomplete” transmission, a behaviour not observed in the
(1+1)-dimensional reduced problem. This is where the line soliton transmits through the mean
flow yet fails to separate from it, even for large times t.

The paper is organized as follows. In section 2, we introduce the soliton modulation
system, its properties, and the Riemann initial conditions examined throughout the rest of this
paper. In section 3 we look for simple wave solutions to the Riemann problem, where only
one Riemann invariant is changing for all x ∈ R and t > 0, and the other two are constant.
We expect these self-similar solutions to describe the stable, long-time behaviour of a wide
variety of initial and boundary configurations, since simple waves serve as “attractors” for
diverse initial conditions. Next, in sections 4 and 5 we examine one particular class of initial
conditions that can give rise to the simple wave solutions found in section 3, as well as other
interesting phenomena: a partial soliton encountering step initial conditions in x. We conclude
this work with some discussion in section 6. Appendix A includes a calculation relevant to
our analysis.

Our analysis is supported by numerical simulations of the KPII equation (1) using a
Fourier pseudospectral method adapted from [40] that allows for outgoing line solitons at the
top and bottom of the simulation domain through use of a windowing function. The numerical
scheme is essentially the same as that used in [41]. To maintain periodicity in x, the initial
conditions implemented are actually a large box shape – an upward step near the left side
and a corresponding downward step on the right. Simulations are terminated before the edge
of the box which is not of interest interferes with the test domain. As in [41], step initial
conditions are smoothed by using a hyperbolic tangent function to minimize the generation
of spurious oscillations that are not described by modulation theory. Additionally, we find
that utilizing the windowing function for an initial partial soliton on a background ū ̸= 0
leads to numerical instabilities. Consequently, a Galilean transformation is applied so that the
partial soliton is initialized on the zero background ū = 0. For example, for a partial soliton
starting to the right of a RW, we choose ūR = 0 and ūL = −1, while for the soliton starting
to the left of a RW we set ūR = 1 and ūL = 0. Most simulations are performed on the
spatial domain [−1024, 1024]× [−512, 512] or one similar in size, with spatial and temporal
discretisations ∆x = ∆y = 1/2 and ∆t = 10−3, respectively. Calculations are performed
in single precision. Our method and numerical parameter selections are validated in [41]. In
order to quantitatively compare numerical simulation and analytical prediction, we often shift
the analytical solution by a relatively small phase shift x0, since phase shifts are a higher-order
effect not captured by leading order modulation theory.
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Figure 1. Contour plot of a KP soliton, where q = tan φ is a measure of the soliton inclination
relative to the y-axis. The colorbar shows the relative magnitudes of the various colors which
will be used throughout this paper.

Throughout this work, we use the relative color scaling shown in the colorbar of figure 1.
The maximum value in any contour plot figure corresponds to the top (red) color of the
colorbar, while the minimum value corresponds to the bottom (blue) color in the colorbar.
Absolute color values vary according to each figure.

2. Problem formulation and preliminary considerations

In this section we introduce the soliton modulation system, some of its properties, and the
specific initial conditions studied in this paper. We also review features of multi-soliton
solutions of the KPII equations that will be relevant later.

2.1. Modulation system

The Whitham modulation equations for the KP equation (1) were recently derived in [42, 43].
The soliton limit of the equations, a (2+1)-dimensional hyperbolic system consisting of four
equations, was further analyzed in [38]. Assuming that the mean flow and soliton modulation
parameters only change in the propagation direction of the mean flow, x, the modulation
equations simplify to a (1+1)-dimensional set of equations for the three parameters in (2)⎡⎢⎣ū

a
q

⎤⎥⎦
t

+

⎡⎢⎣ ū 0 0
2
3 a ū + a

3 − q2 −4
3 aq

−q −1
3 q ū + a

3 − q2

⎤⎥⎦
⎡⎢⎣ū

a
q

⎤⎥⎦
x

= 0. (3)

Although (3) is only a (1+1)-dimensional system, the presence of the soliton angle q ensures
that the resulting modulation solutions, upon reconstructing the corresponding solutions of
the KP equation (1), have a non-trivial two-dimensional structure.
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2.2. Properties of the modulation equations

For our purposes, the most important mathematical feature of the modulation system (3) is
its diagonalizability. The system has three Riemann invariants, quantities that are constant
along characteristic curves, and thus are coordinates in which the modulation equations (3)
are diagonal. The diagonalizability of a 3-component system is quite nontrivial [26]. In our
case, this diagonalization is consistent with the complete integrability of the KP equation [38].
An examination of the eigenvalues of (3) reveals that the system is strictly hyperbolic apart
from three planes, two of which represent reductions in the number of modulation equations,
further evidence of the equation’s special structure [44].

The eigenvalues of the coefficient matrix in (3) are

λū = ū, λ+ = ū +
a
3
− q2 − 2

3
q
√

a, λ− = ū +
a
3
− q2 +

2
3

q
√

a. (4)

The corresponding Riemann invariants and diagonal form of (3) are

Rū = ū, R± = ū +
1
2
(q ±

√
a)2,

∂Rj

∂t
+ λj

∂Rj

∂x
= 0, j ∈ {ū,+,−} (5)

λū = Rū, λ± =
5
3

Rū −
2
3

(︃
R± − 2σ

√︂
(R+ − Rū)(R− − Rū)

)︃
, (6)

where σ = sgn(a − q2). The eigenvalues (4) are always real and distinct outside of
q2 ∈ {0, 1

9 a, a}, where two eigenvalues coalesce, so the system is hyperbolic everywhere
but only strictly hyperbolic outside this set [38]. At q2 ∈ {0, a} reduced cases exist, since
two Riemann invariants coalesce along with the eigenvalues. Note also that the mean flow in
(3) is entirely decoupled and is itself a Riemann invariant in (5).

Due to the symmetry of the KP equation (1) and modulation system (3), throughout this
report we will assume that q > 0 for all initial conditions. Under this assumption, q will
remain positive except when strict hyperbolicity is lost at q = 0, which will be examined
below in Section 3.2. To solve the corresponding problem for q < 0 we can take y → −y,
which will also lead to R± → R∓.

2.3. Initial conditions

In sections 3–5 we will study the interaction of a line soliton with a mean flow by looking
for solutions to (3) produced by Riemann problems, that is, step-like initial conditions in the
modulation variables:

ū(x, 0) =

{︄
ūL x < 0

ūR x > 0
, a(x, 0) =

{︄
aL x < 0

aR x > 0
, q(x, 0) =

{︄
qL x < 0

qR x > 0
. (7)
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Figure 2. The four initial conditions examined in this report, from left to right: (a) RW-
soliton interaction; (b) Soliton-RW interaction; (c) Soliton-DSW interaction; (d) DSW-soliton
interaction. Dark blue represents the lower background value.

Once a modulation solution for ū(x, t), a(x, t), and q(x, t) is obtained, the modulated soliton
is reconstructed by projection onto (2) according to

u(x, y, t) = ū(x, t) + a(x, t) sech2

(︄
q(x, t)

√︃
a(x, t)

12
ξ

)︄
,

ξ =
∫︂ x

0

1
q(x′, t)

dx′ + y −
∫︂ t

0

c(0, t′)
q(0, t′)

dt′,

(8)

where c(x, t) is defined as in (2) with modulated variables. We remark that the modulation
equation for q in (3) is a result of the compability condition ξxt = ξtx. Throughout the
remainder of the paper, we will reduce the number of free parameters for the problem (7) by
applying scaling and Galilean symmetries to ūL and ūR so that ūL,R ∈ {0, 1}, with ūL = 0
and ūR = 1 for the RW case and ūL = 1 and ūR = 0 for the DSW case.

In section 3, we find general simple wave solutions to (7), which serve as building blocks
for various initial conditions. In sections 4 and 5, we specifically examine the partial soliton–
mean flow initial value problem. For this problem, the parameters on the side of the mean
flow farthest from the initial soliton, denoted by (ū1, a1, q1), are fixed for partial soliton initial
conditions as

a1 = 0, q1 = q∗, (9)

where q∗ is determined as part of the solution. There are four categories initial value problems
to be considered. The initial soliton parameters (ū0, a0, q0) can be given on either the left or
the right. The step in the mean flow can either be upward or downward, where ūL < ūR

leads to a RW solution, while ūL > ūR generates a DSW. Consequently, the four types of
interactions to be considered are as follows, where the naming convention differentiates cases
where the discontinuity in the mean flow gives rise to a rarefaction wave or a dispersive shock
wave and the component names are ordered depending on whether the initial soliton is to the
left or to the right of the discontinuity in the mean flow:
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(a) RW-soliton: ūL < ūR, (aR, qR) = (a0, q0), (aL, qL) = (0, q∗)
(b) Soliton-RW: ūL < ūR, (aL, qL) = (a0, q0), (aR, qR) = (0, q∗)
(c) Soliton-DSW: ūL > ūR, (aL, qL) = (a0, q0), (aR, qR) = (0, q∗)
(d) DSW-soliton: ūL > ūR, (aR, qR) = (a0, q0), (aL, qL) = (0, q∗)

These four types of initial conditions are depicted in figure 2. Throughout the paper and in
all figures, we will refer to the initial conditions by their corresponding letter above (e.g. (a),
(b)). These initial conditions present tractable problems that allow for both exact solutions
and numerical simulation, enabling a quantitative comparison with our analysis.

2.4. Reduction to constant mean flow

For constant ū, the system (3) reduces to[︄
a
q

]︄
t

+

[︄
ū + a

3 − q2 −4
3 aq

−1
3 q ū + a

3 − q2

]︄ [︄
a
q

]︄
x

= 0. (10)

This reduced system has the Riemann structure:

r± = q ±
√

a, Λ± = ū +
a
3
− q2 ∓ 2

3
q
√

a,
∂r±
∂t

+ Λ±
∂r±
∂x

= 0, (11)

where r± are Riemann invariants and Λ± are eigenvalues for the reduced system (10). Strict
hyperbolicity is lost only at q = 0. The reduced system (10) will be used in section 3.2 to
study the evolution of a truncated soliton, which in turn will provide a stepping stone to study
the more complicated initial conditions (7) subject to (9) in section 5. It will be helpful to
recognize that the Riemann invariants r± in (11) coincide with certain solution parameters in
the Wronskian representation of the multi-soliton solutions of the KP equation. We discuss
this connection next.

2.5. Multi-soliton solutions of the KP equation, Riemann invariants and soliton interactions

It was shown in [34, 45] that a large class of multi-soliton solutions of the KPII equation can
be expressed using the Wronskian representation. In particular, for (1), one has the solution:

u(x, y, t) = 12
∂2

∂x2 [log τ(x, y, t)] , (12)

where the so-called tau function τ(x, y, t), is given by

τ(x, y, t) = Wr( f1, . . . , fN) , (13a)

the functions f1, . . . , fN are given by

fn(x, y, t) =
M

∑
m=1

An,meθm(x,y,t) , (13b)
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and the phases θ1, . . . , θM are

θm(x, y, t) = Kmx +
√

3 K2
my − 4K3

mt + θm,0 . (13c)

The above solution is uniquely determined by the phase parameters K1, . . . , KM and the
coefficient matrix A = (am,n), plus the translation constants θ1,0, . . . , θM,0. Without loss
of generality, one can take the phase parameters to be ordered so that K1 < · · · < KM.

It was shown in [45] that, generically, the above representation produces a solution
with exactly N asymptotic line solitons as y → ∞ and M − N asymptotic line solitons
as y → −∞. Such solutions are labeled (M−N, N)-soliton solutions. The amplitude and
slope of each asymptotic line soliton are completely determined by the phase parameters
K1, . . . , KM, but the precise details depend on the specific choice of the coefficient matrix A.
In the simplest nontrivial case, obtained when N = 1 and M = 2, one recovers the soliton
solution (2) with ū = 0. It is convenient to label the two phase parameters as K− and K+ in
this case. The amplitude and slope parameters a and q are given by

a = 3(K+ − K−)
2 , q =

√
3 (K+ + K−) . (14)

The inverse map to (14) is

K− = (q −
√

a)/(2
√

3) K+ = (q +
√

a)/(2
√

3) . (15)

Comparing (15) with the first of (11) we see that, apart from a trivial rescaling, the phase
parameters in the Wronskian representation of the multi-soliton solutions of the KPII equation
are precisely the Riemann invariants of the constant mean soliton modulation system (10).

The fact that the phase parameters in the multi-soliton solutions coincide with the
Riemann invariants of the soliton modulation system has important ramifications for this
work. Suppose that one wants to construct a multi-soliton solution consisting of two line
solitons with amplitude and slope parameters (a1, q1) and (a2, q2). The two sets of phase
parameters, one set associated to each soliton, are, respectively, K1,± and K2,± as given
by (15). Importantly, it was shown in [46] that the resulting two-soliton solution differs
depending on the relative ordering of K2,± compared to K1,±. Further, it was also shown
in [47] that each of the above three cases corresponds to a different kind of soliton interaction.
Specifically, taking K1,− < K2,− without loss of generality, there are three different classes
of solutions, corresponding to the following three possible cases and interactions:

(i) Ordinary soliton interaction: K1,+ < K2,− if and only if
√

a1 +
√

a2 < |q1 − q2|,
(ii) Resonant soliton interaction: K2,− < K1,+ < K2,+ if and only if |√a1 −

√
a2| <

|q1 − q2| <
√

a1 +
√

a2, and

(iii) Asymmetric soliton interaction: K2,+ < K1,+ if and only if |q1 − q2| < |√a1 −
√

a2|.
Importantly, in section 5, we will show that each of the above three kinds of soliton

interactions arise as a result of the time evolution of a particular subset of the class of initial
conditions discussed in section 2.3.
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3. Simple wave solutions

In this section, we utilize the mathematical structure of the modulation system (3) outlined in
Section 2.2 and 2.4 to study simple wave solutions for special cases of the initial value problem
(7). First, we examine the cases a ≡ 0 and q ≡ 0, both of which represent problems that can
be formulated using the KdV equation and have been previously solved. Next, we consider a
partial soliton with a constant mean flow ū ≡ const. by solving the corresponding Riemann
problem explicitly. Under certain conditions, the solution is undefined (multivalued), which
we resolve by solving a Riemann problem for the (2+1)-dimensional modulation equations.
Finally, we look for simple wave solutions to (7) where ūL ̸= ūR. These simple wave
solutions are building blocks for solving more complex initial value problems, and they will
be utilized as such later in this paper.

3.1. KdV reductions

When a ≡ 0 for the initial conditions (7), we have simply a KdV Riemann problem in x,
since q for zero amplitude is undefined. When ūL = 0 and ūR = 1, a centred RW arises that
is defined by

ū(x, t) =

⎧⎪⎪⎨⎪⎪⎩
1 t < x

x/t 0 < x < t

0 x < 0

. (16)

The case with ūL > ūR is significantly more complex. The initial conditions are compressive,
and the corresponding singularity is regularized by dispersion, resulting in a DSW [29]. The
modulation solution is known as the Gurevich-Pitaevski solution [48]. A DSW consists
of a rank-ordered oscillatory train, where for ūL = 1 and ūR = 0, the leading edge is
approximately a soliton with amplitude a = 2 (and q = 0 for KP) and the trailing edge
consists of modulated, vanishing harmonic waves. The DSW rightmost leading edge has
velocity 2

3 , and the trailing edge has velocity −1.
When q ≡ 0 while a and ū vary, the KP soliton reduces to the KdV soliton, and

the reduced (1+1)-dimensional problem can be entirely described using the KdV equation.
The KdV soliton–mean flow interaction problem has been studied previously, both using the
inverse scattering transform [20] and Whitham modulation theory [21]. There are four types
of configurations, shown in figure 3, which are one-dimensional analogues of the four initial
conditions listed in section 2.3 and depicted in figure 2. The findings for KdV are as follows:

(a) RW-Soliton: soliton does not interact with the RW

(b) Soliton-RW: soliton transmits through the RW if a0 > 2, otherwise it is trapped

(c) Soliton-DSW: soliton always transmits through DSW

(d) DSW-Soliton: soliton does not interact with the DSW if a0 > 2, otherwise it is trapped
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Figure 3. Four types of KdV soliton–mean flow interactions. These are one-dimensional
analogues to the initial conditions shown in figure 2. Panels (a) and (b) show a soliton
interacting with a RW from the right and left, respectively. Panels (c) and (d) show a soliton
interacting with a DSW from the left and right, respectively.

One important result for one-dimensional soliton–mean flow interactions is the principle
of hydrodynamic reciprocity. Adiabatically invariant quantities are conserved globally, except
within the interior of a DSW. Thus, a soliton transmitting through a box, an upward step
followed by a downward step of equal magnitude, will return to its original amplitude,
subject to a phase (position) shift. This is a consequence of the time-reversability of the
governing equation and the continuity of solutions to the Whitham modulation equations.
Initial conditions leading to the development of a DSW for t > 0 will lead to a RW for t < 0;
thus, the same analysis can be applied to both soliton–mean evolutions outside the DSW.

3.2. Constant mean flow

In this section, we consider the evolution of a partial soliton with a constant mean flow
ū ≡ const. This problem has been previously solved using the x-independent modulation
equations in [41, 49]. We will solve this problem using (10), the constant mean reduction of
the y-independent modulation equations (3). This solution will prove to be a building block
for solutions of the full Riemann problem (7) subject to (9). It will also reveal the necessity
and utility of a multivalued solution in x, a novel feature of the problem. In Appendix A we
show that solving the x- and y-independent modulation equations yields equivalent solutions
for the partial soliton. There are two cases to consider, depending on whether the partial
soliton starts to the left or to the right.

Partial soliton on the right Let us first consider the Riemann problem with the partial soliton
on the right:

ap(x, 0) =

{︄
0 x < 0

a0 x > 0
, qp(x, 0) =

{︄
q∗ x < 0

q0 x > 0
, (17)

where q0 > 0. As the soliton modulation is expanding into the a = 0 “vacuum”, the resulting
solution is sought in the form of a simple wave. The vacuum region is to the left of the
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Figure 4. Numerical evolution of the KP equation (1) for a partial soliton with initial
conditions (21) with ū = 0,

√
a0 =

√
aL = 1 < q0 = qL = 1.4 for t ∈ (0, 60, 150).

For large t, the one-dimensional modulation solution is well-defined, i.e. it is not multivalued
in x.

nonzero region, and since Λ+ < Λ−, we seek a r−-wave in which r+ is constant. Thus, r+
determines q∗ as

r+ = q∗ = q0 +
√

a0, (18)

while the simple wave that develops is a 2-wave with r− changing. We can solve for the
simple wave solution

qp(x, t) =

⎧⎪⎪⎨⎪⎪⎩
q0 Ust < x
1
2

[︁
q2
∗ + 3(ū − x

t )
]︁1/2 Uzt < x < Ust

q∗ x < Uzt

,

√︂
ap(x, t) = q0 +

√
a0 − qp(x, t),

(19)

where the characteristic velocities are

Us = ū +
a0

3
− q2

0 +
2
3

q0
√

a0, Uz = ū − q2
∗. (20)

We call Us the velocity of the soliton edge of the simple wave and Uz the velocity of the zero
edge of the simple wave. We will be referring to these edges and velocities often. Note that
the zero edge of the partial soliton simple wave always moves left with respect to the mean
flow, while the soliton edge may move left or right relative to the mean flow, depending on
the parameter values.

Partial soliton on the left Let us now consider the reflected Riemann problem, where the
soliton starts on the left,

ap(x, 0) =

{︄
a0 x < 0

0 x > 0
, qp(x, 0) =

{︄
q0 x < 0

q∗ x > 0
, (21)
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Figure 5. Numerical evolution of the KP equation (1) for a partial soliton with initial
conditions (21) with ū = 0,

√
a0 =

√
aL = 1 > q0 = qL = .4 on t ∈ (0, 80, 250).

The modulation solution becomes multivalued in x.

and again q0 > 0. In this case, the vacuum state is to the right, so r− is constant, determining
q∗ as

r− = q∗ = q0 −
√

a0. (22)

The simple wave that then develops is a r+-wave (or 1-wave) with r+ changing. From (22),
we have two cases that depend on the sign of q∗. If q0 >

√
a0, then q∗ > 0 and the solution

for qp(x, t) has the form

qp(x, t) =

⎧⎪⎪⎨⎪⎪⎩
q∗ Uzt < x
1
2

[︁
q2
∗ + 3(ū − x

t )
]︁1/2 Ust < x < Uzt

q0 x < Ust

,

√︂
ap(x, t) = −q0 +

√
a0 + qp(x, t),

(23)

with soliton and zero edge characteristic velocities, respectively,

Us = ū +
a0

3
− q2

0 −
2
3

q0
√

a0, Uz = ū − q2
∗. (24)

A simulation of this case is shown in figure 4.
If q0 <

√
a0, then q∗ < 0 and the solution is more complicated. In order to have

a continuous solution for q, then there must exist some x such that qp(x, t) = 0, where
the system loses strict hyperbolicity. From numerical simulation, presented in figure 5, it is
evident the modulation solution becomes multivalued in x, and it does so at the branch point
q = 0.

However, we can still construct a well-defined solution if we appeal to its two-
dimensional structure. The simple wave solution for q is inherently multivalued

q±p (x, t) = ±1
2

[︂
q2
∗ + 3

(︂
ū − x

t

)︂]︂1/2
, (25)
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Figure 6. Comparison of analytical solution (- - - -) in (26) with numerical simulation
(——) for the same simulation as figure 5 when t ∈ (0, 150, 200, 250). The analytical solution
is shifted by x0 = −4.

which suggests that the true solution can be pieced together by carefully choosing the correct
sign for (25) as a function of y. The rightmost part of the wave is where q(x, t) = 0. As
shown in (A.10) of Appendix A, the location where q = 0 is moving with a velocity in y of
Vf = −2r−/3 = −2q∗/3 and, by inspection of (25), a velocity in x of Uf = ū + q2

∗/3.
Thus, the full solution becomes a combination of the two branches. For y > Vft,

q+p (x, t) =

{︄
q0 x < Ust
1
2

[︁
q2
∗ + 3

(︁
ū − x

t
)︁]︁1/2 Ust < x < Uft

, (26a)

while for y < Vft,

q−p (x, t) =

{︄
−1

2

[︁
q2
∗ + 3

(︁
ū − x

t
)︁]︁1/2 Uzt < x < Uft

q∗ = q0 −
√

a0 x < Uzt
, (26b)

with the equation for the amplitude the same as (23) supplemented with a = 0 for x > Uzt
and characteristic velocities the same as (24).

We justify the (2+1)-dimensional modulation solution using two approaches. First,
direct numerical analysis confirms our analytical prediction. Figure 6 shows good agreement
between the simulation in figure 5 and the analytical result (26). Second, the partial soliton
Riemann problem (21) can be rewritten as the previously solved Riemann problem for the
parameters a and q using x-independent modulation equations. In that case there is no loss
of strict hyperbolicity nor a multivalued evolution. In Appendix A, we show that the above
solution (26) is equivalent to the modulation solution using the single-valued x-independent
modulation solution.

3.3. Soliton–mean simple wave

We now look for simple wave solutions to the full Riemann problem (7), where parameters
are chosen so that R± are held constant while Rū is changing. We will call these solutions
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soliton–mean simple waves. They represent admissible, stable solutions that are expected to
be large t attractors for a variety of initial conditions. The parameters (ū0, a0, q0) are given on
the initial soliton side of the discontinuity (left or right) and connect to (ū1, a1, q1) on the far
side (right or left, respectively). For convenience, let ∆ = ū0 − ū1 = ±1. Also, throughout
the remainder of this paper, instead of utilizing the conventional numbering of simple waves
based on the ordering of characteristic velociies (e.g. 1-wave or 2-wave), we will refer to a
simple wave where only Rj is changing as an Rj-simple wave, where Ri, i ̸= j, are constant
for i, j ∈ {ū,+,−}.

An Rū-simple wave gives rise to the two relationships between the parameters for the far
and mean sides. Given constant R±,

R− = ū0 +
1
2
(q0 −

√
a0)

2 = ū1 +
1
2
(q1 −

√
a1)

2, (27a)

R+ = ū0 +
1
2
(q0 +

√
a0)

2 = ū1 +
1
2
(q1 +

√
a1)

2. (27b)

Subtracting (27a) from (27b) and squaring yields(︃
R+ − R−

2

)︃2

= q2
0a0 = q2

1a1. (28)

Adding (27a) and (27b) together gives the relation

2∆ + q2
0 + a0 = q2

1 + a1. (29)

Eliminating q2
1 in (28) with (29), we obtain two solutions of (27) for a1

a1 =
1
2

(︃
a0 + q2

0 + 2∆ + σ
√︂
(a0 + q2

0 + 2∆)2 − 4a0q2
0

)︃
, (30a)

where σ = ±1. Due to the symmetry of the equations, repeating the above process for q2
1

gives the same result, but with opposite sign

q2
1 =

1
2

(︃
a0 + q2

0 + 2∆ − σ
√︂
(a0 + q2

0 + 2∆)2 − 4a0q2
0

)︃
. (30b)

The opposite signs in front of σ in (30) are required to satisfy (29). We will define σ below.
A corollary of (30) is that

a1 − q2
1 = 2σ

√︂
(a0 + q2

0 + 2∆)2 − 4a0q2
0, (31)

which implies that if σ = 1, a1 ≥ q2
1, while if σ = −1, a1 ≤ q2

1. Equality only occurs when
a0 = (

√
−2∆ ± q0)

2, which requires ∆ < 0.
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To have a real expression for (30), the term underneath the square root must be
nonnegative. This happens when one of the following holds

−2∆ > (q0 +
√

a0)
2, (32a)

−2∆ < (q0 −
√

a0)
2. (32b)

In addition, for soliton transmission (defined below) to be well-defined, both a1 (30a) and q2
1

(30b) must be positive. This occurs when

−2∆ < (q0 −
√

a0)
2, (33)

an identical requirement to (32b). Thus, (33) completely describes the transmission regime for
a KP soliton and is a necessary and sufficient condition to guarantee a simple wave solution
across a changing mean flow. Note that setting q0 = 0 and ∆ = −1 reduces (33) to the
KdV transmission condition described in section 3.1 for both a soliton-RW interaction and a
DSW-soliton, namely that a soliton is trapped when a0 < 2. This motivates the following:

Definition 1. A soliton interacting with a changing mean flow is trapped if (33) does not hold,
i.e., if −2∆ > (q0 −

√
a0)

2.

We define transmission to be the opposite of trapping:

Definition 2. A soliton interacting with a changing mean flow is transmitted if (33) holds,
i.e., if −2∆ < (q0 −

√
a0)

2.

For a transmitted soliton, we can use conservation of R± to calculate exact solutions for
a(x, t) and q(x, t) within a RW. This will also define the sign σ. Since the exact solution
for ū(x, t) in a RW is known (16) and R± are constant, we can find a(x, t) and q(x, t) in a
soliton–mean simple wave with a RW by solving the system of equations

R+ =
x
t
+

1
2

(︃
q(x, t) +

√︂
a(x, t)

)︃2

, R− =
x
t
+

1
2

(︃
q(x, t)−

√︂
a(x, t)

)︃2

,

where R± are the constant values R± = ū0 +
1
2(q0 ±

√
a0)

2 = ū1 +
1
2(q1 ±

√
a1)

2. Solving
these equations in a similar manner as above gives explicit solutions for a(x, t) and q(x, t),

a(x, t) = −x
t
+

R+ + R−
2

+ σ
[︂(︂x

t
− R−

)︂ (︂x
t
− R+

)︂]︂1/2
, (34a)

q2(x, t) = −x
t
+

R+ + R−
2

− σ
[︂(︂x

t
− R−

)︂ (︂x
t
− R+

)︂]︂1/2
. (34b)

At the edge of the RW closest to the initial soliton with parameters (ū0, a0, q0), from (16)
we have that x/t = ū0, a(x, ū0t) = a0, and q2(x, ū0t) = q2

0. Inserting these values and
subtracting (34b) from (34a) yields, in physical variables,

a0 − q2
0 = σ|a0 − q2

0|. (35)
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The above relation (35) implies that

σ = sgn(a0 − q2
0), a0 ̸= q2

0. (36)

Thus, σ is determined by consistency with the soliton initial conditions (a0, q2
0). The

determination of σ (36) combined with (31) shows that a0 > q2
0 implies a1 ≥ q2

1, while
a0 < q2

0 implies a1 ≤ q2
1. In general, if a > q2 anywhere within the soliton–mean simple

wave, a ≥ q2 throughout the entire solution, and vice versa.
If a0 = q2

0, the mapping (30) is undetermined in general. That special case is only
relevant if ∆ > 0, since if ∆ < 0 then a0 = q2

0 will not transmit according to (33). For
∆ = 1 > 0, (31) implies that

lim
a0→q2±

0

(a1 − q2
1) = ±4

√︁
2a0 + 1, (37)

which has different values for the a0 > q2
0 (σ = +1) and a0 < q2

0 (σ = −1) limit sides.
This discontinuous dependence on initial data implies that the mapping (30) is undetermined
for a0 = q2

0 and ∆ = 1 > 0, which is unsurprising given the lack of strict hyperbolicity for
those parameters. In the remainder of this section, we assume that a0 ̸= q2

0. In section 4.2 we
examine a specific initial value problem where a0 = q2

0 and give an argument for choosing σ

in that scenario, a choice validated by numerical simulation.
Although the above analysis based on (34) assumes a RW, the principle of hydrodynamic

reciprocity [21] referenced in section 3.1 allows us to extend the result (36) to a DSW. If we
assume a mean flow resulting in a DSW (ūL > ūR) for t > 0, the time reversability of the KP
equation (1) implies that t < 0 will result in a RW. If we obtain the global solution through
the RW for t < 0 by assuming R± constant as above in (34), then we have a solution with
R± constant outside the DSW region also for t > 0. Consequently (36) also applies to DSW
initial conditions.

The mapping from (30) across a mean flow is also invertible. By direct evaluation from
(30) we calculate that if ∆ = 1, then

(q1 −
√

a1)
2 = 2 + (q0 −

√
a0)

2 > 2. (38)

This means that for any soliton (a0, q0) transmitting from the higher ∆ = 1 side of a mean
flow, its counterpart across the mean flow (a1, q1) in (38) with ∆ = −1 also satisfies the
transmission condition (33). Let us now define the soliton–mean simple wave mapping

F∆=1 : {(a0, q2
0) | a0 > 0, q0 > 0} → {(a1, q2

1) | a1 > 0, q1 > 0, (q1 −
√

a1)
2 > 2},

(39a)
where F∆=1 is defined by (30) with ∆ = 1 and (36). F∆=1 maps transmitted soliton
parameters across a mean flow when the initial soliton is posited on the higher (∆ = 1)
side of the initial step. We also define the mapping

F∆=−1 : {(a0, q2
0) | a0 > 0, q0 > 0, (q0 −

√
a0)

2 > 2} → {(a1, q2
1) | a1 > 0, q1 > 0},

(39b)
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again defined by (30) and (36) with ∆ = −1. F∆=−1 maps transmitted soliton parameters
across a mean flow when the initial soliton is posited on the lower (∆ = −1) side of the initial
step. Direct calculation verifies that F∆=1(F∆=−1(a, q2)) = (a, q2). In other words, both
F∆=±1 are one-to-one and onto on their domains, with

F−1
∆=1 = F∆=−1.

The soliton–mean simple wave solution described in this section is the main result of
this work. The mappings (39) provide a basic condition for existence of a soliton traversing
a mean flow. For a soliton to exist across a changing mean flow, the initial parameters must
be in the domain of one of (39) and the parameters across the mean flow (a1, q1) must be in
the range, giving a real and nonnegative result for a1 and q2

1 in (30). Examples of transmitted
solitons fulfilling the mappings (39) are shown in the third panels of figures 9, 14, 16, and
19. We can also determine transmission or trapping from (33), which generalizes the KdV
transmission conditions to the KP equation. In the next two sections we will show how the
mappings (39) can be utilized for the specific initial value problem (7) subject to (9).

4. General considerations regarding interactions between partial solitons and mean
flows

We now proceed to discuss the evolution of the partial soliton–mean flow initial data (7)
subject to (9) for the modulation equations (3), whose projection (8) is shown in figure 2.
We first consider general properties of the problem, its solution, and criteria for transmission.
The transmission conditions here will be more restrictive than those for a single soliton–mean
simple wave (33), with additional subtleties due to the multiple waves generated from the
partial soliton initial data. Next, we will examine the interaction of a RW with a partial
soliton simple wave from section 3.2, a feature which occurs repeatedly in the analysis of
specific cases. In section 5 we will apply the following general approach to the four specific
initial conditions in figure 2.

4.1. Transmission conditions

We will look for solutions to the Riemann problem (7) subject to (9) consisting of a
combination of well-defined simple waves connected by constant states. To facilitate this
analysis, let us again refer to the initial soliton parameters, either (aL, qL) or (aR, qR), as
(a0, q0). The mean flow on the side of the initial partial soliton is denoted by ū0, while the
mean flow on the other side of the jump at x = 0 is ū1. From (9), we recall our initial data
(a1, q1) = (0, q∗). Since q∗ is chosen to conserve one of R± (cf. (18) and (22)), which is
also conserved by the soliton–mean simple wave of section 3.3, transmission is generically
characterized by two simple waves connected by one constant state. Since the mean flow ū is
decoupled in (3), the wave closest to the initial partial soliton will have Rū changing with both
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R± constant, i.e. the soliton–mean simple wave of section 3.3. Between the simple waves
will be an expanding constant region with parameters (aM, qM) that are determined by (39).
The other simple wave is for the partial soliton of section 3.2 in which Rū and only one of R±
are constant, connecting (aM, qM) to the constant state (0, q∗).

Consequently, in order for the partial soliton to completely transmit through a changing
mean flow under the initial conditions (7) and (9), three conditions are necessary. First, the
partial soliton must propagate into the mean flow. Second, the partial soliton must transmit
through the RW or DSW. Third, the partial soliton on the far side of the changing mean flow
must also propagate away from the mean flow. We will consider each of these conditions in
turn.

First, the partial soliton must propagate into the RW or DSW so that an interaction
occurs. The partial soliton simple wave characteristic velocity Us in (20) or (24) must have a
magnitude and direction such that the soliton edge of the partial soliton simple wave interacts
with the near edge of the mean flow. Specifically, if the partial soliton is initialized to the left
of the mean flow, the soliton edge must move faster than the left edge of the RW or DSW, and
if the partial soliton is initialized to the right, the right edge of the RW or DSW must overtake
the soliton edge. If the partial soliton simple wave soliton edge does not interact with the
mean flow we refer to this scenario as either partial recession or total recession, the former
occurring if the zero edge of the partial soliton simple wave interacts with the mean flow.

Definition 3. A partial soliton recedes from a mean flow if the soliton edge of the partial
soliton simple wave defined in section 3.2 never interacts with the mean flow. If the partial
soliton simple wave’s zero edge also does not interact with the mean flow, this is known as
total recession; otherwise we call it partial recession.

If a0 = aR and Us is greater than the right edge velocity of the DSW or RW, since
Uz < ū in (20) we will only have partial recession, never total recession. If a0 = aL and
Us is less than the left edge velocity of the DSW or RW, since Uz < ū in (24) we will only
have total recession. When partial recession occurs, the partial soliton can still transmit or be
trapped, while total recession precludes both transmission and trapping. We consider partial
recession more fully below in section 4.2. Numerical simulations for predicted conditions
showing recession are shown in figures 8 (partial) and 11 (total).

Second, the partial soliton interacting with the RW or DSW must then transmit through
it. In other words, a well-defined soliton–mean simple wave solution with the appropriate
domain and range of the mapping (39) must exist. As defined above in definition 1, when a
soliton–mean simple wave solution does not exist, we refer to this as soliton trapping. Note
that when transmission occurs according to (33), q∗ must be well-defined, since

q2
∗ = 2∆ + (q0 ±

√
a0)

2 > 0, (40)

where the sign choice corresponds to whether R+ or R− is conserved and ∆ is defined as
above. Numerical simulations for data predicted to show trapping are shown in figures 12, 17,
and 18.
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Third, for the soliton to fully transmit through the RW or DSW, the transmitted partial
soliton must continue to propagate away from the mean flow. Assuming the partial soliton
transmits through the changing mean flow with (a1, q1) = (aM, qM) in (30), for the soliton to
fully establish itself beyond the DSW or RW there must be a partial soliton simple wave (cf.
section 3.2) connecting (aM, qM) to (0, q∗) with a sufficiently fast soliton edge velocity Us

from (20) or (24). If the new partial soliton never completely separates from the mean flow,
we call this incomplete transmission:

Definition 4. A partial soliton experiences incomplete transmission when it transmits through
a RW or DSW but the soliton edge of the partial soliton simple wave defined in section 3.2
does not move faster than the nearest edge of the changing mean flow.

A numerical simulation for data we predict to lead to incomplete transmission is shown
in figure 13. If a fully established line soliton separates from the mean flow on the far side,
we say complete transmission:

Definition 5. A partial soliton experiences complete transmission when total recession,
trapping, and incomplete transmission do not occur.

In the event of complete transmission, the line soliton approaches the RW or DSW,
interacts with it, and continues to expand on the far side. As we will demonstrate, complete
transmission only occurs in a limited subset of initial conditions. When it does occur, for
large t the solution approaches a soliton–mean simple wave described in section 3.3 by the
mappings (39). Numerical simulations with data predicting complete transmission are shown
in figures 9, 14, 16, and 19. In the next section, we will consider the four types of initial
conditions shown in figure 2. The regions where each type of behaviour is predicted to
occur in parameter space for each of the four initial conditions are shown in figure 7. Before
examining these in detail, we first study partial soliton simple wave–mean flow interactions.

4.2. Interactions between soliton simple waves and mean flow

Here we consider in more detail the interaction of a partial soliton simple wave (from
section 3.2) with a RW. Due to the principle of hydrodynamic reciprocity [21], we can then
extend analogous results to the interaction of a partial soliton simple wave with a DSW. This
scenario arises when partial recession occurs, as well as when a transmitted soliton displays
multivalued behaviour in the modulation variables.

For concreteness, we consider a partial soliton starting to the right of a RW (case (a) in
figure 2), with initial conditions such that the partial soliton propagates away from the RW. A
receding partial soliton starting to the left of a RW experiences total recession and thus does
not interact with the RW. In other words, we are studying a Riemann problem with parameters:

ū(x, 0) =

{︄
0 x < 0

1 x > 0
, a(x, 0) =

{︄
0 x < 0

aR x > 0
, q(x, 0) =

{︄
q∗ x < 0

qR x > 0
, (41)
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Figure 7. Phase diagram of predicted interactions between a partial soliton with a dynamic
mean flow for the four initial conditions shown in figure 2: (a) RW–soliton interaction; (b)
Soliton–RW interaction; (c) Soliton–DSW interaction; (d) DSW–soliton interaction. For cases
(b) and (c), complete transmission also leads to the partial soliton simple wave bending around
to interact with the mean flow a second time.

where
√

aR > qR > 0. Following section 3.2, we determine q∗ in order to conserve R+

throughout the solution. This yields

q2
∗ = 2 + (qR +

√
aR)

2. (42)

Note that q∗ is always well-defined (real-valued). The right, soliton edge of the partial soliton
simple wave has velocity:

Us = 1 +
aR

3
− q2

R +
2
3

√︂
aRq2

R > 1.

Thus, the soliton edge propagates away from the RW. However, the left, zero edge of the
partial soliton simple wave moves left in relation to the mean flow (Uz = 1 − q2

∗ < 1, cf.
(24)), interacting with the RW. The two waves intersect at x = t, where ū(t, t) = R−(t, t) =
1 and q(t, t) =

√︁
a(t, t) = (qR +

√
aR)/2. We denote the amplitude at the intersection point

as
ai =

1
4
(qR +

√
aR)

2. (43)

At this point, the characteristic velocities λ− and λū and Riemann invariants R− and Rū

coalesce. Due to scaling properties of the Riemann problem, the solution must have the self-
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Figure 8. Numerical evolution of the KP equation (1) with aR = 4, qR = 1, ūR = 0,
ūL = −1 for t ∈ (0, 30, 80). The last panel compares predicted aM and qM (47) with σ = −1
to numerics. This is an example of partial recession with complete transmission.

similar form R− = R−(x/t). However, the solution to this problem is non-unique, as there
are two possible self-similar solutions satisfying the boundary condition R−(t, t) = 1:

R−(x, t) ≡ 1, 0 < x ≤ t, (44)

R−(x, t) = x/t, 0 < x ≤ t. (45)

Assuming solution (45), the definition of the Riemann invariants (5) then requires that√︁
a(x, t) = q(x, t) throughout the RW. We will show that this solution (45) is not possible

through a proof by contradiction. If we set
√︁

a(x, t) = q(x, t) and insert this into (3), the
amplitude a modulation equation simplifies to

qt +
q
3

ūx +

(︃
ū − 4q2

3

)︃
qx −

2
3

q2qx = 0, (46a)

while the inclination q modulation equation becomes

qt − qūx +

(︃
ū − 4q2

3

)︃
qx −

2
3

q2qx = 0. (46b)

Subtracting (46b) from (46a) yields 4
3 qūx = 0. For this to be true, either ū must be constant in

x, which cannot be the case, or q ≡ 0. Since ū = x/t for 0 < x < t, this implies a(x, t) ≡ 0,
which cannot be true because a(t, t) = ai > 0. In short, (3) is not compatible with

√
a = q.

This leaves the constant solution (44) as the only solution. Thus, assumption of constant R±
throughout the mean flow still holds even when a partial soliton simple wave interacts with
the mean flow.

A partial soliton experiencing partial recession can still be transmitted or trapped. Instead
of using the initial parameters to determine evolution in the mean flow, we use the parameters
at the edge of the RW (a, q2) = (ai, ai). The calculation for the soliton amplitude and slope
across the RW is the simple wave solution (30) from section 3.3 with a0 = q2

0 = ai. The
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resulting parameters on the left side of the mean flow, if complete transmission occurs, are
then

aM = ai + 1 + σ
√︁

1 + 2ai, (47a)

q2
M = ai + 1 − σ

√︁
1 + 2ai, (47b)

where σ = ±1. Solutions for a(x, t) and q(x, t) within the RW are also described by (34),
again with q2

0 = a0 = ai,

a(x, t) = −x
t
+ 1 + ai + σ

[︂(︂x
t
− 1
)︂ (︂x

t
− 1 − 2ai

)︂]︂1/2
(48a)

q2(x, t) = −x
t
+ 1 + ai − σ

[︂(︂x
t
− 1
)︂ (︂x

t
− 1 − 2ai

)︂]︂1/2
. (48b)

The earlier definition of σ from (36) is not valid here, since a0 = q2
0. Instead, we choose σ

by appealing to the ∆ = 0 case presented in section 3.2. For partial soliton initial conditions
given on the right with ū constant (17), the equations for q(x, t) (18)-(20) imply that q is
a monotonically decreasing function of x for all t. We expect the same will hold true now
with ∆ ̸= 0. To ensure this, we need to choose σ = −1. Numerical analysis confirms these
predictions. For the specific initial conditions aR = 4, qR = 1, ūR = 0, ūL = −1, with
(43) inserted into (48) and σ = −1 we predict that left of the RW a = aM = 0.90 and
q = qM = 2.37. The accuracy of this prediction is confirmed on the fourth panel of figure 8.

In summary, the effect of partial recession is that the partial soliton simple wave is
“interrupted” by the RW. The partial soliton simple wave begins to the right of the RW, since
here λ− > λū. However, at the right edge of the RW, the ordering of the characteristic
velocities λ− and λū switches. Throughout the RW and the expanding constant region, R±
are constant. Then the partial soliton simple wave continues connecting (aM, qM) to (0, q∗),
since for this region λ− < λū. By hydrodynamic reciprocity (see section 3.3), outside a
DSW, R± will also be held constant occur when a partial soliton simple wave interacts with a
DSW.

5. Specific cases

In this section, we consider the four types of initial conditions displayed in figure 2, applying
the framework described in section 4.

5.1. RW–partial soliton

We first discuss the initial conditions with ūL = 0, ūR = 1, aR = a0 and qR = q0 given, and
aL = 0, qL = q∗. In this case, from the analysis of a partial soliton with constant mean flow in
section 3.2, we assume that R+ is constant throughout the resulting flow. Only two outcomes
are possible: partial recession (leading to complete transmission) and complete transmission.
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These initial conditions are shown in panel (a) of figure 2, and the corresponding regions of
the parameter space (aR, q2

R) that give rise to each outcome are shown in panel (a) of figure 7.

Partial recession (figure 8) The partial soliton interacts only partially with the RW when
Us > 1 (cf. (20)), implying that √

aR > qR (49)

holds for partial recession. This scenario is examined above in section 4.2 and depicted in
figure 8.

Complete transmission (figure 9) For initial conditions in which partial recession does not
occur, the opposite of (49) must hold, implying that we can fix the sign in (36) for the soliton–
mean simple wave to be σ = −1 throughout the remainder of this section. The transmission
condition (33) is always met, since ∆ = 1; trapping never occurs. The mapping in (30) for
this case of RW-partial soliton interaction is given in (39a) yielding

aM =
1
2

(︃
aR + q2

R + 2 −
√︂
(aR + q2

R + 2)2 − 4aRq2
R

)︃
, (50a)

qM =
1√
2

(︃
aR + q2

R + 2 +
√︂
(aR + q2

R + 2)2 − 4aRq2
R

)︃1/2

. (50b)

To the left of the constant region with a = aM and q = qM is a partial soliton simple
wave with R− constant. Incomplete transmission will not occur when

√
aM < qM, which we

know from the fact that we fixed σ = −1 and (31). Thus, for this case the soliton always
completely transmits. A numerical simulation of complete transmission is shown in figure 9.
The partial soliton parameters on the left side of the RW (aM, qM) are shown to satisfy the
simple wave condition (30) to good accuracy.

Although complete transmission (figure 9) and partial recession with complete
transmission (figure 8) appear similar, the difference can be seen in the portion of the partial
soliton at the right edge of the RW. For complete transmission, the initial amplitude (red)
portion of the partial soliton is directly at the right edge of the RW, while for partial recession,
the initial amplitude portion recedes from the RW, leaving a lower amplitude soliton to
transmit.

Complete transmission exact solution (figure 10) When complete transmission occurs, we
can calculate explicit modulation solutions for all three parameters. We look for solutions
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Figure 9. Numerical evolution of the KP equation (1) showing complete transmission for the
initial conditions (a) in figures 2 and 7. The initial conditions are aR = 1, qR =

√
2, uR = 0,

and uL = −1 on t ∈ (0, 20, 80). The right panel compares the parameters of the transmitted
soliton with the soliton–mean simple wave prediction (30) and (39a).

with two simple waves and a constant region of the form:

a(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x < Uzt

a2(x, t) Uzt < x < Ust

aM Ust < x < 0

a3(x, t) 0 < x < t

aR t < x

, q(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q∗ x < Uzt

q2(x, t) Uzt < x < Ust

qM Ust < x < 0

q3(x, t) 0 < x < t

qR t < x

. (51a)

We already performed the calculations for a3(x, t) and q3(x, t) in (34):

a3(x, t) = −x
t
+

R+,R + R−,R

2
−
[︂(︂x

t
− R−,R

)︂ (︂x
t
− R+,R

)︂]︂1/2
, (51b)

q2
3(x, t) = −x

t
+

R+,R + R−,R

2
+
[︂(︂x

t
− R−,R

)︂ (︂x
t
− R+,R

)︂]︂1/2
, (51c)

where R±,R = ūR + (qR ± √
aR)

2. We use calculations from section 3.2 for the initial
condition (19) to find an explicit formula for a2(x, t) and q2(x, t):

q2(x, t) =
1
2

(︂
q2
∗ − 3

x
t

)︂1/2
,

√︂
a2(x, t) = qM +

√
aM − q2(x, t), (51d)

where
Us =

aM

3
− q2

M +
2
3

qM
√

aM, Uz = −q2
∗ (51e)

A comparison between the above analytical solution (51) and direct numerical simulation is
shown in figure 10. Modulation theory accurately captures the system’s behaviour.

5.2. Partial soliton–RW

Next, we consider initial conditions with aL = a0 and qL = q0 given, ūL = 0, ūR = 1,
aR = 0, and qR = q∗. In this case, from the solution to (21), R− should be constant
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Figure 10. Comparison of analytical results (- - - -) from (51) with numerical simulations
(——) for amplitude (left) and slope (right). The numerical simulation the same as figure 9. A
phase shift of x0 = −20 is incorporated in the analytical solution. The soliton–mean simple
wave result (— · —) from (30) and (39a) is shown to be the large t limit.

throughout the flow. Four outcomes are possible: complete recession, trapping, incomplete
transmission, and complete transmission. The initial conditions are shown in panel (b) of
figure 2, and the regions of parameter space that give rise to each outcome are shown in panel
(b) in figure 7.

Total recession (figure 11) The partial soliton totally recedes from the RW when

√
aL < 3qL, (52)

a relatively large portion of the parameter space. A simulation of total recession is shown in
figure 11. In this case, the partial soliton never interacts with the mean flow. It follows that for
a partial soliton under these initial conditions to be transmitted or trapped,

√
aL > 3qL, the

converse of (52), is required. This fixes a > q2 throughout the solution, implying that the sign
in (36) for the soliton–mean simple wave must be σ = 1 for the remainder of this section.

Trapping (figure 12) The transmission condition (33) further limits permissible transmitted
solutions, as partial solitons can be trapped in the RW. Figure 12 shows an example of this
trapped case.

Incomplete transmission (figure 13) If the transmission condition is met and complete
recession did not occur, then we can follow (39b) to find the parameters of the constant region:

aM =
1
2

(︃
aL + q2

L − 2 +
√︂
(aL + q2

L − 2)2 − 4aLq2
L

)︃
, (53a)

qM =
1√
2

(︃
aL + q2

L − 2 −
√︂
(aL + q2

L − 2)2 − 4aLq2
L

)︃1/2

. (53b)
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Figure 11. Numerical evolution of the KP equation (1) showing total recession for the initial
conditions (b) in figures 2 and 7. The initial parameters are aL = 2, qL = 1, ūR = 1, and
ūL = 0 displayed for t ∈ (0, 30, 60). This partial soliton does not interact with the RW.

If the parameters (aM, qM) in (53) do not meet the final condition stated below in (54),
incomplete transmission occurs. An example of incomplete transmission is shown in
figure 13. The transmitted soliton never separates from the mean flow.

Complete transmission (figure 14) Complete transmission then additionally requires that a
constant region develops between the RW and the partial soliton simple wave so that (cf. (20))

Us = 1 +
aM

3
− q2

M +
2
3

√︂
aMq2

M > 1, (54)

which we can write in terms of the incident soliton’s parameters using (53)

2 − (qL −
√

aL)
2 + 2

√︂
(aL + q2

L − 2)2 − 4aLq2
L > 0. (55)

Assuming total recession does not occur ((52) is not met), complete transmission occurs when
both (33) and (55) are met. An example is shown in figure 14. For large t, the soliton–mean
simple wave solution occurs across the RW, as expected.

Complete transmission exact solution (figure 15) We can write down an exact solution in the
complete transmission case, which will require utilizing multiple branches of the simple wave
solution due to multivalued partial soliton evolution (cf. section 3.2). Recall that aM > q2

M
because σ = 1 (31), which from (22) implies that q∗ < 0. Consequently, the simple wave on
the far side of the RW becomes multivalued in x. From figure 14 we see that this is indeed the
case. In fact, the solution then curves back around to interact with the RW again, and there
we must apply the analysis from Section 4.2. We look for a two branched solution where for
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Figure 12. Numerical evolution of the KP equation (1) showing trapping for the initial
conditions (b) in figures 2 and 7. The initial parameters are aL = 1.21, qL = 0.20, ūR = 1, and
ūL = 0 displayed for t ∈ (0, 40, 100). The initial conditions do not satisfy the transmission
condition in (33).

Figure 13. Numerical evolution of the KP equation (1) showing incomplete transmission for
the initial conditions (b) in figures 2 and 7. The initial parameters are aL = 3, qL = 0.15,
uR = 1, and uL = 0 displayed for t ∈ (0, 40, 100). The partial soliton never propagates to
the right of the RW.

Figure 14. Numerical evolution of the KP equation (1) showing complete transmission for the
initial conditions (b) in figures 2 and 7. The initial parameters are aL = 5, qL = 0.25, uR = 1,
and uL = 0 displayed for t ∈ (0, 40, 80). After transmission the partial soliton bends leftward
to completely transmit through the RW again. The right panel compares the parameters of the
transmitted soliton with the soliton–mean simple wave prediction (30) and (39b). See figure
15 for a more direct comparison with the modulation solution.
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y > Vft, with Vf = −2
3(qM −√

aM) and Uf = 1 + 1
3(qM −√

aM)2 we have

a+(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aL x < 0

a2(x, t) 0 < x < t

aM t < x < Ust

a+3 (x, t) Ust < x < Uft

, q+(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qL x < 0

q2(x, t) 0 < x < t

qM t < x < Ust

q+3 (x, t) Ust < x < Uft

,

(56a)
with the characteristic velocity Us defined as in (54). For y < Vft we have

a−(x, t) = a−3 (x, t), q−(x, t) = q−3 (x, t), t < x < Uft, (56b)

defined below. We can calculate the exact solution within the simple wave just as above in
(34):

a2(x, t) = −x
t
+

R+,L + R−,L

2
−
[︂(︂x

t
− R−,L

)︂ (︂x
t
− R+,L

)︂]︂1/2
, (56c)

q2
2(x, t) = −x

t
+

R+,L + R−,L

2
+
[︂(︂x

t
− R−,L

)︂ (︂x
t
− R+,L

)︂]︂1/2
, (56d)

where R±,L = ūL + (qL ±√
aL)

2. The simple wave solution then is

q±3 (x, t) = ±1
2

[︂
(qM −

√
aM)2 + 3

(︂
1 − x

t

)︂]︂1/2
,√︂

a±3 (x, t) = −qM +
√

aM + q±3 (x, t).
(56e)

The partial soliton then interacts with the mean flow again at x = t, q−3 (t, t) =

−
√︂

a−3 (t, t) = −√
ai, where ai =

1
4(qM −√

aM)2. Consequently, we also have that R+ = ū
at x = t. This is now identical to the partial scenario examined above in section 4.2 with
the transformation y → −y and R± → R∓. The partial soliton, now with parameters
(a, q2) = (ai, ai), is completely transmitted back through the RW with new parameters
defined by (47). At the left side of the RW, a R+-wave continues.

In figure 15 we show a comparison between direct numerical simulation and the above
analytical results (56). We incorporate a phase shift of x0 = −11 to account for higher
order effects due to the smooth initial data. The behaviour of the numerical solution is again
well-captured by the modulation theory prediction.

5.3. Partial soliton–DSW

Now we consider initial conditions where aL and qL are given, ūL = 1, ūR = 0, aR = 0, and
qR = q∗. The mean flow initial conditions will yield a DSW, and R− is constant throughout
the flow following analysis for (21). Three outcomes are possible: total recession, incomplete
transmission, and complete transmission. The initial conditions are shown in panel (c) of
figure 2, and the corresponding regions of parameter space for each outcome are shown in
panel (c) of figure 7.
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Figure 15. Comparison of analytical results (- - - -) from (56) with numerical simulations
(——) for amplitude (left) and slope (right) for complete transmission in initial conditions (b)
in 2 and 7. The numerical simulation is the same as in figure 14. A phase shift of x0 = −11
is incorporated in the analytical solution. The soliton–mean simple wave result (— · —) from
(30) and (39b) is shown to be the large t limit

Total recession The partial soliton does not interact with the mean flow when Uz < −1 (cf.
(24)) implying

aL − 3q2
L − 2qL

√
aL < −2, (57)

holds for total recession. It follows that for incomplete and complete transmission, the
converse of (57) must hold.

Incomplete transmission Following (33) and (39a), we find that a soliton–mean simple wave
solution always exists for these initial conditions with parameters

aM =
1
2

(︃
aL + q2

L + 2 + σ
√︂
(aL + q2

L + 2)2 − 4aLq2
L

)︃
, (58a)

qM =
1√
2

(︃
aL + q2

L + 2 − σ
√︂
(aL + q2

L + 2)2 − 4aLq2
L

)︃1/2

, (58b)

with σ defined as in (36). The below condition (59) must also be met for complete
transmission; if it is not, incomplete transmission occurs and the soliton never separates from
the mean flow.

Complete transmission (figure 16) The only remaining factor for complete transmission
is the magnitude of the partial soliton characteristic velocity on the right side of the DSW
Us > 2/3 (cf. (24)), leading to the condition

2 − (qL −
√

aL)
2 + 2σ

√︂
(aL + q2

L + 2)2 − 4aLq2
L >

2
3

. (59)

When the above conditions (58) and (59) are met, and total recession (57) did not occur,
complete transmission occurs. Figure 16 shows the complete transmission of a partial soliton
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Figure 16. Numerical evolution of the KP equation (1) showing complete transmission for the
initial conditions (c) in figures 2 and 7. The initial parameters are aL = 3, qL = 0.5, uR = −1,
and uL = 0 displayed for t ∈ (0, 20, 50). Note the zero edge of the partial soliton simple wave
bends back to interact with the DSW again. The right panel compares the parameters of the
transmitted soliton with the soliton–mean simple wave prediction (30) and (39a).

starting on the left through a DSW. For large t, the solution approaches the soliton–mean
simple wave from section 3.3. Once again, the simple wave bends back to interact with
the DSW a second time, as described in section 4.2. The secondary interaction occurs at
x/t = 2/3 and is identical to the partial recession case for DSW-soliton initial conditions
with the transformation y → −y and R± → R∓. In contrast to partial recession for partial
soliton-RW data, for this secondary interaction, trapping always occurs. We give details below
in section 5.4.

5.4. DSW–partial soliton

When the partial soliton starts to the right of the a DSW, we fix aR and qR, ūL = 1,
ūR = 0, aL = 0, and qL = q∗. From the solution to (17), R+ is constant outside the DSW.
Four outcomes are possible here: partial recession (leading to resonant trapping), trapping
(resonant or nonresonant), incomplete transmission, and complete transmission. The initial
conditions are shown in panel (d) of figure 2, and the corresponding regions of parameter
space that give rise to each outcome are shown in panel (d) in figure 7.

Partial recession The partial soliton only interacts partially with the DSW if Us > 2/3 (cf.
(20)), which in our case reads

aR

3
− q2

R +
2
3

qR
√

aR >
2
3

. (60)

When partial recession occurs, the portion of the partial soliton simple wave that interacts
with the front edge of the RW is delimited by the speed U = x/t = 2/3, which corresponds
to replacing aR and qR in (60) with values such that the inequality becomes an equality.

We denote the soliton parameters at the front edge of the DSW as (a, q) = (ai, qi). From
(19), we obtain qi = q(2t/3, t) = 1

2 [(qR +
√

aR)
2 − 2]1/2, where qi is guaranteed to be real
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from (62b). We calculate again using (19)

(qi −
√

ai)
2 =

[︂
(qR +

√
aR)

2 − 2
]︂1/2

− (qR +
√

aR), (61)

from which it is necessary that (qi −
√

ai)
2 ≤ 2 with equality only if qR +

√
aR =

√
2.

Thus, for partial recession the transmission condition (33) never holds, i.e. a partial
soliton experiencing partial recession from a DSW always remains trapped. Specifically, it
experiences resonant trapping, which we will explain below.

Resonant trapping (figure 17) We now discuss the case where the partial soliton fully
interacts with the mean flow, i.e. the partial recession condition (60) does not hold. If the
transmission condition (33) is also not met, trapping occurs, which can take two forms. First,
we can have a resonant interaction between the partial soliton and the front edge of the DSW.
Recall that the leading edge of a DSW takes the form of a soliton with a = 2 and q = 0 for
large t (see section 3.1). From [47], we find that a resonant interaction occurs between the
partial soliton and the DSW leading edge when both of the following inequalities hold:

(qR −
√

aR)
2 < 2, (62a)

(qR +
√

aR)
2 > 2. (62b)

Condition (62a) is equivalent to the trapping condition (33), and therefore is automatically
satisfied if trapping has occurred. If (62b) also holds, the trapped partial soliton interacts
resonantly with the DSW front to form a stem and a second resonant branch between them
in a Y-shape. Incidentally, the resonance conditions (62) are identical to the conditions that
guarantee a complex value in (30) (cf. (32)). The parameters of the resonant stem are [47]:

qstem =
1
2
(qR +

√
aR −

√
2),

√
astem =

1
2
(qR +

√
aR +

√
2) (63)

We now use the above parameters in (30) and (39) to verify that trapping does occur. For
the parameters (63), the term underneath the square root in the soliton-mean simple wave
mapping (30) is zero, since qstem −√

astem =
√

2, implying that aM = q2
M (cf. (31)). The

characteristic velocity of the soliton edge of the partial soliton simple wave on the left side of
the jump in mean flow then is Us = 1 (cf. (20)), equivalent to the velocity of the background
flow. Consequently, a partial soliton in this regime cannot establish itself outside the DSW.
The other branch of the resonant Y-shape has parameters [47]

qres =
1
2
(qR −

√
aR −

√
2),

√
ares =

1
2
(qR −

√
aR +

√
2). (64)

The same analysis holds for (ares, qres) as for (astem, qstem) above, revealing that neither
the stem nor the other branch of the resonant Y-soliton will transmit through the DSW. A
numerical simulation of this case is shown in figure 17.
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We note that the partial recession condition (60) implies that the second resonance
condition (62b) is met. We already stated that partial recession also implies trapping, which
is equivalent to the first resonance condition (62a). Thus, partial recession always leads to
resonant trapping.

Nonresonant trapping (figure 18) If a partial soliton is trapped per condition (33) but does
not meet the second condition for resonance (62b), then the second kind of trapping occurs.
Trapping without resonance occurs when

(qR +
√

aR)
2 < 2. (65)

Here the partial soliton is simply absorbed into the DSW, without resonance. This is shown in
the numerical simulation of figure 18. Specifically, the interaction between the DSW leading
edge soliton and the initial partial soliton is an asymmetric interaction; in fact, from [47], the
regime of nonresonant trapping (65) is identical to regime of asymmetric interaction between
the DSW leading edge soliton and the initial partial soliton. Inspection of figure 18 reveals
that the top half of the DSW leading edge has a phase shift to the right, a key feature of
asymmetric interactions.

Incomplete transmission When the transmission (33) condition is met and partial recession
(60) did not occur, the partial soliton interacts with the changing mean flow and transmits
through it. From (33) and (60), we conclude that if transmission occurs, q2

R > aR, implying
that σ = −1 (36). The parameters aM and qM are well-defined and are given by (cf. (30) and
(39b))

aM =
1
2

(︃
aR + q2

R − 2 −
√︂
(aR + q2

R − 2)2 − 4aRq2
R

)︃
, (66a)

qM =
1√
2

(︃
aR + q2

R − 2 +
√︂
(aR + q2

R − 2)2 − 4aRq2
R

)︃1/2

. (66b)

Incomplete transmission then occurs if the condition for complete transmission given below
(67) is not met.

Complete transmission (figure 19) For complete transmission, we require that on the left
side of the mean flow Us < −1, which implies

5 < (qR −
√

aR)
2 + 2

√︂
(aR + q2

R − 2)2 − 4aRq2
R, (67)

otherwise incomplete transmission occurs. If the above condition (67) holds, complete
transmission occurs. An example of complete transmission is shown in figure 19. This soliton
has very small amplitude aR, but the large qR ensures transmission. Even in this extreme
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Figure 17. Numerical evolution of the KP equation (1) showing resonant trapping for the
initial conditions (d) in figures 2 and 7. The initial parameters aR = 2, qR =

√
2, uR = 0, and

uL = 1 displayed for t ∈ (0, 40, 100). Note the Miles resonant Y-shape forming between the
initial partial soliton and the leading edge of the DSW. Both arms of the modulated Y-soliton
are trapped by the DSW.

Figure 18. Numerical evolution of the KP equation (1) showing nonresonant trapping for
the initial conditions (d) in figures 2 and 7. The initial parameters are aR = 0.8, qR = 0.4,
uR = 0, and uL = 1 displayed for t ∈ (0, 30, 60). The condition in (33) for transmission is
not met, and neither is the condition for resonance (62b). Consequently, the partial soliton is
trapped and disappears into the DSW.

regime, the solution approaches the soliton–mean simple wave solution from section 3.3.
We also remark here that the transmitted soliton interaction with the DSW leading edge is
classified as an ordinary interaction as defined in [34, 47]. In fact, the regime for an ordinary
interaction from [47] is identical to the transmission condition (33) for a soliton starting to the
right of a DSW. Looking closely at figure 19 reveals a leftward phase shift for a DSW leading
edge above the initial soliton, an indicator of an ordinary interaction [47].

6. Discussion and conclusion

The main goal of this paper was to investigate the interaction of an oblique soliton with a
dispersive hydrodynamic mean flow. In particular, we showed that, even though Whitham
modulation theory is not often used for (2+1)-dimensional equations, it provides a tractable
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Figure 19. Numerical evolution of the KP equation (1) showing complete transmission for
the initial conditions (d) in figures 2 and 7. The initial parameters are aR = 0.06, qR = 2.28,
uR = 0, and uL = 1 displayed for t ∈ (0, 60, 140). The right panel compares the parameters
of the transmitted soliton with the soliton–mean simple wave prediction (30) and (39b).

and reliable analytical approach for examining the evolution of line solitons of the KP
equation, even under step-like initial conditions for the mean flow. In a previous work [41], the
x-independent reduction of the KP soliton modulation equations was considered. In this study,
in contrast, we primarily analyzed the y-independent reduction. Specifically, by diagonalizing
the y-independent KPII soliton–mean flow modulation system (3), we were able to calculate
invariant quantities that constrain admissible modulated line solitons through a changing mean
flow. As a consequence of the loss of strict hyperbolicity, there are two distinct possible
combinations of soliton parameters across the mean flow. We determine a unique solution
by appealing to consistency with the evolution of the parameters within a RW. This finding
implies that, in general, σ = sgn a − q2 is constant within a mean flow, i.e. the parameters
cannot cross the plane a = q2 where strict hyperbolicity is lost. Based on this restriction, we
determine unique mappings for the soliton–mean simple wave, which are shown to be large
t attractors for the partial soliton–mean flow initial conditions in numerical simulations. As
may be expected, the mapping for a transmitted soliton from a higher mean flow to a lower
mean flow is an exact inverse of the mapping for a transmitted soliton from the lower to higher
mean flow.

A key result of this paper is the transmission condition (33), which generalizes the KdV
transmission condition previously calculated in [20, 21]. This relation implies that while a
line soliton can always transmit through a downward jump in the mean, a line soliton only
transmits through an upward jump if (q −

√
a)2 > 2∆, where ∆ is the size of the jump.

The transmission condition (33) also predicts a number of novel behaviours not present in
the (1+1)-dimensional setting, such as backward transmission: any nonzero q allows a soliton
to transmit through a RW starting from the right, whereas a (q = 0) KdV soliton does not
interact with a RW and is trapped by a DSW if its amplitude is less than twice the jump in the
mean. Another new feature is that certain inclinations can prevent transmission of even a large
amplitude soliton through a RW, such as choosing q =

√
a, while a very small amplitude
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soliton can pass through both RWs and DSWs from either direction with sufficiently large
inclination (see figure 19 for an example).

We also discovered a remarkable connection between the various outcomes for
transmission of a soliton through a DSW and the classifications of the interactions between
two line solitons [47]. Indeed, the three possible outcomes for a soliton incident on a
DSW match precisely the three classes of exact solutions asymptoting to two line solitons
as y → ±∞. Specifically, the soliton is transmitted through a DSW (cf. (33)) if and only if an
ordinary interaction occurs between the line soliton on the right and the soliton at the leading
edge of the DSW. Otherwise, a resonant trapping (which corresponds to the case in which
the mapping (30) yields no acceptable solutions) occurs if and only if a resonant interaction
occurs between the line soliton and the leading edge of the DSW (cf. (32) and (62)). Finally,
a nonresonant trapping (which corresponds to the case in which the mapping (30) gives a
negative value for a1 or q2

1) occurs if and only if an asymmetric interaction occurs between
the line soliton and the leading edge of the DSW (cf. (32) and (65)). In other words, the
conditions giving rise to each soliton–mean flow interaction scenario correspond precisely to
the conditions that give rise to ordinary, resonant and asymmetric interactions between the
oblique soliton and the soliton at the leading edge of the DSW in [47]. We also mention that,
to the best of our knowledge, this is the first work to report the generation of a resonant soliton
interaction from the time evolution of essentially non-solitonic initial conditions (where we
use the term “essentially non-solitonic initial conditions” to denote initial conditions that are
not simply a linear or nonlinear superposition of one or more infinite line solitons).

By piecing together simple wave solutions of the soliton–mean modulation equations,
we are also able to predict the dynamic behaviour of a partial line soliton incident upon
step initial conditions. Despite regions where the partial soliton becomes multivalued in
x—another consequence of nonstrict hyperbolicity—it was found that through a fully two-
dimensional spatial regularization, a well-defined solution is obtained. For completely
transmitting multivalued partial solitons, the soliton bends back around to interact with the
mean flow a second time. Modulation theory also predicts other novel behaviours, such as
incomplete transmission and partial recession. In general, the complete transmission regions
of parameters for the partial soliton–mean flow problem are relatively small (see figure 7). In
cases of complete transmission, modulation theory yields quantitatively accurate results for
both the evolution within a RW, as well as modulation parameters outside the DSW or RW.

Even though in this work we used the y-independent modulation system to study the the
soliton–mean flow problem, we found that there is a scenario where it was necessary to appeal
to the full modulation system, both to justify a multivalued-in-x solution and to determine its
regime of validity. One continuation of this work is therefore to consider initial conditions that
are not limited to one-dimensional reductions. A well-known example of such a solution is
the Miles resonant (Y-shaped) soliton. A natural question is therefore how one can study such
a solution using modulation theory. Another extension of our work will be to consider mean
flows that are fully two-dimensional. Finally, a third area of further research is to examine the
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interaction of waves besides solitons with mean flows, such as small-amplitude linear waves,
cnoidal waves, or DSWs.
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Appendix A. Equivalence of simple waves

In this appendix, we will demonstrate the validity of the multivalued simple wave solution
(26) to the partial soliton initial conditions (21) with ū ≡ const. and 0 < q0 <

√
a0. From

(22) and section 3.2, q∗ < 0 and the solution must become multivalued in x. To examine this,
we study the x-independent soliton modulation equations [38, 41, 49],[︄

a
q

]︄
t

+

[︄
2q 4

3 a
1
3 2q

]︄ [︄
a
q

]︄
y

= 0, (A.1)

which can be rewritten in diagonalized form as

r± = q ±
√

a, V± = 2q ± 2
3
√

a =
4
3

r± +
2
3

r∓,
∂r±
∂t

+ V±
∂r±
∂y

= 0. (A.2)

The Riemann problem (21) in x is equivalently formulated as a Riemann problem in y

a(y, 0) =

{︄
0 y < 0

a0 y > 0
, q(y, 0) =

{︄
q∗ y < 0

q0 y > 0
. (A.3)

Since the a = 0 vacuum region is below the nonzero region and V− < V+ for a0 > 0,
r− will first propagate into the vacuum region and determine q∗ by (22). This ensures that
r− is constant throughout the solution, and the emerging simple wave has r+ changing. For
this problem in y there is no loss of strict hyperbolicity or multivalued behaviour, as long as
a0 > 0. The characteristic velocities on either side of the simple wave are

Vs = 2q0 +
2
3
√

a0, Vz = 2q∗, (A.4)

where Vs and Vz represent the velocities of the soliton and zero edges of the simple wave,
respectively. Since q is defined as the slope tan φ = −x/y (see figure 1), we can use the
transformations Vs = −Us/q0 and Vz = −Us/q∗ and add the appropriate soliton speed
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c = ū + a/3 + q2 (see (2)) to convert characteristic velocities in y to characteristic velocities
in x. This yields

Us = ū +
a0

3
− q2

0 −
2
3

q0
√

a0, Uz = ū − q2
∗. (A.5)

The above characteristic velocities (A.5) agree with (21), which shows that the edge velocities
of the partial soliton simple wave are equivalent in x and y. It remains to show that the
evolution of r+ within the simple wave is the same. Solving for the r+-simple wave solution
in y yields

r+(y, t) =

⎧⎪⎪⎨⎪⎪⎩
q0 +

√
a0 Vst < y

1
4(3y/t − 2r−) Vzt < y < Vst

q∗ = q0 −
√

a0 y < Vzt

. (A.6)

We will now solve the original problem (21) in a moving reference frame in x and show that
the results are identical. The reference frame will travel with the velocity of the soliton:

x̃ = x − ct, c =
a
3
+ q2 =

1
3
(r2

+ + r+r− + r2
−). (A.7)

Setting r+ = x/t = Λ+ (10) in the simple wave region and solving for r+ gives

r+(x̃, t) =
1
4

(︃
−3r− ±

√︂
r2
± − 24x̃/t

)︃
. (A.8)

Note that the multivalued nature of solutions in x reappears here. Once again using the change
of variables x̃ = −yq = −y(r+ + r−)/2 and simplifying yields only one solution

r+(y, t) =
1
4
(3y/t − 2r−) (A.9)

for both the positive and negative square root cases in (A.8). This agrees with the solution in
(A.6). Thus, solving the problem (21) using y-independent modulation equations is equivalent
to solving the problem (A.3) using x-independent modulation equations.

In order to determine the location of the branch point q = 0 in y, note that (A.2) implies
that q = (r+ + r−)/2. Thus, q = 0 when r+(x, t) = −r− in (A.6). Solving for y/t gives

y
t
= −2

3
r− = −2

3
q∗. (A.10)
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