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Abstract: The long-time asymptotic behavior of solutions to the focusing nonlinear
Schrödinger (NLS) equation on the line with symmetric, nonzero boundary conditions
at infinity is studied in the case of initial conditions that allow for the presence of
discrete spectrum. The results of the analysis provide the first rigorous characterization
of the nonlinear interactions between solitons and the coherent oscillating structures
produced by localized perturbations in a modulationally unstable medium. The study
makes crucial use of the inverse scattering transform for the focusing NLS equation with
nonzero boundary conditions, aswell as of the nonlinear steepest descentmethod ofDeift
and Zhou for oscillatory Riemann–Hilbert problems. Previously, it was shown that in
the absence of discrete spectrum the xt-plane decomposes asymptotically in time into
two types of regions: a left far-field region and a right far-field region, where to leading
order the solution equals the condition at infinity up to a phase shift, and a central region
where the asymptotic behavior is described by slowly modulated periodic oscillations.
Here, it is shown that in the presence of a conjugate pair of discrete eigenvalues in the
spectrum a similar coherent oscillatory structure emerges but, in addition, three different
interaction outcomes can arise depending on the precise location of the eigenvalues: (i)
soliton transmission, (ii) soliton trapping, and (iii) a mixed regime in which the soliton
transmission or trapping is accompanied by the formation of an additional, nondispersive
localized structure akin to a soliton-generated wake. The soliton-induced position and
phase shifts of the oscillatory structure are computed, and the analytical results are
validated by a set of accurate numerical simulations.

1. Introduction

In this work, we characterize the long-time asymptotic behavior of solutions to the
focusing nonlinear Schrödinger (NLS) equation formulated on the line with symmetric,
nonzero boundary conditions at infinity and initial conditions that allow for the presence
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of discrete spectrum. Specifically, we consider the initial value problem (IVP)

iqt + qxx + 2|q|2q = 0, x ∈ R, t > 0, (1.1a)

q(x, 0) = f (x), x ∈ R, (1.1b)

lim
x→±∞ q(x, t) = q±e2iq

2
o t , t � 0, (1.1c)

where q± are complex constants such that

|q±| = qo > 0, (1.2)

and the initial datum f (x) generates a conjugate pair of discrete eigenvalues in the
spectrum (as discussed in detail in Sect. 3). The nonzero boundary conditions (1.1c) are
referred to as symmetric and imply that the initial datum also tends to nonzero values at
infinity: limx→±∞ f (x) = q±. In particular, throughout this work we assume that

e±qox ( f − q±) ∈ L1(R±) (1.3)

with L1(R±) denoting the spaces of Lebesgue integrable functions over R±. This is a
standard assumption when the long-time asymptotic analysis is performed via inverse
scattering transform techniques. Well-posedness results for IVP (1.1) with rough initial
data are available via harmonic analysis techniques, e.g. see the recent work [Mu] by
Muñoz where local well-posedness is shown in Sobolev spaces Hs with s > 1

2 .
The boundary conditions (1.1c) motivate the transformation

q(x, t) �−→ q(x, t)e2iq
2
o t , (1.4)

which turns IVP (1.1) into the convenient form

iqt + qxx + 2
(
|q|2 − q2o

)
q = 0, x ∈ R, t > 0, (1.5a)

q(x, 0) = f (x), x ∈ R, (1.5b)

lim
x→±∞ q(x, t) = q±, t � 0, (1.5c)

where importantly, the boundary conditions at infinity are now independent of time.
The focusing NLS equation (1.5a) is a prime example of a completely integrable

system [ZS,AS]. As such, it can be written in the form of the compatibility condition
Xt − Tx + [X, T ] = 0 of the Lax pair

�x = X�, �t = T�, (1.6)

where � = �(x, t, k) is a 2 × 2 matrix-valued function and

X = ikσ3 + Q, T = −2ik2σ3 + iσ3
(
Qx − Q2 − q2o I

)
− 2kQ (1.7)

with k ∈ C and

σ3 =
(
1 0
0 −1

)
, Q =

(
0 q

−q̄ 0

)
. (1.8)

The Lax pair (1.6) can be used to analyze IVP (1.5) by means of the celebrated inverse
scattering transform. For rapidly vanishing initial conditions, in which case qo = 0, this
task was accomplished by Zakharov and Shabat in 1972 [ZS]. For nonvanishing initial
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conditions, however, which is the case relevant to the problem considered here, only
partial results were available (e.g., [Ma]) until the recent work by Kovačič and the first
author [BK]. There, the authors were able to develop the complete inverse scattering
transform formalism for IVP (1.5) and, in particular, to associate its solution to that of
a matrix Riemann–Hilbert problem. The work was then extended to asymmetric and
one-sided boundary conditions in [DPVV] and [PV], respectively.

The results of [BK] provide a starting point for the rigorous analysis of the long-time
asymptotic behavior of the solution of IVP (1.5). This task is far from trivial due to the fact
that, in the case of nonvanishing initial conditions, the focusing NLS equation exhibits
modulational instability (also known as Benjamin–Feir instability [BF]), namely, the
instability of a constant backgroundwith respect to long-wavelength perturbations [ZO].

For example, in the special case of constant initial data f (x) = qo it is straightforward
to verify that problem (1.5) admits the constant solution q(x, t) = qo. Seeking a solution
of (1.5) in the form of the localized perturbation q(x, t) = qo [1 + εν(x, t)] with ν =
O(1) and ε � 1 yields to O(ε) a linear equation with zero conditions at infinity,
which can therefore be solved explicitly via Fourier transform. The associated dispersion
relation is ω = k

√
k2 − 4q2o , which becomes purely imaginary for small wavenumbers

(i.e. longwavelengths) characterized by |k| < 2qo. Hence, ν grows exponentially as t →
∞, indicating instability. But, of course, the linearization becomes invalid once ν grows
to O(ε−1). The question of what happens to the solution of the focusing NLS equation
beyond this point is referred to as the nonlinear stage of modulational instability.

Despite interesting results concerning the behavior of solutions with periodic bound-
ary conditions [AK,FL,TW], the nonlinear stage of modulational instability for the
focusing NLS equation on the infinite line remained essentially open for more than fifty
years. Recently, it was conjectured in [ZG,GZ] that the nonlinear stage of modulational
instability is governed by the formation of certain breather pairs termed “super-regular
solitons”. However, this conjecture was disproved in [BF], where it was shown that soli-
tons are not generically the main vehicle for the modulational instability; instead, the
signature of the instability in the inverse scattering transform lies in the portion of the
continuous spectrum associated with the nonlinearization of the unstable Fourier modes
and manifests itself via exponentially growing jumps in the Riemann–Hilbert problem.
The problem was then settled in [BM1,BM2]. First, the inverse scattering transform
formalism of [BK] was suitably modified to yield a Riemann–Hilbert problem conve-
nient for carrying out a long-time asymptotic analysis. The asymptotic behavior of the
solutions of this Riemann–Hilbert problem was then studied using the Deift-Zhou non-
linear steepest descent method [DZ1,DZ2] and borrowing ideas from [BKS,BV,JM].
Eventually, it was shown in [BM2] that the solution of IVP (1.5) remains bounded at all
times and, more specifically, at leading order it takes on the following asymptotic forms
(see Fig. 2):

(i) For |x | > 4
√
2qot , the solution is described by two plane waves, one for x < 0

and one for x > 0, whose amplitudes are equal to the “boundary data” q− and q+
respectively;

(ii) For |x | < 4
√
2qot , the solution is described by slowlymodulated periodic oscillations

whose amplitude is given in terms of the well-known Jacobi elliptic snoidal solution
of focusing NLS.

Importantly, in both of the above regions the spatial structure of the leading-order
asymptotics is independent of the initial datum f . That is, within the class of initial
data (1.3), generic localized perturbations of a constant background display the same
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long-time behavior in all modulationally unstable media governed by the focusing NLS
equation on the infinite line. In this sense, the results of [BM2] demonstrate that the
asymptotic state of the nonlinear stage of modulational instability is universal. These
analytical predictions were recently confirmed, and the resulting behavior was observed,
in optical fiber experiments [KSER]. Moreover, it was shown in [BLMT] that this be-
havior is not limited to the focusing NLS equation, but instead it is a common feature
of more general NLS-type systems. In this regard, we note that the focusing semilinear
Schrödinger equation with power nonlinearity (which is not integrable besides the cubic
case) and nonzero boundary conditions at infinity with perturbations in Sobolev spaces
was recently studied via harmonic analysis techniques [Mu].

However, the analysis of [BM2] was carried out for initial data (1.3) such that no
discrete spectrum is present in the Riemann–Hilbert problem emerging from the inverse
scattering transform. This is a major assumption at the technical level (as will become
evident while the analysis unfolds in the forthcoming sections) but, more importantly,
a significant restriction from a physical point of view since, as is well-known, discrete
spectrum is themechanism generating solitons. Hence, in the case of IVP (1.5), an empty
discrete spectrum excludes the possibility of describing solutions that contain solitons.

In this work, we perform the long-time asymptotic analysis of the focusing NLS IVP
(1.5) without the assumption of an empty discrete spectrum that was used in [BM2].
Specifically, we consider initial data f satisfying (1.3) such that the analytic scattering
coefficients arising in the inverse scattering transform have a single pair of conjugate
simple poles in the complex spectral plane. This is clearly the simplest scenario that
allows for the presence of solitons. As in the case of zero boundary conditions at infinity,
each conjugate pair of discrete eigenvalues contributes a soliton to the solution of NLS.
Hence, in the case considered here there is exactly one soliton present.

The simultaneous presence of a discrete spectrum and a nonvanishing reflection
coefficient allows one to study the interactions between solitons and radiation (i.e. the
components of the solution of the NLS equation arising from the reflection coefficient).
In the case of zero boundary conditions at infinity, problems of this kind were first
studied in the 1970s [SA1,SA2,ZM]. Those studies, however, employed formalmethods.
Moreover, and most importantly for our purposes, they were limited to the case of a zero
background (i.e. qo = 0). In the context of the focusing NLS IVP (1.5), the presence
of a discrete spectrum affords us the ability to rigorously study—for the first time—the
interaction between solitons and radiation on a modulationally unstable background.

2. Overview of Results

Definitions and notation Before we can state our results precisely, we need to introduce
some notation and provide definitions of various quantities that will appear throughout
this work.

• For any complex-valued function f , we denote fre := Re( f ) and fim := Im( f ).
Complex conjugation is denoted by an overbar.

• The complex square root
(
k2 + q2o

) 1
2 , with k ∈ C being the spectral variable intro-

duced through the Lax pair (1.6), is expressed in terms of a single-valued function
λ(k), which is uniquely defined by taking the branch cut along the segment

B := i[−qo, qo] (2.1)
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of the complex k-plane and defining

λ(k) =
{√

k2 + q2o , k ∈ R
+ ∪ B,

−√k2 + q2o , k ∈ R
−,

(2.2)

so that λ(k) ∼ k as k → ∞.
• The phase function θ(ξ, k) is defined by

θ(ξ, k) = λ(k) (ξ − 2k) , (2.3)

where ξ is the similarity variable

ξ = x

t
(2.4)

which, as usual, is the key independent parameter in the calculation of the long-time
asymptotics. Importantly, θ is Schwarz-symmetric, i.e. θ(ξ, k̄) = θ(ξ, k).

• As in [BM2], a key role in the analysis will be played by the function

h(ξ, k) = 1

2

(∫ k

iqo
+
∫ k

−iqo

)
dh(ξ, z) (2.5)

defined via the Abelian differential

dh(ξ, k) = −4
[k − ko(ξ)] [k − α(ξ)] [k − ᾱ(ξ)]

γ (ξ, k)
dk, (2.6)

with α and γ defined below and

ko = −αre +
ξ

4
. (2.7)

Note that h is also Schwarz-symmetric, i.e. h(ξ, k̄) = h(ξ, k).
• The complex quantity α and the elliptic parameter m of the slowly modulated
genus-1 oscillations are uniquely determined by the solution of the modulation equa-
tions [EGKK,K1]

ξ

2
= 2αre +

q2o − α2
im

αre
, m2 = 4qoαim

α2
re + (qo + αim)2

, (2.8a)

[
α2
re + (qo − αim)2

]
K (m) =

(
α2
re − α2

im + q2o
)
E(m), (2.8b)

with K (m), E(m) being the complete elliptic integrals of the first and second kind
respectively.

• The function

γ (ξ, k) :=
[(

k2 + q2o
)

(k − α) (k − ᾱ)
] 1
2

(2.9)

is uniquely defined by taking branch cuts along B as well as an appropriate contour
B̃ connecting the points α, ᾱ and k0. The dependence on the similarity variable ξ

will often be suppressed from the arguments of α, ᾱ, ko, γ and other quantities for
brevity.
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• We denote by p, p̄ the single pair of conjugate simple poles that form the discrete
spectrum of the Riemann–Hilbert problem associated with the focusing NLS IVP
(1.5) (see Sect. 3 for more details). The location of p will play a crucial role in the
analysis. Thanks to the reflection invariance of the NLS equation (i.e. the fact that if
q(x, t) is a solution then so is q(−x, t)) and the symmetry k �→ k̄ of the spectrum
of the scattering problem (see Sect. 3 for details), without loss of generality we may
take p to lie in the third quadrant of the complex k-plane.

• Our analysis and the corresponding results are intimately related to the value of ξ

relative to the following special values:

vo = −4
√
2qo, vs = 2

[
pre +

λre(p)

λim(p)
pim

]
. (2.10)

The velocity vo defines the edge of the modulated elliptic wave region, whereas vs
is the unperturbed velocity of a soliton produced by a discrete eigenvalue located at
k = p (see Fig. 2). Note that vs is the value of ξ such that

Im [θ(ξ, p)] = 0 (2.11)

and that Im [θ(ξ, p)] = 0 if and only if Im [θ(vs, p̄)] = 0.
• Besides vo and vs , a key role will also be played by the solutions ṽs and vw of the
equation

Im [h(ξ, p)] = 0, ξ ∈ (vo, 0). (2.12)

Note that Im [h(ξ, p)] = 0 if and only if Im [h(ξ, p̄)] = 0. The difference between
ṽs and vw is explained below (see also Sects. 4 and 5 for more details).

• We will show in Sects. 4 and 5 that the third quadrant Ciii of the complex k-plane
is divided into the four regions D1, D+

2 , D
−
2 , D3 defined as follows. Recall that, for

a discrete eigenvalue at k = p, vs is uniquely defined as the value of ξ such that
Im[θ(ξ, p)] = 0. Then, Ciii can be decomposed into

D1 ∪ D3 = {k ∈ Ciii : vs < vo < 0} ,

D2 = {k ∈ Ciii : 0 > vs > vo} .

These regions are shown in Fig. 1 with D1 ∪ D3 in white and D2 in gray. The solid
blue curve separating them corresponds to the values of k for which vs = vo or,
equivalently, to Im[θ(vo, k)] = 0. The dashed green curve corresponds to the trace
of the point ᾱ as ξ increases from vo to 0.

Note that:

◦ The region where vs < vo < 0 is divided by the blue curve Im[θ(Vo, k)] = 0
into two disjoint domains. Among them, we take D1 to be the infinite domain and
D3 the one adjacent to the imaginary axis.

◦ Similarly, the dashed green curve separates D2 into two subdomains, D+
2 and D−

2 ,
which we take as the portions of D2 adjacent to D1 and D3, respectively.

◦ We will show that D1 and D3 differ with respect to the number of solutions of
Eq. (2.12) that arise in the interval (vo, 0). In particular, if p ∈ D1 then (2.12)
does not have a solution in (vo, 0), while if p ∈ D3 then (2.12) possesses a unique
solution vw ∈ (vo, 0).

◦ Similarly, wewill show that if p ∈ D+
2 then Eq. (2.12) possesses a unique solution

ṽs ∈ (vo, 0) while if p ∈ D−
2 then (2.12) has two solutions ṽs, vw ∈ (vo, 0) with

ṽs < vw.
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Fig. 1. Left: the third quadrant of the complex k-plane and the four regions D1, D
+
2 , D

−
2 , D3. Solid blue

curve: Im[θ(vo, k)] = 0; dashed green curve: the trace of the point ᾱ [defined by (2.8)] as ξ increases from vo
to 0. The case p ∈ D1 corresponds to the transmission regime, the case p ∈ D+

2 to the trap regime, the case

p ∈ D−
2 to the trap/wake regime, and the case p ∈ D3 to the transmission/wake regime. Right: the different

choices of the pole p used in the numerical simulations of Figs. 3, 4 (red dots) and 18 (orange dots)

The four interaction outcomes Placing p in each of the four regions D1, D+
2 , D

−
2 , D3

gives rise to different, inequivalent asymptotic regimes, which we label as the transmis-
sion regime, the trap regime, the trap/wake regime, and the transmission/wake regime
respectively.

Specifically, in Sects. 4 and 5 we show that, depending on its location in the complex
k-plane (see Fig. 1), the presence of a discrete eigenvalue at k = p gives rise to the
following leading-order contributions in addition to the portion of the solution generated
by the continuous spectrum:

(i) In the transmission regime, i.e. when p ∈ D1, a soliton along the ray x = vs t ;
(ii) In the trap regime, i.e. when p ∈ D+

2 , a soliton along the ray x = ṽs t ;
(iii) In the trap/wake regime, i.e. when p ∈ D−

2 , a soliton along x = ṽs t and a soliton
wake along x = vwt ;

(iv) In the transmission/wake regime, i.e. when p ∈ D3, a soliton along x = vs t and a
soliton wake along x = vwt .

In particular, we will see that the above outcomes are determined by whether there exist
solutions of Eq. (2.11) for ξ ∈ (−∞, vo) and of equation (2.12) for ξ ∈ (vo, 0).

Long-time asymptotic resultsWe are now ready to give the precise form of the leading-
order long-time asymptotics of the solution of the focusing NLS IVP (1.5) in each of
the four inequivalent regimes described above. Numerical simulations with the discrete
eigenvalue chosen in each of the four regions of Fig. 1, illustrating the asymptotic
results, are shown in Figs. 3 and 4. For comparison purposes, Figs. 3 and 4 also show the
difference between q(x, t) and the solution qwedge(x, t) produced by an initial condition
that generates the same reflection coefficient as f (x) but no discrete spectrum. The
numerical methods used in the numerical simulations were described in [BLM2]. Recall
that, since we are taking Re(p) < 0, all relevant velocities and all values of ξ considered
in Theorems 2.1–2.4 below are negative.

Theorem 2.1 (Transmission regime). Suppose p ∈ D1 and let vs < vo < 0 be defined
by (2.10). Then the solution q(x, t) of the focusing NLS IVP (1.5) exhibits the following
asymptotic behavior as t → ∞.
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Fig. 2. Asymptotically in time, the xt-plane is divided into the plane wave regions |x | > |vo|t and the
modulated elliptic wave region |x | < |vo|t . Also shown are the locations of the O(1) contributions generated
by a discrete eigenvalue at k = p in the four inequivalent cases corresponding to the regions of Fig. 1

(i) If ξ < vs , then the leading-order asymptotics is described by the plane wave

q(x, t) = qpw(ξ) + O
(
t−

1
2
)
, t → ∞, (2.13)

where
qpw(ξ) := q− e2ig∞(ξ) (2.14)

and the real, constant phase g∞(ξ) is given by (4.16).
(ii) If ξ = vs , then the leading-order asymptotics is equal to a soliton on top of a nonzero

plane-wave background, i.e.

q(x, t) = qpw(vs) + qs(t) e
2ig∞(vs ) + O

(
t−

1
2
)
, t → ∞, (2.15)

with qpw given by (2.14), g∞(vs) defined by (4.16), and the soliton qs given by

qs (t) =
∣∣Rp

∣∣ (Ā�2
1q̄− +A�2

2q− − 2B�1�2qo
)
+ ei[2θ(vs ,p)t+arg(Rp )]�2

1q̄− + e−i[2θ(vs ,p)t+arg(Rp )]�2
2q−

4i q̄−
{√|A|2 − B2 cosh

[
ln
(|Rp |

√|A|2 − B2
)]

+ Re
(Aei[2θ(vs ,p)t+arg(Rp )]

)}

(2.16)
with the constants Rp, (A,B) and (�1,�2) given by (4.34), (4.47) and (4.55) re-
spectively.

(iii) If vs < ξ < vo, then the leading-order asymptotics is given by the plane wave (2.13)
up to a constant phase shift, namely

q(x, t) = qpw(ξ) e4i arg[p+λ(p)] + O
(
t−

1
2
)
, t → ∞. (2.17)

(iv) Finally, if vo < ξ < 0, then the asymptotic behavior of the solution is described at
leading order by the phase-shifted modulated elliptic wave

q(x, t) = q̃mew(x, t) e4i arg[p+λ(p)] + O
(
t−

1
2
)
, t → ∞, (2.18)

where

q̃mew(x, t) = qo (qo + αim)

q̄−



(√

qoαim
mK (m)

(x − 2αret) − Xo + 2ν∞ − 1
2 − ω̃

2π

)


( 1
2

)



(√

qoαim
mK (m)

(x − 2αret) − Xo − 1
2 − ω̃

2π

)


(
2ν∞ − 1

2

)

e2i[g∞(ξ)−G∞(ξ)t] (2.19)
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with the Jacobi function 
 defined by (4.120), the complex quantity ν∞ given by
(4.125), and the real quantitiesG∞, g∞, Xo and ω̃ definedbyEqs. (4.79), (4.87), (4.134)
and (4.99) respectively. Importantly, all of these quantities depend on x and t only
through the similarity variable ξ .

Theorem 2.2 (Trap regime). Suppose p ∈ D+
2 and let ṽs be the unique solution of

Eq. (2.12) in the interval (vo, 0). Then the solution q(x, t) of the focusing NLS IVP (1.5)
exhibits the following asymptotic behavior as t → ∞.

(i) If ξ < vo, then the leading-order asymptotics is given by the plane wave (2.13).
(ii) If vo < ξ < ṽs , then the leading-order asymptotics is described by the modulated

elliptic wave

q(x, t) = qmew(x, t) + O
(
t−

1
2
)
, t → ∞, (2.20)

where qmew is obtained from (2.19) after setting ω̃ = 0, i.e.

qmew(x, t) = qo (qo + αim)

q̄−



(√

qoαim
mK (m)

(x − 2αret) − Xo + 2ν∞ − 1
2

)


( 1
2

)



(√

qoαim
mK (m)

(x − 2αret) − Xo − 1
2

)


(
2ν∞ − 1

2

)

e2i[g∞(ξ)−G∞(ξ)t]. (2.21)

(iii) If ξ = ṽs , then at leading order the asymptotics is equal to a soliton on top of a
nonzero modulated-elliptic-wave background, i.e.

q(x, t) = qmew(̃vs t, t) + qp(t) + O
(
t−

1
2
)
, t → ∞, (2.22)

where the modulated elliptic wave qmew is defined by (2.21) and the soliton qp is
given by

qp(t) = 2i
2Bρpρ p̄W11(p)W12( p̄) − (

1 + Cρ p̄
)
ρpW11(p)2 +

(
1 +Aρp

)
ρ p̄W12( p̄)2

B2ρpρ p̄ +
(
1 + Cρ p̄

) (
1 +Aρp

)
(2.23)

with (ρp, ρ p̄), W and (A,B, C) given by (5.17), (5.21) and (5.28) respectively.
(iv) Finally, if ṽs < ξ < 0, then the asymptotics is given by the phase-shifted modulated

elliptic wave (2.18).

Theorem 2.3 (Trap/wake regime).Suppose p ∈ D−
2 and let ṽs < vw be the two solutions

of Eq. (2.12) in the interval (vo, 0). Then, the solution q(x, t) of the focusing NLS IVP
(1.5) exhibits the following asymptotic behavior as t → ∞.

(i) If ξ < vo, then the leading-order asymptotics is described by the plane wave (2.13).
(ii) If vo < ξ < ṽs , then the leading-order asymptotics is given by the modulated elliptic

wave (2.20).
(iii) If ξ = ṽs , then the asymptotics is characterized by (2.22), namely at leading order

it is equal to the sum of the modulated elliptic wave (2.21) evaluated at x = ṽs t and
the soliton (2.23).

(iv) If ṽs < ξ < vw, then the leading-order asymptotics is given by the phase-shifted
modulated elliptic wave (2.18).

(v) If ξ = vw, then at leading order the asymptotics is equal to a soliton wake on top of
a nonzero modulated-elliptic-wave background, i.e.

q(x, t) = qmew,w(t) + qw(t) + O
(
t−

1
2
)
, t → ∞, (2.24)
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Fig. 3. Numerical solutions of the IVP (1.5) with qo = 1 and different choices of p for the two pure asymptotic
regimes (red dots in Fig. 1). Top row: Transmission regime (Theorem 2.1) with p = −2− 0.5i ∈ D1. Bottom
row: Trap regime (Theorem 2.2) with p = −0.1−1.02i ∈ D+

2 . In all cases, the horizontal axis corresponds to
x and the vertical axis to t . The grayscale used in the plots is shown in the top inserts. Left column: Density plots
of the solution amplitude |q(x, t)|. Center column: The complex phase difference between the solution in the
left column and the solution qwedge(x, t) generated just by the localized disturbance (i.e. without the soliton),
illustrating the asymptotic phase shift as x → ±∞ induced by the soliton. Right column: The amplitude
difference between the solution in the left column and qwedge(x, t), illustrating the asymptotic position shift
introduced by the soliton. Blue lines: The boundary x = ±vot between the wedge of modulated periodic
oscillations from the left and right plane wave regions. Dashed red lines: The original soliton trajectory
(velocity vs ). Solid red lines: The final soliton trajectory (which is either vs or ṽs depending on the regime).
The position shift is very small in the transmission regime but becomes more noticeable in the trap regime.
In both cases, the position shift is confined to the portion of the wedge lying above the soliton, in agreement
with Theorems 2.1 and 2.2

where the modulated elliptic wave qmew,w(t) is given by (2.21) evaluated at x = vwt
but with ω in Xo replaced by ωw of (6.9) and with g∞ replaced by gw,∞ of (6.13),
and the soliton wake qw is defined by

qw(t) := 2i
2Bwρpw

ρ p̄w
Ww11( p̄)Ww12(p) − (

1 + Cwρpw

)
ρ p̄w

Ww11( p̄)
2 +

(
1 +Awρ p̄w

)
ρpw

Ww12(p)
2

B2
wρpw

ρ p̄w
+
(
1 + Cwρpw

)(
1 +Awρ p̄w

) ,

(2.25)
with (ρpw

, ρ p̄w
), Ww and (Aw,Bw, Cw) given by (6.22), (6.27) and (6.33) respec-

tively.
(vi) Finally, if vw < ξ < 0, then the leading-order asymptotics is the same with the one

in the range ṽs < ξ < vw, namely it is given by the phase-shifted modulated elliptic
wave (2.18).

Theorem 2.4 (Transmission/wake regime). Suppose p ∈ D3, let vs < vo < 0 be defined
by (2.10), and let vw be the unique solution of Eq. (2.12) in the interval (vo, 0). Then, the
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Fig. 4. The analogue of Fig. 3 for p corresponding to the twomixed asymptotic regimes (orange dots in Fig. 1).
Here, the solid red lines also identify the solitonwakes, propagatingwith velocityvw ,where |vw | < |̃vs | < |vs |.
Top row: Trap/wake regime (Theorem 2.3) with p = −0.05 − 0.95i ∈ D−

2 . Bottom row: Transmission/wake
regime (Theorem 2.4) with p = −0.1 − 0.5i ∈ D3. Note that the choice of p in the trap/wake regime is
very close to the boundary between D−

2 and D3 and, as a result, the dashed and solid red lines corresponding
respectively to the original and modified soliton velocities are almost identical. Moreover, note that the two
wakes seen in the transmission/wake regime have the same speed, and hence are detected as a single wake in
the asymptotic analysis, which is why no wake-induced phase or position shift is observed in the asymptotics
for ξ > vw

solution q(x, t) of the focusing NLS IVP (1.5) exhibits the following asymptotic behavior
as t → ∞.

(i) If ξ < vs , then the leading-order asymptotics is given by the plane wave (2.13).
(ii) If ξ = vs , then the asymptotics is characterized by (2.15), namely at leading order it

is given by the superposition of the plane wave (2.14) and the soliton (2.16).
(iii) If vs < ξ < vo, then the leading-order asymptotics is described by the phase-shifted

plane wave (2.17).
(iv) If vo < ξ < vw, then the leading-order asymptotics is given by the phase-shifted

modulated elliptic wave (2.18).
(v) If ξ = vw, then the asymptotics is characterized by (2.24), i.e. at leading order it is

equal to the sum of the modulated elliptic wave qmew,w(t) and the soliton wake (2.25).
(vi) Finally, if vw < ξ < 0, then the leading-order asymptotics is the same with the one

in the range vo < ξ < vw, namely it is given by the phase-shifted modulated elliptic
wave (2.18).

Remark 2.1 (Leading-order asymptotics for x > 0). Since the pole p lies in the third
quadrant of the complex k-plane, it has no effect on the asymptotics for x > 0 (equiv-
alently, ξ > 0; see Fig. 6). In particular, for x > 0 the leading-order asymptotics of
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IVP (1.5) is described by Theorems 1.1 and 1.2 of [BM2], the only difference being that
now one must also include the constant phase shift 4arg [p + λ(p)] and the position shift
induced by the soliton arising for x < 0.

Remark 2.2. In the appendix, we explicitly verify that the expression (2.16) for the
soliton obtained in the long-time asysmptotics agrees with the long-time asymptotics of
the standard soliton solution of the focusing NLS with nonzero background.

Remark 2.3 (Soliton vs. soliton wake). The soliton arising either at ξ = vs or at ξ = ṽs
induces a constant phase shift (equal to 4arg [p + λ(p)]) aswell as a position shift (related
to the presence of ω̃ in (2.19) as opposed to (2.21)) in the leading-order asymptotics for
subsequent values of ξ . On the contrary, the soliton wake arising at ξ = vw has no effect
on the leading-order asymptotics for ξ > vw. The numerical simulations of Figs. 3 and 4
illustrate these remarks.

Remark 2.4 (Multiple leading-order contributions from the poles). We find it quite re-
markable that in the twomixed regimes a single pair of complex conjugate poles produces
O(1) contributions to the solution at two different velocities: the soliton velocity and the
wake velocity, as specified in Theorems 2.3 and 2.4. (These predictions are validated
by the numerical results in Figs. 3 and 4.) To the best of our knowledge, this is the first
time that such a phenomenon has been observed in the long-time asymptotic analysis
of an integrable system, and is perhaps one of the main novelties in the results of the
present work. Moreover, the numerical results in the bottom row of Fig. 4 suggest that
the soliton-generated wake may comprise itself two different localized structures. We
emphasize however that, since these two structures propagate with the same velocity, in
order to be able to differentiate between themonewould have to compute the asymptotics
by taking x = ξ t + y. Such a calculation is outside the scope of this work.

Structure of the paper In Sect. 3, the solution of IVP (1.5) for the focusing NLS
equation is associated with the solution of a matrix Riemann–Hilbert problem via the
inverse scattering transform. Furthermore, the four different long-time asymptotic pat-
terns, namely the transmission, trap, trap/wake, and transmission/wake regimes, are
motivated through the behavior of the jump matrices of this Riemann–Hilbert problem.
The transmission regime is analyzed in Sect. 4, resulting in the proof of Theorem 2.1.
The proof of Theorem 2.2 for the trap regime is provided in Sect. 5. The two mixed
regimes are discussed in Sect. 6, leading to the proofs of Theorems 2.3 and 2.4. Finally,
some concluding remarks are given in Sect. 7.

3. The Riemann–Hilbert Problem and Outline of the Asymptotic Analysis

The implementation of the inverse scattering transformmethod for IVP (1.5) begins with
the integration of the Lax pair (1.6) for the 2 × 2 matrix-valued function � assuming
as usual that the solution q of problem (1.5) is given. This task is known as the direct
problem. Then, q is expressed in terms of a sectionally meromorphic function M which
is defined via appropriate combinations of the two column vectors �1 and �2 of �, and
which satisfies a certain matrix Riemann–Hilbert problem. This portion of the analysis
is known as the inverse problem. Specifically, the discussion of the direct problem in
Sect. 2 of [BM2] motivates the following definition for the sectionally meromorphic
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Fig. 5. The branch cut B = B+ ∪ B−, the jumps V1, V2, V3 of Riemann–Hilbert problem (3.7), and the
conjugate pair of simple poles p, p̄

matrix-valued function M :

M(x, t, k) =

⎧⎪⎪⎨
⎪⎪⎩

(
�+1(x, t, k)

ā(k)d(k)
,�−2(x, t, k)

)
e−iθ(ξ,k)tσ3 , k ∈ C

+\B+,

(
�−1(x, t, k),

�+2(x, t, k)

a(k)d(k)

)
e−iθ(ξ,k)tσ3 , k ∈ C

−\B−.

(3.1)

In the above definition, we use the notation

C
± := {k ∈ C : Im(k) ≷ 0} , B+ := i [0, qo] , B− := i [−qo, 0]

and denote by �± the so-called Jost solutions, namely the simultaneous solutions of the
Lax pair (1.6) with prescribed normalizations as x → ±∞:

�±(x, t, k) =
(

1 i(λ − k)/q̄±
i(λ − k)/q± 1

)
eiθ(ξ,k)tσ3 [1 + o(1)] , x → ±∞. (3.2)

(Recall that the quantities λ, θ and ξ are defined by (2.2), (2.3) and (2.4) respectively.)
Furthermore, we define the spectral function a(k) along with its Schwarz conjugate ā(k)
by

a(k) = wr
[
�−1(x, t, k),�+2(x, t, k)

]

d(k)
, ā(k) := a(k̄) = wr

[
�+1(x, t, k),�−2(x, t, k)

]

d(k)
,

(3.3)
where “wr” denotes the Wronskian determinant and

d(k) := 2λ(k)

λ(k) + k
. (3.4)

Importantly, the Wronskian determinants appearing in (3.3) are independent of x and t ,
and hence the functions a and ā depend only on k.

The definition (3.1) of M , in combination with the analyticity properties of �±
(see [BM2] for more details), implies that the only sources of nonanalyticity of M are
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(i) the continuous spectrum
� := R ∪ B, (3.5)

along which M exhibits jump discontinuities, and
(ii) the possible zeros of the spectral function a(k), which form the discrete spectrum of

the Riemann–Hilbert problem satisfied by M .

It was shown in [BM2] that, if there is no discrete spectrum, namely, if

a(k) �= 0 ∀k ∈ C
− ∪ �, (3.6)

then the function M(x, t, k) satisfies the following Riemann–Hilbert problem:

M+ = M−V1, k ∈ R, (3.7a)

M+ = M−V2, k ∈ B+, (3.7b)

M+ = M−V3, k ∈ B−, (3.7c)

M = I + O
( 1
k

)
, k → ∞, (3.7d)

where the jump matrices along the three contoursR, B+, B− comprising the continuous
spectrum � are given by (see Fig. 5)

V1(x, t, k) =
⎛
⎝

1

d(k)
[1 + r(k)r̄(k)] r̄(k)e2iθ(ξ,k)t

r(k)e−2iθ(ξ,k)t d(k)

⎞
⎠ , (3.8a)

V2(x, t, k) =
⎛
⎜⎝

−λ(k) − k

iq−
r̄(k) e2iθ(ξ,k)t 2λ(k)

i q̄−
q̄−

2iλ(k)
[1 + r(k)r̄(k)] −λ(k) + k

iq̄−
r(k) e−2iθ(ξ,k)t

⎞
⎟⎠ , (3.8b)

V3(x, t, k) =
⎛
⎜⎝

λ(k) + k

iq−
r̄(k) e2iθ(ξ,k)t q−

2iλ(k)
[1 + r(k)r̄(k)]

2λ(k)

iq−
λ(k) − k

iq̄−
r(k) e−2iθ(ξ,k)t

⎞
⎟⎠ , (3.8c)

with the reflection coefficient r defined by

r(k) = −b(k)

ā(k)
, b(k) := wr

[
�+1(x, t, k),�−1(x, t, k)

]

d(k)
. (3.9)

Removing the assumption (3.6), i.e. allowing the spectral function a(k) to vanish in
C

−, results in a Riemann–Hilbert problem with a nonempty discrete spectrum. In this
work, we consider the simplest such scenario, according to which the initial data f (x)
of IVP (1.5) is such that a(k) has a unique, simple zero in C

−\�. That is, we assume
that there exists a unique p ∈ C

−\� such that a(p) = 0 and, furthermore, a′(p) �= 0.
Correspondingly, the Schwarz conjugate ā(k) of a(k) possesses a unique, simple zero
p̄ ∈ C

+\� and, by definition (3.1), M is meromorphic inC\� with two simple poles, at
k = p and at k = p̄. Therefore, in addition to the jumps V1, V2, V3 along the continuous
spectrum �, the Riemann–Hilbert problem for M must be supplemented by suitable
residue conditions at p and p̄. These can be computed as follows.

Since a(p) = 0, by expression (3.3) we have that wr
[
�−1(x, t, p),�+2(x, t, p)

] =
0 for all x, t ∈ R. In turn, since neither �−1(x, t, p) nor �+2(x, t, p) can be identically
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zero due to the normalization (3.2), we infer that there exists a constant Cp �= 0 such
that

�+2(x, t, p) = Cp�−1(x, t, p) ∀x, t ∈ R. (3.10a)

Similarly, evaluating (3.3) at k = p̄ we obtain

�+1(x, t, p̄) = Cp̄�−2(x, t, p̄) ∀x, t ∈ R (3.10b)

for some constant Cp̄ �= 0. Thus,

Res
k=p

�+2(x, t, k)

a(k)d(k)
= �+2(x, t, p)

a′(p)d(p)
= cp�−1(x, t, p) ∀x, t ∈ R, cp := Cp

a′(p)d(p)
.

(3.11a)

Res
k= p̄

�+1(x, t, k)

ā(k)d(k)
= �+1(x, t, p̄)

ā′( p̄)d( p̄)
= cp̄�−2(x, t, p̄) ∀x, t ∈ R, cp̄ := Cp̄

ā′( p̄)d( p̄)
.

(3.11b)

Relations (3.11a) and (3.11b) imply the following residue conditions for M :

Res
k=p

M(x, t, k) = M(x, t, p)

(
0 cp e2iθ(ξ,p)t

0 0

)
∀x, t ∈ R, (3.12a)

Res
k= p̄

M(x, t, k) = M(x, t, p̄)

(
0 0
cp̄ e−2iθ(ξ, p̄)t 0

)
∀x, t ∈ R. (3.12b)

The Riemann–Hilbert problem for the focusing NLS IVP (1.5) in the presence of
the discrete spectrum {p, p̄} comprises the empty-discrete-spectrum problem (3.7)
augmented with the residue conditions (3.12). To ensure uniqueness of solutions of
the above Riemann–Hilbert problem, one must also supplement it with suitable growth
conditions at the branch points [BMi].

The x-part of the Lax pair (1.6) together with the definition (3.1) and the asymptotic
condition (3.16f) yield the solution of the IVP (1.5) via the reconstruction formula

q(x, t) = −2i lim
k→∞ kM12(x, t, k). (3.13)

For the purpose of computing the long-time asymptotics, it is convenient to convert
the residue conditions (3.12) into jump discontinuities. In particular, following [Mi], we
let ∂Dε

p and ∂Dε
p̄ be the positively oriented boundaries of the disks D

ε
p and Dε

p̄ of radius
ε centered at p and p̄ respectively, and define the function N by

N (x, t, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M(x, t, k)Vp(x, t, k), k ∈ Dε
p,

M(x, t, k), k ∈ C
−\
(
B− ∪ Dε

p

)
,

M(x, t, k)Vp̄(x, t, k), k ∈ Dε
p̄,

M(x, t, k), k ∈ C
+\
(
B+ ∪ Dε

p̄

)
,

(3.14)

where the matrices Vp and Vp̄ are given by

Vp(x, t, k) =
(
1 − cp

k − p
e2iθ(ξ,p)t

0 1

)
, Vp̄(x, t, k) =

(
1 0

− cp̄
k − p̄

e−2iθ(ξ, p̄)t 1

)
.

(3.15)
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Note that the residue conditions (3.12) imply that N is analytic at p and p̄. Further-
more, the jumps of N along the continuous spectrum � are the same with those of
M since N = M outside the disks Dε

p and Dε
p̄. Therefore, N (x, t, k) is analytic for

k ∈ C\
(
� ∪ ∂Dε

p ∪ ∂Dε
p̄

)
and satisfies the following Riemann–Hilbert problem:

N+ = N−V1, k ∈ R, (3.16a)

N+ = N−V2, k ∈ B+, (3.16b)

N+ = N−V3, k ∈ B−, (3.16c)

N+ = N−Vp, k ∈ ∂Dε
p, (3.16d)

N+ = N−Vp̄, k ∈ ∂Dε
p̄, (3.16e)

N = I + O (1/k) , k → ∞, (3.16f)

with the jumps V1, V2, V3 given by (3.8) and the jumps Vp, Vp̄ defined by (3.15). Note
that the transformation (3.14) does not affect the normalization as k → ∞. Thus, the
long-time asymptotic behavior of the solution q of the IVP (1.5) for the focusing NLS
equation can equivalently be obtained by determining the corresponding behavior of the
solution N of the Riemann–Hilbert problem (3.16).

Overview of the long-time asymptotic analysis The time dependence of the jumps of
Riemann–Hilbert problem (3.16) is dictated by the exponentials e±iθ t , which become
highly oscillatory in the limit t → ∞. Thus, a delicate analysis via the nonlinear steepest
descent method of Deift and Zhou [DZ1,DZ2] is required in order to extract the leading-
order asymptotic contribution to the solution. Like in the classical steepest descent
method, themain idea behind theDeift-Zhoumethod is to deform the contours associated
with the oscillatory jumps to appropriate regions of the complex k-plane where the
exponentials e±iθ t decay to zero as t → ∞. Hence, the first step in the asymptotic
analysis of problem (3.16) consists of studying the sign structure ofRe(iθ) in the complex
k-plane. Recall, however, that the controlling phase function θ depends parametrically
on the similarity variable ξ . Thus, similarly to the use of the steepest descent method for
computing the long-time asymptotics of solutions of linear equations (e.g., see [AS,W]),
the analysis begins by studying how the sign structure of Re(iθ) changes as ξ increases
from −∞ to ∞.

Let us first focus on the sign structure of Re(iθ) for ξ < 0 (i.e. x < 0), which is
depicted in the first four frames of Fig. 6. Observe that, as ξ increases from−∞ to 0, the
sign of Re(iθ) switches from negative to positive in the third quadrant and from positive
to negative in the second quadrant, while it remains the same in the first and the fourth
quadrant. More specifically, two regions of positive sign emerge in the third quadrant:
an unbounded region on the left of the point k1, and a bounded region on the right of the
point k2 and on the left of the branch cut B, where

k1(ξ) := 1

8

(
ξ −

√
ξ2 − v2o

)
, k2(ξ) := 1

8

(
ξ +

√
ξ2 − v2o

)
(3.17)

are the two stationary points of θ with vo defined by (2.10). The two regions of positive
sign grow continuously and remain disjoint until ξ = vo (third frame in Fig. 6) where
k1(vo) = k2(vo) = vo

8 . Note that for ξ � vo the stationary points k1, k2 are real.
Subsequently, however, for vo < ξ < 0, the two stationary points become complex, and
the two regions of positive sign merge to a single region that eventually grows to occupy
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Fig. 6. The sign of Re(iθ) as ξ increases from −∞ to +∞. Gray: Re(iθ) < 0; White: Re(iθ) > 0. Top row:
ξ = −∞, ξ ∈ (−∞, vo), ξ = vo; Middle row: ξ ∈ (vo, 0), ξ = 0, ξ ∈ (0, −vo); Bottom row: ξ = −vo,
ξ = (−vo, ∞), and ξ = +∞

all of the third quadrant (fourth and fifth frames in Fig. 6). As a result, the value ξ = vo
is a bifurcation point in the analysis of the problem via the Deift-Zhou method.

More specifically, for ξ < vo, the sign structure of Re(iθ) allows for two different
factorizations of the jump V1 along the real axis, both of which result in exponentially
decaying contributions, as will be explained in detail in Sects. 4 and 5. On the other
hand, for vo < ξ < 0 it turns out that only one of the aforementioned factorizations
can be employed. This results in an exponentially growing jump along a certain portion
of the deformed jump contour, which is corrected by introducing a so-called g-function
[DVZ1,DVZ2] (see also Chapter 4 of [KMM] in the context of semiclassical analysis).
The corresponding transformation of the Riemann–Hilbert problem replaces the original
controlling phase function from θ to the Abelian integral h defined by (2.5), and is the
reason why the asymptotics change dramatically as ξ crosses vo. The sign structure of
Re(ih) in the third quadrant of the complex k-plane as ξ decreases from vo to 0 is shown
in Fig. 7.
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Fig. 7. The sign of Re(ih) as ξ increases gradually from vo (top left plot) to just below ξ = 0 (bottom right
plot). Gray: Re(ih) < 0;White: Re(ih) > 0. Note h ≡ θ when ξ = vo. Red curves: The contours Im(h) = 0.
Green curve: The path described by ᾱ (defined by (2.8)), the intersection point of the contours Im(h) = 0.
Black curve: The contour Im(θ) = 0. Blue curve: The contour Im

[
θ(vo, k)

] = 0

Of course, apart from the jumps V1, V2, V3 along the continuous spectrum, the
Riemann–Hilbert problem (3.16) also involves the jumps Vp, Vp̄ originating from the
poles p, p̄. Thus, another crucial value of ξ now emerges, namely the value vs for
which Re(iθ) vanishes at p and p̄. Observe that vs is the same for p and p̄, since
Re [iθ(ξ, p)] = 0 ⇔ Re [iθ(ξ, p̄)] = 0 due to the symmetry θ(ξ, k̄) = θ(ξ, k). Solving
either of these equations, we obtain vs in the explicit form (2.10). Note that in the third
quadrant, where p lies, we have λre, λim � 0, thus vs < 0.

In the range (−∞, vo), we shall see that the jumps Vp, Vp̄ (equivalently, the poles
p, p̄) contribute to the leading-order asymptotics only when ξ = vs , provided that p is
such that vs ∈ (−∞, vo). On the other hand, as explained above, in the range (vo, 0) the
phase function θ is replaced by the Abelian integral h defined by (2.5). Thus, the role of
vs is now played by the solutions of the equation

Re [ih(ξ, p)] = 0. (3.18)

The complicated form of h does not allow us to solve Eq. (3.18) explicitly. It turns out,
however, that, depending on the location of p inside the third quadrant, Eq. (3.18) has
either zero, one or two solutions in the interval (vo, 0). More specifically, as already
noted in Sect. 2, the third quadrant is divided into the four regions D1, D+

2 , D
−
2 , D3 of

Fig. 1, where for ξ ∈ (vo, 0) equation (3.18) has no solutions in D1, a unique solution ṽs
in D+

2 , two solutions ṽs < vw in D−
2 , and a unique solution vw in D3. The mathematical

description of the long-time asymptotic regimes that arise in these four regions is given
in Theorems 2.1–2.4. Before proceeding to the proofs of these results, we give a brief
outline of the way in which the asymptotics unravels in each regime.
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p ∈ D1: The transmission regime. In this case, vs < vo and, furthermore, Eq. (3.18)
has no solution in the interval (vo, 0)—in fact, Re(ih)(ξ, p) > 0 for all vo < ξ < 0.
For ξ < vs , the jumps Vp, Vp̄ decay exponentially and hence do not yield leading-order
contributions. Thus, the dominant component of Riemann–Hilbert problem (3.16) in the
limit t → ∞ involves only the jumps along the continuous spectrum �, giving rise to
the plane wave (2.13). At ξ = vs , the jumps Vp, Vp̄ switch from exponentially decaying
to purely oscillatory. Consequently, they are now part of the dominant Riemann–Hilbert
problem, generating the soliton (2.15). Observe that this soliton propagates with velocity
vs and, since |vs | > |vo|, it eventually escapes to infinity outside the wedge |ξ | < |vo| of
Fig. 2. For vs < ξ < vo, the jumps Vp, Vp̄ grow exponentially. Nevertheless, it turns out
that this growth can be converted into decay via an appropriate transformation. Hence,
similarly to the range ξ < vs , the leading-order asymptotic behavior does not depend
on Vp, Vp̄ and is characterized by the plane wave (2.13), but now with a phase shift
generated by the soliton that has arisen at ξ = vs . Finally, for vo < ξ < 0 the phase
function switches from θ to h. Then, since Re(ih)(ξ, p) > 0 for all vo < ξ < 0, the
jumps Vp, Vp̄ do not contribute to the leading-order asymptotics. Hence, no soliton is
present in the range vo < ξ < 0 and the solution is asymptotically equal to themodulated
elliptic wave (2.19) with the phase shift already generated by the soliton at ξ = vs in
the range vs < ξ < vo.

p ∈ D+
2 : The trap regime. In this case, vs > vo and, in addition, Eq. (3.18) has a unique

solution ṽs in the interval (vo, 0)—in fact, it turns out that vs < ṽs . Thus, for ξ < ṽs the
jumps Vp, Vp̄ are not significant at leading order. In particular, for ξ < vo the leading-
order asymptotics is given by the plane wave (2.13), while for vo < ξ < ṽs the solution
is asymptotically equal to the modulated elliptic wave (2.21). At ξ = ṽs , however, the
jumps Vp, Vp̄ become purely oscillatory and hence do contribute to the leading-order
asymptotics, which is now given by the soliton (2.22). Observe that, since |̃vs | < |vo|,
this soliton is trapped forever inside the wedge |ξ | < |vo| of Fig. 2. Furthermore, the fact
that |̃vs | < |vs | indicates that the soliton is delayed by its interaction with the modulated
elliptic wave. Finally, since ṽs is the only solution of Eq. (3.18) in (vo, 0), for ṽs < ξ < 0
the jumps Vp, Vp̄ do not affect the leading-order asymptotics, which is now equal to the
modulated elliptic wave (2.19) with an additional phase shift generated by the soliton
at ξ = ṽs .

p ∈ D−
2 : The trap/wake regime. This case is similar to the trap regime apart from the

fact that now Eq. (3.18) has two (as opposed to one) solutions in the interval (vo, 0),
namely ṽs and vw with ṽs < vw. Therefore, for ξ < vw the asymptotics is the same
with the one in the trap regime, including the soliton that arises at ξ = ṽs . However,
at ξ = vw a new phenomenon emerges, namely the soliton wake (2.24). Importantly,
contrary to the soliton (which induces a phase shift for ξ > ṽs), the soliton wake does
not affect the leading-order asymptotics in the range vw < ξ < 0.

p ∈ D3: The transmission/wake regime. This case is similar to the transmission regime
apart from the fact that Eq. (3.18) now has a unique solution vw in the interval (vo, 0)
(as opposed to no solution). Thus, the leading-order asymptotics is the same with the
one in the transmission regime except for ξ = vw, where the soliton wake (2.24) arises.
Importantly, contrary to the soliton at ξ = vs (which generates a phase shift for ξ > vs),
the leading-order asymptotics for vw < ξ < 0 are not affected by the soliton wake.
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4. The Transmission Regime: Proof of Theorem 2.1

This regime arises when p lies in the region D1 of Fig. 1, in which case vs < vo and
Re(ih)(ξ, p) does not vanish in the interval (vo, 0). Thus, we split the interval (−∞, 0)
into the following ranges: ξ < vs ; ξ = vs ; vs < ξ < vo; and vo < ξ < 0.

4.1. The range ξ < vs : plane wave. In this range, we have Re(iθ)(ξ, p) < 0 and
Re(iθ)(ξ, p̄) > 0. Hence, the jumps Vp and Vp̄ given by (3.15) tend to the identity
as t → ∞ and therefore are not expected to be part of the dominant component of
Riemann–Hilbert problem (3.16) in the limit t → ∞. Next, we shall show that this is
indeed the case by performing several deformations of problem (3.16) in the spirit of
the Deift-Zhou nonlinear steepest descent method. We emphasize that although some of
these deformations are similar to those of the no-discrete-spectrum analysis of [BM2],
one now needs to carefully handle the jumps around the poles p, p̄, which were not
present in [BM2].

First deformation This deformation is carried out in four stages. In each of these stages,
a new function N (1) is defined in terms of the solution N = N (0) of Riemann–Hilbert
problem (3.16), as shown in Figs. 8, 9, 10 and 11. Importantly, the jumps Vp = V (0)

p

and Vp̄ = V (0)
p̄ are not affected by this deformation. In its final form, the function N (1)

is analytic in C\(⋃4
j=0 L j ∪ B ∪ ∂Dε

p ∪ ∂Dε
p̄

)
, satisfies the asymptotic condition

N (1) = I + O

(
1

k

)
, k → ∞, (4.1)

and possesses the following jump discontinuities along the contours
⋃4

j=0 L j ∪ B ∪
∂Dε

p ∪ ∂Dε
p̄, as shown in Fig. 11:

V (1)
B = VB =

(
0 q−

iqo
q̄−
iqo

0

)
, V (1)

0 =
(
1 + rr̄ 0

0
1

1 + rr̄

)
, V (1)

1 =
⎛
⎝ d− 1

2
d

1
2 r̄ e2iθ t

1 + rr̄
0 d

1
2

⎞
⎠ ,

V (1)
2 =

⎛
⎝
d− 1

2 0

d
1
2 re−2iθ t

1 + rr̄
d

1
2

⎞
⎠ , V (1)

3 =
(
d− 1

2 0

d− 1
2 re−2iθ t d

1
2

)
, V (1)

4 =
(
d− 1

2 d− 1
2 r̄ e2iθ t

0 d
1
2

)
,

V (1)
p = V (0)

p , V (1)
p̄ = V (0)

p̄ . (4.2)

Second deformationThe jumpV (1)
0 along the contour L0 := (−∞, k1) shown in Fig. 11

can be removed by means of the transformation

N (2)(x, t, k) = N (1)(x, t, k)δ(ξ, k)−σ3 , (4.3)

where the scalar function δ(ξ, k) is analytic in C\(−∞, k1) and satisfies the Riemann–
Hilbert problem

δ+ = δ− (1 + rr̄) , k ∈ (−∞, k1), (4.4a)

δ = 1 + O
( 1
k

)
, k → ∞. (4.4b)
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Fig. 8. Plane wave region in the transmission regime: the first stage of the first deformation. A new function
N (1) is defined in terms of the solution N (0) of Riemann–Hilbert problem (3.16) via different expressions in
different regions of the complex k-plane. This allows us to eliminate the jump of (3.16) along (k1, ∞). The

jumps Vp = V (0)
p and Vp̄ = V (0)

p̄ along the circles ∂Dε
p and ∂Dε

p̄ are not affected at this stage

In fact, problem (4.4) can be solved explicitly via the Plemelj formulae to yield

δ(ξ, k) = exp

{
1

2iπ

∫ k1(ξ)

−∞
ln [1 + r(ν)r̄(ν)]

ν − k
dν

}
, k /∈ (−∞, k1). (4.5)

Through transformation (4.3), the jumps of N (1) give rise to corresponding jumps for
N (2). As shown in Fig. 12, these jumps occur along the contours

⋃4
j=1 L j ∪ B and are

given by

V (2)
B =

(
0 q−

iqo
δ2

q̄−
iqo

δ−2 0

)
, V (2)

1 =
⎛
⎝d− 1

2
d

1
2 r̄ e2iθ t

1 + rr̄
δ2

0 d
1
2

⎞
⎠ ,

V (2)
2 =

⎛
⎝
d− 1

2 0

d
1
2 re−2iθ t

1 + rr̄
δ−2 d

1
2

⎞
⎠ ,

V (2)
3 =

(
d− 1

2 0

d− 1
2 re−2iθ tδ−2 d

1
2

)
, V (2)

4 =
(
d− 1

2 d− 1
2 r̄ e2iθ tδ2

0 d
1
2

)
, (4.6)
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V (0)
p

N (0)

N (0)

N (0)

∂Dε
p

V (0)
p̄ ∂Dε

p̄

p

p̄

−iqo

k1

k

N (0)V (1)
2

N
(0
)
V

(1
)

3
−1

N
(0
)
V

(1
)

3
−1

N (0)

N (0)

N
(0
) V

(1
)

4

N (0) V (1)
3

−1

N (0)V (1)
4

N (0)

N (0)

V (1)
1

V
(1)

2

V (1)
0

V
(1)

3

V (1)4
V (1)
4

V (1)
3

−1

V (1)
3

V (1)
4

V (1)
B

L1

L0

L2

L3,3

L4,4
L4,3

L3,1

iqo

L4,1

L3,4

V (1)
B

V (1)
3

L3,2

V (1)
4

−1

N
(0
) V

(1
)

4
L4,2

N (0)V (1)
4

N (0) V (1)
1

−1

k2

N (0) V (1)
3

−1

N (0)

Fig. 9. Plane wave region in the transmission regime: the second stage of the first deformation. In the second
quadrant, the function N (1) is defined in terms of N (0) by the same expression both below the contour L3,1
and to the right of the contour L3,2. Thus, N (1) does not have a jump along the overlapping portion between
these two contours (dotted line), allowing one to lift them away from the origin. The same is true for the
contour pairs {L3,3, L3,4}, {L4,1, L4,2} and {L4,3, L4,4}. The jumps along ∂Dε

p and ∂Dε
p̄ remain unchanged

as well as along the disks ∂Dε
p and ∂Dε

p̄, where they read (modified for the first time)

V (2)
p =

⎛
⎝1 −cp δ2(ξ, k)

k − p
e2iθ(ξ,p)t

0 1

⎞
⎠ , V (2)

p̄ =
⎛
⎝
1 0

−cp̄ δ−2(ξ, k)

k − p̄
e−2iθ(ξ, p̄)t 1

⎞
⎠ .

(4.7)
Finally, the normalization condition (4.5) for N (1) is also satisfied by N (2).

Third deformation The function d(k) can be eliminated from the jump matrices along⋃4
j=1 L j by introducing a new function N (3) defined in terms of N (2) according to

Fig. 13. In particular, the jumps of N (3) along the contours
⋃4

j=1 L j ∪ B are given by

V (3)
B =

(
0 q−

iqo
δ2

q̄−
iqo

δ−2 0

)
, V (3)

1 =
⎛
⎝1

r̄ e2iθ t

1 + rr̄
δ2

0 1

⎞
⎠ , V (3)

2 =
⎛
⎝
1 0
re−2iθ t

1 + rr̄
δ−2 1

⎞
⎠ ,

V (3)
3 =

(
1 0
re−2iθ tδ−2 1

)
, V (3)

4 =
(
1 r̄ e2iθ tδ2

0 1

)
. (4.8)
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Fig. 10. Plane wave region in the transmission regime: the third stage of the first deformation. Having lifted
the jump contours away from the origin as shown in Fig. 9, one can now adjust the definition of N (1) according
to the present figure in order to move these jump contours outside the finite region defined by the branch cut B
and the dashed line through the stationary point k2. This ensures that the relevant jumps occur along contours
of appropriate sign for Re(iθ). The jumps along ∂Dε

p and ∂Dε
p̄ are as before

Fig. 11. Plane wave region in the transmission regime: the fourth and final stage of the first deformation. The
jump contours L3 and L4 have been lifted away from the branch points ±iqo similarly to [BM2]. Overall,

the jumps along ∂Dε
p and ∂Dε

p̄ have not changed in the transition from N (0) to N (1), i.e. V (1)
p = V (0)

p and

V (1)
p̄ = V (0)

p̄
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Fig. 12. Plane wave region in the transmission regime: the second deformation

Fig. 13. Plane wave region in the transmission regime: the third deformation

Moreover, noting that N (3) = N (2)d− σ3
2 for k ∈ Dε

p and N (3) = N (2)d
σ3
2 for k ∈ Dε

p̄,
we obtain

V (3)
p =

⎛
⎝ 1 −cp δ2(ξ, k) d(k)

k − p
e2iθ(ξ,p)t

0 1

⎞
⎠ , V (3)

p̄ =
⎛
⎝
1 0

−cp̄ δ−2(ξ, k) d(k)

k − p̄
e−2iθ(ξ, p̄)t 1

⎞
⎠ .

(4.9)
Fourth deformation Our final goal is to convert the jump along the branch cut B into
the constant matrix VB given by (4.2). This can be achieved by means of the global
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transformation
N (4)(x, t, k) = N (3)(x, t, k)eig(ξ,k)σ3 , (4.10)

where the function g(ξ, k) is analytic in C\B and satisfies the jump condition

ei(g
++g−) = δ2, k ∈ B, (4.11)

and the normalization condition

g

λ
= O

(
1

k

)
, k → ∞. (4.12)

Indeed, the jump condition (4.11) implies that the jump of N (4) along B is precisely VB .
Equations (4.11) and (4.12) formulate a Riemann–Hilbert problem for g, which can be
solved explicitly to yield

g(ξ, k) = λ(k)

2iπ2

∫

ζ∈B
1

λ(ζ ) (ζ − k)

∫ k1(ξ)

−∞
ln [1 + r(ν)r̄(ν)]

ν − ζ
dνdζ, k /∈ B. (4.13)

Under transformation (4.10), the Riemann–Hilbert problem for N (3) turns into the
following Riemann–Hilbert problem for N (4):

N (4)+ = N (4)−VB, k ∈ B, (4.14a)

N (4)+ = N (4)−V (4)
j , k ∈ L j , j = 1, 2, 3, 4, (4.14b)

N (4)+ = N (4)−V (4)
p , k ∈ ∂Dε

p, (4.14c)

N (4)+ = N (4)−V (4)
p̄ , k ∈ ∂Dε

p̄, (4.14d)

N (4) = [
I + O

( 1
k

)]
eig∞(ξ)σ3, k → ∞, (4.14e)

with the jump VB given by (4.2) and

V (4)
1 =

⎛
⎝1

r̄ e2i(θ t−g)

1 + rr̄
δ2

0 1

⎞
⎠ , V (4)

2 =
⎛
⎝
1 0
re−2i(θ t−g)

1 + rr̄
δ−2 1

⎞
⎠ ,

V (4)
3 =

(
1 0
re−2i(θ t−g)δ−2 1

)
,

V (4)
4 =

(
1 r̄ e2i(θ t−g)δ2

0 1

)
, V (4)

p =
⎛
⎝1 −cp δ2(ξ, k) d(k) e−2ig(ξ,k)

k − p
e2iθ(ξ,p)t

0 1

⎞
⎠ ,

V (4)
p̄ =

⎛
⎝
1 0

−cp̄ δ−2(ξ, k) d(k) e2ig(ξ,k)

k − p̄
e−2iθ(ξ, p̄)t 1

⎞
⎠ , (4.15)

where the associated jump contours are shown in Fig. 13 and g∞(ξ) is the limit of g(ξ, k)
as k → ∞, i.e.

g∞(ξ) := lim
k→∞ g(ξ, k) = − 1

2iπ2

∫

ζ∈B
1

λ(ζ )

∫ k1(ξ)

−∞
ln [1 + r(ν)r̄(ν)]

ν − ζ
dνdζ. (4.16)
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Importantly, expressing g∞ in terms of δ and using the symmetries λ(k) = λ(k̄) and

δ(ξ, k) = [
δ(ξ, k̄)

]−1
, we have that g∞(ξ) = g∞(ξ), i.e. that g∞ ∈ R.

Observe that all the jumps of N (4) apart from VB tend to the identity exponentially
fast in the limit t → ∞. Hence, proceeding as in the appendix of [BM2], we find that the
contribution of these jumps is of order O(t−1/2). Then, starting from the reconstruction
formula (3.13) and applying the four successive deformations that lead to N (4), we
eventually obtain

q(x, t) = −2i lim
k→∞

[
kN dom

12 (x, t, k)
]
eig∞(ξ) + O

(
t−

1
2
)
, t → ∞, (4.17)

where N dom(x, t, k) satisfies the dominant component of Riemann–Hilbert problem
(4.14), that is

N dom+ = N dom−VB, k ∈ B, (4.18a)

N dom = [
I + O

( 1
k

)]
eig∞(ξ)σ3 , k → ∞. (4.18b)

The dominant problem (4.18) has been extracted from problem (4.14) in a similar
way with problem (4.23) of Sect. 4.2. In fact, it is straightforward to verify that N dom is
given by the explicit formula

N dom = 1

2
eig∞(ξ)σ3

⎛
⎜⎝

�(k) + �−1(k) − qo
q̄−

[
�(k) − �−1(k)

]

− qo
q−

[
�(k) − �−1(k)

]
�(k) + �−1(k)

⎞
⎟⎠ , (4.19)

where

�(k) :=
(
k − iqo
k + iqo

) 1
4

. (4.20)

Expressions (4.17) and (4.19) yield the leading-order asymptotics (2.13) in the range
ξ < vs of the transmission regime p ∈ D1. We note that, as expected from the fact that
the discrete spectrum does not contribute at leading order for ξ < vs , (2.13) is consistent
with the result obtained for ξ < vo in the case of no discrete spectrum analyzed in [BM2].

4.2. The case ξ = vs : soliton on top of a plane wave. The same four deformations
that were performed for ξ < vs yield once again Riemann–Hilbert problem (4.14). In
particular, the jumps along ∂Dε

p and ∂Dε
p̄ read

V (4)
p =

⎛
⎝1 −cp δ2(vs, k) d(k) e−2ig(vs ,k)

k − p
e2iθ(vs ,p)t

0 1

⎞
⎠ , (4.21a)

V (4)
p̄ =

⎛
⎝
1 0

−cp̄ δ−2(vs, k) d(k) e2ig(vs ,k)

k − p̄
e−2iθ(vs , p̄)t 1

⎞
⎠ . (4.21b)

However, since Re(iθ)(vs, p) = Re(iθ)(vs, p̄) = 0, the time-dependent exponentials
involved in the jumps (4.21) are purely oscillatory (as opposed to decaying). That is,
contrary to the range ξ < vs , the jumps V (4)

p and V (4)
p̄ no longer tend to the identity
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as t → ∞. Hence, V (4)
p and V (4)

p̄ are now expected to contribute to the leading-order
asymptotics (together, of course, with the jump VB along the branch cut B, which is
constant) and, therefore, they must be included in the dominant component of problem
(4.14). Next, we extract the dominant component from the rest of the problem.
Decomposition into dominant and error problems Let Dε

k1
be a disk centered at k1

with radius ε sufficiently small so that Dε
k1

∩
(
B ∪ Dε

p ∪ Dε
p̄

)
= Ø. Then, write the

solution N (4) of problem (4.14) in the form

N (4) = N errN asymp, N asymp =
{
N dom, k ∈ C\Dε

k1
,

Nk1 , k ∈ Dε
k1

,
(4.22)

where the components N dom, Nk1 and N err are defined as follows:

• The function N dom(vs t, t, k) is analytic in C\
(
B ∪ ∂Dε

p ∪ ∂Dε
p̄

)
and satisfies the

Riemann–Hilbert problem

N dom+ = N dom−VB, k ∈ B, (4.23a)

N dom+ = N dom−V (4)
p , k ∈ ∂Dε

p, (4.23b)

N dom+ = N dom−V (4)
p̄ , k ∈ ∂Dε

p̄, (4.23c)

N dom = [
I + O

( 1
k

)]
eig∞(vs )σ3, k → ∞, (4.23d)

with VB given by (4.2) and V (4)
p , V (4)

p̄ given by (4.21).

• The function Nk1(vs t, t, k) is analytic in Dε
k1

\⋃4
j=1 L j with jumps

Nk1+ = Nk1−V (4)
j , k ∈ L̂ j := L j ∩ Dε

k1, j = 1, 2, 3, 4. (4.24)

Note that nothing has been specified about Nk1 outside the disk Dε
k1
.

• The function N err(vs, t, k) is analytic in C\(⋃4
j=1 L

∧

j ∪ ∂Dε
k1

)
, where L

∧

j :=
L j\L̂ j , and satisfies the Riemann–Hilbert problem

N err+ = N err−V err, k ∈ ⋃4
j=1L

∧

j ∪ ∂Dε
k1, (4.25a)

N err = I + O
( 1
k

)
, k → ∞, (4.25b)

where

V err =
{
N domV (4)

j (N dom)−1, k ∈ L

∧

j ,

N asymp−(V asymp
D )−1(N asymp−)−1, k ∈ ∂Dε

k1
,

(4.26)

and V asymp
D is the yet unknown jump of N asymp along the circle ∂Dε

k1
.

Under the four successive deformations that lead to problem (4.14), the reconstruction
formula (3.13) becomes

q(x, t) = −2i lim
k→∞ kN (4)

12 (vs t, t, k)e
ig∞(vs ), (4.27)
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where we have also used the fact that δ, d → 1 as k → ∞. This formula combined with
the decomposition (4.22) and the asymptotic conditions (4.23d) and (4.25b) implies

q(x, t) = −2i lim
k→∞ k

[
N dom
12 (vs t, t, k)e

ig∞(vs ) + N err
12 (vs t, t, k)

]
. (4.28)

The error problem (4.25) is precisely that of the plane wave region in [BM2], since
the jumps around p and p̄ are not part of this problem. Hence, as shown in [BM2],
limk→∞ kN err

12 = O
(
t−1/2

)
. In turn, we obtain

q(x, t) = −2i lim
k→∞ kN dom

12 (vs t, t, k)e
ig∞(vs ) + O

(
t−

1
2
)
, t → ∞. (4.29)

It remains to determine N dom, i.e. to solve the dominant Riemann–Hilbert problem
(4.23).
Solution of the dominant problem We begin by converting the jumps along the cir-
cles ∂Dε

p and ∂Dε
p̄ back to residue conditions at p and p̄. This is done by reverting

transformation (3.14), i.e. by letting

Mdom =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N dom
(
V (4)
p
)−1

, k ∈ Dε
p,

N dom, k ∈ C
−\
(
B− ∪ Dε

p

)
,

N dom
(
V (4)
p̄

)−1
, k ∈ Dε

p̄,

N dom, k ∈ C
+\
(
B+ ∪ Dε

p̄

)
.

(4.30)

Then, Mdom is the solution of the Riemann–Hilbert problem

Mdom+ = Mdom−VB, k ∈ B, (4.31a)

Mdom = [
I + O

( 1
k

)]
eig∞(vs )σ3 , k → ∞, (4.31b)

Res
k=p

Mdom =
(
0, ρp M

dom
1 (p)

)
, (4.31c)

Res
k= p̄

Mdom =
(
ρ p̄ M

dom
2 ( p̄), 0

)
, (4.31d)

where Mdom
1 , Mdom

2 denote the two columns of Mdom and

ρp = cpδ
2(vs, p)d(p)e2i[θ(vs ,p)t−g(vs ,p)], (4.32a)

ρ p̄ = cp̄δ
−2(vs, p̄)d( p̄)e−2i[θ(vs , p̄)t−g(vs , p̄)]. (4.32b)

In fact, the expressions for ρp and ρ p̄ can be simplified after noting that the symmetry
(see [BM2])

�±(x, t, k̄) = −σ∗�±(x, t, k)σ∗, σ∗ :=
(

0 1
−1 0

)
,

together with relations (3.10a) and (3.10b) imply Cp̄ = −Cp. Then, recalling the
Schwarz symmetries ā′(k̄) = a′(k), d(k̄) = d(k) and the definitions (3.11a) and (3.11b)
of cp and cp̄, we obtain

cp̄ = −cp. (4.33)
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Hence, noting in addition that θ(ξ, k̄) = θ(ξ, k), g(ξ, k̄) = g(ξ, k), δ(ξ, k̄) = δ−1(ξ, k),
and since θ(vs, p̄) ∈ R, we have

ρp = Rp e
2iθ(vs ,p)t , ρ p̄ = −Rp e

−2iθ(vs ,p)t , Rp := Cp
δ2(vs, p)e−2ig(vs ,p)

a′(p)
,

(4.34)

which shows that ρ p̄ = −ρp.
We will solve problem (4.31) by decomposing it into discrete and continuous spec-

trum components via the substitution

Mdom = MdomW. (4.35)

Here, W is the solution of the continuous spectrum component problem

W+ = W−VB, k ∈ B, (4.36a)

W = [
I + O

( 1
k

)]
eig∞(vs )σ3 , k → ∞, (4.36b)

which is nothing but problem (4.18) evaluated at ξ = vs . Therefore,

W = 1

2
eig∞(vs )σ3

(
�(k) + �−1(k) − qo

q̄−
[
�(k) − �−1(k)

]
− qo

q−
[
�(k) − �−1(k)

]
�(k) + �−1(k)

)
(4.37)

with � given by (4.20).
Since detW ≡ 1 �= 0, we can rearrange (4.35) to

Mdom = MdomW−1 (4.38)

and hence deduce that Mdom does not have a jump along B, i.e. Mdom is indeed the
discrete spectrum component of Mdom. Moreover, since Mdom

1 and W are analytic at p,
formula (4.38) and the residue condition (4.31c) imply

Res
k=p

Mdom
1 = −W21(p)ρp M

dom
1 (p). (4.39a)

Similarly, we find

Res
k=p

Mdom
2 = W11(p)ρp M

dom
1 (p), (4.39b)

Res
k= p̄

Mdom
1 = W22( p̄)ρ p̄ M

dom
2 ( p̄) = W11(p)ρ p̄ M

dom
2 ( p̄), (4.39c)

Res
k= p̄

Mdom
2 = −W12( p̄)ρ p̄ M

dom
2 ( p̄) = W21(p)ρ p̄ M

dom
2 ( p̄), (4.39d)

where in the last two conditions we have also made use of the symmetries

W22( p̄) = W11(p), W12( p̄) = −W21(p). (4.40)

Furthermore, (4.38) in combination with the asymptotic conditions for Mdom and W as
k → ∞ yield the following asymptotic condition forMdom:

Mdom =
([

I + O
( 1
k

)]
eig∞(vs )σ3

) ([
I + O

( 1
k

)]
eig∞(vs )σ3

)−1

= [
I + O

( 1
k

)] [
I + O

( 1
k

)]−1 = I + O
( 1
k

)
, k → ∞, (4.41)
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where we note that the O( 1k ) term possibly involves in some form the exponential
eig∞(vs )σ3 .

In summary, Mdom is analytic for k ∈ C\ {p, p̄}, has simple poles at p and p̄ with
associated residues satisfying (4.39), and satisfies the asymptotic condition (4.41) as
k → ∞. Thus, Liouville’s theorem implies

Mdom = I +
Res
k=p

Mdom

k − p
+
Res
k= p̄

Mdom

k − p̄
, (4.42)

and hence it only remains to determine the residues ofMdom at p and p̄. In fact, thanks
to (4.39) this amounts to computing the corresponding residues of Mdom. Combin-
ing (4.38), (4.39), (4.40) and (4.42), we find

Mdom
1 = W1 +W11

[
−W21(p)ρp Mdom

1 (p)

k − p
+
W11(p)ρ p̄ Mdom

2 ( p̄)

k − p̄

]

+W21

[
W11(p)ρp Mdom

1 (p)

k − p
+
W21(p)ρ p̄ Mdom

2 ( p̄)

k − p̄

]
(4.43a)

and

Mdom
2 = W2 +W12

[
−W21(p)ρp Mdom

1 (p)

k − p
+
W11(p)ρ p̄ Mdom

2 ( p̄)

k − p̄

]

+W22

[
W11(p)ρp Mdom

1 (p)

k − p
+
W21(p)ρ p̄ Mdom

2 ( p̄)

k − p̄

]
. (4.43b)

Since Mdom
1 is analytic at p, we can evaluate (4.43a) at k = p to obtain

Mdom
1 (p) = W1(p) + ρp

[−W ′
11(p)W21(p) +W11(p)W

′
21(p)

]
Mdom

1 (p)

+ ρ p̄
|W11(p)|2 + |W21(p)|2

p − p̄
Mdom

2 ( p̄). (4.44a)

Similarly, since Mdom
2 is analytic at p̄, evaluating (4.43b) at k = p̄ and using the

symmetries (4.40) (which also apply for W ′), we have

Mdom
2 ( p̄) = W2( p̄) − ρp

|W11(p)|2 + |W21(p)|2
p − p̄

Mdom
1 (p)

+ ρ p̄

[
W ′

11(p)W21(p) − W ′
21(p)W11(p)

]
Mdom

2 ( p̄). (4.44b)

Equations (4.44) form a system forMdom
1 (p) andMdom

2 ( p̄), which can be solved to yield

Mdom
1 (p) = Bρ p̄W2( p̄) +

(
1 − Āρ p̄

)
W1(p)

B2ρpρ p̄ +
(
1 − Āρ p̄

) (
1 +Aρp

) , (4.45a)

Mdom
2 ( p̄) =

(
1 +Aρp

)
W2( p̄) − BρpW1(p)

B2ρpρ p̄ +
(
1 − Āρ p̄

) (
1 +Aρp

) , (4.45b)
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where

A = W ′
11(p)W21(p) − W11(p)W

′
21(p), B = |W11(p)|2 + |W21(p)|2

p − p̄
. (4.46)

Actually, using formula (4.37), we can simplify A and B to the constants

A = i q̄−
2
(
p2 + q2o

) , B = |p − iqo| + |p + iqo|
2
∣∣p2 + q2o

∣∣ 12 (p − p̄)
. (4.47)

Expressions (4.45) combined with (4.39) yield the residues of Mdom at p and p̄, and
hence Mdom itself via formula (4.42).

Having determined Mdom, we return to the reconstruction formula (4.29) and note
that transformations (4.30) and (4.38) imply

q(x, t) = −2i lim
k→∞ k

(MdomW
)
12 e

ig∞(vs ) + O
(
t−

1
2
)
, t → ∞. (4.48)

Furthermore, by the asymptotic conditions (4.36b) and (4.41) we have

W = eig∞(vs )σ3 +
w

k
+ O

(
1

k2

)
, Mdom = I +

μ

k
+ O

(
1

k2

)
, k → ∞, (4.49)

where the matrix-valued functions w and μ may depend on x and t but not on k. Thus,

(MdomW
)
12 = w12 + μ12 e−ig∞(vs )

k
+ O

(
1

k2

)
, k → ∞. (4.50)

Hence, noting that w12 = iq−
2 eig∞(vs ) by formula (4.37), we obtain

q(x, t) = e2ig∞(vs )q− − 2iμ12 + O
(
t−

1
2
)
, t → ∞. (4.51)

Moreover, matching the second expansion in (4.49) with the large-k expansion of (4.42),
we infer

μ12 =
(
Res
k=p

Mdom
2

)(1)
+
(
Res
k= p̄

Mdom
2

)(1)
. (4.52)

Thus, using successively (4.39), (4.45) and (4.40), we find

μ12 =
(
1 − Āρ p̄

)
ρpW11(p)2 − (

1 +Aρp
)
ρ p̄W21(p)

2 − 2Bρpρ p̄W11(p)W21(p)

B2ρpρ p̄ +
(
1 − Āρ p̄

) (
1 +Aρp

) .

(4.53)
Substituting forW via (4.37) and inserting the resulting expression in (4.51),we conclude
that

q(x, t) = qpw(vs) − i

2
e2ig∞(vs )

[
B2ρpρ p̄ +

(
1 − Āρ p̄

) (
1 +Aρp

)]−1

{ (
1 − Āρ p̄

)
ρp

[
�(p) + �−1(p)

]2

− (
1 +Aρp

)
ρ p̄

q−
q̄−

[
�(p) − �−1(p)

]2

+ 2Bρpρ p̄
qo
q̄−

[
�(p) + �−1(p)

] [
�(p) − �−1(p)

] }

+ O
(
t−

1
2
)
, t → ∞, (4.54)
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whereqpw(vs) is the planewave (2.14) evaluated at ξ = vs , the quantities�,A,B, ρp, ρ p̄
are given by (4.20), (4.47), (4.34) and the real constant g∞(vs) is obtained by evaluat-
ing (4.16) at ξ = vs . In fact, setting

�1 := �(p) + �−1(p), �2 := �(p) − �−1(p), (4.55)

and substituting for ρp, ρ p̄ via (4.34) turns the leading-order asymptotics (4.54) into the
form (2.15)–(2.16) given in Theorem 2.1.

4.3. The range vs < ξ < vo: plane wave with a phase shift. The analysis in this range is
similar to the one for ξ < vs . Indeed, under the same series of deformations as inSect. 4.1,
Riemann–Hilbert problem (3.16) can be transformed once again into Riemann–Hilbert
problem (4.14). We note, in particular, that, since p ∈ D1, for vs < ξ < vo the point
p lies inside the unbounded region of positive sign to the left of the stationary point k1
(the unbounded region in white inside the third quadrant of the second frame of Fig. 6).
Thus, all four stages of the first deformation for ξ < vs can be repeated for vs < ξ < vo
in a way that leaves the jump along ∂Dε

p invariant. By symmetry, the same is true for
the jump along ∂Dε

p̄. Importantly, we shall see later that this is not the case for p ∈ D3

(transmission/wake regime).

An important difference between the ranges (−∞, vs) and (vs, vo), however, is that in
the latter case the jumps V (4)

p and V (4)
p̄ defined by (4.15) grow exponentially as t → ∞,

since Re(iθ)(ξ, p) > 0 and Re(iθ)(ξ, p̄) < 0 for all ξ > vs . This is to be contrasted
with the range (−∞, vs), where we recall that these jumps decayed exponentially to
the identity and hence could be immediately neglected from the dominant Riemann–
Hilbert problem. Nevertheless, it turns out that the jumps along ∂Dε

p and ∂Dε
p̄ still do

not contribute to the leading-order asymptotics. Along the lines of [DKKZ], this can be
seen by applying the following additional transformation to problem (4.14):

Ñ (4) =

⎧⎪⎨
⎪⎩

N (4)nσ3 , k ∈ C\
(
Dε

p ∪ Dε
p̄

)
,

N (4) Jp nσ3 , k ∈ Dε
p,

N (4) Jp̄ nσ3 , k ∈ Dε
p̄,

(4.56a)

where n(k) is the piecewise-defined function

n(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k − p̄

k − p
, k ∈ C\

(
Dε

p ∪ Dε
p̄

)
,

k − p̄, k ∈ Dε
p,

1

k − p
, k ∈ Dε

p̄,

(4.56b)
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and the matrices Jp(ξ, k) and Jp̄(ξ, k) are given by

Jp(ξ, k) =

⎛
⎜⎜⎜⎝

1 − n2(p)
n2(k)

k − p
cp d(k)δ2(ξ, k)e2i[θ(ξ,p)t−g(ξ,k)]

−n2(p) e−2i[θ(ξ,p)t−g(ξ,k)]

cp d(k)δ2(ξ, k) (k − p̄)2
k − p

⎞
⎟⎟⎟⎠ ,

(4.56c)

Jp̄(ξ, k) =

⎛
⎜⎜⎜⎝
k − p̄ − e2i[θ(ξ, p̄)t−g(ξ,k)]

n2( p̄)cp̄ d(k)δ−2(ξ, k) (k − p)2

cp̄ d(k)δ−2(ξ, k)e−2i[θ(ξ, p̄)t−g(ξ,k)]
1 − n2(k)

n2( p̄)

k − p̄

⎞
⎟⎟⎟⎠ .

(4.56d)

Note importantly that Jp is analytic in Dε
p since the singularity of its 11-element at k = p

is removable. Similarly, Jp̄ is analytic in Dε
p̄. Therefore, Ñ

(4) inherits the analyticity of

N (4) and satisfies the following Riemann–Hilbert problem:

Ñ (4)+ = Ñ (4)−Ṽ (4)
B , k ∈ B, (4.57a)

Ñ (4)+ = Ñ (4)−Ṽ (4)
j , k ∈ L j , j = 1, 2, 3, 4, (4.57b)

Ñ (4)+ = Ñ (4)−Ṽ (4)
p , k ∈ ∂Dε

p, (4.57c)

Ñ (4)+ = Ñ (4)−Ṽ (4)
p̄ , k ∈ ∂Dε

p̄, (4.57d)

Ñ (4) = [
I + O

( 1
k

)]
eig∞(ξ)σ3, k → ∞, (4.57e)

with g∞ defined by (4.16) and

Ṽ (4)
B =

(
0 q−

iqo
n−2

q̄−
iqo

n2 0

)
,

Ṽ (4)
1 =

⎛
⎝ 1

r̄ δ2n−2e−2ig

1 + rr̄
e2iθ t

0 1

⎞
⎠ , Ṽ (4)

2 =
⎛
⎝
1 0
rδ−2n2e2ig

1 + rr̄
e−2iθ t 1

⎞
⎠ ,

Ṽ (4)
3 =

(
1 0
rδ−2n2e2ige−2iθ t 1

)
, Ṽ (4)

4 =
(
1 r̄δ2n−2e−2ige2iθ t

0 1

)
,

Ṽ (4)
p =

⎛
⎝
1 0

−n2(p)δ−2(ξ, k)e2ig(ξ,k)

cp d(k) (k − p)
e−2iθ(ξ,p)t 1

⎞
⎠ ,

Ṽ (4)
p̄ =

⎛
⎝ 1 −n−2( p̄)δ2(ξ, k)e−2ig(ξ,k)

cp̄ d(k) (k − p̄)
e2iθ(ξ, p̄)t

0 1

⎞
⎠ . (4.58)

All the jumps of Ñ (4) with the exception of Ṽ (4)
B tend to the identity exponentially fast as

t → ∞. Importantly, as a result of transformation (4.56), this includes the jumps Ṽ (4)
p

and Ṽ (4)
p̄ . Hence, we anticipate that the leading-order contribution of problem (4.57)
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comes from the jump Ṽ (4)
B . As this jump depends on k through the function n, prior to

decomposing problem (4.57) into dominant and error components we employ yet one
more transformation that converts Ṽ (4)

B into the constant jump VB . Specifically, we let

Ñ (5)(x, t, k) = Ñ (4)(x, t, k)ei g̃(k)σ3, (4.59)

where the function g̃(k) is analytic in C\B and satisfies the Riemann–Hilbert problem

ei(g̃
++g̃−) = n−2, k ∈ B, (4.60a)

g̃

λ
= O

(
1

k

)
, k → ∞. (4.60b)

The above problem can be solved explicitly via Plemelj’s formulae to yield

g̃(k) = −λ(k)

π

∫

ζ∈B

ln
(

ζ− p̄
ζ−p

)

λ(ζ ) (ζ − k)
dζ, k /∈ B. (4.61)

Note that g̃ does not depend on ξ . Combining problems (4.57) and (4.60), we obtain the
following Riemann–Hilbert problem for Ñ (5):

Ñ (5)+ = Ñ (5)−VB, k ∈ B, (4.62a)

Ñ (5)+ = Ñ (5)−Ṽ (5)
j , k ∈ L j , j = 1, 2, 3, 4, (4.62b)

Ñ (5)+ = Ñ (5)−Ṽ (5)
p , k ∈ ∂Dε

p, (4.62c)

Ñ (5)+ = Ñ (5)−Ṽ (5)
p̄ , k ∈ ∂Dε

p̄, (4.62d)

Ñ (5) = [
I + O

( 1
k

)]
ei[g∞(ξ)+g̃∞]σ3 , k → ∞, (4.62e)

where VB is defined by (4.2), the remaining jumps are given by

Ṽ (5)
1 =

⎛
⎝ 1

r̄ δ2n−2e−2i(g+g̃)

1 + rr̄
e2iθ t

0 1

⎞
⎠ , Ṽ (5)

2 =
⎛
⎝
1 0
rδ−2n2e2i(g+g̃)

1 + rr̄
e−2iθ t 1

⎞
⎠ ,

Ṽ (5)
3 =

(
1 0
rδ−2n2e2i(g+g̃)e−2iθ t 1

)
, Ṽ (5)

4 =
(
1 r̄δ2n−2e−2i(g+g̃)e2iθ t

0 1

)
,

Ṽ (5)
p =

⎛
⎝
1 0

−n2(p)δ−2(ξ, k)e2i[g(ξ,k)+g̃(k)]

cp d(k) (k − p)
e−2iθ(ξ,p)t 1

⎞
⎠ ,

Ṽ (5)
p̄ =

⎛
⎝ 1 −n−2( p̄)δ2(ξ, k)e−2i[g(ξ,k)+g̃(k)]

cp̄ d(k) (k − p̄)
e2iθ(ξ, p̄)t

0 1

⎞
⎠ , (4.63)

the real quantity g∞(ξ) is defined by (4.16), and the real constant g̃∞ is the O(1) term
of the expansions of g̃(k) as k → ∞, i.e.

g̃∞ = 1

π

∫

ζ∈B

ln
(

ζ− p̄
ζ−p

)

λ(ζ )
dζ. (4.64)
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At leading order, the jumps of problem (4.62) are the same with those of problem
(4.14). Indeed, along B the jump of both problems is equal to VB , while the remaining
jumps in both cases tend to the identity as t → ∞. Thus, at leading order, the only
difference between the two problems is the presence of the constant phase g̃∞ in the
normalization condition of problem (4.62). Therefore, noting that under transformations
(4.56) and (4.59) the reconstruction formula (4.27) becomes

q(x, t) = −2i lim
k→∞ k Ñ (5)

12 (x, t, k)ei[g∞(ξ)+g̃∞], (4.65)

we conclude that the leading-order asymptotics in the range vs < ξ < vo is equal to the
plane wave (2.13) up to a constant phase shift of 2g̃∞, i.e.

q(x, t) = e2i[g∞(ξ)+g̃∞]q− + O
(
t−

1
2
)
, t → ∞. (4.66)

This result shows that the byproduct of the interaction of the plane wave emerging for
ξ < vs with the soliton arising for ξ = vs is the constant phase shift 2g̃∞ forvs < ξ < vo.
In fact, switching to the uniformization variable z(k) = k + λ(k), we can compute the
integral (4.64) via Cauchy’s residue theorem and thereby obtain g̃∞ in the explicit form

g̃∞ = 2arg [p + λ(p)] , (4.67)

which corresponds to a phase shift of 4arg [p + λ(p)] for the planewave (4.66), in perfect
agreement with the inverse scattering transform result of [BK]. In turn, the leading-order
asymptotics (4.66) assume the form (2.17) of Theorem 2.1.

4.4. The range vo < ξ < 0: modulated elliptic wave. In this range, the stationary points
k1 and k2 of the phase function θ are complex [recall (3.17)]. This has a direct impact
on the asymptotic analysis of Riemann–Hilbert problem (3.16), since the deformations
used for ξ < vo (where k1 and k2 are real) are no longer effective.

First, second and third deformation The first deformation consists of switching from
the solution N (0) of problem (3.16) to the function N (1) defined in terms of N (0) by
Fig. 14. This step is very similar to the first stage of the first deformation in the plane
wave region ξ < vs (recall Fig. 8) apart from the fact that the change of factorization of
the jump along the real axis now takes place at the point ko, which is yet to be determined,
instead of the stationary point k1. The remaining three stages of the first deformation
that were performed for ξ < vs (recall Figs. 9, 10 and 11) can also be carried out here,
eventually allowing us to lift the jump contours L j , j = 1, 2, 3, 4, away from the origin
as well as from the branch points ±iqo. Importantly, the fact that p ∈ D1 allows us to
perform the first deformation without modifying the jumps along ∂Dε

p and ∂Dε
p̄, since

the various transformations can be adjusted so that the disks Dε
p and Dε

p̄ always lie in

regions where N (1) = N (0).
The second and the third deformation are identical to the corresponding ones in the

plane wave region ξ < vs , leading to the function N (3)(x, t, k), which is analytic in
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Fig. 14. Modulated elliptic wave region in the transmission regime: the first stage of the first deformation.
Since p ∈ D1, it is possible to choose the disks D

ε
p and Dε

p̄ to always lie in regions where N (1) = N (0)

C\(⋃4
j=1 L j ∪ B ∪ ∂Dε

p ∪ ∂Dε
p̄

)
and satisfies the Riemann–Hilbert problem

N (3)+ = N (3)−V (3)
B , k ∈ B, (4.68a)

N (3)+ = N (3)−V (3)
j , k ∈ L j , j = 1, 2, 3, 4, (4.68b)

N (3)+ = N (3)−V (3)
p , k ∈ ∂Dε

p, (4.68c)

N (3)+ = N (3)−V (3)
p̄ , k ∈ ∂Dε

p̄, (4.68d)

N (3) = I + O
( 1
k

)
, k → ∞, (4.68e)

where the contours L j are depicted in Fig. 15 and the relevant jumps are given by (4.8)
and (4.9) but with the function δ(ξ, k) now modified to

δ(ξ, k) = exp

{
1

2iπ

∫ ko(ξ)

−∞
ln
[
1 + r(ν)r̄(ν)

]

ν − k
dν

}
, k /∈ (−∞, ko). (4.69)

Importantly, we note that the jump V (3)
3 grows exponentially as t → ∞ along the portion

of the contour L3 colored in green in Fig. 15, i.e. along the portion of L3 that connects ko
with the dashed curve Re(iθ) = 0 lying in the second quadrant of the complex k-plane.
The same is true for the jump V (3)

4 and the green-colored portion of the contour L4
that joins ko with the dashed curve Re(iθ) = 0 in the third quadrant of the complex
k-plane. This growth, which was not present for ξ < vo, can be removed with the help
of appropriate factorizations and a time-dependent version of transformation (4.10), as
shown in the course of the following two deformations.
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Fig. 15. Modulated elliptic wave region in the transmission regime: the jumps of N (3). As t → ∞, the jumps

V (3)
3 and V (3)

4 grow exponentially along the parts of the contours L3 and L4 connecting ko with the curve
Re(iθ) = 0 (dashed). Moreover, like in the first deformation (see Fig. 14), the deformed contours do not
interfere with the disks Dε

p and Dε
p̄ , leaving the corresponding jumps unaffected

Fourth deformation The jumps V (3)
3 and V (3)

4 can be factorized in the form

V (3)
3 = V (4)

5 V (4)
7 V (4)

5 , V (3)
4 = V (4)

6 V (4)
8 V (4)

6 , (4.70)

where

V (4)
5 =

(
1 δ2

r e2iθ t

0 1

)
, V (4)

6 =
(
1 0
1
r̄δ2

e−2iθ t 1

)
,

V (4)
7 =

(
0 − δ2

r e2iθ t
r
δ2
e−2iθ t 0

)
, V (4)

8 =
(
0 r̄δ2e2iθ t

− 1
r̄δ2

e−2iθ t 0

)
. (4.71)

The advantage of the above factorization is that the matrices V (4)
5 and V (4)

6 each involve
only one exponential and hence they have a definitive behavior as t → ∞. In particular,
in this limit V (4)

5 and V (4)
6 tend to the identity in regions of negative and positive sign of

Re(iθ) respectively. On the other hand, the matrices V (4)
7 and V (4)

8 still involve both of
the exponentials e±2iθ t and so it is not possible to take their limit as t → ∞. However,
contrary to the original jumps V (3)

3 and V (3)
4 , thematrices V (4)

7 and V (4)
8 are antidiagonal.

This fact turns out to be crucial, as we will see in the fifth deformation below.
Using the factorization (4.70), we switch from N (3) to N (4) as shown in Fig. 16. By

this definition, N (4)(x, t, k) is analytic inC\(⋃4
j=1 L j ∪ B ∪ ∂Dε

p ∪ ∂Dε
p̄

)
and satisfies
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Fig. 16. Modulated elliptic wave region in the transmission regime: the fourth deformation. The various jump
contours have been chosen so as not to interfere with the disks Dε

p and Dε
p̄

the following Riemann–Hilbert problem:

N (4)+ = N (4)−V (4)
B , k ∈ B, (4.72a)

N (4)+ = N (4)−V (4)
j , k ∈ L j , j = 1, . . . , 8, (4.72b)

N (4)+ = N (4)−V (4)
p , k ∈ ∂Dε

p, (4.72c)

N (4)+ = N (4)−V (4)
p̄ , k ∈ ∂Dε

p̄, (4.72d)

N (4) = I + O
( 1
k

)
, k → ∞, (4.72e)

where the contours L j are shown in Fig. 16, the jumps V (4)
5 , V (4)

6 , V (4)
7 , V (4)

8 are given
by (4.71), and the remaining jumps are as in problem (4.68).

The only growth surviving in problem (4.72) after the fourth deformation is located
in the 21- and 12-elements of the jumps V (4)

7 and V (4)
8 respectively. The fact that these

jumps are antidiagonal allows us to eliminate this growth by employing the following
transformation, which is essentially the mechanism leading to a modulated elliptic wave
(as opposed to a plane wave).

Fifth deformation Let the points α(ξ) and ᾱ(ξ) be defined through the solution of the
modulation equations (2.8), which was shown in [BM2] to be unique for ξ ∈ (vo, 0). In
turn, let the point ko(ξ) be given by (2.7). Then, introduce the function h(ξ, k) via the
Abelian integral (2.5). Note that h involves the function γ (ξ, k) defined by (2.9), which
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Fig. 17. Modulated elliptic wave region in the transmission regime: the fifth deformation

is made single-valued by taking branch cuts along B as well as along the curve

B̃ := L7 ∪ (−L8) (4.73)

with the contours L7 and L8 depicted in Fig. 17. We emphasize that B̃ must begin at ᾱ
and end at α by crossing the negative real axis at the point ko but is otherwise arbitrary
for the moment. The function γ is analytic for k ∈ C\B ∪ B̃ and changes sign as k
crosses B and B̃. Via (2.5), this induces analyticity of h in C\B ∪ B̃ as well as the
following jump conditions along B and B̃:

h+ + h− = 0, k ∈ B, (4.74a)

h+ + h− = �, k ∈ L7 ∪ L8, (4.74b)

where the real quantity �(ξ), which is independent of k, is defined by

�(ξ) = −4

(∫ α

iqo
+
∫ ᾱ

−iqo

)
(z − ko) (z − α) (z − ᾱ)

γ (z)
dz. (4.75)

Moreover, as shown in [BM2], Re(ih) has the same sign with Re(iθ) at infinity, near
the origin, and near α and ᾱ.

The definition of h and, more specifically, the jump conditions (4.74) imply that the
jumps of the function

N (5)(x, t, k) = N (4)(x, t, k)e−i[h(ξ,k)−θ(ξ,k)]tσ3 (4.76)

along the contours L7 and L8 are bounded. Furthermore, those jumps that were bounded
at the level of N (4) remain bounded at the level of N (5) [see discussion below (4.79)].
Specifically, Riemann–Hilbert problem (4.72) and transformation (4.76) imply that
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N (5)(x, t, k) is analytic for k ∈ C\(⋃8
j=1 L j ∪ B ∪ ∂Dε

p ∪ ∂Dε
p̄

)
and satisfies the

jump conditions

N (5)+ = N (5)−V (5)
B , k ∈ B, (4.77a)

N (5)+ = N (5)−V (5)
j , k ∈ L j , j = 1, . . . , 8, (4.77b)

N (5)+ = N (5)−V (5)
p , k ∈ ∂Dε

p, (4.77c)

N (5)+ = N (5)−V (5)
p̄ , k ∈ ∂Dε

p̄, (4.77d)

N (5) = [
I + O

( 1
k

)]
e−iG∞(ξ)tσ3, k → ∞, (4.77e)

where the contours L j are shown in Fig. 17 and

V (5)
B =

(
0 q−

iqo
δ2

q̄−
iqo

δ−2 0

)
, V (5)

1 =
(
1 r̄δ2

1+rr̄ e
2iht

0 1

)
, V (5)

2 =
(
1 0
rδ−2

1+rr̄ e
−2iht 1

)
,

V (5)
3 =

(
1 0
rδ−2e−2iht 1

)
, V (5)

4 =
(
1 r̄δ2e2iht

0 1

)
, V (5)

5 =
(
1 δ2

r e2iht

0 1

)
,

V (4)
6 =

(
1 0
1
r̄δ2

e−2iht 1

)
, V (5)

7 =
(
0 − δ2

r ei�t

r
δ2
e−i�t 0

)
,

V (5)
8 =

(
0 r̄δ2ei�t

− 1
r̄δ2

e−i�t 0

)
,

V (5)
p =

(
1 − cp δ2(ξ,k) d(k)

k−p e2i[h(ξ,k)+θ(ξ,p)−θ(ξ,k)]t

0 1

)
,

V (5)
p̄ =

(
1 0

− cp̄ δ−2(ξ,k) d(k)
k− p̄ e−2i[h(ξ,k)+θ(ξ, p̄)−θ(ξ,k)]t 1

)
, (4.78)

with �(ξ) defined by (4.75) and the real quantity G∞(ξ) given by

G∞(ξ) = −2

(∫ ∞

iqo
+
∫ ∞

−iqo

)[
(z − ko) (z − α) (z − ᾱ)

γ (z)
−
(
z − ξ

4

)]
dz − q2o .

(4.79)

Remark 4.1. The fourth deformation, which affects only the jumps along the green con-
tours of Fig. 15 by opening those contours into the lenses comprising the contours L5,
L6, L7, L8 of Fig. 16, could also be performed after the g-function deformation (4.76),
leading again to Riemann–Hilbert problem (4.77). Nonetheless, the order we have fol-
lowed here has the advantage of revealing the basic form of the jumps along the contours
of growth (see (4.71)) before the introduction of the Abelian function h, thus allowing
us to better motivate the desired properties that eventually lead to the definition of h. Of
course, since for vo < ξ < 0 we switch the phase function from θ to h via deforma-
tion (4.76), it should be emphasized that the contours L7 and L8 of Fig. 17 are not those
of Fig. 16, but rather the contours connecting α and ᾱ with ko.

The sign structure of Re(ih) at infinity and near the origin together with the fact
that, by definition, h possesses precisely three critical points, namely ko, α, ᾱ, guarantee
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the existence of a neighborhood around the point ko where Re(ih) < 0 in the second
quadrant, Re(ih) > 0 in the third quadrant, and Re(ih) = 0 along R and the branch
cut B̃.1 Thus, thanks to the sign structure of Re(ih) near α, it is always possible to have
a contour from ko to α which lies to the right of the branch cut B̃ and along which
Re(ih) < 0.2 Similarly, thanks to the sign structure of Re(ih) at infinity and near ko
and α, as well as to the fact that h possesses precisely three critical points, we can
always find a contour from ko to α which lies to the left of the branch cut B̃ and along
which Re(ih) < 0. Therefore, the contour L5 of Fig. 17 can always be chosen to satisfy
Re(ih) < 0. In turn, by symmetry, the contour L6 can always be chosen to satisfy
Re(ih) > 0. Hence, the jumps V (5)

5 and V (5)
6 are guaranteed to decay exponentially to

the identity as t → ∞. Analogous considerations ensure that Re(ih) has the same sign
structure with Re(iθ) along the contours L1, L2, L3 and L4 of Fig. 17. Thus, the jumps
V (5)
1 , V (5)

2 , V (5)
3 and V (5)

4 inherit the behavior of their N (4)-counterparts, i.e. they decay
exponentially to the identity as t → ∞.

Furthermore, there exists at least one zero-contour (i.e. a contour along which Re(ih)

= 0) connecting α and ᾱ through ko. This is because of the sign structure of Re(ih)

near α and ᾱ as well as due to the jump condition (4.74b) along B̃, which implies that
Re(ih+) = −Re(ih−) since� ∈ R. Thus, either B̃ is itself a zero-contour, or there exists
a region of positive sign adjacent to B̃ whose boundary will have to be a zero-contour
due to the analyticity of h, the sign of Re(ih) at infinity and near the origin, and the
existence of precisely three critical points of h. In the latter case, we can deform B̃ to
this zero-contour so that Re(ih) = 0 throughout B̃. In fact, any zero-contour connecting
α and ᾱ can only cross the negative real axis at ko, since a zero-contour intersecting with
the negative real axis at a point different than ko would require this point to a critical
point, leading to a contradiction. Therefore, taking into account once again the sign
structure of Re(ih) near α and ᾱ, we conclude that for ξ ∈ (vo, 0) there exists a unique
zero-contour with endpoints α and ᾱ and through the point ko, namely the branch cut B̃.

Furthermore, as ξ increases from vo to 0 the branch cut B̃ remains within the finite
region enclosed by the trace of ᾱ and α (the dashed green curve in Fig. 1 and its reflection
through the real axis) and the branch cut B. Hence, for p ∈ D1, as ξ increases from vo
to 0 the branch cut B̃ remains to the right of the disks Dε

p and Dε
p̄ without interfering

with p and p̄. The same is true for p ∈ D+
2 since, as shown in Fig. 1, this region lies

by definition below the trace of ᾱ (while B̃ lies above that trace). On the other hand, if
p ∈ D−

2 ∪ D3 then both p and p̄ are crossed by B̃ for some ξ ∈ (vo, 0), this being the
mechanism that generates the soliton wake in the mixed regimes of Sect. 6.

Next, recall that the transition from θ to h in the jump matrices takes place at ξ = vo,
where h(vo, k) = θ(vo, k) and α(vo) = ᾱ(vo) = ko(vo) = vo/8. Hence, at ξ = vo
the lower and upper dashed curves of Fig. 17 are, respectively, the solid blue curve of
Fig. 1 and its reflection through the real k-axis. A numerical investigation then shows
that, as ξ increases from vo to 0, the upper dashed curve remains convex and moves

1 Indeed, if such a neighborhood did not exist then there would have to be one or more saddle points other
than ko along the negative real axis, leading to a contradiction.

2 Indeed, the only way this could fail is if there were a strip of Re(ih) > 0 connecting the branch cut
B̃ either with the real axis or with the branch cut B. The first scenario is not possible because if would
create additional critical (saddle) points on the real axis. Moreover, the second scenario is also not realizable
since, due to the continuity of Re(ih) away from the cuts and the jump condition Re(ih+) = −Re(ih−), the
boundary of the strip away from B̃ would have to be a zero-contour, i.e. a contour along which Re(ih) = 0.
But then, deforming B̃ to this zero-contour we would get inconsistent jump conditions for h along the part of
the zero-contour that overlaps with B, since � �= 0 independently of the branch cuts B and B̃.
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continuously upwards and to the right, eventually collapsing to the half-line i[qo,∞).
Analogously, the lower dashed curve remains concave and moves downwards and to
the right, eventually collapsing to the half-line i(−∞,−qo]. Hence, no points inside
the regions D1 and D3 of Fig. 1 are crossed by the lower dashed curve of Fig. 17 as
ξ increases from vo to 0. In particular, if p ∈ D1 ∪ D3, then the circle ∂Dε

p, which
is between the negative real k-axis the solid blue curve of Fig. 1 at ξ = vo, remains
below the negative real k-axis and above the lower dashed curve of Fig. 17 throughout
the range (vo, 0). On the other hand, if p ∈ D+

2 ∪ D−
2 , then it will be crossed at exactly

one value of ξ ∈ (vo, 0) by the lower dashed curve of Fig. 17. An analogous statement
can be made for p̄ by symmetry.

The dashed curves of Fig. 17 together with the branch cut B̃ and the negative real axis
make up the contours along which Re(ih) = 0 on the left half of the complex k-plane.
Hence, from the above-described behavior of these contours as ξ increases from vo to
0, we conclude that

• If p ∈ D1, then Re(ih)(ξ, p) > 0 for all ξ ∈ (vo, 0). Equivalently, the equation

Re(ih)(ξ, p) = 0 ⇔ Re(ih)(ξ, p̄) = 0 ⇔
∫ p

p̄
dh(ξ, z) = 0 (4.80)

has no solution for ξ ∈ (vo, 0). Hence, in the transmission regime p ∈ D1 no soliton
arises in the range ξ ∈ (vo, 0).

• If p ∈ D+
2 , then Eq. (4.80) has a unique solution ṽs ∈ (vo, 0), which gives rise to a

soliton (see Sect. 5 for more details).
• If p ∈ D−

2 , then Eq. (4.80) has two solutions in the interval (vo, 0): one due to the
crossing of p by the lower dashed curve of 17, denoted by ṽs , and another one due
to the crossing of p by the branch cut B̃, denoted by vw. Moreover, ṽs < vw and
the first solution corresponds to a soliton while the second one to a soliton wake (see
Sect. 6 for more details).

• Finally, if p ∈ D3, then Eq. (4.80) has a unique solution vw ∈ (vo, 0), which arises
from the crossing of p by the branch cut B̃ and corresponds to a soliton wake (see
Sect. 6 for more details).

The integral Eq. (4.80) can be expressed in terms of the incomplete elliptic integrals
of the first and second kind. Importantly, we note that when the poles coincide with the
branch point ±iqo equation (4.80) reduces to the modulation Eq. (2.8b). A numerical
evaluation of the solutions of Eq. (4.80) for various choices of p that cover all four
possible regions D1, D+

2 , D
−
2 and D3 of the third quadrant is shown in Fig. 18.

The only jumps of Riemann–Hilbert problem (4.77) that are not bounded as t → ∞
are the ones along ∂Dε

p and ∂Dε
p̄, which grow exponentially since they are controlled

by the sign of Re(ih)(ξ, p).3 Thus, similarly to Sect. 4.3, we must employ the analogue
of transformation (4.56) in order to convert this growth into decay. Before doing so,
however, we apply the analogue of transformation (4.10) in order to remove the k-
dependence from the jumps along B and B̃.

3 The fact that e2i[h(ξ,k)+θ(ξ,p)−θ(ξ,k)]t is controlled by Re(ih)(ξ, p) can be seen by recalling that the

jump V (5)
p along the circle ∂Dε

p originates from the residue condition at p. Eventually, whenever the dominant

problem contains the contribution from ∂Dε
p , the jump V (5)

p will be converted back to a (modified) residue
condition at p. Thus, eventually we will end up evaluating the quantity h(ξ, k) + θ(ξ, p) − θ(ξ, k) at k = p.
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Fig. 18. Numerical evaluation of the solutions of Eq. (4.80) for qo = 1 and the different choices of p depicted
by orange dots in Fig. 1. The horizontal axis corresponds to ξ , the vertical axis to Re(ih)(ξ, p), and the
values on both axes are normalized by a factor of |vo| so that the range [−1, 0] of ξ corresponds precisely to
the modulated elliptic wave region [vo, 0], where Eq. (4.80) is actually relevant. The black dots denote the
unperturbed soliton velocity vs given by (2.10), while the red and blue dots denote the solutions ṽs and vw

of Eq. (4.80) corresponding to a soliton and a soliton wake respectively. First row: p = −1.1i ∈ D+
2 and

p = −0.082 − 1.1i ∈ D+
2 . Second row: p = −0.216 − 1.1i ∈ D+

2 and p = −0.69 − 1.1i ∈ D+
2 . Third

row: p = −1.146 − 1.1i ∈ D+
2 and p = −1.24 − 1.1i ∈ D1. Fourth row: p = −0.082 − 0.95i ∈ D−

2 and
p = −0.214− 0.5i ∈ D3. Note that in the left panel of the first and third rows vs and ṽs essentially coincide.
In particular, the latter case, which concerns D+

2 , is in complete agreement with the numerical simulation
shown in the center panel of Fig. 4

Sixth deformation The jumps V (5)
B , V (5)

7 and V (5)
8 can be made independent of k by

means of the transformation

N (6)(x, t, k) = N (5)(x, t, k)eig(ξ,k)σ3 , (4.81)

where the function g(ξ, k) is analytic in C\(B ∪ B̃) and satisfies the following jump
conditions:
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g+ + g− = −i ln
(
δ2
)

, k ∈ B, (4.82a)

g+ + g− = −i ln
(

δ2

r

)
+ ω, k ∈ L7, (4.82b)

g+ + g− = −i ln
(
δ2r̄
)
+ ω, k ∈ L8, (4.82c)

with δ(ξ, k) defined by (4.69) and with the real quantity ω(ξ) defined by

ω(ξ) = i

∫

B

ln δ2(ξ, ν)

γ (ξ, ν)
dν +

∫

B̃+

ln
[

δ2(ξ,ν)
r(ν)

]

γ (ξ, ν)
dν +

∫

B̃−

ln
[
δ2(ξ, ν) r̄(ν)

]

γ (ξ, ν)
dν

∫

B̃

dν

γ (ξ, ν)

,

(4.83)
where we have introduced the notation

B̃± := B̃ ∩ C
±. (4.84)

The solution of problem (4.82) is obtained via the Plemelj formulae as

g(ξ, k) = γ (ξ, k)

2π

[ ∫

B

ln δ2(ξ, ν)

γ (ξ, ν)(ν − k)
dν +

∫

L7

ln
[

δ2(ξ,ν)
r(ν)

]
+ iω(ξ)

γ (ξ, ν)(ν − k)
dν

−
∫

L8

ln
[
δ2(ξ, ν) r̄(ν)

]
+ iω(ξ)

γ (ξ, ν)(ν − k)
dν

]
. (4.85)

The presence ofω in the jump conditions (4.82) ensures that g(ξ, k) = O(1) as k → ∞.
Indeed, expression (4.85) implies

g(ξ, k) = g∞(ξ) + O

(
1

k

)
, k → ∞, (4.86)

where the real quantity g∞(ξ) is defined by

g∞(ξ) = − 1

2π

[ ∫

B

ln δ2(ξ, ν)

γ (ξ, ν)
νdν +

∫

B̃+

ln
[

δ2(ξ,ν)
r(ν)

]
+ iω(ξ)

γ (ξ, ν)
νdν

+
∫

B̃−

ln
[
δ2(ξ, ν) r̄(ν)

]
+ iω(ξ)

γ (ξ, ν)
νdν

]
. (4.87)

In summary, the function N (6) defined by (4.81) is analytic in C\(⋃6
j=1 L j ∪ B ∪ B̃ ∪

∂Dε
p ∪ ∂Dε

p̄

)
and satisfies the Riemann–Hilbert problem

N (6)+ = N (6)−VB, k ∈ B, (4.88a)

N (6)+ = N (6)−V (6)
B̃

, k ∈ B̃, (4.88b)

N (6)+ = N (6)−V (6)
j , k ∈ L j , j = 1, . . . , 6, (4.88c)

N (6)+ = N (6)−V (6)
p , k ∈ ∂Dε

p, (4.88d)

N (6)+ = N (6)−V (6)
p̄ , k ∈ ∂Dε

p̄, (4.88e)

N (6) = [
I + O

( 1
k

)]
ei[g∞(ξ)−G∞(ξ)t]σ3 , k → ∞, (4.88f)
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where the jump along B is given by (4.2), the jump along B̃ is equal to

V (6)
B̃

=
(
0 −ei(�t−ω)

e−i(�t−ω) 0

)
, (4.89)

the jumps along ∂Dε
p and ∂Dε

p̄ are given by

V (6)
p =

(
1 − cp δ2(ξ,k) d(k)e−2ig(ξ,k)

k−p e2i[h(ξ,k)+θ(ξ,p)−θ(ξ,k)]t

0 1

)
, (4.90a)

V (6)
p̄ =

(
1 0

− cp̄ δ−2(ξ,k) d(k)e2ig(ξ,k)

k− p̄ e−2i[h(ξ,k)+θ(ξ, p̄)−θ(ξ,k)]t 1

)
, (4.90b)

the jumps along the contours L j of Fig. 17 are equal to

V (6)
1 =

(
1 r̄ δ2e−2ig

1+rr̄ e2iht

0 1

)
, V (6)

2 =
(
1 0
rδ−2e2ig
1+rr̄ e−2iht 1

)
, (4.91a)

V (6)
3 =

(
1 0
rδ−2e2ige−2iht 1

)
, V (6)

4 =
(
1 r̄δ2e−2ige2iht

0 1

)
, (4.91b)

V (6)
5 =

(
1 δ2e−2ig

r e2iht

0 1

)
, V (6)

6 =
(
1 0
δ−2e2ig

r̄ e−2iht 1

)
, (4.91c)

and the real quantities G∞(ξ) and g∞(ξ) are given by (4.79) and (4.87) respectively.

Converting growth into decay The growing exponentials in the jumps V (6)
p and V (6)

p̄
can be converted into decaying ones via the analogue of transformation (4.56), i.e. by
letting

Ñ (6) =

⎧⎪⎨
⎪⎩

N (6)nσ3 , k ∈ C\
(
Dε

p ∪ Dε
p̄

)
,

N (6) Jp nσ3 , k ∈ Dε
p,

N (6) Jp̄ nσ3 , k ∈ Dε
p̄,

(4.92a)

where

Jp(ξ, k) =

⎛
⎜⎜⎜⎝

1 − n2(p)
n2(k)

k − p
cp d(k)δ2(ξ, k)e2i[(h(ξ,k)+θ(ξ,p)−θ(ξ,k))t−g]

−n2(p) e−2i[(h(ξ,k)+θ(ξ,p)−θ(ξ,k))t−g]

cp d(k)δ2(ξ, k) (k − p̄)2
k − p

⎞
⎟⎟⎟⎠ ,

(4.92b)

Jp̄(ξ, k) =

⎛
⎜⎜⎜⎝
k − p̄ − e2i[(h(ξ,k)+θ(ξ, p̄)−θ(ξ,k))t−g]

n2( p̄)cp̄ d(k)δ−2(ξ, k) (k − p)2

cp̄ d(k)δ−2(ξ, k)e−2i[(h(ξ,k)+θ(ξ, p̄)−θ(ξ,k))t−g]
1 − n2(k)

n2( p̄)

k − p̄

⎞
⎟⎟⎟⎠ .

(4.92c)
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Then, Ñ (6) satisfies the Riemann–Hilbert problem

Ñ (6)+ = Ñ (6)−Ṽ (6)
B , k ∈ B, (4.93a)

Ñ (6)+ = Ñ (6)−Ṽ (6)
B̃

, k ∈ B̃, (4.93b)

Ñ (6)+ = Ñ (6)−Ṽ (6)
j , k ∈ L j , j = 1, . . . , 6, (4.93c)

Ñ (6)+ = Ñ (6)−Ṽ (6)
p , k ∈ ∂Dε

p, (4.93d)

Ñ (6)+ = Ñ (6)−Ṽ (6)
p̄ , k ∈ ∂Dε

p̄, (4.93e)

Ñ (6) = [
I + O

( 1
k

)]
ei[g∞(ξ)−G∞(ξ)t]σ3 , k → ∞, (4.93f)

where the jumps along B and B̃ are given by

Ṽ (6)
B =

(
0 q−

iqo
n−2

q̄−
iqo

n2 0

)
, Ṽ (6)

B̃
=
(
0 −ei(�t−ω)n−2

e−i(�t−ω)n2 0

)
, (4.94)

the jumps along ∂Dε
p and ∂Dε

p̄ are equal to

Ṽ (6)
p =

⎛
⎝
1 0

− n2(p)e2ig(ξ,k)

cp δ2(ξ, k) d(k)(k − p)
e−2i[h(ξ,k)+θ(ξ,p)−θ(ξ,k)]t 1

⎞
⎠ , (4.95a)

Ṽ (6)
p̄ =

⎛
⎝1 −n−2( p̄) δ2(ξ, k)e−2ig(ξ,k)

cp̄ d(k)(k − p̄)
e2i[h(ξ,k)+θ(ξ, p̄)−θ(ξ,k)]t

0 1

⎞
⎠ , (4.95b)

and the jumps along the contours L j of Fig. 17 are given by

Ṽ (6)
1 =

⎛
⎝1

r̄ δ2e−2ig

1 + rr̄
e2iht n−2

0 1

⎞
⎠ , Ṽ (6)

2 =
(
1 0
rδ−2e2ig
1+rr̄ e−2iht n2 1

)
, (4.96a)

Ṽ (6)
3 =

(
1 0
rδ−2e2ige−2iht n2 1

)
, Ṽ (6)

4 =
(
1 r̄δ2e−2ige2iht n−2

0 1

)
, (4.96b)

Ṽ (6)
5 =

(
1 δ2e−2ig

r e2iht n−2

0 1

)
, Ṽ (6)

6 =
(
1 0
δ−2e2ig

r̄ e−2iht n2 1

)
. (4.96c)

Transformation (4.92) has re-introduced k in the jumps along B and B̃, which had
been made k-independent via the sixth deformation. Thus, motivated by the plane
wave region, where having a constant jump along B allowed us to solve the domi-
nant Riemann–Hilbert problem explicitly, we next perform a final, seventh deformation
in order to remove the k-dependence from the jumps Ṽ (6)

B and Ṽ (6)
B̃

.

Remark 4.2 (Order of deformations). In view of the above discussion, it becomes ap-
parent that the sixth deformation should have been postponed until after transformation
(4.92), since then the k-dependence from the jumps along B and B̃ would have to be
removed only once instead of twice. However, the less efficient order of deformations
that we have followed has the advantage of revealing precisely which part of the overall
phase of themodulated elliptic wave (2.18) is generated by the soliton at ξ = vs (namely,
the constant 4arg [p + λ(p)] via the seventh deformation as shown in (4.103)).



Long-Time Asymptotics for the Focusing Nonlinear Schrödinger Equation 1541

Seventh deformation Similarly to (4.81), we eliminate the dependence on k from the
jumps Ṽ (6)

B and Ṽ (6)
B̃

by letting

Ñ (7)(x, t, k) = Ñ (6)(x, t, k)ei g̃(ξ,k)σ3 , (4.97)

where the function g̃(ξ, k) is analytic in C\(B ∪ B̃) and satisfies the jump conditions

g̃ + + g̃− = i ln
(
n2
)

, k ∈ B, (4.98a)

g̃ + + g̃− = i ln
(
n2r

)
+ ω̃, k ∈ L7, (4.98b)

g̃ + + g̃− = i ln
(
n2
r̄

)
+ ω̃, k ∈ L8, (4.98c)

with the real quantity ω̃(ξ) given by

ω̃(ξ) = −i

∫

B

ln n2(ν)

γ (ξ, ν)
dν +

∫

L7

ln
[
n2(ν)r(ν)

]

γ (ξ, ν)
dν +

∫

L8

ln
[

r̄(ν)

n2(ν)

]

γ (ξ, ν)
dν

∫

B̃

dν

γ (ξ, ν)

. (4.99)

Similarly to (4.85), we have the explicit formula

g̃(ξ, k) = −γ (ξ, k)

2π

{∫

B

ln n2(ν)

γ (ξ, ν)(ν − k)
dν +

∫

L7

ln
[
n2(ν)r(ν)

]− iω̃(ξ)

γ (ξ, ν)(ν − k)
dν

+
∫

L8

ln
[

r̄(ν)

n2(ν)

]
+ iω̃(ξ)

γ (ξ, ν)(ν − k)
dν

}
, (4.100)

which implies

g̃(ξ, k) = g̃∞(ξ) + O

(
1

k

)
, k → ∞, (4.101)

with the real quantity g̃∞(ξ) given by

g̃∞(ξ) = 1

2π

{∫

B

ln n2(ν)

γ (ξ, ν)
νdν +

∫

L7

ln
[
n2(ν)r(ν)

]− iω̃(ξ)

γ (ξ, ν)
νdν

+
∫

L8

ln
[

r̄(ν)

n2(ν)

]
+ iω̃(ξ)

γ (ξ, ν)
νdν

}
. (4.102)

It turns out that g̃∞ is actually independent of ξ and, more precisely,

g̃∞ = 2arg [p + λ(p)] (4.103)

like in the plane wave region. Eventually (see Remark 4.5), this implies that the effect
of the soliton at ξ = vo on the phase of the leading order asymptotics is the same both
for ξ ∈ (vo, 0) and for ξ ∈ (vs, vo).
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The Riemann–Hilbert problem for Ñ (6) yields the following problem for Ñ (7):

Ñ (7)+ = Ñ (7)−VB, k ∈ B, (4.104a)

Ñ (7)+ = Ñ (7)−Ṽ (7)
B̃

, k ∈ B̃, (4.104b)

Ñ (7)+ = Ñ (7)−Ṽ (7)
j , k ∈ L j , j = 1, . . . , 6, (4.104c)

Ñ (7)+ = Ñ (7)−Ṽ (7)
p , k ∈ ∂Dε

p, (4.104d)

Ñ (7)+ = Ñ (7)−Ṽ (7)
p̄ , k ∈ ∂Dε

p̄, (4.104e)

Ñ (7) = [
I + O

( 1
k

)]
ei[g∞(ξ)+g̃∞−G∞(ξ)t]σ3 , k → ∞, (4.104f)

where the jump along B is given by (4.2), the jump along B̃ is equal to

Ṽ (7)
B̃

=
(
0 −ei(�t−ω−ω̃)

e−i(�t−ω−ω̃) 0

)
(4.105)

with the real quantities �, ω and ω̃ given by (4.75), (4.83) and (4.99) respectively, the
jumps along ∂Dε

p and ∂Dε
p̄ are given by

Ṽ (7)
p =

⎛
⎝
1 0

− n2(p)e2i[g(ξ,k)+g̃(ξ,k)]

cp δ2(ξ, k) d(k)(k − p)
e−2i[h(ξ,k)+θ(ξ,p)−θ(ξ,k)]t 1

⎞
⎠ , (4.106a)

Ṽ (7)
p̄ =

⎛
⎝1 −n−2( p̄) δ2(ξ, k)e−2i[g(ξ,k)+g̃(ξ,k)]

cp̄ d(k)(k − p̄)
e2i[h(ξ,k)+θ(ξ, p̄)−θ(ξ,k)]t

0 1

⎞
⎠ (4.106b)

with the functions d, n, δ, g and g̃ defined by (3.4), (4.56), (4.69), (4.85) and (4.100)
respectively, the jumps along the contours L j of Fig. 17 are given by

Ṽ (7)
1 =

(
1 r̄ δ2e−2i(g+g̃)

1+rr̄ e2iht n−2

0 1

)
, Ṽ (7)

2 =
(
1 0
rδ−2e2i(g+g̃)

1+rr̄ e−2iht n2 1

)
, (4.107a)

Ṽ (7)
3 =

(
1 0
rδ−2e2i(g+g̃)e−2iht n2 1

)
, Ṽ (7)

4 =
(
1 r̄δ2e−2i(g+g̃)e2iht n−2

0 1

)
,

(4.107b)

Ṽ (7)
5 =

(
1 δ2e−2i(g+g̃)

r e2iht n−2

0 1

)
, Ṽ (7)

6 =
(
1 0
δ−2e2i(g+g̃)

r̄ e−2iht n2 1

)
, (4.107c)

the real quantities G∞ and g∞ are defined by (4.79) and (4.87), and the real constant
g̃∞ is given by (4.103).
Decomposition into dominant and error problems The jumps Ṽ (7)

j , j = 1, . . . , 6, do
not contribute to the leading-order long-time asymptotics since they decay to the identity
as t → ∞ due to the sign structure of Re(ih) (see Fig. 17). The same is true for the
jumps Ṽ (7)

p and Ṽ (7)
p̄ since the exponentials involved in these jumps are controlled by the

sign of Re(ih)(ξ, p).7 Therefore, the dominant component of Riemann–Hilbert problem
(4.104) must come from the jumps VB and Ṽ (7)

B̃
. With these in mind, we decompose

problem (4.104) as follows.
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Let Dε
ko
, Dε

α and D
ε
ᾱ be disks of radius ε centered at ko,α and ᾱ respectively,where ε is

sufficiently small so that these disks do not intersect with each other or with B∪Dε
p∪Dε

p.
Then, write

Ñ (7) = Ñ err Ñ asymp (4.108)

where

Ñ asymp =
{
Ñ dom, k ∈ C\(Dε

ko
∪ Dε

α ∪ Dε
ᾱ),

Ñ D, k ∈ Dε
ko

∪ Dε
α ∪ Dε

ᾱ,
(4.109)

and the functions Ñ dom, Ñ D and Ñ err are defined as follows:

• Ñ dom(x, t, k) is analytic in C\(B ∪ B̃) and satisfies the Riemann–Hilbert problem

Ñ dom+ = Ñ dom−VB, k ∈ B, (4.110a)

Ñ dom+ = Ñ dom−Ṽ (7)
B̃

, k ∈ B̃, (4.110b)

Ñ dom = [
I + O

( 1
k

)]
ei[g∞(ξ)+g̃∞−G∞(ξ)t]σ3 , k → ∞. (4.110c)

• Ñ D(x, t, k) is analytic in Dε
ko

∪ Dε
α ∪ Dε

ᾱ\⋃8
j=1 L j with jumps

Ñ D+ = Ñ D−Ṽ (6)
j , k ∈ L̂ j := L j ∩ (Dε

ko ∪ Dε
α ∪ Dε

ᾱ

)
, j = 1, . . . , 8, (4.111)

as shown in Fig. 19.
• Ñ err(x, t, k) is analytic in C\(⋃6

j=1 L
∧
j ∪ ∂Dε

ko
∪ ∂Dε

α ∪ ∂Dε
ᾱ ∪ ∂Dε

p ∪ ∂Dε
p̄

)
with

L

∧

j := L j\(Dε
ko

∪Dε
α ∪Dε

ᾱ) and satisfies the Riemann–Hilbert problem (see Fig. 20)

Ñ err+ = Ñ err−Ṽ err, k ∈ ⋃6
j=1L

∧

j ∪ ∂Dε
ko ∪ ∂Dε

α ∪ ∂Dε
ᾱ ∪ ∂Dε

p ∪ ∂Dε
p̄,

(4.112a)

Ñ err = I + O
( 1
k

)
, k → ∞, (4.112b)

where

Ṽ err =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Ñ domṼ (7)
j (Ñ dom)−1, k ∈ L

∧

j ,

Ñ domṼ (7)
p (Ñ dom)−1, k ∈ ∂Dε

p,

Ñ domṼ (7)
p̄ (Ñ dom)−1, k ∈ ∂Dε

p̄,

Ñ asymp−(Ṽ asymp
D )−1(Ñ asymp−)−1, k ∈ ∂Dε

ko
∪ ∂Dε

α ∪ ∂Dε
ᾱ,

(4.113)

and

Ṽ asymp
D =

⎧⎪⎨
⎪⎩

Ṽ asymp
Dα

, k ∈ ∂Dε
α,

Ṽ asymp
Dᾱ

, k ∈ ∂Dε
ᾱ,

Ṽ asymp
Dko

, k ∈ ∂Dε
ko

.

(4.114)

Importantly, despite the fact that the jump Ṽ asymp
D is unknown, in [BM2] it was

estimated to be equal to the identity up to O(t−1/2) and hence it does not affect the
leading-order asymptotics.
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Fig. 19. Modulated elliptic wave in the transmission regime: The jumps of Ñ D in the interior of and along the
boundary of the disks Dε

α , D
ε
ᾱ
and Dε

ko
. Note that, although the jumps Ṽ asymp

Dα
, Ṽ asymp

Dᾱ
, Ṽ asymp

Dko
are unknown,

they are equal to the identity up to O(t−1/2) and hence do not affect the dominant problem

Fig. 20. Modulated elliptic wave in the transmission regime: The jumps of Ñ err

Solution of the dominant problem We begin by noting that, at the level of the dominant
problem (4.110), since the jump Ṽ (7)

B̃
is independent of k, the jump contour B̃ can be

deformed to the straight line segment B ′ from ᾱ toα so that the jump contours of problem
(4.110) are as shown in Fig. 21. Problem (4.110) was solved in [BM2] in the case of
ω̃ = g̃∞ = 0. Adapting that analysis to account for the presence of ω̃ and g̃∞, we obtain

Ñ dom(x, t, k) = ei[g∞(ξ)+g̃∞−G∞(ξ)t]σ3Ñ−1(ξ,∞, c) Ñ (ξ, k, c) (4.115)
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k0

k

B BB

iqoα

ᾱ −iqo

Fig. 21. Modulated elliptic wave in the transmission regime: The jump contours of Ñdom. The fact that the

jump Ṽ (7)
B̃

is independent of k has allowed us to deform B̃ to the straight line segment B′ from ᾱ to α. Note

that the original and deformed versions of Ñdom agree outside the finite region D enclosed by B̃ and B′

with

Ñ (ξ, k, c) = 1

2

( [
η(ξ, k) + η−1(ξ, k)

]
Ñ1(ξ, k, c) i

[
η(ξ, k) − η−1(ξ, k)

]
Ñ2(ξ, k, c)

−i
[
η(ξ, k) − η−1(ξ, k)

]
Ñ1(ξ, k,−c)

[
η(ξ, k) + η−1(ξ, k)

]
Ñ2(ξ, k,−c)

)

(4.116)
and

Ñ (ξ,∞, c) := lim
k→∞ Ñ (ξ, k, c), (4.117)

where the function η with branch cuts along B and B ′ (see Fig. 21) is defined by

η(ξ, k) :=
[

(k − iqo) (k − α)

(k + iqo) (k − ᾱ)

] 1
4

(4.118)

andwhere Ñ1 and Ñ2 denote thefirst and second component of the vector-valued function

Ñ (ξ, k, c) :=
⎛
⎜⎝


(− �t
2π + ω+ω̃

2π +
i ln
(
q̄−
iqo

)

2π + ν(k) + c
)

√
iqo
q̄− 
(ν(k) + c)

,


(− �t

2π + ω+ω̃
2π +

i ln
(
q̄−
iqo

)

2π − ν(k) + c
)

√
q̄−
iqo


(−ν(k) + c)

⎞
⎟⎠ .

(4.119)
In the above definition, the dependence of �, ω, ω̃, ν and c on ξ has been suppressed
for convenience. Moreover, 
(k) = 
(ξ, k) is the following variant of the third Jacobi
theta function:


(ξ, k) = θ3(πk, e
iπτ(ξ)), θ3(z, �) :=

∑
�∈Z

e2i�z��2 , (4.120)

with Riemann period

τ(ξ) :=
(∮

β

dk

�(ξ, k)

)−1 ∮

α

dk

�(ξ, k)
= i K

(√
1 − m2

)

K (m)
, (4.121)

where the function � is defined in terms of the function γ of (2.9) by

�(ξ, k) =
{

γ (ξ, k), k ∈ C\D,

−γ (ξ, k), k ∈ D,
(4.122)

where D denotes the finite region enclosed by B̃ and B ′ (see Fig. 21). This definition
implies that � has branch cuts along B and B ′, i.e. the branch cut B̃ of γ has been
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deformed to B ′ in the case of �. The cycles {α, β} of the genus-1 Riemann surface asso-
ciated with � are depicted in Fig. 22. Furthermore, the Abelian map ν in the arguments
of the 
-functions in (4.119) is defined by

ν(k) = ν(ξ, k) =
(∮

β

dν

�(ξ, ν)

)−1 ∫ k

iqo

dν

�(ξ, ν)
, (4.123)

and, finally,

c = c(ξ) := ν

(
qoαre

qo + αim

)
+
1

2
(1 + τ) . (4.124)

Remark 4.3 (Analyticity of Ñ (ξ, k, c)). The definition (4.124) of c ensures that the
only possible singularity of Ñ (ξ, k, c) on the first sheet of the Riemann surface may
occur at k = qoαre

qo+αim
. This is because 
(−ν(k) + c) vanishes whenever −ν(k) + c =

1
2 (1 + τ) + Z + τZ and ν(k) is injective on each sheet of the Riemann surface as an
Abelian map. Furthermore, this singularity is actually removable since it is the unique
(finite) zero of η − η−1 on the first sheet of the Riemann surface. Hence, all four entries
of Ñ (ξ, k, c) are analytic away from the branch cuts B and B ′.

Remark 4.4 (Invertibility of Ñ (ξ,∞, c)). Since limk→∞ η(ξ, k) = 1 and 
(k) =

(−k), letting

ν∞ = ν∞(ξ) := lim
k→∞ ν(ξ, k) (4.125)

we have

det Ñ (ξ,∞, c) = 

(− �t

2π + ω+ω̃
2π +

i ln
(
q̄−
iqo

)

2π + ν∞ + c
)


(− �t

2π + ω+ω̃
2π +

i ln
(
q̄−
iqo

)

2π − ν∞ − c
)


2
(
ν∞ + c

) .

The denominator of this expression is always nonzero thanks to the choice of c (see
Remark 4.3). Moreover, noting that � := {−�t + ω + ω̃ + i ln

[
q̄−/(iqo)

]}
/2π ∈ R

we observe that subtracting or adding � to ν∞ + c does not affect the imaginary part
of the argument of the 
-functions in the numerator of det Ñ (ξ,∞, c). Thus, recalling
that the zeros of 
(k) are located at k = 1

2 (1 + τ) + Z + τZ and noting that τ is purely
imaginary, we deduce that det Ñ (ξ,∞, c) is nonzero and hence Ñ (ξ,∞, c) is invertible,
as required by (4.115).

Starting from the reconstruction formula (3.13) and applying the successive defor-
mations that lead from N = N (0) to Ñ (7) while keeping in mind that n, d, δ → 1 as
k → ∞, we obtain

q(x, t) = −2i lim
k→∞ k Ñ (7)

12 (x, t, k)ei[g∞(ξ)+g̃∞−G∞(ξ)t]. (4.126)

Furthermore, according to the decomposition (4.108), for large k we have

Ñ (7)
12 = Ñ err

11 Ñ
dom
12 + Ñ err

12 Ñ
dom
22 . (4.127)

Hence, using also the asymptotic conditions (4.110c) and (4.112b), we find

q(x, t) = −2i lim
k→∞ k Ñ dom

12 (x, t, k)ei[g∞(ξ)+g̃∞−G∞(ξ)t] − 2i lim
k→∞ k Ñ err

12 (x, t, k).

(4.128)
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Fig. 22. Modulated ellipticwave in the transmission regime: The basis {α, β} of cycles for the genus-1Riemann
surface associated with the function �(ξ, k). The cycle β is a closed, anti-clockwise contour that encircles the
branch cut B while lying on the first sheet of the Riemann surface. The cycle α consists of an anti-clockwise
contour that begins from the left of the branch cut B′ and approaches the branch cut B from the right while
lying on the first sheet, and then returns to B′ via the second sheet (dashed portion)

All of the jumps of Ñ err, including those along ∂Dε
p and ∂Dε

p̄, tend to the identity
exponentially fast as t → ∞. Hence, the second term in (4.128) is of lower order. In
fact, similarly to [BM2] (see also [BV]) we have

lim
k→∞ k Ñ err

12 (x, t, k) = O
(
t−

1
2
)
, t → ∞. (4.129)

Moreover, since the original and deformed versions of Ñ dom agree outside the finite re-
gionD enclosed by B̃ and B ′ (see Fig. 21) and hence in the limit k → ∞, formula (4.115)
together with the expansion

η(ξ, k) = 1 − i(qo + αim)

2k
+ O

(
1

k2

)
, k → ∞, (4.130)

imply

lim
k→∞ k Ñ dom

12 (x, t, k) = 1

2
(qo + αim)

Ñ2(ξ,∞, c)

Ñ1(ξ,∞, c)
ei[g∞(ξ)+g̃∞−G∞(ξ)t]. (4.131)

Therefore, at leading order the reconstruction formula (4.128) yields the modulated
elliptic wave

q(x, t) = qo (qo + αim)

q̄−


(− �t

2π + ω+ω̃
2π +

i ln
(
q̄−
iqo

)

2π − ν∞ + c
)

(ν∞ + c)



(− �t

2π + ω+ω̃
2π +

i ln
(
q̄−
iqo

)

2π + ν∞ + c
)

(−ν∞ + c)

e2i[g∞(ξ)+g̃∞−G∞(ξ)t]

+O
(
t−

1
2
)
, t → ∞, (4.132)
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where the real quantities αim, �, ω, ω̃, G∞, g∞, depend only on ξ and are given re-
spectively by (2.8), (4.75), (4.83), (4.99), (4.79), (4.87), the real constant g̃∞ is given
by (4.103), and the quantities c(ξ) and ν∞(ξ) are defined by (4.124) and (4.125) respec-
tively. In fact, as shown in [BM2], � can be expressed as

�(ξ) = π |α + iqo|
K (m)

(ξ − 2αre) (4.133)

with K (m) being the complete elliptic integral of the first kind with elliptic modulus
m obtained via the modulation equations (2.8). Then, performing some straightforward
manipulations of the relevant theta functions, we can write (4.132) in the more explicit
form (2.18)–(2.19) with

Xo = Xo(ξ) := 1

2π

[
ω(ξ) − i ln

(q−
qo

)]
+
1

4
. (4.134)

The proof of Theorem 2.1 for the leading-order asymptotics in the transmission regime
p ∈ D1 is complete.

Remark 4.5 (Phase andposition shifts). Setting ω̃ = g̃∞ = 0 in (2.18)–(2.19) gives (2.21),
which is precisely the modulated elliptic wave of [BM2]. That is, the effect of the soliton
arising at ξ = vs on the leading-order asymptotics for ξ ∈ (vo, 0) is the constant phase
shift 2g̃∞ = 4arg [p + λ(p)] as well as a position shift related to the presence of the
quantity ω̃.

5. The Trap Regime: Proof of Theorem 2.2

This regime arises for p inside the region D+
2 of Fig. 1. In that case, we have vs > vo i.e.

Re(iθ)(ξ, p) < 0 throughout the interval (−∞, vo) and hence no soliton arises there.
Furthermore, as already noted in the context of the fifth deformation of Sect. 4.4, for
p ∈ D+

2 the equation Re(ih)(ξ, p) = 0 has a unique solution ṽs in the interval (vo, 0)
(in fact, it turns out that ṽs > vs). Thus, we split the range (−∞, 0) into the subintervals
ξ < vo; vo < ξ < ṽs ; ξ = ṽs ; and ṽs < ξ < 0.

5.1. The range ξ < vo: plane wave. No soliton arises in this range since the asymptotics
is dictated by the phase function θ and the fact that vo < vs means that Re(iθ)(ξ, p) < 0
throughout (−∞, vo). Therefore, the analysis required is the same with the one carried
out for ξ < vs in the transmission regime (see Sect. 4.1) and the leading-order asymp-
totics is given by the plane wave (2.13).

5.2. The range vo < ξ < ṽs : modulated elliptic wave. This range is very similar to the
range (vo, 0) of the transmission regime. In particular, applying the first six deformations
of Sect. 4.4 we arrive again at Riemann–Hilbert problem (4.88) for the function N (6).
For p ∈ D+

2 , however, Re(ih)(ξ, p) < 0 as opposed to Re(ih)(ξ, p) > 0 (see Fig. 23
and the relevant discussion in Sect. 4.4). Therefore, the jumps along ∂Dε

p and ∂Dε
p̄

now tend to the identity exponentially fast as t → ∞, allowing us to proceed to the
decomposition of problem (4.88) into dominant and error components directly, without
the need for transformations (4.92) and (4.97).
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Fig. 23. Modulated elliptic wave in the trap regime: the jumps of Riemann–Hilbert problem (4.88). Contrary
to the corresponding region in the transmission regime, the jumps along ∂Dε

p and ∂Dε
p̄ tend to the identity as

t → ∞

Indeed, performing the analogue of decomposition (4.108) and proceeding as in
Sect. 4.4, we find

q(x, t) = −2i lim
k→∞ kN dom

12 (x, t, k)ei[g∞(ξ)−G∞(ξ)t] + O
(
t−

1
2
)
, (5.1)

where N dom denotes the solution of the dominant component of Riemann–Hilbert prob-
lem (4.88) in the case p ∈ D+

2 . Specifically, as expected from the discussion above,
N dom satisfies problem (4.110) with ω̃ = g̃∞ = 0, i.e. N dom is analytic in C\(B ∪ B̃)

with

N dom+ = N dom−VB, k ∈ B, (5.2a)

N dom+ = N dom−V (6)
B̃

, k ∈ B̃, (5.2b)

N dom = [
I + O

( 1
k

)]
ei[g∞(ξ)−G∞(ξ)t]σ3 , k → ∞. (5.2c)

Problem (5.2) arises in the case of empty discrete spectrum analyzed in [BM2]. Actually,
thanks to the fact that the jump V (6)

B̃
is independent of k, the jump contour B̃ in problem

(5.2) can be deformed to the straight line segment B ′ from ᾱ to α (see Fig. 21). Then,
following [BM2], we obtain the solution of this deformed problem as

N dom(x, t, k) = ei[g∞(ξ)−G∞(ξ)t]σ3N−1(ξ,∞, c)N (ξ, k, c), (5.3)
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where

N (ξ, k, c) = 1

2

( [
η(ξ, k) + η−1(ξ, k)

]
N1(ξ, k, c) i

[
η(ξ, k) − η−1(ξ, k)

]
N2(ξ, k, c)

−i
[
η(ξ, k) − η−1(ξ, k)

]
N1(ξ, k, −c)

[
η(ξ, k) + η−1(ξ, k)

]
N2(ξ, k,−c)

)

(5.4)
and

N (ξ,∞, c) := lim
k→∞N (ξ, k, c) (5.5)

with the function η defined by (4.118) and with N1 and N2 denoting the first and second
column of the vector-valued function

N (ξ, k, c) =
⎛
⎜⎝


(− �t
2π + ω

2π +
i ln
(
q̄−
iqo

)

2π + ν(k) + c
)

√
iqo
q̄− 
(ν(k) + c)

,


(− �t

2π + ω
2π +

i ln
(
q̄−
iqo

)

2π − ν(k) + c
)

√
q̄−
iqo


(−ν(k) + c)

⎞
⎟⎠ ,

(5.6)
where �, ω, ν and c are given by (4.133), (4.83), (4.123) and (4.124) respectively. We
note that formula (5.3) is consistent with formula (4.115) after setting ω̃ = g̃∞ = 0.

Recall that the original and deformed versions of N dom agree outside the finite region
D enclosed by B̃ and B ′ (see Fig. 21) and hence in the limit k → ∞. Thus, inserting the
solution (5.3) in the reconstruction formula (5.1) and utilizing the explicit form (4.133)
of� together with the theta functions manipulations performed in [BM2], we obtain the
leading-order asymptotics (2.20)–(2.21).

5.3. The case ξ = ṽs : soliton on top of a modulated elliptic wave. Recall that in the trap
regime currently under consideration the value ṽs is the unique solution of Eq. (2.12) in
the interval (vo, 0). That is, for p ∈ D+

2 the quantities Re(ih)(ξ, p) and Re(ih)(ξ, p̄)

vanish inside (vo, 0) only at ξ = ṽs . In turn, the jumps V (6)
p and V (6)

p̄ given by (4.90)
become part of the dominant component of Riemann–Hilbert problem (4.88) only for
ξ = ṽs . Indeed, as noted earlier3 and will be confirmed below, whenever these jumps
are part of the dominant problem they are eventually converted to residue conditions at
p and p̄. Thus, the relevant exponentials reduce to e±2ih(ξ,p)t , which for p ∈ D+

2 are
purely oscillatory (as opposed to growing or decaying) only for ξ = ṽs . On the other
hand, thanks to the global sign structure of Re(ih) (see Fig. 23) the jumps V (6)

j tend to
the identity exponentially fast as t → ∞, like in the range (vo, ṽs).

Following the above remarks, for ξ = ṽs we write the solution of problem (4.88) as

N (6) = N errN asymp, (5.7)

where for disks Dε
ko
, Dε

α , D
ε
ᾱ of radius ε centered at ko, α, ᾱ and such that they do not

intersect with each other or with B ∪ Dε
p ∪ Dε

p, we let

N asymp =
{
N dom, k ∈ C\(Dε

ko
∪ Dε

α ∪ Dε
ᾱ),

ND, k ∈ Dε
ko

∪ Dε
α ∪ Dε

ᾱ,
(5.8)

and define the functions N dom, ND and N err as follows:
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Fig. 24. Modulated elliptic wave in the trap regime: The jumps of ND in the interior of and along the boundary
of the disks Dε

α , D
ε
ᾱ
and Dε

ko
. Although the jumps V asymp

Dα
, V asymp

Dᾱ
, V asymp

Dko
are unknown, they are equal to

the identity up to O(t−1/2) and hence do not affect the dominant problem

• N dom(̃vs t, t, k) is analytic in C\(B ∪ B̃ ∪ ∂Dε
p ∪ ∂Dε

p̄) and satisfies the Riemann–
Hilbert problem

N dom+ = N dom−VB, k ∈ B, (5.9a)

N dom+ = N dom−V (6)
B̃

, k ∈ B̃, (5.9b)

N dom+ = N dom−V (6)
p , k ∈ ∂Dε

p, (5.9c)

N dom+ = N dom−V (6)
p̄ , k ∈ ∂Dε

p̄, (5.9d)

N dom = [
I + O

( 1
k

)]
ei[g∞ (̃vs )−G∞ (̃vs )t]σ3 , k → ∞. (5.9e)

• ND (̃vs t, t, k) is analytic in Dε
ko

∪ Dε
α ∪ Dε

ᾱ\⋃8
j=1 L j with jumps

ND+ = ND−V (6)
j , k ∈ L̂ j := L j ∩ (Dε

ko ∪ Dε
α ∪ Dε

ᾱ

)
, j = 1, . . . , 8, (5.10)

as shown in Fig. 24.
• N err(̃vs t, t, k) is analytic in C\(⋃6

j=1 L

∧

j ∪ ∂Dε
ko

∪ ∂Dε
α ∪ ∂Dε

ᾱ

)
with L

∧

j :=
L j\(Dε

ko
∪ Dε

α ∪ Dε
ᾱ) and satisfies the Riemann–Hilbert problem

N err+ = N err− V err, k ∈ ⋃6
j=1L

∧

j ∪ ∂Dε
ko ∪ ∂Dε

α ∪ ∂Dε
ᾱ, (5.11a)

N err = I + O
( 1
k

)
, k → ∞, (5.11b)

with

V err =
{
N domV (6)

j (N dom)−1, k ∈ L

∧

j ,

N asymp−(V asymp
D )−1(N asymp−)−1, k ∈ ∂Dε

ko
∪ ∂Dε

α ∪ ∂Dε
ᾱ,

(5.12)

and

V asymp
D =

⎧⎪⎨
⎪⎩

V asymp
Dα

, k ∈ ∂Dε
α,

V asymp
Dᾱ

, k ∈ ∂Dε
ᾱ,

V asymp
Dko

, k ∈ ∂Dε
ko

.

(5.13)
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Although V asymp
D is unknown, in [BM2] it was shown that the contribution of the error

problem (5.11) to the leading-order asymptotics is of O
(
t−1/2

)
. Therefore, starting from

the reconstruction formula (3.13) and applying the six deformations that lead to N (6),
we find

q(x, t) = −2i lim
k→∞ kN dom

12 (̃vs t, t, k)e
i[g∞ (̃vs )−G∞ (̃vs )t] + O

(
t−

1
2
)
, t → ∞. (5.14)

It remains to determine N dom.

Solution of the dominant problem We now determine the solution N dom of problem
(5.9) via the same series of steps followed in Sect. 4.2. First, we convert the jumps
V (6)
p and V (6)

p̄ along the circles ∂Dε
p and ∂Dε

p̄ to residue conditions at p and p̄ via the
transformation

Mdom =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N dom
(
V (6)
p
)−1

, k ∈ Dε
p,

N dom, k ∈ C
−\(B− ∪ B̃− ∪ Dε

p

)
,

N dom
(
V (6)
p̄

)−1
, k ∈ Dε

p̄,

N dom, k ∈ C
+\(B+ ∪ B̃+ ∪ Dε

p̄

)
.

(5.15)

Indeed, the function Mdom maintains the jumps of N dom along B and B̃ but has simple
poles at p and p̄ instead of jumps along ∂Dε

p and ∂Dε
p̄. Specifically, M

dom satisfies the
Riemann–Hilbert problem

Mdom+ = Mdom−VB, k ∈ B, (5.16a)

Mdom+ = Mdom−V (6)
B̃

, k ∈ B̃, (5.16b)

Mdom = [
I + O

( 1
k

)]
ei[g∞ (̃vs )−G∞ (̃vs )t]σ3 , k → ∞, (5.16c)

Res
k=p

Mdom =
(
0, ρp M

dom
1 (p)

)
, (5.16d)

Res
k= p̄

Mdom =
(
ρ p̄ M

dom
2 ( p̄), 0

)
, (5.16e)

where Mdom
1 , Mdom

2 denote the first and second column of the matrix Mdom and

ρp = cpδ
2(̃vs, p)d(p)e2i[h(̃vs ,p)t−g(̃vs ,p)], (5.17a)

ρ p̄ = cp̄δ
−2(̃vs, p̄)d( p̄)e−2i[h(̃vs , p̄)t−g(̃vs , p̄)]. (5.17b)

In fact, similarly to Sect. 4.2, we can use the definitions (3.11a) and (3.11b) of cp and
cp̄ together with the symmetries Cp̄ = −Cp, d(k̄) = d(k), ā′(k̄) = a′(k), δ(ξ, k̄) =
δ−1(ξ, k), g(ξ, k̄) = g(ξ, k), h(ξ, k̄) = h(ξ, k) and the fact that h(̃vs, p̄) ∈ R to write
expressions (5.17) as

ρp = Rp e
2ih(̃vs ,p)t , ρ p̄ = −Rp e

−2ih(̃vs ,p)t , Rp := Cp
δ2(̃vs, p)e−2ig(̃vs ,p)

a′(p)
.

(5.18)

Note that the writing (5.18) reveals that ρ p̄ = −ρp.
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In order to solve problem (5.16), it is convenient to let

Mdom = MdomW (5.19)

with W being the solution of the continuous spectrum component problem

W+ = W−VB, k ∈ B, (5.20a)

W+ = W−V (6)
B̃

, k ∈ B̃, (5.20b)

W = [
I + O

( 1
k

)]
ei[g∞ (̃vs )−G∞ (̃vs )t]σ3 , k → ∞. (5.20c)

Observe that problem (5.20) is simply problem (5.2) evaluated at ξ = ṽs . Therefore, as
for problem (5.2), its jump contour B̃ in problem (5.20) can be deformed to the straight
line segment B ′ connecting ᾱ with α (see Fig. 21), and the solution of this deformed
problem is given by formula (5.3) as

W = ei[g∞ (̃vs )−G∞ (̃vs )t]σ3N−1(̃vs,∞, c)N (̃vs, k, c) (5.21)

withN defined by (5.4). Note further that detW inherits the analyticity ofW away from
B and B̃, while (5.20) implies that

detW+ = detW− det VB, k ∈ B,

detW+ = detW− det V (6)
B̃

, k ∈ B̃.

Therefore, since det VB ≡ det V (6)
B̃

≡ 1,wededuce that detW does not have jumps along

B and B̃, i.e. detW is entire in k. Moreover, the asymptotic condition (5.20c) implies
that limk→∞ detW = 1. Thus, we conclude via Liouville’s theorem that detW = 1 for
all k ∈ C.

Combining (5.19) and (5.20), we find that the discrete componentMdom of Mdom is
analytic in C\ {p, p̄} and has simple poles at p and p̄ with the following residues:

Res
k=p

Mdom
1 = −W21(p)ρp M

dom
1 (p), (5.22a)

Res
k=p

Mdom
2 = W11(p)ρp M

dom
1 (p), (5.22b)

Res
k= p̄

Mdom
1 = W22( p̄)ρ p̄ M

dom
2 ( p̄), (5.22c)

Res
k= p̄

Mdom
2 = −W12( p̄)ρ p̄ M

dom
2 ( p̄). (5.22d)

Moreover, Mdom satisfies the asymptotic condition

Mdom = I + O
( 1
k

)
, k → ∞. (5.23)

Then, arguing as in Sect. 4.2, we deduce that

Mdom = I +
Res
k=p

Mdom

k − p
+
Res
k= p̄

Mdom

k − p̄
. (5.24)

Thus, in order to determine Mdom it suffices to determine its two residues at p and p̄.
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From (5.19) we have

Mdom
1 = W1 +W11

[
−W21(p) ρp Mdom

1 (p)

k − p
+
W22( p̄) ρ p̄ Mdom

2 ( p̄)

k − p̄

]

+W21

[
W11(p) ρp Mdom

1 (p)

k − p
− W12( p̄) ρ p̄ Mdom

2 ( p̄)

k − p̄

]
(5.25a)

and

Mdom
2 = W2 +W12

[
−W21(p) ρp Mdom

1 (p)

k − p
+
W22( p̄) ρ p̄ Mdom

2 ( p̄)

k − p̄

]

+W22

[
W11(p) ρp Mdom

1 (p)

k − p
− W12( p̄) ρ p̄ Mdom

2 ( p̄)

k − p̄

]
. (5.25b)

Evaluating the first of the above equations at k = p and the second one at k = p̄ (recall
that Mdom

1 and Mdom
2 are analytic at p and p̄ respectively), we obtain the system

Mdom
1 (p) = W1(p) + ρ p̄

W11(p)W22( p̄) − W21(p)W12( p̄)

p − p̄
Mdom

2 ( p̄)

+ ρp
[
W ′

21(p)W11(p) − W ′
11(p)W21(p)

]
Mdom

1 (p), (5.26a)

Mdom
2 ( p̄) = W2( p̄) + ρp

W12( p̄)W21(p) − W22( p̄)W11(p)

p − p̄
Mdom

1 (p)

+ ρ p̄
[
W ′

12( p̄)W22( p̄) − W ′
22( p̄)W12( p̄)

]
Mdom

2 ( p̄), (5.26b)

which can be solved to yield

Mdom
1 (p) = −Bρ p̄W2( p̄) +

(
1 + Cρ p̄

)
W1(p)

B2ρpρ p̄ +
(
1 + Cρ p̄

) (
1 +Aρp

) , (5.27a)

Mdom
2 ( p̄) = BρpW1(p) +

(
1 +Aρp

)
W2( p̄)

B2ρpρ p̄ +
(
1 + Cρ p̄

) (
1 +Aρp

) , (5.27b)

where

A = W ′
11(p)W21(p) − W11(p)W

′
21(p), (5.28a)

B = W21(p)W12( p̄) − W11(p)W22( p̄)

p − p̄
, (5.28b)

C = W ′
22( p̄)W12( p̄) − W ′

12( p̄)W22( p̄). (5.28c)

Expressions (5.27) determine Mdom through (5.24) and the residue relations (5.22).
Having computed Mdom, we return to the reconstruction formula (5.14) which

upon (5.15) and (5.19) reads

q(x, t) = −2i lim
k→∞ k

(MdomW
)
12e

i[g∞ (̃vs )−G∞ (̃vs )t] + O
(
t−

1
2
)
, t → ∞. (5.29)
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Now, the asymptotic conditions (5.20c) and (5.23) imply

W = ei[g∞ (̃vs )−G∞ (̃vs )t]σ3 +
w

k
+ O

(
1

k2

)
, Mdom = I +

μ

k
+ O

(
1

k2

)
, k → ∞,

where the matrix-valued functions w and μ may depend on x and t but not on k.
Therefore,

(MdomW
)
12 = w12 + μ12 e−i[g∞ (̃vs )−G∞ (̃vs )t]

k
+ O

(
1

k2

)
, k → ∞.

Substituting for w12 via (5.21) (note that the original and deformed versions ofW agree
outside the finite region D enclosed by B̃ and B ′ in Fig. 21 and hence as k → ∞) and
for μ12 via (5.22) and (5.24) yields the leading-order asymptotics (2.22)–(2.23) via the
reconstruction formula (5.29).

Remark 5.1 (Dependence on g∞ and G∞). Formula (5.21) implies that W11 and W12
depend on g∞ and G∞ through the exponential ei[g∞ (̃vs )−G∞ (̃vs )t] while W21 and W22
instead contain the exponential e−i[g∞ (̃vs )−G∞ (̃vs )t].Hence, the quantitiesA,B, C defined
by (5.28) are independent of g∞ andG∞, and the overall dependence of the leading-order
asymptotics (2.22) on g∞ and G∞ comes through a factor of e2i[g∞ (̃vs )−G∞ (̃vs )t].

5.4. The range ṽs < ξ < 0: modulated elliptic wave with a phase shift. This range
can be handled identically to the range vo < ξ < 0 of the transmission regime that
was analyzed in Sect. 4.4. Consequently, the leading-order asymptotics is character-
ized once again by (4.132) as the modulated elliptic wave (2.19) with a phase shift of
4arg [p + λ(p)].

The proof of Theorem2.2 for the leading-order asymptotics in the trap regime p ∈ D+
2

is complete.

6. The Mixed Regimes: Proof of Theorems 2.3 and 2.4

In Sects. 4 and 5, we showed that the scenarios p ∈ D1 and p ∈ D+
2 give rise to pure

asymptotic regimes, namely a transmission regime (Theorem 2.1) and a trap regime
(Theorem 2.2) respectively. We now proceed to the analysis of the remaining two re-
gions of Fig. 1, namely D−

2 and D3. We shall show that these regions correspond to
mixed asymptotic regimes, specifically a trap/wake regime (Theorem 2.3) and a trans-
mission/wake regime (Theorem 2.4) respectively.

6.1. The trap/wake regime. Recall that for p ∈ D−
2 we have vo < vs < 0. Furthermore,

as noted in Sect. 4.4, the integral Eq. (4.80) possesses exactly two solutions in the interval
(vo, 0): ṽs , which corresponds to the crossing of the pole p by the dashed black curve in
the third quadrant of Fig. 25 (for ξ < ṽs , the pole lies below this curve), and vw > ṽs ,
which corresponds to the crossing of p by the branch cut B̃ (green contour connecting α

and ᾱ in Fig. 25). Note that the latter crossing can happen only if p lies on the right (as
opposed to the left) of B̃ immediately after ξ = ṽs , and this is the way one distinguishes
the trap/wake regime p ∈ D−

2 from the trap regime p ∈ D+
2 .

For ξ < vo, the deformations performed in the trap regime can be repeated to lead
once again to Riemann–Hilbert problem (4.14). Furthermore, like in the trap regime,
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Fig. 25. Modulated elliptic wave in the trap/wake (p ∈ D−
2 ) and transmission/wake (p ∈ D3) regimes in the

ranges ṽs < ξ < vw (for p ∈ D−
2 ) and vo < ξ < vw (for p ∈ D3): the initial stage of the first deformation.

The jumps along ∂Dε
p and ∂Dε

p̄ are not affected

for ξ < vo the dominant component of this problem only involves the jump along the
branch cut B since the jumps along ∂Dε

p and ∂Dε
p̄ tend to the identity exponentially fast

as t → ∞ due to the fact that Re(iθ)(ξ, p) < 0 and Re(iθ)(ξ, p̄) > 0 throughout the
interval (−∞, vo). Thus, the leading-order asymptotics for p ∈ D−

2 and ξ ∈ (−∞, vo)

is the same with the one of the trap regime, i.e. it is described by the plane wave (2.13).
For vo < ξ < ṽs , the phase function switches from θ to h via transformation (4.76)

and we eventually arrive at Riemann–Hilbert problem (4.88). Moreover, we still have
Re(ih)(ξ, p) < 0 and Re(ih)(ξ, p̄) > 0, thus the jumps along ∂Dε

p and ∂Dε
p̄ still do

not contribute to the leading-order asymptotics, which is described by the modulated
elliptic wave (2.21).

At ξ = ṽs , we have Re(ih)(̃vs, p) = Re(ih)(̃vs, p̄) = 0. Thus, as explained in
Sect. 5.3, the jumps along ∂Dε

p and ∂Dε
p̄ now contribute to the leading-order asymp-

totics, which is described by (2.22) as the soliton (2.23) on top of the modulated elliptic
wave (2.21) evaluated at ṽs .

The range ṽs < ξ < vw, which is not present in the trap regime since vw does not
arise there, requires a modification of the first four deformations. Specifically, while the
first stage of the first deformation remains the same (compare Fig. 25 with Fig. 14),
the poles p and p̄ now lie on the right of the branch cut B̃. We emphasize that this
is the defining difference between the trap/wake regime p ∈ D−

2 and the trap regime
p ∈ D+

2 , since in the latter case the poles are always on the left of B̃ for ξ > ṽs (see also
Fig. 7). Thus, for ṽs < ξ < vw in the trap/wake regime, in order to lift the jump along
[ko, 0] away from the real axis and onto B̃, the remaining stages of the first deformation
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Fig. 26. Modulated elliptic wave in the trap/wake (p ∈ D−
2 ) and transmission/wake (p ∈ D3) regimes in the

ranges ṽs < ξ < vw (for p ∈ D−
2 ) and vo < ξ < vw (for p ∈ D3): the final stage of the first deformation.

The jumps along ∂Dε
p and ∂Dε

p̄ have now changed

are adjusted from those of the trap regime to the factorization shown in Fig. 26. Then,
applying the second deformation (4.3) with δ given by (4.69) and the third deformation
as shown in Fig. 13 but with the disks Dε

p and Dε
p̄ now lying between the contours L3

and L4, we obtain the analogue of Fig. 15, the only difference now being that the poles
p and p̄ lie on the right of B̃. Subsequently, proceeding as in Sect. 4.4, we eventually
arrive at the deformed Riemann–Hilbert problem of Fig. 27, which can be handled in the
same way with Riemann–Hilbert problem (4.104). Indeed, since Re(ih)(ξ, p) > 0 and
Re(ih)(ξ, p̄) < 0, the jumps along ∂Dε

p and ∂Dε
p̄ are not significant at leading order and

the corresponding asymptotics is given by (2.18) as the modulated elliptic wave (2.19)
with a phase shift of 4arg [p + λ(p)].

For vw < ξ < 0, the poles p and p̄ lie on the left of B̃ and, therefore, the analysis is
identical to the one for the trap regime in the range ṽs < ξ < 0, leading once again to
the asymptotics (2.18).

It remains to analyze the case ξ = vw, which corresponds to the crossing of the poles
p and p̄ by the branch cut B̃ of h (green contour connecting α and ᾱ in Fig. 25) as the
latter sweeps the region to its right en route to collapsing onto B as ξ → 0−. Since B̃ is
also a zero-contour of Re(ih), this is the mechanism giving rise to the second solution
of Eq. (4.80) when p ∈ D−

2 , since Re(ih)(ξ, k) vanishes along B̃ for all ξ and hence
Re(ih)(vw, p) = 0. As previously emphasized, the crossing of p and p̄ by B̃ occurs for
p ∈ D−

2 but not for p ∈ D+
2 , since in the latter case the poles are always on the left of

B̃ in the range ṽs < ξ < 0.



1558 G. Biondini, S. Li, D. Mantzavinos

Fig. 27. Modulated elliptic wave in the trap/wake (p ∈ D−
2 ) and transmission/wake regimes (p ∈ D3): the

jumps of the Riemann–Hilbert problem (4.104), the final problem in the ranges ξ ∈ (̃vs , vw) ∪ (vw, 0) (for
p ∈ D−

2 ) and ξ ∈ (vo, vw) ∪ (vw, 0) (for p ∈ D3)

The case ξ = vw: soliton wake For this value of ξ , the poles p and p̄ lie on B̃ (depicted
in green in Fig. 25), which is both a zero-contour for Re(ih) and a branch cut for h (along
with the branch cut B = i[−qo, qo]). For this reason, in view of the fifth deformation
of Riemann–Hilbert problem (3.16) (see (4.76)), it is convenient to switch from h to a
function hw which does not have a branch cut along B̃ but which is such that Re(ihw)

still vanishes along B̃. More specifically, we define

hw(k) =
{
h(vw, k), k ∈ C\R,

�(vw) − h(vw, k), k ∈ R,
(6.1)

where the real constant �(vw) is given by (4.133) and R is the finite region enclosed
by B̃ and the contour B̃w shown in blue in Fig. 28. It is straightforward to see that the
function hw (i) has branch cuts along B and B̃w, and (ii) is continuous along B̃. Indeed,
recall (see (4.74b)) that along B̃ we have h+ + h− = �(vw). Hence, according to the
definition (6.1) of hw, along B̃wehave h+w = (�(vw) − h)+ = �(vw)−h+ = h− = h−

w ,
i.e. hw is continuous along B̃. On the other hand, along the contour B̃w shown in blue
in Fig. 28 we have h+w = (�(vw) − h)+ = �(vw) − h = �(vw) − h−

w (having used
the fact that h is continuous along B̃w). Hence, hw is discontinuous along B̃w with
h+w + h−

w = �(vw). Furthermore, hw is discontinuous along B since it is equal to h on
both sides of B. Therefore, hw has branch cuts along B and B̃w and is continuous along
B̃.

The sign structure of Re(ihw) is shown in Fig. 28. With this in mind, we perform
the first deformation according to Fig. 28 and then deform the contours L3,1, L3,2 and
L4,1, L4,2 to the contours L3 and L4 of Fig. 29, which depicts the final stage of the first
deformation. Note that L3 consists of the upper half of the branch cut B̃w as well as of
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Fig. 28. Modulated elliptic wave in the trap/wake (p ∈ D−
2 ) and transmission/wake (p ∈ D3) regimes at

ξ = vw : the sign structure of Re(ihw) and the initial stage of the first deformation. Note that the jumps along
∂Dε

p and ∂Dε
p̄ are not affected. Furthermore, the branch cut B̃w of the function hw (blue contour) lies on the

right of the zero-contour B̃ of Re(ihw) (green contour) as well as on the right of the circles ∂Dε
p and ∂Dε

p̄ .

The finite region enclosed by B̃ and B̃w is denoted by R

the red contour starting from α and curving around iqo and down towards the positive
real axis. Similarly, L4 consists of both the lower half of B̃w and the red curve emanating
from ᾱ and directed upwards towards the positive real axis.

The second and third deformations are identical to those performed in the trap regime,
leading to Riemann–Hilbert problem (4.68) but with the contours L j , j = 1, 2, 3, 4 as
shown in Fig. 29. For the fourth deformation, we use the factorizations (4.70) to “open
up the lenses” off the portions of the contours L3 and L4 that lie along B̃w as shown
in Fig. 30, where the jumps V (4)

j , j = 5, 6, 7, 8 are given by (4.71). This Fig. provides

the analogue of Fig. 16, where the role of the contour B̃ (which is a branch cut for h
and a zero-contour for Re(ih) and, by definition (6.1), for Re(ihw)) is now held by the
contour B̃w (which is a branch cut for hw). The difference between Figs. 16 and 30 is
that in the latter case the disks Dε

p and Dε
p̄ lie between the contours L6, L8 and L5, L7

respectively. This is necessary in order for the contours L5 and L6 to lie in regions where
the associated jumps V (4)

5 and V (4)
6 decay to the identity as t → ∞. Hence, in the fourth

deformation shown in Fig. 30, N (3) changes to N (3)V (4)
6 in Dε

p and to N (3)
(
V (4)
5

)−1 in

Dε
p̄ (in Fig. 16, N

(3) remains invariant inside the two disks). Consequently, N (4) satisfies
the Riemann–Hilbert problem (4.72) but with the jumps along ∂Dε

p and ∂Dε
p̄ now given

by

V (4)
p = (

V (4)
6

)−1
V (3)
p V (4)

6 , V (4)
p̄ = V (4)

5 V (3)
p̄

(
V (4)
5

)−1
, (6.2)
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Fig. 29. Modulated elliptic wave in the trap/wake (p ∈ D−
2 ) and transmission/wake (p ∈ D3) regimes at

ξ = vw : the final stage of the first deformation. The jumps along ∂Dε
p and ∂Dε

p̄ are not affected

where we recall that

V (3)
p =

⎛
⎝ 1 −cp δ2(vw, k) d(k)

k − p
e2iθ(vw,p)t

0 1

⎞
⎠ , V (3)

p̄ =
(
1 0

− cp̄ δ−2(vw,k) d(k)
k− p̄ e−2iθ(vw, p̄)t 1

)

(6.3)
and

V (4)
5 =

(
1 δ2

r e2iθ t

0 1

)
, V (4)

6 =
(
1 0
1
r̄δ2

e−2iθ t 1

)
. (6.4)

Next, we switch from N (4) to N (5) via the analogue of transformation (4.76), now
involving hw defined by (6.1) instead of h:

N (5)(vwt, t, k) = N (4)(vwt, t, k)e
−i[hw(k)−θ(vw,k)]tσ3 . (6.5)

This transformation results in the analogue of Riemann–Hilbert problem (4.77), where
all relevant jumps are given by (4.78) with h replaced by hw except for the jumps along
∂Dε

p and ∂Dε
p̄, which are equal to

V (5)
p = ei(hw−θ)tσ3

(
V (4)
6

)−1
V (3)
p V (4)

6 e−i(hw−θ)tσ3 , (6.6a)

V (5)
p̄ = ei(hw−θ)tσ3V (4)

5 V (3)
p̄

(
V (4)
5

)−1
e−i(hw−θ)tσ3 . (6.6b)

Finally, we perform the sixth deformation similarly to (4.81), i.e. we let

N (6)(vwt, t, k) = N (5)(vwt, t, k)e
igw(k)σ3, (6.7)



Long-Time Asymptotics for the Focusing Nonlinear Schrödinger Equation 1561

B

N (3)V (4)
6

−

+

V (4)
B

V (4)
B

−iqo

k

V
(4)

2

L1

L2

iqo

N (3)

N (3)

p

p̄

−
−

−
+

+

L4

V (4)
4

V (4)
3

L3

α

ᾱ
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Fig. 30. Modulated elliptic wave in the trap/wake (p ∈ D−
2 ) and transmission/wake (p ∈ D3) regimes at

ξ = vw : the fourth deformation. We recall that the dashed green contour is the branch cut B̃ of h, along which
Re(ih) = Re(ihw) = 0, while the function hw has branch cuts along B = i[−qo, qo] and B̃w = L7 ∪ (−L8)

where the function gw, which is the analogue of the function g involved in (4.81), is
analytic in C\(B ∪ B̃w) and satisfies the following jump conditions:

g+w + g−
w = −i ln

(
δ2
)

, k ∈ B, (6.8a)

g+w + g−
w = −i ln

(
δ2

r

)
+ ωw, k ∈ L7, (6.8b)

g+w + g−
w = −i ln

(
δ2r̄
)
+ ωw, k ∈ L8, (6.8c)

with the contours B, L7, L8 as in Fig. 30, the function δ(vw, k) given by (4.69) and the
real constant ωw defined by

ωw = i

∫

B

ln δ2(vw, ν)

γw(ν)
dν +

∫

B̃+
w

ln
[

δ2(vw,ν)
r(ν)

]

γw(ν)
dν +

∫

B̃−
w

ln
[
δ2(vw, ν) r̄(ν)

]

γw(ν)
dν

∫

B̃w

dν

γw(ν)

,

(6.9)
where

B̃±
w := B̃w ∩ C

± (6.10)

and the function γw is defined in terms of the function γ (see (2.9)) by

γw(k) =
{

γ (vw, k), k ∈ C\R,

−γ (vw, k), k ∈ R,
(6.11)
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where we recall thatR is the finite region enclosed by B̃ and B̃w (see Fig. 28). Recalling
further that γ is analytic in C\B ∪ B̃ and changes sign as k crosses B and B̃, we deduce
that γw has branch cuts along B and B̃w, across which it changes sign, but is continuous
as k crosses B̃. Dividing the jumps of problem (6.8) by γw and using Plemelj’s formulae,
we obtain

gw(k) = γw(k)

2π

[ ∫

B

ln δ2(vw, ν)

γw(ν)(ν − k)
dν +

∫

L7

ln
[

δ2(vw,ν)
r(ν)

]
+ iωw

γw(ν)(ν − k)
dν

−
∫

L8

ln
[
δ2(vw, ν) r̄(ν)

]
+ iωw

γw(ν)(ν − k)
dν

]
. (6.12)

We note that the presence ofωw in the above formula ensures that gw(k) = gw,∞+O
( 1
k

)
as k → ∞ with the real constant gw,∞ given by

gw,∞ = − 1

2π

[ ∫

B

ln δ2(vw, ν)

γw(ν)
νdν +

∫

B̃+
w

ln
[

δ2(vw,ν)
r(ν)

]
+ iωw

γw(ν)
νdν

+
∫

B̃−
w

ln
[
δ2(vw, ν) r̄(ν)

]
+ iωw

γw(ν)
νdν

]
. (6.13)

Transformation (6.7) results in the analogue of Riemann–Hilbert problem (4.88), i.e.

N (6)+ = N (6)−VB, k ∈ B, (6.14a)

N (6)+ = N (6)−V (6)
B̃w

, k ∈ B̃w, (6.14b)

N (6)+ = N (6)−V (6)
j , k ∈ L j , j = 1, . . . , 6, (6.14c)

N (6)+ = N (6)−V (6)
p , k ∈ ∂Dε

p, (6.14d)

N (6)+ = N (6)−V (6)
p̄ , k ∈ ∂Dε

p̄, (6.14e)

N (6) = [
I + O

( 1
k

)]
ei[gw,∞−G∞(vw)t]σ3 , k → ∞, (6.14f)

where the jump along B is given by (4.2), the jump along B̃w is equal to

V (6)
B̃w

=
(
0 −ei(�(vw)t−ωw)

e−i(�(vw)t−ωw) 0

)
(6.15)

with the real constants �(vw) and ωw given by (4.133) and (6.9) respectively, the jumps
along the contours L j of Fig. 30 are equal to

V (6)
1 =

(
1 r̄ δ2e−2igw

1+rr̄ e2ihw t

0 1

)
, V (6)

2 =
(
1 0
rδ−2e2igw

1+rr̄ e−2ihw t 1

)
, (6.16a)

V (6)
3 =

(
1 0
rδ−2e2igwe−2ihw t 1

)
, V (6)

4 =
(
1 r̄δ2e−2igwe2ihw t

0 1

)
, (6.16b)

V (6)
5 =

(
1 δ2e−2igw

r e2ihw t

0 1

)
, V (6)

6 =
(
1 0
δ−2e2igw

r̄ e−2ihw t 1

)
, (6.16c)
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the jumps along ∂Dε
p and ∂Dε

p̄ are given by

V (6)
p =

⎛
⎝ 1 − cpd(k)

r̄(k)(k−p) e
−2i[θ(vw,k)−θ(vw,p)]t − cpδ2(vw,k)d(k)e−2igw(k)

k−p e2i[hw(k)−θ(vw,k)+θ(vw,p)]t

cpd(k)e2igw(k)

r̄2(k)δ2(vw,k)(k−p)
e−2i[hw(k)+θ(vw,k)−θ(vw,p)]t 1 + cpd(k)

r̄(k)(k−p) e
−2i[θ(vw,k)−θ(vw,p)]t

⎞
⎠ ,

(6.17a)

V (6)
p̄ =

⎛
⎝ 1 − cp̄d(k)

r(k)(k− p̄) e
2i[θ(vw,k)−θ(vw, p̄)]t c p̄δ2(vw,k)d(k)e−2igw(k)

r2(k)(k− p̄)
e2i[hw(k)+θ(vw,k)−θ(vw, p̄)]t

− cp̄δ−2(vw,k)d(k)e2igw(k)

k− p̄ e−2i[hw(k)−θ(vw,k)+θ(vw, p̄)]t 1 +
cp̄d(k)

r(k)(k− p̄) e
2i[θ(vw,k)−θ(vw, p̄)]t

⎞
⎠ ,

(6.17b)

and the real constants G∞(vw) and gw,∞ are given by (4.79) and (6.13) respectively.
The sign structure of Re(ihw) shown in Fig. 30 indicates that the leading-order

contribution to the solution of problem (6.14) in the limit t → ∞ comes from the
jumps along B, B̃w, ∂Dε

p and ∂Dε
p̄. Indeed, observe that while the jumps along the

contours L j , j = 1, . . . , 6, decay to the identity exponentially fast as t → ∞, those
along B and B̃w are purely oscillatory. Furthermore, noting that the jumps along ∂Dε

p
and ∂Dε

p̄ will eventually be transformed to residue conditions at p and p̄ respectively,
we see that the contributions of these jumps are also purely oscillatory as t → ∞ since
Re(ihw)(p) = Re(ihw)( p̄) = 0 (recall that p and p̄ lie on the dashed green contour B̃
of Fig. 30, along which Re(ihw) vanishes). This analysis motivates a decomposition of
N (6) entirely analogous to (5.7) and eventually leads to the asymptotic formula (5.14),
i.e.

q(x, t) = −2i lim
k→∞ kN dom

12 (vwt, t, k)e
i[gw,∞−G∞(vw)t] + O

(
t−

1
2
)
, t → ∞, (6.18)

where N dom is the solution of the dominant component of Riemann–Hilbert problem
(6.14), i.e.

N dom+ = N dom−VB, k ∈ B, (6.19a)

N dom+ = N dom−V (6)
B̃w

, k ∈ B̃w, (6.19b)

N dom+ = N dom−V (6)
p , k ∈ ∂Dε

p, (6.19c)

N dom+ = N dom−V (6)
p̄ , k ∈ ∂Dε

p̄, (6.19d)

N dom = [
I + O

( 1
k

)]
ei[gw,∞−G∞(vw)t]σ3 , k → ∞. (6.19e)

The transformation

Mdom =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N dom
(
V (6)
p
)−1

, k ∈ Dε
p,

N dom, k ∈ C
−\(B− ∪ B̃−

w ∪ Dε
p

)
,

N dom
(
V (6)
p̄

)−1
, k ∈ Dε

p̄,

N dom, k ∈ C
+\(B+ ∪ B̃+

w ∪ Dε
p̄

)
,

(6.20)

which is the analogue of transformation (5.15), allows us to turn the jumps of N dom

along Dε
p and Dε

p̄ into residue conditions for Mdom at p and p̄. In particular, note that

V (6)
p and V (6)

p̄ are meromorphic inside the disks Dε
p and Dε

p̄, their only singularities
being simple poles at p and p̄ respectively. Furthermore, since a(p) = ā( p̄) = 0, it
follows from the definition (3.9) of the reflection coefficient r(k) that 1

r̄(p) = 1
r( p̄) = 0.
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Thus, the singularity at k = p is removable from all elements of the matrix V (6)
p except

for the 12-element. Similarly, the singularity at k = p̄ is removable from all elements of
the matrix V (6)

p̄ except for the 21-element. Therefore, employing transformation (6.20),

we convert problem (6.19) for N dom to the following problem for Mdom:

Mdom+ = Mdom−VB, k ∈ B, (6.21a)

Mdom+ = Mdom−Ṽ (6)
B̃w

, k ∈ B̃w, (6.21b)

Mdom = [
I + O

( 1
k

)]
ei[gw,∞−G∞(vw)t]σ3 , k → ∞, (6.21c)

Res
k=p

Mdom =
(
0, ρpw

Mdom
2 (p)

)
, (6.21d)

Res
k= p̄

Mdom =
(
ρ p̄w

Mdom
1 ( p̄), 0

)
, (6.21e)

where Mdom
1 , Mdom

2 denote the two columns of Mdom and

ρpw
= cpδ

2(vw, p)d(p) e2i[hw(p)t−gw(p)], ρ p̄w
= cp̄δ

−2(vw, p̄)d( p̄) e−2i[hw( p̄)t−gw( p̄)],

(6.22)
which similarly to (5.18) can be expressed in the form

ρpw
= Rpw

e2ihw(p)t , ρ p̄w
= −Rpw

e−2ih(p)t , Rpw
:= Cp

δ2(vw, p)e−2igw(p)

a′(p)
,

(6.23)

revealing that ρ p̄w
= −ρpw

.
Similarly to the previous sections, we solve problem (6.21) by employing the factor-

ization
Mdom = MdomWw, (6.24)

whereWw is the solution of the continuous spectrum component of problem (6.21), i.e.

W+
w = W−

w VB, k ∈ B, (6.25a)

W+
w = W−

w V (6)
B̃w

, k ∈ B̃w, (6.25b)

Ww = [
I + O

( 1
k

)]
ei[gw,∞−G∞(vw)t]σ3 , k → ∞, (6.25c)

and Mdom solves the discrete spectrum component of problem (6.21), i.e. Mdom is
analytic in C\ {p, p̄} and satisfies the residue conditions

Res
k=p

Mdom
1 = −Ww21(p)ρpw

Mdom
1 (p), Res

k=p
Mdom

2 = Ww11(p)ρpw
Mdom

1 (p),

(6.26a)

Res
k= p̄

Mdom
1 = Ww22( p̄)ρ p̄w

Mdom
2 ( p̄), Res

k= p̄
Mdom

2 = −Ww12( p̄)ρ p̄w
Mdom

2 ( p̄),

(6.26b)

and the asymptotic condition

Mdom = I + O
( 1
k

)
, k → ∞. (6.26c)
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Problem (6.25) is entirely analogous to problem (5.20). In fact, similarly to problem
(5.20), since the jump V (6)

B̃w
is independent of k, the jump contour B̃w in problem (6.25)

can be deformed to the straight line segment B ′ connecting ᾱ to α (see Fig. 21). The
solution of this deformed problem is then given by the analogue of formula (5.21), i.e.

Ww = ei[gw,∞−G∞(vw)t]σ3N−1
w (∞, c)Nw(k, c), (6.27)

where Nw is defined similarly to (5.4) by

Nw(k, c) = 1

2

([
η(k) + η−1(k)

]
Nw1(k, c) i

[
η(k) − η−1(k)

]
Nw2(k, c)

−i
[
η(k) − η−1(k)

]
Nw1(k,−c)

[
η(k) + η−1(k)

]
Nw2(k,−c)

)

(6.28)
and

Nw(∞, c) := lim
k→∞Nw(k, c) (6.29)

with η defined by (4.118) and with Nw1 and Nw2 denoting the first and second column
of the vector-valued function

Nw(k, c) =
⎛
⎜⎝


(− �(vw)t
2π + ωw

2π +
i ln
(
q̄−
iqo

)

2π + ν(k) + c
)

√
iqo
q̄− 
(ν(k) + c)

,


(− �(vw)t

2π + ωw

2π +
i ln
(
q̄−
iqo

)

2π − ν(k) + c
)

√
q̄−
iqo


(−ν(k) + c)

⎞
⎟⎠ ,

(6.30)
where c = c(vw) and ν(k) = ν(vw, k) are given by formulae (4.123) and (4.124)
evaluated at ξ = vw.

Furthermore, arguing as in Sect. 4.2, we infer that the solution of problem (6.26)
takes the form

Mdom = I +
Res
k=p

Mdom

k − p
+
Res
k= p̄

Mdom

k − p̄
. (6.31)

In addition, we compute

Mdom
1 (p) = −Bwρ p̄w

Ww2( p̄) +
(
1 + Cwρ p̄w

)
Ww1(p)

B2
wρpw

ρ p̄w
+
(
1 + Cwρ p̄w

) (
1 +Awρpw

) , (6.32a)

Mdom
2 ( p̄) = Bwρpw

Ww1(p) +
(
1 +Awρpw

)
Ww2( p̄)

B2
wρpw

ρ p̄w
+
(
1 + Cwρ p̄w

) (
1 +Awρpw

) , (6.32b)

where

Aw = Ww
′
11(p)Ww21(p) − Ww11(p)Ww

′
21(p), (6.33a)

Bw = Ww21(p)Ww12( p̄) − Ww11(p)Ww22( p̄)

p − p̄
, (6.33b)

Cw = Ww
′
22( p̄)Ww12( p̄) − Ww

′
12( p̄)Ww22( p̄). (6.33c)

Combining expressions (6.26) and (6.32), we obtain Mdom through the representa-
tion (6.31). In turn, proceeding as in Sect. 5.3 we obtain the leading-order asymptotics
for the focusing NLS IVP (1.5) at ξ = vw in the form (2.24)–(2.25). Finally, similarly
to Remark 5.1, we note that the overall dependence of the asymptotic solution (2.24) on
gw,∞ and G∞(vw) is expressed by a factor of e2i[gw,∞−G∞(vw)t].

The proof of Theorem 2.3 for the leading-order asymptotics in the trap/wake regime
p ∈ D−

2 is complete.
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Remark 6.1 (Soliton vs. soliton wake). We recall that the soliton arising at ξ = ṽs
induces a phase shift in the asymptotics for ṽs < ξ < 0. This is because in the transition
from ṽ−

s to ṽ+s the quantity Re(ih) switches sign from negative (Fig. 23) to positive
(Fig. 27) along ∂Dε

p. Hence, in the latter case the additional transformation (4.92) must
be employed in order to convert growth into decay in the jump along ∂Dε

p. On the other
hand, the soliton wake arising at ξ = vw does not cause a phase shift in the asymptotics
for vw < ξ < 0. To see this, recall that the wake is created at ξ = vw because at that
value of ξ the contour B̃, along which Re(ih) vanishes for all ξ , crosses the pole p.
Hence, Re(ih)(vw, p) = Re(ihw)(p) = 0 and the jump along ∂Dε

p contributes to the
leading-order asymptotics. However, the quantity Re(ih) is positive along ∂Dε

p both

right before and right after the crossing with B̃ (see Fig. 27). Consequently, the jump
along ∂Dε

p remains bounded in the transition from v−
w to v+w (recall that transformation

(4.92) has already been applied for ξ > ṽs) and hence no further transformations are
required for vw < ξ < 0.

Remark 6.2 (h vs. hw). Although the case ξ = vw was analyzed by switching from
the phase function h (used for all ξ �= vw) to the phase hw defined by (6.1), it would
have still been possible to obtain the asymptotic result (2.24)–(2.25) by adhering to h.
However, the fact that for ξ = vw the poles p and p̄ lie along the branch cut B̃ of h
would have made the analysis significantly more complicated. In particular, even the
very first step of the analysis, namely, transformation (3.14) which converts the residue
conditions at p and p̄ to jumps along the circles ∂Dε

p and ∂Dε
p̄, would have resulted in

additional jump conditions inside the disks Dε
p and Dε

p̄ due to fact that for ξ = vw these

disks are crossed by the branch cut B̃ of h. Switching from h to hw, whose branch cut
B̃w does not intersect with Dε

p and Dε
p̄, significantly simplifies the analysis for the case

ξ = vw. Of course, for all ξ �= vw the poles are away from B̃ and hence the switch from
h to hw is not necessary.

6.2. The transmission/wake regime. Recall that for p ∈ D3 we have vs < vo and,
furthermore, the integral Eq. (4.80) possesses a unique solution vw in the interval (vo, 0),
which corresponds to the crossing of the pole p by the branch cut B̃.

For ξ < vo, performing the deformations of Sect. 4.1 of the transmission regime, we
obtain Riemann–Hilbert problem (4.14). Then, like in the transmission regime, since
Re(iθ)(ξ, p) < 0 throughout the interval (−∞, vs) the leading-order asymptotics is
described by the plane wave (2.13). At ξ = vs , we have Re(iθ)(vs, p) = 0. Hence,
Riemann–Hilbert problem (4.14) canbe analyzed like inSect. 4.2 to yield the asymptotics
in the form (2.15) as the soliton (2.16) on top of the plane wave (2.14) evaluated at vs .
For vs < ξ < vo, the fact that p ∈ D3 means that pre > k2, as opposed to pre < k1
of the case p ∈ D1. That is, if p ∈ D3 then p is crossed by the portion of the curve
Re(iθ) = 0 that goes through ±iqo and k2 (as opposed to the one going through k1).
Hence, after the crossing p lies inside the finite region enclosed by the curve Re(iθ) = 0
and the branch cut B (see Fig. 31) as opposed to the unbounded region on the left of
Re(iθ) = 0 and k1. For this reason, the analysis of Sect. 4.3 for p ∈ D1 now needs to
be modified as described below.

First deformation (Figs. 31, 32, 33 and34).Choose the contours L4,1, L4,2 and L3,1, L3,2

so that they do not intersect with the disks Dε
p and Dε

p̄. Then, as shown in Figs. 31, 32
and 33, in order to deform L4 outside the bounded region of “wrong” (i.e. positive) sign,
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we eventually need to set N (1) = N (0)V (1)
4 inside the disk Dε

p, as opposed to the regime

p ∈ D1 in which the fact that pre < k1 allows us to always have N (1) = N (0) in Dε
p

(see Figs. 8, 9, 10 and 11). The situation is analogous for the disk Dε
p̄. Therefore, for

p ∈ D3 the Riemann–Hilbert problem for N (1) reads

N (1)+ = N (1)−V (1)
B , k ∈ B, (6.34a)

N (1)+ = N (1)−V (1)
j , k ∈ L j , j = 1, 2, 3, 4, (6.34b)

N (1)+ = N (1)−V (1)
p , k ∈ ∂Dε

p, (6.34c)

N (1)+ = N (1)−V (1)
p̄ , k ∈ ∂Dε

p̄, (6.34d)

N (1) = I + O
( 1
k

)
, k → ∞, (6.34e)

where the matrices V (1)
B and V (1)

j , j = 1, 2, 3, 4, are defined as in (4.2) but the matrices

V (1)
p and V (1)

p̄ are given instead by

V (1)
p = (

V (1)
4

)−1
V (0)
p V (1)

4 =
⎛
⎝1 −cp d(k)

k − p
e2iθ(ξ,p)t

0 1

⎞
⎠ , (6.35)

V (1)
p̄ = V (1)

3 V (0)
p̄

(
V (1)
3

)−1 =
⎛
⎝
1 0

−cp̄ d(k)

k − p̄
e−2iθ(ξ, p̄)t 1

⎞
⎠ . (6.36)

Second deformation This deformation is identical to (4.3) of Sect. 4.1 and results in
the Riemann–Hilbert problem

N (2)+ = N (2)−V (2)
B , k ∈ B, (6.37a)

N (2)+ = N (2)−V (2)
j , k ∈ L j , j = 1, 2, 3, 4, (6.37b)

N (2)+ = N (2)−V (2)
p , k ∈ ∂Dε

p, (6.37c)

N (2)+ = N (2)−V (2)
p̄ , k ∈ ∂Dε

p̄, (6.37d)

N (2) = I + O
( 1
k

)
, k → ∞, (6.37e)

with V (2)
B and V (2)

j , j = 1, 2, 3, 4, as in (4.6) but with

V (2)
p = δσ3V (1)

p δ−σ3 =
⎛
⎝ 1 −cp δ2(ξ, k)d(k)

k − p
e2iθ(ξ,p)t

0 1

⎞
⎠ , (6.38a)

V (2)
p̄ = δσ3V (0)

p̄ δ−σ3 =
⎛
⎝
1 0

−cp̄ δ−2(ξ, k)d(k)

k − p̄
e−2iθ(ξ, p̄)t 1

⎞
⎠ . (6.38b)

Third deformation (Fig. 35). This deformation is different than the one of Fig. 13 in
that the disks Dε

p and Dε
p̄ now lie between the contours L4 and L3 and hence inside

these disks we have N (3) = N (2). Thus, the jumps (6.38) now remain invariant while
the remaining jumps of problem (6.37) are modified as in the second deformation (4.3)
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Fig. 31. Plane wave in the transmission/wake regime (p ∈ D3) for vs < ξ < vo: the first stage of the first
deformation. The jumps along ∂Dε

p and ∂Dε
p̄ are unaffected

but with d
1
2 now holding the role of δ. Eventually, we find that N (3) satisfies the same

problem as in Sect. 4.1.
Fourth deformation This is identical to (4.10), leading to Riemann–Hilbert problem
(4.14).

In summary, in the range vs < ξ < vo the original Riemann–Hilbert problem (3.16)
can be deformed to Riemann–Hilbert problem (4.14) both for p ∈ D1 and for p ∈ D3.
Thus, performing the analysis of Sect. 4.3, we obtain once again the phase-shifted plane
wave (2.17).

For vo < ξ < 0, the phase function changes from θ to h. Recall that for p ∈ D1
the asymptotics is given by the phase-shifted modulated elliptic wave (2.18) throughout
the range (vo, 0). Now, however, p ∈ D3 and hence, as noted in the relevant discussion
of Sect. 4.4, there is a value vw ∈ (vo, 0) for which the contour B̃ crosses the pole p
en route to collapsing onto B. Indeed, this value is the unique solution of Eq. (4.80)
in the interval (vo, 0). Thus, similarly to the case p ∈ D−

2 , a soliton wake arises from
the dominant component of Riemann–Hilbert problem (4.104) at ξ = vw. In fact, the
dominant problem is precisely that of Sect. 6.1. Therefore, at ξ = vw the leading-order
asymptotics is characterized by (2.24) as the soliton wake (2.25) on top of the modulated
elliptic wave qmew,w(t). Finally, for vo < ξ < vw and vw < ξ < 0 the jumps along ∂Dε

p
and ∂Dε

p̄ are not part of the dominant problem and, like in the transmission regime, the
leading-order asymptotics is given by the phase-shifted modulated elliptic wave (2.18).
We note that, like in the trap/wake regime (see Remark 6.1), the soliton at vs induces a
phase shift of 4 arg [p + λ(p)] in the asymptotics but no phase shift is generated by the
soliton wake at vw.
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Fig. 32. Plane wave in the transmission/wake regime (p ∈ D3) for vs < ξ < vo: the second stage of the
first deformation. The overlapping portions of the contours L3,1 and L3,2, as well as of the contours L4,1
and L4,2, have been removed since by definition N (1) does not have a jump there. Hence, the contours L3,1,
L3,2, L4,1, L4,2 have been lifted away from the origin. The jumps along ∂Dε

p and ∂Dε
p̄ remain unchanged
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Fig. 33. Plane wave in the transmission/wake regime (p ∈ D3) for vs < ξ < vo: the third stage of the first
deformation. The jumps along ∂Dε

p and ∂Dε
p̄ have now changed
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Fig. 34. Plane wave in the transmission/wake regime (p ∈ D3) for vs < ξ < vo: the fourth and final stage
of the first deformation. The jump contours L3 and L4 have been lifted away from the branch points ±iqo
similarly to [BM2]

Fig. 35. Plane wave in the transmission/wake regime (p ∈ D3) for vs < ξ < vo: the third deformation

The proof of Theorem 2.4 for the leading-order asymptotics in the transmission/wake
regime p ∈ D3 is complete.

7. Conclusions

In summary, we have characterized the interactions between solitons and localized dis-
turbances in focusing media governed by the NLS equation. We reiterate that the main
points of novelty of the results are on one hand the existence of a trapping regime, in
which the velocity of the soliton differs from that of the casewithout radiation, and on the
other hand the existence of mixed transmission/wake and trap/wake regimes, in which
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a single discrete eigenvalue gives rise to O(1) contributions at two different velocities
in the long-time asymptotics.

The applicability of the deformations used in the present work requires that one can
extend the reflection coefficient into the complex plane. As in [BM2], this can be done
as long as the potential decays to background sufficiently rapidly [according to (1.3)] so
as to ensure the existence of a Bargmann strip of analyticity.

Regarding the wake formulae, we note that the expression for the solution at the wake
coincides formally with that of a soliton on top of an elliptic background. On the other
hand, crossing the wake does not result in an additional phase shift for the solution,
while crossing a soliton does (cf. Remark 2.3). We also emphasize that the asymptotic
expressions for the solution are not uniform with respect to ξ , as one can see by taking
the limit of the various expressions as ξ → vs , ξ → ṽs and ξ → vw.

We should mention that there exists previous literature on the interaction of solitons
and the radiation on a nonzero background for integrable systems by the Riemann–
Hilbert approach. See, for example, [KT] for the case of the Toda lattice and [AELT]
for the case of the KdV equation. To the best of our knowledge, however, none of
the previous cases studied in the literature give rise to the phenomena presented here,
in which a localized disturbance results in a change of the soliton velocity and/or the
production of a wake.

We believe that the asymptotic formulae giving rise to a soliton on top of an elliptic
wave should be a limiting reduction of 3-phase solutions of the focusing NLS equation.
In this regard, we should mention that, in [BBEIM], the authors consider elliptic solu-
tions of the focusing NLS equation as well as solutions corresponding to a nonlinear
superposition of a soliton and hyperelliptic solutions. (We also note that reductions of 2-
phase solutions of the focusing NLS equations, which give rise to solitons on a constant
background, were studied in [BG].) The authors of [BBEIM] show that, in the genus-1
reduction, their solution reduces to the cnoidal wave solution of focusing NLS, namely
(4.5.1) in [BBEIM]. Importantly, however, the dn solution is not the most general pe-
riodic solution of the focusing NLS equation (e.g., see [K1,K2,DS]). More precisely,
the dn solution is just one of the special cases corresponding to a trivial phase. It is also
the case that the modulate elliptic waves arising in the long-time asymptotics are not
simply dn solutions. Therefore, it is doubtful that the formulae for the soliton on top of
an elliptic wave in our work reduce to those in [BBEIM].

The asymptotic expressions in our work remain valid in the limit ξ → 0. As shown
in [BLM1], in this limitm → 1 and the solution reduces to the well-known sech-shaped
soliton solution of the focusing NLS equation. However, some details of the derivation
are different in this case and hence we omit the details for brevity. It is also the case
that the asymptotic formulae remain valid in the limit pre → 0, i.e. when the discrete
eigenvalue lies on the imaginary axis. In this case, the velocity vs is zero (cf. (2.10)).
Thus, one does not see the soliton in the plane wave region. Moreover, when ξ = 0, the
points α, ᾱ and ko in the definition (2.5) of h collapse to iqo, −iqo and 0, respectively,
and hence h(0, k) = −2

(
k2 + q2o

)
. Thus, for pre = 0 we have Im(h)(0, p) = 0, i.e. for

pre = 0 the imaginary parts of both θ and h are zero at ξ = 0. Therefore, in this case
the velocity ṽs of the trapped soliton coincides with the unperturbed velocity vs .

Another interesting special case is that of a pole p lying on the branch cut i[−qo, qo],
which gives rise to an Akhmediev breather. There are four different considerations:
(i) Akhmediev breathers are periodic in x , and are therefore outside the class of initial
conditions for which the inverse scattering transform formalism of [BK,BM2] applies
(namely, constant nonzero boundary conditions); (ii) Neglecting the direct problem in
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the inverse scattering transform, one could still consider the Riemann–Hilbert problem
with a pole in the branch cut and ask what happens then. Nonetheless, even the simple
formulation of a Riemann–Hilbert problem with a pole in the branch cut requires some
care; (iii) Akhmediev breathers are homoclinic in t (i.e. they decay to the background as
t → ±∞) and hence they do not appear in the long-time asymptotics. However, one can
still see the result of their presence in the phase difference of the background before/after
the breather; (iv) Indeed, one can look at the case of a pole p on the branch cut as a limit
of the case of p ∈ D3. Therefore, the case of an Akhmediev breather can be viewed
as a limit of the trap/wake scenario. Then, the analysis shows that one will see a wake
located at ξ = 0 (for the same reasons as those outlined in the previous paragraphs).

As usual, the inverse scattering transform is formulated under the assumption of
existence and uniqueness of solutions. The well-posedness of IVP (1.1) for short times
with initial conditions in suitable Sobolev spaces was recently proved in [Mu]. The
question of global well-posedness for initial conditions in the space (1.3) is still open.
In general, the issue of existence and uniqueness of solutions of the Riemann–Hilbert
problems associated with the inverse scattering transform for integrable nonlinear partial
differential equations is a nontrivial one [BDT,Z,TO]. Therefore, since this issue is
peripheral to the main thrust of this work, we do not consider it here. However, we note
that the asymptotic results provide an explicit solution of the Riemann–Hilbert problem
(and hence of the IVP)modulo the solution of the error Riemann–Hilbert problem,which
is a small-norm problem and, therefore, is expected to have a unique solution. On the
other hand, whether the corresponding solution of the NLS equation belongs to the same
function space (1.3) remains an interesting open question. We note that proving well-
posedness of an IVP in a given function space through the inverse scattering transform
is in general a nontrivial problem.
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A. Appendix: Soliton Solutions

The pure one-soliton solution of the focusing NLS IVP (1.5) can be derived by solving
Riemann–Hilbert problem (3.7) together with the residue conditions (3.12) in the case
of a zero reflection coefficient, i.e. by solving the problem

M+(x, t, k) = M−(x, t, k)V1,0(k), k ∈ R, (A.1a)

M+(x, t, k) = M−(x, t, k)V2,0(k), k ∈ B+, (A.1b)

M+(x, t, k) = M−(x, t, k)V3,0(k), k ∈ B−, (A.1c)

M(x, t, k) = I + O
( 1
k

)
, k → ∞, (A.1d)

Res
k=p

M(x, t, k) =
(
0, cp e

2iϑ(x,t,p)M1(x, t, p)
)

, x, t ∈ R, (A.1e)

Res
k= p̄

M(x, t, k) =
(
cp̄ e

−2iϑ(x,t, p̄)M2(x, t, p̄), 0
)

, x, t ∈ R, (A.1f)
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where the relevant jump matrices are given by

V1,0(k) =
⎛
⎝

1

d(k)
0

0 d(k)

⎞
⎠ , V2,0(k) =

⎛
⎜⎝

0
2λ(k)

i q̄−
q̄−

2iλ(k)
0

⎞
⎟⎠ , V3,0(k) =

⎛
⎜⎝

0
q−

2iλ(k)
2λ(k)

iq−
0

⎞
⎟⎠

(A.2)
with the functions λ and d defined by (2.2) and (3.4), and where the phase function ϑ is
defined as

ϑ(x, t, k) := λ(k) (x − 2kt) (A.3)

with M1 and M2 denoting the first and second column of M respectively.
The jump V1,0 of problem (A.1) along R can be eliminated via the transformation

M (1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M

(
d

1
2 0

0 d− 1
2

)
k ∈ C

+\B+,

M

(
d− 1

2 0

0 d
1
2

)
k ∈ C

−\B−,

(A.4)

which implies the following Riemann–Hilbert problem for M (1):

M (1)+ = M (1)−VB, k ∈ B, (A.5a)

M (1) = I + O
( 1
k

)
, k → ∞, (A.5b)

Res
k=p

M (1)(x, t, k) =
(
0, �p(x, t)M

(1)
1 (x, t, p)

)
, x, t ∈ R, (A.5c)

Res
k= p̄

M (1)(x, t, k) =
(
−�p(x, t)M

(1)
2 (x, t, p̄), 0

)
, x, t ∈ R, (A.5d)

where the jump matrix VB is defined in (4.2) and, recalling the definitions (3.11) and
the symmetry (4.33), we have introduced the quantity

�p(x, t) := Cp

a′(p)
e2iϑ(x,t,p). (A.6)

Problem (A.5) can be solved by using the factorization

M (1) = M (2)W, (A.7)

where W is the solution of the continuous spectrum component of problem (A.5), i.e.

W+ = W−VB, k ∈ B, (A.8a)

W = I + O
( 1
k

)
, k → ∞, (A.8b)

and, similarly to problem (4.36), is given by the explicit formula

W = 1

2

(
�(k) + �−1(k) − qo

q̄−
[
�(k) − �−1(k)

]
− qo

q−
[
�(k) − �−1(k)

]
�(k) + �−1(k)

)
(A.9)

with �(k) defined by (4.20).
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In turn, M (2) is the solution of the discrete spectrum component of problem (A.5), i.e.
M (2) is analytic for all k ∈ C apart from the poles p and p̄, where it satisfies the residue
conditions

Res
k=p

M (2)
1 = −W21(p)cp d(p)M (1)

1 (p), Res
k=p

M (2)
2 = W11(p)cp d(p)M (1)

1 (p),

(A.10a)

Res
k= p̄

M (2)
1 = W22( p̄)cp̄ d( p̄)M (1)

2 ( p̄), Res
k= p̄

M (2)
2 = −W12( p̄)cp̄ d( p̄)M (1)

2 ( p̄).

(A.10b)

Furthermore, M (2) satisfies the asymptotic condition

M (2) = I + O

(
1

k

)
, k → ∞. (A.11)

Therefore, similarly to Sect. 4.2, we infer that M (2) is of the form

M (2) = I +
Res
k=p

M (2)

k − p
+
Res
k= p̄

M (2)

k − p̄
. (A.12)

Expressions (A.7), (A.9), (A.10) and (A.12) yield

Mdom
1 (p) = −B�pW2( p̄) +

(
1 +A�p

)
W1(p)(

1 +A�p
) (
1 +A�p

)− B2|�p|2
, (A.13a)

Mdom
2 ( p̄) =

(
1 +A�p

)
W2( p̄) − B�pW1(p)(

1 +A�p
) (
1 +A�p

)− B2|�p|2
(A.13b)

with the constants A, B given by (4.47). Hence, in view of (A.12) and (A.10), the
function M (2) has been determined.

Then, reverting the transformations (A.7) and (A.4) we obtain the solution M of
problem (A.1) which, combined with the reconstruction formula (3.13), yields the pure
one-soliton solution of IVP (1.5) for the focusing NLS equation in the form

q(x, t) = q− − i

2

{[
1 +A�p(x, t)

] [
1 +A�p(x, t)

]− B2
∣∣�p(x, t)

∣∣2}−1

·
{[

1 +A�p(x, t)
]
�p(x, t)

[
�(p) + �−1(p)

]2

+
[
1 +A�p(x, t)

]
�p(x, t)

q−
q̄−

[
�(p) − �−1(p)

]2

− 2B ∣∣�p(x, t)
∣∣2 qo

q̄−

[
�(p) + �−1(p)

] [
�(p) − �−1(p)

] }
. (A.14)

Actually, letting

χ(x, t) := −2Im
[
ϑ(x, t, p)

]
+ln

∣∣∣∣
Cp

a′(p)

∣∣∣∣ , ψ(x, t) := 2Re
[
ϑ(x, t, p)

]
+arg

(
Cp

a′(p)

)

(A.15)
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allows us to express the quantity �p defined by (A.6) as

�p(x, t) = eχ(x,t)+iψ(x,t). (A.16)

In turn, formula (A.14) takes the more compact form

q(x, t) = q− +
eχ(x,t)

(Ā�2
1q̄− +A�2

2q− − 2B�1�2qo
)
+ eiψ(x,t)�2

1q̄− + e−iψ(x,t)�2
2q−

4i q̄−
[√|A|2 − B2 cosh

(
χ(x, t) + ln

√|A|2 − B2
)
+ Re

(Aeiψ(x,t)
)]

(A.17)
with the constants�1 and�2 given by (4.55). It now becomes evident that the pure one-
soliton is localized along the line χ(x, t) + ln

√|A|2 − B2 = 0 which in view of (A.15)
is equivalent to

Im
[
ϑ(x, t, p)

] = 1

2

(
ln

∣∣∣∣
Cp

a′(p)

∣∣∣∣ + ln
√

|A|2 − B2

)
. (A.18)

Expressing the pure one-soliton in the non-standard form (A.17) allows us to compare
it against the leading-order asymptotics (2.15), since both expressions involve two por-
tions: the background (first term) and a traveling wave part (second term). To perform
this comparison, we calculate the long-time asymptotics of (A.17). The pure one-soliton
propagates along the line specified by Eq. (A.18). Noting that ϑ(x, t, k) = θ(ξ, k)t [cf.
definitions (A.3) and (2.3)], we infer that a necessary condition for Eq. (A.18) to hold
in the limit t → ∞ is that Im[θ(ξ, p)] = 0. This last equation, however, amounts to
ξ = vs [recall (2.10)–(2.11)]. Thus, we consider three cases: ξ < vs (left of soliton);
ξ > vs (right of soliton); ξ = vs .
If ξ < vs then Im[θ(ξ, p)] > 0 (recall Fig. 6). Hence, as t → ∞ we have χ(x, t) →

−∞ and, in turn, eχ(x,t) → 0 and cosh
(
χ(x, t) + ln

√|A|2 − B2
) → ∞. Therefore,

for ξ < vs we obtain

q(x, t) = q− + o(1), t → ∞, (A.19)

in agreement with the asymptotics (2.13) apart from the real constant phase g∞(ξ),
which originates from the radiation of Riemann–Hilbert problem (3.7), (3.12) and which
vanishes once the reflection coefficient in this problem is set to zero.
If ξ > vs then Im[θ(ξ, p)] < 0. Hence, as t → ∞ we have χ(x, t) → ∞ and,

therefore, eχ(x,t) → ∞ and cosh
(
χ(x, t) + ln

√|A|2 − B2
) → ∞. Thus, expressing

cosh in exponential form we obtain

q(x, t) = q− +
Ā�2

1q̄− +A�2
2q− − 2B�1�2qo

2i q̄−
(|A|2 − B2

) + o(1), t → ∞. (A.20)

Through algebraic manipulations, it can be shown that the leading-order term of (A.20)
is equal to q+, which is consistent with the fact that propagation along speeds ξ > vs
always remains to the right of the soliton at ξ = vs .
Finally, if ξ = vs then Im[θ(ξ, p)] = 0 and hence Im[ϑ(x, t, p)] = 0, which implies

χ(vs t, t) = ln
∣∣Rp

∣∣ , ψ(vs t, t) = 2θ(vs, p)t + arg
(Rp

)
, Rp := Cp

a′(p)
.
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Then, (A.17) becomes

q(vs t, t)

= q− +

∣∣Rp
∣∣ (Ā�2

1q̄− +A�2
2q− − 2B�1�2qo

)
+ ei[2θ(vs ,p)t+arg(Rp)]�2

1q̄− + e−i[2θ(vs ,p)t+arg(Rp)]�2
2q−

4i q̄−
{√|A|2 − B2 cosh

[
ln
(|Rp|

√|A|2 − B2
)]

+ Re
(Aei[2θ(vs ,p)t+arg(Rp)]

)} .

(A.21)

The exact one-soliton solution (A.21) is the same with the leading-order asymp-
totics (2.15) except for three points: (i) the background, which is q− in (A.21) and
q−e2ig∞(vs ) in (2.15); (ii) an overall phase of e2ig∞(vs ), which is present in (2.15) but
not in (A.21); (iii) the quantity Rp in (A.21), which is replaced by Rp in (2.15), where
Rp = Rpδ

2(vs, p)e−2ig(vs ,p). However, this variation is exclusively due to the presence
of radiation in IVP (1.5). Indeed, setting the reflection coefficient equal to zero in the defi-
nitions (4.5), (4.13) and (4.16) of δ, g and g∞ yields δ(vs, p) = g(vs, p) = g∞(vs) = 0,
i.e. in the absence of radiation (2.15) would be identical to (A.21).
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