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1. Introduction

Ball’s celebrated cube slicing inequality established in [3] states that the maximal 
volume cross-section of the centred cube [−1, 1]n in Rn by a hyperplane (a subspace 
of codimension 1) equals 2n−1√2, attained by the hyperplane with normal vector 
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( 1√
2 , 

1√
2 , 0, . . . , 0) (see also [4]). Khinchin-type inequalities provide moment comparison, 

typically for weighted sums of independent identically distributed (i.i.d.) random vari-
ables. The classical one concerns symmetric random signs and goes back to the work [20]
of Khinchin. Such inequalities are instrumental in studying unconditional convergence 
and are used extensively in (functional) analysis and geometry, particularly in (local) 
theory of Banach spaces. We refer to several works [2,15,22,25,27,28,33,34,37,38] for fur-
ther background and references (particularly, [2] provides a detailed historic account on 
Khinchin inequalities with sharp constants).

The main motivation for this article and its starting point is a fact well-known to 
experts that Ball’s inequality can be viewed as a Khinchin-type inequality (the dual 
question of extremal volume hyperplane-projections of convex bodies is also linked to 
Khinchin-type inequalities, see for example [5,6,11]). An elementary derivation can be 
sketched as follows. For a unit vector a = (a1, . . . , an) in Rn, let f be the density of 
X =

∑n
k=1 akUk, where U1, . . . , Un are i.i.d. uniform on [−1, 1]. Then the (n −1)-volume 

of the cross-section of the cube [−1, 1]n by the hyperplane a⊥ perpendicular to a is 
Voln−1

(
[−1, 1]n ∩ a⊥

)
= 2nf(0). On the other hand, for every symmetric unimodal 

bounded random variable X with density f , we have

f(0) = ‖f‖∞ = lim
p→1−

1 − p

2 E|X|−p

(X is called symmetric if it has the same distribution as −X). Thus Ball’s inequality, 
put probabilistically, says that for every unit vector a in Rn, we have

lim
p→1−

(1 − p)E
∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

!
√

2.

Our main result shows in particular that not only does this inequality hold in the limit, 
but also for every p ∈ (p0, 1), where p0 = 0.793.... To view this inequality as actual 
moment comparison, let ξ1, ξ2, . . . be i.i.d. random vectors in R3 uniform on the centered 
Euclidean unit sphere S2. As a result of Archimedes’ hat-box theorem and rotational 
invariance, the left hand side can be rewritten as E ‖

∑n
k=1 akξk‖

−1, where ‖ ·‖ stands for 
the standard Euclidean norm on R3 (see Lemma 3 below). We thus have the following 
identity for a unit vector a in Rn,

21−n Voln−1
(
[−1, 1]n ∩ a⊥

)
= lim

p→1−
(1 − p)E

∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

= E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−1

. (1)

For a generalisation, see Proposition 3.2 in [7] and Proposition 3.2 in [26]. As a result, we 
can rephrase Ball’s inequality as the following sharp L−1 −L2 Khinchin-type inequality: 
for every n and every real numbers a1, . . . , an,
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E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−1

!
√

2
(

n∑

k=1
a2
k

)−1/2

. (2)

We extend this to a sharp L−p − L2 moment comparison for p ∈ (0, 1) with arbitrary 
matrix-valued coefficients (Corollary 4 below). We refer to [2,22,25,29] for sharp results 
for positive moments.

We describe our results in the next section and then present our proofs, preceded 
with a short overview of them. We conclude with a summary highlighting possible future 
work. Throughout, 〈x, y〉 =

∑d
j=1 xjyj denotes the standard scalar product on Rd, ‖x‖ =√

〈x, x〉 is the Euclidean norm whose unit sphere and closed unit ball are denoted by 
Sd−1 and Bd

2 , respectively. Moreover, ej is the j-th vector of the standard basis whose 
j-th coordinate is 1 and the rest are 0.

2. Results

Let U1, U2 be i.i.d. random variables uniform on [−1, 1] and let Z be a standard 
Gaussian random variable (mean 0, variance 1). For p ∈ (0, 1), we define the constants

c2(p) = E

∣∣∣∣
U1 + U2√

2

∣∣∣∣
−p

= 2p/2
2∫

−2

|x|−p

(1
2 − |x|

4

)
dx = 21−p/2

(1 − p)(2 − p) ,

c∞(p) = E

∣∣∣∣
Z√
3

∣∣∣∣
−p

= 3p/2√
2π

∞∫

−∞

|x|−pe−x2/2dx = (3/2)p/2√
π

Γ
(1 − p

2

) (3)

and

Cp = max{c2(p), c∞(p)}. (4)

By comparing c2(p) and c∞(p) as done in Lemma 7 from Section 4 below, in fact we 
have

Cp =
{
c∞(p), if p ∈ (0, p0),
c2(p), if p ∈ (p0, 1),

(5)

where p0 is the unique p ∈ (0, 1) such that c2(p) = c∞(p). Our main result is the following 
L−p − L2 Khinchin-type inequality for sums of symmetric uniform random variables.

Theorem 1. Let p ∈ (0, 1) and let Cp be defined by (4). Let U1, U2, . . . be i.i.d. random 
variables uniform on [−1, 1]. For every n and every real numbers a1, . . . , an, we have

E

∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

! Cp

(
n∑

k=1
a2
k

)−p/2

. (6)
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Remark 2. Applying (6) to n = 2, a1 = a2 = 1√
2 and to n large, a1 = · · · = an = 1√

n

(with the aid of the central limit theorem) shows that the value of Cp in (6) is sharp.

Moments of a Euclidean norm of weighted sums of independent random vectors 
uniform on Sd+1 and Bd

2 , d " 1, are proportional (see Proposition 4 in [25] or its gen-
eralisation, Theorem 4 in [2]). We recall a special case of this result relevant for us and 
for convenience sketch its proof (particularly because the proofs available in the litera-
ture treat the case of positive moments, but of course they repeat verbatim to negative 
moments).

Lemma 3 (Proposition 4, [25]). Let ξ1, ξ2, . . . be i.i.d. random vectors uniformly dis-
tributed on the unit sphere S2 in R3. Let U1, U2, . . . be i.i.d. random variables uniform 
on [−1, 1]. For a vector a = (a1, . . . , an) in Rn and p ∈ (−∞, 1), we have

E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−p

= (1 − p)E
∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

.

Proof. We reproduce here an argument utilising rotational invariance from [25] at-
tributed to Latała. Let θ be a random vector uniform on S2, independent of all the 
other variables. By rotational invariance, for a vector x in R3, we have

E|〈x, θ〉|−p = E|〈e1‖x‖, θ〉|−p = ‖x‖−pE|θ1|−p,

where θ1 denotes the first component of θ, so

‖x‖−p = E|〈x, θ〉|−p

E|θ1|−p
.

Applying this to x =
∑n

k=1 akξk and taking the expectation gives

Eξ

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−p

= EξEθ
|〈
∑n

k=1 akξk, θ〉|−p

E|θ1|−p
= 1

E|θ1|−p
EθEξ

∣∣∣∣∣

〈
n∑

k=1
akξk, θ

〉∣∣∣∣∣

−p

.

By the rotational invariance of 
∑

akξk, we also have

Eξ

∣∣∣∣∣

〈
n∑

k=1
akξk, θ

〉∣∣∣∣∣

−p

= Eξ

∣∣∣∣∣

〈
n∑

k=1
akξk, e1‖θ‖

〉∣∣∣∣∣

−p

.

However, θ is a unit vector and the random variables 〈ξk, e1〉 are i.i.d. uniform on [−1, 1]
(recall that ξk is uniform on the 2-dimensional unit sphere and Archimedes’ hat-box the-
orem states that the surface area measure of a set {x ∈ S2, 〈x, e1〉∈ [a, b]} is proportional 
to b − a). Therefore,
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Eξ

∣∣∣∣∣

〈
n∑

k=1
akξk, e1‖θ‖

〉∣∣∣∣∣

−p

= Eξ

∣∣∣∣∣

n∑

k=1
ak〈ξk, e1〉

∣∣∣∣∣

−p

= EU

∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

.

Since θ1 is uniform on [−1, 1], we get E|θ1|−p =
∫ 1
0 x−pdx = 1

1−p . Putting these equations 
together finishes the proof. !

It follows from Lemma 3 that (6) is equivalent to

E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−p

! (1 − p)Cp

(
n∑

k=1
a2
k

)−p/2

. (7)

We extend this to matrix-valued coefficients using isometrical embeddings into Lp spaces 
(Orlicz-Szarek’s argument, see Remark 3 in [38]). This offers a sharp version of the very 
general result of Gorin and Favarov from [14] (see Corollary 2 therein) in the case of 
uniform vectors on S2 and the L−p − L2 moment comparison. For a matrix A, ‖A‖HS

stands for its Hilbert-Schmidt norm.

Corollary 4. Let p ∈ (0, 1) and let Cp be defined by (4). Let ξ1, ξ2, . . . be i.i.d. random 
vectors uniform on the unit sphere S2 in R3. For every n and every real 3 × 3 matrices 
A1, . . . , An, we have

E

∥∥∥∥∥

n∑

k=1
Akξk

∥∥∥∥∥

−p

! Cp

(
n∑

k=1
‖Ak‖2

HS

)−p/2

. (8)

Remark 5. Both (7) and (8) are sharp. The constant in (8) is larger than in (7). The 

former specialised to the case when each matrix Ak is proportional to the matrix 
[

1 0 0
0 0 0
0 0 0

]

reduces to (6).

Remark 6. A sharp reversal of (7) (analogously of (8)) is immediate from convexity. Using 
Jensen’s inequality (for the function t−p), the monotonicity of p-norms: ‖ · ‖L1 ! ‖ · ‖L2

and the fact that E ‖
∑

akξk‖2 =
∑

a2
k, we obtain

E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−p

"
(
E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

)−p

"







E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

2


1/2



−p

=
(

n∑

k=1
a2
k

)−p/2

.

By (1), the case p = 1 of this inequality gives yet another simple proof of Hadwiger’s 
and Hensley’s result (see [16] and [18], see also Theorem 2 in [3]).



6 G. Chasapis et al. / Journal of Functional Analysis 281 (2021) 109185

3. Proof overview

Haagerup’s work [15] can perhaps be seen as a landmark in the pursuit of sharp 
Khinchin-type inequalities. Later, Nazarov and Podkorytov in [34] offered an informa-
tive exposition of [15] (and [3]), developing novel tools which allowed for significant 
simplifications of the most technically demanding parts of [15] (as well as of [3]). We 
shall closely follow their approach which comprises two main steps. (For other works 
which used techniques from [34] to establish sharp Khinchin-type inequalities, we refer 
for instance to [22,32].)

Step I (Section 5.2). We prove (6) in the case that all weights ak are “small”, that is for 
the sequences a = (ak)nk=1 with maxk!n |ak| ! 1√

2
(∑n

k=1 a
2
k

)1/2 (call it Case A). This 
in turn is accomplished by a Fourier-analytic expression for negative moments (used for 
instance in [14]), which allows to leverage independence. As in [3], by the use of Hölder’s 
inequality, the following integral inequality allows to finish the whole argument,

sp/2
∞∫

0

∣∣∣∣
sin t

t

∣∣∣∣
s

tp−1dt ! 2p−1√π
Γ
(p

2
)

Γ
( 1−p

2
)Cp, 0 < p < 1, s " 2. (9)

This inequality is an extension of Ball’s integral inequality from [3] and is proved with the 
methods of [34]. For other results related to Ball’s integral and cube slicing inequalities 
see for instance [10,19,23,24,30,31].

Step II (Section 5.3). With the aid of the result of Step I, we use induction on n to 
prove certain strengthening of (6) for all sequences a = (ak)nk=1 in order to handle those 
which do not satisfy Case A, that is have a “large” weight (call those Case B). Were (9)
true for all s " 1, this step would have been spared. In [34] the inductive step is possible 
thanks to an algebraic identity obtained by averaging with respect to one random sign. 
In our setting, for uniform [−1, 1] random variables, such an identity does not seem 
to present itself. To overcome this obstacle, we work with S2-uniform random vectors 
for which certain algebraic identities allowing for induction are much more natural. For 
Ball’s inequality (2) (case p = 1), this step was in [3] taken care of by a simple projection 
argument, but its analogue for p < 1 is not sufficient (see Remark 21 at the end of 
Section 5.3).

We remark that in the range p ∈ (0, p0) when Cp = c∞(p), see (5), the extremizing 
sequence is a1 = · · · = an = 1√

n
with n → ∞, it is only Case A which admits equality 

(attained asymptotically as n → ∞), whereas in the range p ∈ (p0, 1) when Cp = c2(p)
and the extremizing sequence is a1 = a2 = 1√

2 , n = 2, both Case A and B admit equality 
(in Case B when taking n = 2 and a1 = 1√

2−δ
, a2 = 1√

2+δ
, δ → 0+) and hence both 

Step I and II have to be subtle enough to overcome this difficulty.
As a final comment here, convexity-type arguments leading to more precise results 

such as Schur-convexity of moments of sums with a fixed number of summands n (see 
[1,2,9,11,13,17,21,25,36]) do not seem to be available here. One of the obstacles is for 
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instance the fact that the function t +→ E|U1 +
√
tU2|−p is not convex/concave on the 

whole half-line (0, +∞) (it is concave on (0, 1) and convex on (1, +∞)).

4. Technical lemmas

We gather several elementary but technical results needed in our proofs. The first 
one explains the comparison between the constants c2(p) and c∞(p) arising from two 
different extremizing sequences of weights ak in our Khinchin inequality.

Lemma 7. Let c2(p), c∞(p) be defined in (3). The equation c2(p) = c∞(p) has a unique 
solution p0 = 0.793... on (0, 1). Moreover, c2(p) > c∞(p) for p ∈ (p0, 1), whilst c2(p) <
c∞(p) for p ∈ (0, p0).

Proof. For p ∈ (0, 1), the difference c2(p) − c∞(p) has the same sign as

f(p) = 2
√
π3−p/2 − (1 − p)(2 − p)Γ

(1 − p

2

)
.

Claim. The function p +→ log
(
(1 − p)(2 − p)Γ

( 1−p
2

))
is strictly concave on (0, 1).

Note that f(0+) = 0, f(1−) = 2(
√

π/3 − 1) > 0 (uΓ(u) → 1 as u → 0) and 
f(2

3 ) = 2√π3−1/3 − 4
9Γ(1

6 ) < −0.016. In view of the claim (after taking the logarithm 
and noting that a linear function intersects a strictly concave function at most twice), 
the proof of the lemma is finished.

To prove the claim, we let u = 1−p
2 and h(u) = − log

(
u
(
u + 1

2
)
Γ(u)

)
. We want to 

show that h is strictly convex on (0, 12 ). Recall (log Γ(u))′′ =
∑∞

k=0
1

(u+k)2 . Thus for 
u ∈ (0, 12 ),

h′′(u) = 1
u2 + 1

(u + 1
2 )2 −

∞∑

k=0

1
(u + k)2 >

1
(u + 1

2 )2 − 1
(u + 1)2 − 1

(u + 2)2 −
∞∑

k=3

1
k2 .

We now show that the right hand side is positive on (0, 12). Call it h1(u) and note that

1
2h

′
1(u) = 1

(u + 1)3 + 1
(u + 2)3 − 1

(u + 1
2 )3 <

2
(u + 1)3 − 1

(u + 1
2 )3 .

The right hand side has the same sign as 
(

u+ 1
2

u+1

)3
− 1

2 which is clearly increasing in u, 
thus at most 

(2
3
)3 − 1

2 = −11
54 < 0 for u ∈ (0, 12 ). Thus h1(u) is decreasing for u ∈ (0, 12 ). 

Going back to the lower bound h′′(u) > h1(u), we conclude that h′′(u) > h1(u) >
h1(1

2 ) = 1481
900 − π2

6 > 0.0006, for u ∈ (0, 12 ). This shows that h is strictly convex on 
(0, 12 ). !
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The next three lemmas are elementary facts about functions showing up in calculations 
from Step I (Section 5.2) needed to prove the integral inequality (9).

Lemma 8. supt∈R
∣∣cos t− sin t

t

∣∣ < 6
5 .

Proof. Since both cos t and sin t
t are even, it suffices to consider positive t. By the Cauchy-

Schwarz inequality, we have 
∣∣cos t− sin t

t

∣∣ !
√

1 + 1
t2 , so it suffices to consider t ! 5√

11 . It 
remains to note that 5√

11 < π
2 and that on (0, π2 ), we have 

∣∣cos t− sin t
t

∣∣ = sin t
t − cos t <

1 + 0 = 1. !

Lemma 9. Let y1 = maxt∈[π,2π]
∣∣ sin t

t

∣∣. For y ∈ (0, y1), let t = t0 be the unique solution 
to sin t

t = y on (0, π). Then t0 > 2.

Proof. Since y1 < 1
π , for every y ∈ (0, y1), we have sin t0

t0
= y < 3

√
3

4π = sin(2π/3)
2π/3 . Since 

sin t
t is decreasing on (0, π), it follows that t0 > 2π

3 > 2. !

Lemma 10. For every p ∈ (0, 1), we have (1 − p)(2 − p)Γ 
(1−p

2
)
" 2 3−p

2 .

Proof. Thanks to the claim from Lemma 7, it suffices to check the stated inequality 
at the endpoints: for p = 0, it becomes 2√π " 23/2 which clearly holds, whereas for 
p → 1−, it becomes equality. !

The following lemma is an important step in the proof of (9). Essentially it is a 
consequence of convexity of sums of exponential functions.

Lemma 11. For p ∈ (0, 1) and m = 1, 2, . . . , we set

Rm(p) = 5
3
(
π−1/221/2−p

)
(

log
(
π(m + 3/2)

))1−p/2

π(m + 3/2)

(
2p + 2πp

m∑

k=1
kp

)
.

We have, Rm(p) > 1.

Proof. For m = 1, 2, . . . , we let

Am = 5
3

√
2
π

log
(
π(m + 3/2)

)

π(m + 3/2) ,

a0,m =
(

log
(
π(m + 3/2)

))−1/2
,

ak,m = πk

2
(

log
(
π(m + 3/2)

))−1/2
, k = 1, 2, . . . ,m.

Then
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Rm(p) = Am

(
ap0,m + 2

m∑

k=1
apk,m

)
,

which is a sum of convex functions, thus Rm(p) is convex.
Case m = 1. We have, R′

1(p) ! R′
1(1) = A1(a0,1 log a0,1 + 2a1,1 log a1,1) < −0.019, 

so R1 is decreasing on (0, 1). Thus for every p ∈ (0, 1), we have R1(p) " R1(1) =
A1(a0,1 + 2a1,1) > 1.006, as desired.

Case m " 2. We have,

R′
m(0) = Am

(
log a0,m + 2

m∑

k=1
log ak,m

)
= Am log

(
a0,m

m∏

k=1
a2
k,m

)

and

bm = a0,m

m∏

k=1
a2
k,m =

(π
2
)2m

(m!)2
(

log
(
π(m + 3/2)

))−1/2−m
.

We check directly that b2 > 2.7 and b3 > 17. For m " 4, we use the standard estimate 
m! >

√
2πm

(
m
e

)m and log
(
π(m +3/2)

)
= log 3π

2 +log(1 + 2
3m) < 2 + 2m

3 ! m
2 + 2m

3 = 7m
6

to obtain

bm >
2πm√

7m
6

(
π2

4e2
m2

7m
6

)m

>

(6
7
π2

e2

)m

> 1.1m.

Therefore, R′
m(0) > 0 for every m " 2 and, by convexity, Rm(p) is increasing. Thus,

Rm(p) " Rm(0) = Am(1 + 2m) = 5
3π

√
2
π

log
(
π(m + 3/2)

) 2m + 1
m + 3/2 .

For m " 2, the right hand side is lower bounded by its value at m = 2, which is greater 
than 1.4. !

The final lemma in this section lies at the heart of the base case of the inductive 
argument from Step II (Section 5.3).

Lemma 12. For x ∈ [0, 1] and p ∈ [0, 2], let

h(p, x) =
(1 + x

2

)2−p

−
(1 − x

2

)2−p

+ x

(3 − x2

2

)−p/2
.

Then for every x ∈ (0, 1), p +→ h(p, x) is strictly concave and decreasing on [0, 2]. In 
particular, h(p, x) ! h(0, x) = 2x, for every x ∈ [0, 1], p ∈ [0, 2].
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Proof. First we show concavity. Fix x ∈ (0, 1). We have,

∂2

∂p2h(p, x) =
(1 + x

2

)2−p

log2 1 + x

2 −
(1 − x

2

)2−p

log2 1 − x

2

+ x

4

(3 − x2

2

)−p/2
log2 3 − x2

2 .

Then (1−x
2 )p ∂2

∂p2h(p, x) is a strictly convex function of p as being of the form Aap+Bbp−C

with positive a, A, b, B, C. Therefore, in order to show that ∂2

∂p2h(p, x) is negative for 
p ∈ (0, 2), it suffices to check that it is nonpositive at the endpoints p = 0 and p = 2.

At p = 0, using 0 ! log(1 + t) ! t, t " 0, we have

∂2

∂p2h(p, x)|p=0 =
(1 + x

2

)2
log2 1 + x

2 −
(1 − x

2

)2
log2 1 − x

2 + x

4 log2 3 − x2

2

!
(1 + x

2

)2
log2 1 + x

2 −
(1 − x

2

)2
log2 1 − x

2 + x

4

(1 − x2

2

)2
.

Let f(t) =
(

log t
1−t

)2
, t ∈ (0, 1). With a = 1−x

2 and b = 1+x
2 , then the right hand side 

can be written as (ab)2
(
f(b) − f(a) + b − a

)
. Note that the power-series expansion of 

f(1 − t) =
(

log(1−t)
t

)2
=

(∑∞
k=0

tk

k+1

)2
has all the coefficients positive. In particular, 

f is convex on (0, 1). Moreover, a direct computation shows that limt→1− f ′(t) = −1. 
Thus, f(b) − f(a) ! f ′(b)(b − a) ! −(b − a), which gives ∂2

∂p2h(p, x)|p=0 ! 0, as desired.
At p = 2, using log2 3−x2

2 < 1 and 3 − x2 > 2, we have

∂2

∂p2h(p, x)|p=2 = log2 1 + x

2 − log2 1 − x

2 + x

2(3 − x2) log2 3 − x2

2

< log2 1 + x

2 − log2 1 − x

2 + x

4 .

Note that the right hand side at x = 0 is 0, so it suffices to show that it is decreasing in x. 
The derivative of the right hand side equals 2

1+x log 1+x
2 + 2

1−x log 1−x
2 + 1

4 . With the aid 

of log t ! t − 1, t > 0, we upper bound this by 9
4 − 2 

(
1

1+x + 1
1−x

)
= 4 

(
9
16 − 1

1−x2

)
< 0. 

Thus, ∂2

∂p2h(p, x)|p=2 < 0, as desired. This finishes the proof of the concavity of p +→
h(p, x).

To show that p +→ h(p, x) is decreasing on [0, 2], since it is concave, it suffices to show 
that ∂

∂ph(p, x)|p=0 ! 0. We let

g(x) = ∂

∂p
h(p, x)|p=0 = −

(1 + x

2

)2
log 1 + x

2 +
(1 − x

2

)2
log 1 − x

2 − x

2 log 3 − x2

2 .
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The rest of the argument is a tedious analysis of the derivatives of g, which we only 
sketch. Since g′′′(x) = 2x2(x4−14x2+9)

(1−x2)(3−x2)3 and x4 − 14x2 + 9 on [0, 1] changes sign only 
once from positive to negative, we get that g′′(x) on (0, 1) is first increasing and then 
decreasing. Moreover, g′′(0+) = 0 and g′′(1−) = −∞. Thus g′′(x) on (0, 1) changes sign 
only once from positive to negative. Therefore, g′(x) on (0, 1) is first increasing and then 
decreasing. Since g′(0+) = −1

2 + 1
2 log 8

3 < 0 and g′(1−) = 0, we infer that g′(x) on (0, 1)
changes sign only once from negative to positive. Thus g(x) on (0, 1) first decreases and 
then increases. Since g(0+) = 0 = g(1−), we get that g(x) < 0 on (0, 1), which finishes 
the proof. !

5. Proofs

5.1. Fourier-analytic formula

The following important Fourier-analytic formula for negative moments is the starting 
point of our proof. Such formulae for moments rely on Fourier-analytic integral identities 
for power functions, integrated with respect to the probability measure, see e.g. Lemma 
2.3 and 4.2 in [15], or Lemma 4 in [14] for analogues in the case of positive moments.

Lemma 13 (Lemma 3 in [14]). For a random vector X in Rd and p ∈ (0, d), we have

E‖X‖−p = bp,d

∫

Rd

φX(t)‖t‖p−ddt,

provided that the right hand side integral exists, where φX(t) = Eei〈t,X〉 is the character-
istic function of X, ‖ · ‖ is the Euclidean norm on Rd and bp,d = 2−pπ−d/2 Γ((d−p)/2)

Γ(p/2) .

If X has a smooth rapidly decaying density, this formula follows from the Fourier trans-
form identity for ‖t‖p−d. In general, some additional technical arguments are needed to 
justify the application of Fubini’s theorem, see [14] for details. In the case of a symmetric 
bounded random variable X, to which we apply the formula, it follows directly from the 
identity |x|−p = bp,1

∫
R cos(tx)|t|p−1dt, x ∈ R (easily justified by a change of variables), 

by evaluating at x = X(ω) and taking the expectation.
Using Lemma 13, we have

E

∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

= bp,1

∫

R

(
n∏

k=1

sin(akt)
akt

)
|t|p−1dt = 2bp,1

∞∫

0

(
n∏

k=1

sin(akt)
akt

)
tp−1dt.

(10)
The proof proceeds using completely different arguments depending on whether there 

is a large weight ak or not.
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5.2. All weights are small

Our goal here is the following special case of Theorem 1.

Theorem 14. For every p ∈ (0, 1), every n " 1 and every real numbers a1, . . . , an such 
that maxk!n |ak| ! 1√

2(
∑n

k=1 a
2
k)1/2, the inequality (6) holds.

For the proof, we can assume that 
∑n

k=1 a
2
k = 1 and by symmetry, additionally, that 

each ak is positive. Thus in this case 0 < ak ! 1√
2 for every k. Recall (10). By Hölder’s 

inequality, since 
∑

a2
k = 1,

∞∫

0

(
n∏

k=1

sin(akt)
akt

)
tp−1dt !

n∏

k=1




∞∫

0

∣∣∣∣
sin(akt)

akt

∣∣∣∣
1/a2

k

tp−1dt




a2
k

=
n∏

k=1

(
Ψp(1/a2

k)
)a2

k , (11)

where we define

Ψp(s) =
∞∫

0

∣∣∣∣
sin(t/√s)

t/
√
s

∣∣∣∣
s

tp−1dt. (12)

The next step is to maximize Ψp(s) over s " 2. The answer varies depending on the 
value of p and is given by either s = 2 or s → ∞.

Lemma 15. Let p ∈ (p0, 1). For every s " 2, we have Ψp(s) ! Ψp(2). Moreover, Ψp(2) =
(2bp,1)−1c2(p).

Lemma 16. Let p ∈ (0, p0). For every s " 2, we have Ψp(s) ! lims′→∞ Ψp(s′). Moreover, 
lims′→∞ Ψp(s′) = (2bp,1)−1c∞(p).

Taking these lemmas for granted for a moment, we can finish the proof as follows. 
Suppose that p ∈ (p0, 1). Then combining (10), (11) and Lemma 15, we have

E

∣∣∣∣∣

n∑

k=1
akUk

∣∣∣∣∣

−p

! 2bp,1
n∏

k=1

(
(2bp,1)−1c2(p)

)a2
k = c2(p),

obtaining “half” of (6), that is when Cp = c2(p). Of course, we proceed identically for 
p ∈ (0, p0) using Lemma 16 to obtain the other half. Therefore, to finish the proof of 
Theorem 14, it remains to prove Lemmas 15 and 16.
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Proof of Lemma 15. Recalling (12), the definition of Ψp, by a change of variables, the 
inequality Ψp(s) ! Ψp(2) is equivalent to

∞∫

0

∣∣∣∣
sin t

t

∣∣∣∣
s

tp−1dt ! s−p/2Ψp(2),

which can be thought of as a Ball’s integral inequality with the weight tp−1 (Ball’s 
inequality corresponds to the case p = 1, see [3,34]). For the proof, we rewrite the right 
hand side as 

∫∞
0 gp(t)ptp−1dt with a Gaussian function

gp(t) = exp(−σ2
pt

2)

for σp > 0 defined such that for every s,

s−p/2σ−p
p

Γ(p/2)
2 =

∞∫

0

gp(t)stp−1dt = s−p/2Ψp(2).

We emphasize that this identity holds for every s with σp depending only on p and that 
this is why the Gaussian function gp is a good function to compare sin t

t with. Our goal 
is then to show that

∞∫

0

∣∣∣∣
sin t

t

∣∣∣∣
s

tp−1dt !
∞∫

0

gp(t)stp−1dt, s " 2, (13)

and σp in the definition of gp is such that there is equality for s = 2 in (13). We remark 
that the equality for s = 2 is equivalent to

E |U1 + U2|−p = E|2σpZ|−p,

where U1, U2 are i.i.d. uniform [−1, 1] random variables and Z is a standard Gaussian 
random variable (because 

( sin t
t

)2 is the characteristic function of U1 + U2 and gp(t)2 is 
the characteristic function of 2σpZ). This allows to explicitly compute σp,

σp
p = 2−p E|Z|−p

E|U1 + U2|−p
= 2−1−p/2π−1/2(1 − p)(2 − p)Γ

(1 − p

2

)
.

To prove (13), we use the following “lemma on distribution functions” from [34]. Recall 
that given a non-negative function h : X → [0, +∞) on a measure space (X, µ) its 
distribution function is the non-increasing function H : (0, +∞) → [0, ∞) defined by

H(y) := µ({x ∈ X : h(x) > y}).
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Lemma 17 ([34]). Let f and g be two non-negative measurable functions on a measure 
space (X, µ) and F , G be the distribution functions of f and g respectively. If F (y) and 
G(y) are finite for every y > 0 and there is some point y0 such that F (y) " G(y) for all 
0 < y < y0 and F (y) ! G(y) for all y > y0, then the function

s +→ 1
sys0

∫

X

(fs − gs) dµ

is decreasing on the set S = {s > 0 : fs − gs ∈ L1(X, µ)}.
In particular, if 

∫
X(fs0 − gs0) dµ = 0 for some s0 > 0, then 

∫
X(fs − gs) dµ ! 0 for 

every s " s0.

Let µ be the Borel measure on (0, +∞) with dµ(t) = tp−1dt. Let F and Gp be the 
distribution functions respectively of

f(t) =
∣∣∣∣
sin t

t

∣∣∣∣ and gp(t) = exp(−σ2
pt

2).

By Lemma 17, to establish the validity of (13) it suffices to show that the difference 
F −Gp changes sign on (0, 1) exactly once (since both f and gp are bounded by 1, both 
F and Gp vanish on [1, +∞)). Notice that for t ∈ (0, π),

f(t) =
∞∏

k=1

(
1 − t2

π2k2

)
!

∞∏

k=1
e−

t2
π2k2 = e−t2/6.

Moreover, thanks to Lemma 7, our assumption p ∈ (p0, 1) is equivalent to E 
∣∣∣ Z√

3

∣∣∣
−p

<

E 
∣∣∣U1+U2√

2

∣∣∣
−p

which in turn by the definition of σp is equivalent to σ2
p < 1

6 . Thus, f(t) !
e−t2/6 < e−σ2

pt
2 = gp(t) for t ∈ (0, π). Consequently,

F (y) < Gp(y) for y ∈ (y1, 1), (14)

where ym = maxt∈[mπ,(m+1)π] f(t), m = 1, 2, . . . is the decreasing sequence of successive 
maxima of f , as in [34]. Since 

∫∞
0 2y(F (y) − Gp(y))dy =

∫∞
0 (f(t)2 − gp(t)2)dµ(t), we 

have that F − Gp changes its sign at least once on (0, 1). Therefore, to prove that this 
happens exactly once, it suffices to prove that Gp−F is strictly increasing on (0, y1), and 
since G′

p and F ′ are negative, equivalently that |F ′| > |G′
p| on every interval (ym, ym+1), 

m " 1.
To this end, fix an integer m " 1 and y ∈ (ym+1, ym). Note that there is one solution, 

call it t0 = t0(y), to the equation f(t) = y on (0, π) and for every k = 1, . . . , m, there 
are two solutions t−k = t−k (y) and t+k = t+k (y) on (kπ, (k + 1)π). We can then write
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F (y) =
∞∫

0

1[f(t)>y](t) tp−1 dt

=
m∑

k=0

(k+1)π∫

kπ

1[f(t)>y](t) tp−1 dt =
t0∫

0

tp−1 dt +
m∑

k=1

t+k∫

t−k

tp−1 dt.

Differentiating with respect to y we get

F ′(y) = tp−1
0 t′0 +

m∑

k=1
(t+k )p−1(t+k )′ − (t−k )p−1(t−k )′,

so that

|F ′(y)| =
∑

{t>0:f(t)=y}

tp−1

|f ′(t)| .

With the aid of Lemma 8 we then have

|F ′(y)| " 5
6

∑

{t>0:f(t)=y}

tp.

Since t±k " kπ for every k " 1 and, by Lemma 9, t0 > 2 it follows that

|F ′(y)| " 5
6

(
2p + 2πp

m∑

k=1
kp

)
.

We remark that this estimate is valid for all p ∈ (0, 1).
For Gp, we have

Gp(y) = µ
((

0,σ−1
p

√
− log y

))
= (− log y)p/2

pσp
p

,

thus

1
|G′

p(y)|
= 2σp

py(− log y)1−p/2.

Since y(− log y)1−p/2 is increasing if y < ep/2−1 and y1 < π−1 < e−1 < ep/2−1, it is in 
particular increasing on (0, y1), so using y > ym+1 "

∣∣∣ sin(π(m+3/2)
π(m+3/2)

∣∣∣ = 1
π(m+3/2) , we have

|F ′(y)|
|G′

p(y)|
" 5

3σ
p
p

(
log

(
π(m + 3/2)

))1−p/2

π(m + 3/2)

(
2p + 2πp

m∑

k=1
kp

)
. (15)
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Note that this estimate holds for all p ∈ (0, 1). Applying Lemma 10 to lower bound σp
p

by π−1/221/2−p and then Lemma 11 to lower bound the whole expression by 1 finishes 
the proof. !

Proof of Lemma 16. Finding the limit

lim
s→∞

Ψp(s) = (2bp,1)−1c∞(p) (16)

is standard. For instance, if the limit is taken along integral even s, this follows from 
Lemma 13 combined with the central limit theorem. In general, a simple analytic argu-
ment goes as follows: letting Ks(t) =

∣∣∣ sin(t/√s)
t/

√
s

∣∣∣
s
, splitting the integration as

Ψp(s) =
∞∫

0

Ks(t)tp−1dt =
π
√
s∫

0

Ks(t)tp−1dt +
∞∫

π
√
s

Ks(t)tp−1dt

and using Ks(t) !
∣∣∣
√
s
t

∣∣∣
s
, we see the second integral is bounded by ss/2

∫∞
π
√
s t

p−1−sdt =
πpsp/2

(s−p)πs which goes to 0 as s → ∞. Since Ks(t)1[0,π√s](t) ! e−t2/6 and in fact point-
wise lims→∞ Ks(t) = lims→∞

∣∣∣1 − t2

6s + o
(

t2

s

)∣∣∣
s

= e−t2/6, we obtain (16) from the first 
integral by Lebesgue’s dominated convergence theorem.

Fix s " 2. By a change of variables, Ψp(s) ! (2bp,1)−1c∞(p) can be rewritten as

∞∫

0

∣∣∣∣
sin t

t

∣∣∣∣
s

tp−1dt !
∞∫

0

exp(−st2/6)tp−1dt. (17)

From this point onwards, we repeat the proof of Lemma 15 with f(t) =
∣∣ sin t

t

∣∣ and g(t) =
exp(−t2/6), so g(t) = gp(t) with σp set to be constant, equal to 1√

6 . For s = 2 inequality 
(17) is equivalent to c2(p) ! c∞(p) which holds true and is in fact a strict inequality for 
every p ∈ (0, p0) (Lemma 7). We next look at the sign changes of the difference F −G of 
the distribution functions F , G of f and g, respectively. If there is no sign change, we are 
immediately done (in view of the identity 

∫
(fs − gs)dµ =

∫∞
0 sys−1(F (y) − G(y))dy). 

Thus, in view of Lemma 17, it remains to check that F −G changes sign at most once. 
Since (14) holds here as well (with Gp replaced by G), as in Lemma 15, it suffices to 
check that |F ′| > |G′| on every interval (ym, ym+1), m " 1. As in the proof of Lemma 15, 
we have inequality (15) with σp

p replaced by 6−p/2. Since 6−p/2 > π−1/221/2−p for every 
p ∈ (0, 1), Lemma 11 allows to finish the proof. !

5.3. There is a large weight

We finish the proof of Theorem 1 by following the inductive approach from [34]. In 
[3], this case is handled by a geometric argument whose analytic analogue for negative 
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moments is too weak (see Remark 21 below). The Nazarov-Podkorytov approach relies 
on strengthening the right hand side of (6) to allow the induction on the number of 
summands n to work. To this end, we define

φp(x) = (1 + x)−p/2

and

Φp(x) =
{
φp(x), x " 1,
2φp(1) − φp(2 − x), 0 ! x ! 1.

By this construction, the graph of Φp(x) on [0, 1] is the graph of φp(x) on [1, 2] reflected 
about the point (1, φp(1)). In particular, to the left of x = 1, Φp and φp share the common 
tangent line at x = 1. Consequently, Φp(x) ! φp(x) for every x. By homogeneity, (6) is 
equivalent to

E

∣∣∣∣∣U1 +
n∑

k=2
akUk

∣∣∣∣∣

−p

! Cpφp

(
n∑

k=2
a2
k

)
.

We shall inductively show a strengthening. As it will be clear from the proof, it is natural 
to run the inductive argument for spherically symmetric random vectors ξk.

Theorem 18. For every p ∈ (0, 1), every n " 2 and every vectors v2, . . . , vn in R3, we 
have

E

∣∣∣∣∣〈e1, ξ1〉+
n∑

k=2
〈vk, ξk〉

∣∣∣∣∣

−p

! CpΦp

(
n∑

k=2
‖vk‖2

)
. (18)

Since 〈vk, ξk〉 has the same distribution as ‖vk‖Uk, (18) gives (6).

Proof of Theorem 18. We use induction on n. For n = 2, we have the following lemma, 
the proof of which we defer for now.

Lemma 19. For every vector v in R3, we have

E|〈e1, ξ1〉+〈v, ξ2〉|−p ! c2(p)Φp(‖v‖2). (19)

Let n " 3 and suppose (18) holds for every sequence of n − 1 vectors in R3. Let 
v2, . . . , vn ∈ R3 and x = ‖v2‖2 + · · · + ‖vn‖2. We want to show (18). There are 3 cases.

Case (a): ‖vk‖ > 1 for some 2 ! k ! n. Then x > 1, so (18) coincides with

E

∣∣∣∣∣

n∑

k=1
〈vk, ξk〉

∣∣∣∣∣

−p

! Cp(‖v1‖2 + ‖v2‖2 + . . . + ‖vn‖2)−p/2, (20)
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where v1 = e1. Let v∗1 , . . . , v∗n be a rearrangement of v1, . . . , vn such that ‖v∗k‖ " ‖v∗k+1‖
for every k = 1, . . . , n − 1 and let v′k = v∗

k
‖v∗

1‖
for every k = 1, . . . , n, so that ‖v′1‖ = 1 and 

‖v′k‖ ! 1 for k = 2, . . . , n. Then due to the homogeneity of (20) and the fact that 〈v′1, ξ1〉
has the same distribution as 〈e1, ξ1〉, it is enough to prove

E

∣∣∣∣∣〈e1, ξ1〉 +
n∑

k=2
〈v′kξk〉

∣∣∣∣∣

p

! CpΦp(‖v′2‖2 + · · · + ‖v′n‖2),

which is handled by the next cases.
Case (b): ‖vk‖ ! 1 for every 2 ! k ! n and x " 1. Then again (18) coincides with 

the homogeneous estimate (6). Moreover, we have that

max
1!k!n

‖vk‖2 = 1 ! 1
2(1 + x) = 1

2

n∑

k=1
‖vk‖2,

so this case reduces to Theorem 14 where all the ‖vk‖ are small.
Case (c): ‖vk‖ ! 1 for every 2 ! k ! n and x < 1. Since the pair (ξn−1, ξn) has the 

same distribution as (ξn−1, Qξn−1) for a random orthogonal matrix Q independent of all 
the ξk, we have,

E

∣∣∣∣∣〈e1, ξ1〉+
n∑

k=2
〈vk, ξk〉

∣∣∣∣∣

p

= E
∣∣〈e1, ξ1〉+〈v2, ξ2〉+ · · · +〈vn−1, ξn−1〉+

〈
Q,vn, ξn−1

〉∣∣p

= EQ

[
E(ξk)n−1

k=2

∣∣〈e1, ξ1〉+〈v2, ξ2〉+ · · · +〈vn−2, ξn−2〉+
〈
vn−1 + Q,vn, ξn−1

〉∣∣p
]
.

By the inductive hypothesis applied to the sequence (v2, . . . , vn−2, vn−1 + Q,vn) (con-
ditioned on the value of Q), we get

E

∣∣∣∣∣〈e1, ξ1〉+
n∑

k=2
〈vk, ξk〉

∣∣∣∣∣

p

! CpEQΦp(‖v2‖2 + · · · + ‖vn−2‖2 + ‖vn−1 + Q,vn‖2).

Note that

‖v2‖2 + · · · + ‖vn−2‖2 + ‖vn−1 + Q,vn‖2 = x + 2
〈
vn−1, Q

,vn
〉
,

thus, by the symmetry of Q,

EQΦp(‖v2‖2 + · · · + ‖vn−2‖2 + ‖vn−1 + Q,vn‖2)

= EQ
Φp

(
x + 2

〈
vn−1, Q,vn

〉)
+ Φp

(
x− 2

〈
vn−1, Q,vn

〉)

2 .

We shall now need a lemma about concavity of Φp, the proof of which we also defer.
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Lemma 20. Let p ∈ (0, 1). For every a, b " 0 with a+b
2 ! 1, we have

Φp(a) + Φp(b)
2 ! Φp

(
a + b

2

)
.

This lemma applied to a = x + 2 
〈
vn−1, Q,vn

〉
and b = x − 2 

〈
vn−1, Q,vn

〉
(which 

satisfy a, b " 0 and a+b
2 = x < 1) finishes the proof of the inductive step.

It remains to show the lemmas we have used. !

Proof of Lemma 19. First note that if ‖v‖ > 1 then, due to rotational invariance,

E|〈e1, ξ1〉 + 〈v, ξ2〉|−p = ‖v‖−pE

∣∣∣∣

〈
e1
‖v‖ , ξ1

〉
+

〈
v

‖v‖ , ξ2
〉∣∣∣∣

−p

= ‖v‖−pE|〈v′, ξ1〉 + 〈e1, ξ2〉|−p

for any v′ ∈ R3 such that ‖v′‖ = 1
‖v‖ < 1, while at the same time

Φp(‖v‖2) = φp(‖v‖2) = ‖v‖−pφp(‖v′‖2).

This shows that the desired inequality is then equivalent to

E|〈e1, ξ1〉 + 〈v′, ξ2〉|−p ! c2(p)φp(‖v′‖2), ‖v′‖ ! 1.

Since Φp(x) ! φp(x) for x ∈ [0, 1], it is sufficient to prove the lemma in the case ‖v‖ ! 1.
Fix v ∈ R3 with x = ‖v‖ ! 1. To compute explicitly the left hand side of (19), 

recall that for any w ∈ R3, 〈w, ξ〉 has the same distribution as ‖w‖U where ξ and U are 
uniformly distributed on S2 and [−1, 1], respectively. Then, we have that

E|〈e1, ξ1〉 + 〈v, ξ2〉|−p = E|U1 + xU2|−p = 1
4

1∫

−1

1∫

−1

|u1 + xu2|−pdu1du2

= (1 + x)2−p − (1 − x)2−p

2(1 − p)(2 − p)x .

Recalling the definition of c2(p) and Φp on [0, 1], we thus get that (19) becomes

(1 + x)2−p − (1 − x)2−p

2x ! 21−p/2(21−p/2 − (3 − x2)−p/2)

for every 0 < x ! 1. Note that we can write this as
(1 + x

2

)2−p

−
(1 − x

2

)2−p

+ x

(3 − x2

2

)−p/2
! 2x,

so Lemma 12 finishes the proof. !
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Proof of Lemma 20. We can assume without loss of generality that a < b. If b ! 1, the 
desired inequality follows from the concavity of Φp on [0, 1]. So, assume that b > 1. Then 
using the facts a < b and a+b

2 ! 1, we can write

∂

∂a
Φp

(
a + b

2

)
= 1

2
dΦp

dx

∣∣∣
x= a+b

2

! 1
2
dΦp

dx

∣∣∣
x=a

= ∂

∂a

Φp(a) + Φp(b)
2 ,

using the fact that the derivative of Φ′
p is decreasing on [0, 1]. This implies that

Φp

(
a + b

2

)
− Φp(a) + Φp(b)

2

is a decreasing function of a, so to prove the desired inequality, it suffices to show that 
the latter is nonnegative for the maximum value of a, that is a = a0 = 2 − b. Since b > 1, 
a0 < 1 and by the definition of Φp, Φp(a0) = 2φp(1) − φp(2 − (2 − b)) = 2φp(1) − φp(b)
and Φp(b) = φp(b), we get

Φp(a0) + Φp(b)
2 = 2φp(1) − φp(b) + φp(b)

2 = φp(1) = Φp

(
a0 + b

2

)
,

that is, the desired inequality is in fact an equality in this case. !

Remark 21. Let p ∈ (0, 1). Let X be a rotationally invariant random vector in R3. For 
every nonzero vector y in R3, observing that ‖X + y‖2 has the same distribution as 
‖X‖2 + ‖y‖2 + 2‖X‖‖y‖U , where U is uniform on [−1, 1], independent of X, we have

E‖X + y‖−p = E

(
‖X‖ + ‖y‖

)2−p −
∣∣‖X‖ − ‖y‖

∣∣2−p

2(2 − p)‖X‖‖y‖ .

In particular, by the concavity of t +→ t1−p,

E‖X + y‖−p ! E‖X‖−p.

This combined with independence gives

E

∥∥∥∥∥

n∑

k=1
akξk

∥∥∥∥∥

−p

! min
1!k!n

|ak|−p.

For p = 1, this immediately gives (2) in the case of a large weight, maxk!n |ak| >
1√
2
(∑n

k=1 a
2
k

)1/2 and Theorem 18 is not needed (this corresponds to the simple projec-
tion argument from [3] handling this case). For p < 1, this argument yields the nonsharp 
constant 2p/2 instead of (1 − p)Cp.
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5.4. Proof of Corollary 4

Let G = (G1, G2, G3) be a standard Gaussian random vector in R3 (mean 0, co-
variance I), independent of the sequence (ξk)nk=1. Then for every vector x in R3, 
since 〈x,G〉 has the same distribution as ‖x‖G1, we have ‖x‖−p = αpE| 〈x,G〉|−p with 
αp = (E|G1|−p)−1. Therefore,

∥∥∥∥∥

n∑

k=1
Akξk

∥∥∥∥∥

−p

= αpEG

∣∣∣∣∣

n∑

k=1

〈
ξk, A

,
k G

〉
∣∣∣∣∣

−p

. (21)

Using this and inequality (6), we obtain

E

∥∥∥∥∥

n∑

k=1
Akξk

∥∥∥∥∥

−p

= αpEGEξ

∣∣∣∣∣

n∑

k=1

〈
ξk, A

,
k G

〉
∣∣∣∣∣

−p

! CpαpEG

(
n∑

k=1
‖A,

k G‖2

)−p/2

.

Rewriting the sum of squares using the second moment, applying Minkowski’s inequality 
(with the negative exponent − 2

p ) and using (21) again, we get

CpαpEG

(
n∑

k=1
‖A,

k G‖2

)−p/2

= CpαpEG



3Eξ

∣∣∣∣∣

n∑

k=1

〈
ξk, A

,
k G

〉
∣∣∣∣∣

2


−p/2

! 3−p/2Cpαp



Eξ



EG

∣∣∣∣∣

n∑

k=1

〈
ξk, A

,
k G

〉
∣∣∣∣∣

−p



−2/p



−p/2

= 3−p/2Cp



Eξ

∥∥∥∥∥

n∑

k=1
Akξk

∥∥∥∥∥

2


−p/2

.

Finally, 3Eξ ‖
∑n

k=1 Akξk‖
2 =

∑n
k=1 ‖Ak‖2

HS . !

6. Conclusion

Continuing a long line of work and particularly addressing some questions raised in 
[2], we have established a sharp Khinchin-type L−p −L2 moment comparison inequality 
when p ∈ (0, 1) for weighted sums of independent random variables uniform on [−1, 1], 
equivalently uniform vectors on the unit sphere S2 in R3. In this case, this provides a 
sharp version of the very general results from [14].

We have not tried to optimise various technical numerical estimates which would 
certainly allow to extend our results to p ∈ (0, p1), p1 = 1.38 (the negative moments of 
order −p for S2–uniform vectors exist for all p < 2). The arguments seem robust enough 
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to handle cases of Sr–uniform vectors for other values of r (most notably the case of 
r = 1 corresponding to Steinhaus random variables as well as the case of r = 3 which 
would provide extensions of the polydisc slicing inequality of Oleszkiewicz and Pełczyński 
from [35], just as our result extends Ball’s cube slicing inequality from [3]). All this is 
the topic of ongoing and future work. Some time after this manuscript was completed, 
the question of a sharp Lp − L2, 0 < p < 1, moment comparison for 

∑n
k=1 akUk was 

addressed in [8] (see Question 5 and Proposition 15 in [12]).
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