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1. Introduction

Ball’s celebrated cube slicing inequality established in [3] states that the maximal

volume cross-section of the centred cube [—1,1]™ in R™ by a hyperplane (a subspace

of codimension 1) equals 2"7'y/2, attained by the hyperplane with normal vector
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(%, %, 0,...,0) (see also [4]). Khinchin-type inequalities provide moment comparison,
typically for weighted sums of independent identically distributed (i.i.d.) random vari-
ables. The classical one concerns symmetric random signs and goes back to the work [20]
of Khinchin. Such inequalities are instrumental in studying unconditional convergence
and are used extensively in (functional) analysis and geometry, particularly in (local)
theory of Banach spaces. We refer to several works [2,15,22,25,27,28,33,34,37,38] for fur-
ther background and references (particularly, [2] provides a detailed historic account on
Khinchin inequalities with sharp constants).

The main motivation for this article and its starting point is a fact well-known to
experts that Ball’s inequality can be viewed as a Khinchin-type inequality (the dual
question of extremal volume hyperplane-projections of convex bodies is also linked to
Khinchin-type inequalities, see for example [5,6,11]). An elementary derivation can be
sketched as follows. For a unit vector a = (ai,...,a,) in R™ let f be the density of
X =3} _, apUy, where Uy, ..., U, are i.i.d. uniform on [—1,1]. Then the (n— 1)-volume
of the cross-section of the cube [—1,1]" by the hyperplane a® perpendicular to a is
Vol,,_1 ([71, 1™ n aJ-) = 2"f(0). On the other hand, for every symmetric unimodal
bounded random variable X with density f, we have

_ — i 1P -p
£0) = 1l = tim = 2B1x]

(X is called symmetric if it has the same distribution as —X). Thus Ball’s inequality,
put probabilistically, says that for every unit vector a in R™, we have

<V2.

hm (1-p
p—1—

ZakUk

Our main result shows in particular that not only does this inequality hold in the limit,
but also for every p € (po,1), where pg = 0.793.... To view this inequality as actual
moment comparison, let &1, &, ... beii.d. random vectors in R3 uniform on the centered
Euclidean unit sphere S2. As a result of Archimedes’ hat-box theorem and rotational
invariance, the left hand side can be rewritten as E || 7| axé ||71, where || - || stands for
the standard Euclidean norm on R3 (see Lemma 3 below). We thus have the following
identity for a unit vector a in R™,

—-P

217" Vol,, ([71,1]%&)7 lim (1-p (1)

ZakUk

. _
Z aréy
k=1

For a generalisation, see Proposition 3.2 in [7] and Proposition 3.2 in [26]. As a result, we
can rephrase Ball’s inequality as the following sharp L_; — Lo Khinchin-type inequality:
for every n and every real numbers aq, ..., a,,
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-1
E

n n _1/2
Z ale| <V2 (Z a%) . (2)
k=1 k=1

We extend this to a sharp L_, — Ly moment comparison for p € (0,1) with arbitrary

matrix-valued coefficients (Corollary 4 below). We refer to [2,22,25,29] for sharp results
for positive moments.

We describe our results in the next section and then present our proofs, preceded
with a short overview of them. We conclude with a summary highlighting possible future
work. Throughout, (x,y) = Z;lzl x;y; denotes the standard scalar product on R?, ||z|| =
v/ (z,z) is the Euclidean norm whose unit sphere and closed unit ball are denoted by
S9=1 and B¢, respectively. Moreover, e; is the j-th vector of the standard basis whose
j-th coordinate is 1 and the rest are 0.

2. Results

Let Uy,Us be ii.d. random variables uniform on [—1,1] and let Z be a standard
Gaussian random variable (mean 0, variance 1). For p € (0,1), we define the constants

2

Ui+ U |7 (1 |7 21-p/2
c =E|——— :2p/2/x p<——— do = ——7—,
) =x [0 R TRy A IR

0o (3)
zZ 7P 3p/? > (3/2)/2 _ (1—p
_ “ —_ —p,—x~/2 _
Coo(P) E‘\/g Nor |z|"Pe dz NG F( 5 )

and

Cp = max{ca2(p), coo(p) }- (4)

By comparing ca(p) and cs(p) as done in Lemma 7 from Section 4 below, in fact we
have

- {Cm(p), if p € (0, po), (5)

; 62(17)7 lfpe (p071)a

where py is the unique p € (0, 1) such that ca(p) = oo (p). Our main result is the following
L_, — Ly Khinchin-type inequality for sums of symmetric uniform random variables.

Theorem 1. Let p € (0,1) and let C, be defined by (4). Let Uy, Us, ... be i.i.d. random
variables uniform on [—1,1]. For every n and every real numbers ay,...,ay, we have

—-p

E

n —p/2
<c, (Z k) . (6)
k=1

n
E ar Uy,
k=1
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Remark 2. Applying (6) to n = 2, a1 = ag = % and to n large, a; = -+ = a, = ==

v

(with the aid of the central limit theorem) shows that the value of C), in (6) is sharp.

Moments of a Fuclidean norm of weighted sums of independent random vectors
uniform on St and BY, d > 1, are proportional (see Proposition 4 in [25] or its gen-
eralisation, Theorem 4 in [2]). We recall a special case of this result relevant for us and
for convenience sketch its proof (particularly because the proofs available in the litera-
ture treat the case of positive moments, but of course they repeat verbatim to negative
moments).

Lemma 3 (Proposition 4, [25]). Let &1,&a,... be i.i.d. random vectors uniformly dis-
tributed on the unit sphere S? in R3. Let Uy, Us, ... be i.i.d. random variables uniform
n [—1,1]. For a vector a = (a1, ...,a,) in R™ and p € (—o0, 1), we have
-p —p

E =(1-pE

n
> aéy
k=1

n
E apUy
k=1

Proof. We reproduce here an argument utilising rotational invariance from [25] at-
tributed to Latala. Let 6 be a random vector uniform on S2, independent of all the
other variables. By rotational invariance, for a vector = in R?, we have

El{z, 0)| 7" = E[{e1[|lz]l, 0)| 7" = [l=["PE[6:]7",
where 6; denotes the first component of 6, so

E|(z,0)""

Y
Il = ~E ot

Applying this to x = >_}'_ ax) and taking the expectation gives

<Z ak€k5 9>
k=1

-p

—-Pp —-p

" —-p
— E(Eq |(O 1 @k, 0)] 1

E —
¢ ARG E|6,|~»

EoEe

n
Z aré
=1

By the rotational invariance of > ax&y, we also have

<Zak§k,9> <Zak§k761“6>
k=1 k=1

However, 6 is a unit vector and the random variables (£, e1) are i.i.d. uniform on [—1, 1]
(recall that & is uniform on the 2-dimensional unit sphere and Archimedes’ hat-box the-
orem states that the surface area measure of a set {z € S?, (z, e1) € [a, b]} is proportional
to b — a). Therefore,

-p

Ee = K
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n -p n -p n -p
E¢ <Zak€k7€1”9”> =E; Zak<fk7@1> =Ey ZakUk
k=1 k=1 k=1
Since 6, is uniform on [—1, 1], we get E|6;| 7P = fol z~Pdr = ﬁ. Putting these equations

together finishes the proof. O
It follows from Lemma 3 that (6) is equivalent to

-P

E

n —p/2
<-ne, (X)) ™
k=1

n
> aé
k=1

We extend this to matrix-valued coefficients using isometrical embeddings into L, spaces
(Orlicz-Szarek’s argument, see Remark 3 in [38]). This offers a sharp version of the very
general result of Gorin and Favarov from [14] (see Corollary 2 therein) in the case of
uniform vectors on S? and the L_, — Ly moment comparison. For a matrix A, ||A|/xs
stands for its Hilbert-Schmidt norm.

Corollary 4. Let p € (0,1) and let C, be defined by (4). Let &1,&a, ... be i.i.d. random
vectors uniform on the unit sphere S? in R3. For every n and every real 3 x 3 matrices
Aq,..., A,, we have

-Pp

E

n -p/2
<G, (Z ||Ak%qs> : (8)
k=1

> A
k=1

Remark 5. Both (7) and (8) are sharp. The constant in (8) is larger than in (7). The
100
former specialised to the case when each matrix Ay, is proportional to the matrix [0 0 0]

000
reduces to (6).

Remark 6. A sharp reversal of (7) (analogously of (8)) is immediate from convexity. Using

Jensen’s inequality (for the function ¢~?), the monotonicity of p-norms: || - ||z, < |- |z,
and the fact that E |3 ape|® = >~ a2, we obtain
n —p/2
k=1

-p -p
><E ) e

By (1), the case p = 1 of this inequality gives yet another simple proof of Hadwiger’s

o\ 1/2\ 7P

E

n
> anék
k=1

n
> aré
k=1

n
> anéy
k=1

and Hensley’s result (see [16] and [18], see also Theorem 2 in [3]).
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3. Proof overview

Haagerup’s work [15] can perhaps be seen as a landmark in the pursuit of sharp
Khinchin-type inequalities. Later, Nazarov and Podkorytov in [34] offered an informa-
tive exposition of [15] (and [3]), developing novel tools which allowed for significant
simplifications of the most technically demanding parts of [15] (as well as of [3]). We
shall closely follow their approach which comprises two main steps. (For other works
which used techniques from [34] to establish sharp Khinchin-type inequalities, we refer
for instance to [22,32].)

Step I (Section 5.2). We prove (6) in the case that all weights ay, are “small”, that is for
the sequences a = (ag)y_; with maxg<, |ag| < % (X (Jai)l/2 (call it Case A). This
in turn is accomplished by a Fourier-analytic expression for negative moments (used for
instance in [14]), which allows to leverage independence. As in [3], by the use of Holder’s
inequality, the following integral inequality allows to finish the whole argument,

sp/2/
0

This inequality is an extension of Ball’s integral inequality from [3] and is proved with the

L) .
eI

sint !’

Pt < 2P~ 1\F O<p<l,s>2. (9)

methods of [34]. For other results related to Ball’s integral and cube slicing inequalities
see for instance [10,19,23,24,30,31].

Step II (Section 5.3). With the aid of the result of Step I, we use induction on n to
prove certain strengthening of (6) for all sequences a = (ax)}'_, in order to handle those
which do not satisfy Case A, that is have a “large” weight (call those Case B). Were (9)
true for all s > 1, this step would have been spared. In [34] the inductive step is possible
thanks to an algebraic identity obtained by averaging with respect to one random sign.
In our setting, for uniform [—1,1] random variables, such an identity does not seem
to present itself. To overcome this obstacle, we work with S2-uniform random vectors
for which certain algebraic identities allowing for induction are much more natural. For
Ball’s inequality (2) (case p = 1), this step was in [3] taken care of by a simple projection
argument, but its analogue for p < 1 is not sufficient (see Remark 21 at the end of
Section 5.3).

We remark that in the range p € (0,po) when C), = coo(p), see (5), the extremizing
sequence is a3 = -+ = a, = ﬁ with n — o0, it is only Case A which admits equality
(attained asymptotically as n — c0), whereas in the range p € (po, 1) when C, = c2(p)
and the extremizing sequence is a; = as = \%, n=2, both Case A and B admit equality
(in Case B when taking n = 2 and a; = \/ﬂ’ as = 2+5, 0 — 04) and hence both
Step I and IT have to be subtle enough to overcome this difficulty.

As a final comment here, convexity-type arguments leading to more precise results
such as Schur-convexity of moments of sums with a fixzed number of summands n (see
[1,2,9,11,13,17,21,25,36]) do not seem to be available here. One of the obstacles is for
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instance the fact that the function ¢ — E|U; + v/tUsz| P is not convex/concave on the
whole half-line (0, +00) (it is concave on (0, 1) and convex on (1,+00)).

4. Technical lemmas

We gather several elementary but technical results needed in our proofs. The first
one explains the comparison between the constants co(p) and coo(p) arising from two
different extremizing sequences of weights a in our Khinchin inequality.

Lemma 7. Let co(p), coo(p) be defined in (3). The equation ca(p) = coo(p) has a unique
solution pg = 0.793... on (0,1). Moreover, ca(p) > coo(p) for p € (po, 1), whilst co(p) <
¢ (p) for p € (0,po).

Proof. For p € (0,1), the difference ca(p) — coo (p) has the same sign as

flp) =2vm377% — (1-p)(2-pT <1%p) :

Claim. The function p — log ((1 —p)(2 — p)T (1;_;))) is strictly concave on (0,1).

Note that f(0+) = 0, f(1-) = 2(y/7/3 —1) > 0 (ul'(u) — 1 as u — 0) and
f(3) =2y/m371/3 — 41() < —0.016. In view of the claim (after taking the logarithm
and noting that a linear function intersects a strictly concave function at most twice),
the proof of the lemma is finished.

To prove the claim, we let u = 1; and h(u) = —log (u (u+ %) '(u)). We want to
show that h is strictly convex on (0, 3). Recall (logI'(u))” = Y32, W Thus for
u € (0, %),

o

1 1 1 1 1 1
hl/ _ _ > _ -
() Zzt (u+3)? kzz()(“+k)2 (u+3)? (ut+1)2 u—|—2 Zk

We now show that the right hand side is positive on (0, ). Call it hy(u) and note that

L Lo, 12 1
—hy(u) = - - - — .
21 (u+13  (w+2)3  (u+3)B3 (w13 (u+1)3
The right hand side has the same sign as ( %> — % which is clearly increasing in w,
thus at most (%)3 — 3 =—11 <0 foru € (0,3). Thus hy(u) is decreasing for u € (0, 1).
Going back to the lower bound h'(u) > hi(u), we conclude that h”(u) > hi(u) >

hi(3) = LB — %2 > 0.0006, for u € (0,1). This shows that h is strictly convex on

(0,3). o
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The next three lemmas are elementary facts about functions showing up in calculations
from Step I (Section 5.2) needed to prove the integral inequality (9).

y .4+ _ sint 6
Lemma 8. sup;cr ’cost n ’ <z

Proof. Since both cost and % are even, it suffices to consider positive ¢. By the Cauchy-

Schwarz inequality, we have |cost — S24| < /1 + L so it suffices to consider t < —2=. It
t t

< 71
remains to note that \/% < % and that on (0, %), we have |c05t qlnt‘ _ §1nt — cost <
1+0=1. O

Lemma 9. Let y1 = maXe(r 2q] | | Fory € (0,y1), let t = to be the unique solution
toLnt—yon( 7). Then ty > 2.

Proof. Since y; < I, for every y € (0,41), we have % =y < 3v3 _ sin(2n/3)

v ryEa Since

sint

i+ is decreasing on (0, 7), it follows that o >2t>2 0O

3—p

Lemma 10. For every p € (0,1), we have (1 —p)(2 —p)T (52) > 272".
Proof. Thanks to the claim from Lemma 7, it suffices to check the stated inequality
at the endpoints: for p = 0, it becomes 2/7 > 23/2 which clearly holds, whereas for

p — 1—, it becomes equality. 0O

The following lemma is an important step in the proof of (9). Essentially it is a
consequence of convexity of sums of exponential functions.

Lemma 11. For p € (0,1) and m =1,2,..., we set

Ralp) = 5 (w2217 w(m 1 3/2)

1-p/2
) )

k=1

We have, R,,(p) > 1.
Proof. For m=1,2,..., we let
A _?\/zlog (m(m+3/2))
" 3Va w(m+3/2)

ag,m = (log (m(m + 3/2)))71/2,

k ~1/2
7%(log(7r(m—i—3/2))) . k=1,2,...,m.

Ak.m

Then
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Ry (p) = Am (a’g,m +2 Z ai,m) )

k=1

which is a sum of convex functions, thus R,,(p) is convex.

Case m = 1. We have, R (p) < R{(1) = Ai(ao,1logao1 + 2a11logas 1) < —0.019,
so Ry is decreasing on (0,1). Thus for every p € (0,1), we have Ri(p) > Ri(1) =
Aq(ao,1 +2a1,1) > 1.006, as desired.

Case m > 2. We have,

k=1 k=1

R;n(o) = Am <10g aO,m + 2 Z IOg ak,m) - Am 1Og (ao,m H a%,m)

and

m

™
b =aom [t = (3)
k=1

We check directly that by > 2.7 and b > 17. For m > 4, we use the standard estimate
m! > \/2mm (e) and log (m(m+3/2)) = log 2 +log(142m) < 24+ 22 < 242 — Im
to obtain

2m

(m!)? ( log (7r(m + 3/2))) 71/2im.

2rm [ 72 m2\"™" 672\ m
b'm>? @E > ?6_2 > 1.1™.
\/ 6
Therefore, R, (0) > 0 for every m > 2 and, by convexity, R,,(p) is increasing. Thus,

a0 10t 201 = 2 P 530 225

For m > 2, the right hand side is lower bounded by its value at m = 2, which is greater
than 1.4. O

The final lemma in this section lies at the heart of the base case of the inductive
argument from Step IT (Section 5.3).

Lemma 12. For z € [0,1] and p € [0,2], let

1+2\*>7? 1—z\*? 3— g2\ P2
wo-(57) () = (57)

Then for every x € (0,1), p — h(p,x) is strictly concave and decreasing on [0,2]. In
particular, h(p,z) < h(0,x) = 2z, for every z € [0,1], p € [0,2].
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Proof. First we show concavity. Fix « € (0,1). We have,

0? 1+2\*" L1+ 1—2\>" ,1-uz
—h = 1 — 1
a7 (p,x) = <2> 08" —5 (2> 08" —5

w (3 — a2\ P2 3— a2
+—< ) log? 7

4 2

Then (152 )paa—;h(p, x) is a strictly convex function of p as being of the form Aa?+BbP—C
with positive a, A,b, B, C. Therefore, in order to show that g—;h(p, x) is negative for
€ (0,2), it suffices to check that it is nonpositive at the endpoints p = 0 and p = 2.

At p=0, using 0 < log(1 +1¢) <t t >0, we have

0? 1+2)\> o 14z 1—2\> ol—z . 5,3—2?
—h —0 = 1 - log® —= + =1
Op? (P, 2)lp=0 ( 2 ) % 5 2 %% 18 2

2 2 2\ 2
1+z o142 11—z ol—2 2 (l—-x
< 1 - 1 — .
(57) e - (557) w2 (50
2
Let f(t) = (1102) , t € (0,1). With a = 15% and b = 1%, then the right hand side
can be written as (ab)?(f(b) — f(a) + b — a). Note that the power-series expansion of
2 2
faa—¢ = (W) — (2;0:0 ;—;) has all the coefficients positive. In particular,
f is convex on (0,1). Moreover, a direct computation shows that lim;_,;_ f'(¢t) = —1.

Thus, f(b) — f(a) < f'(b)(b—a) < —(b— a), which gives g—;h(p, x)|p=0 < 0, as desired.
At p = 2, using log? 3

— 22 > 2, we have

0? s 1+ s 1—=x x 53—
—h o =1 — —1 1
8p2 (p7:1;)‘p72 Og 2 Og 2 +2(3_x2) Og 2
1+ l—-z =z
log? —— — log? -,
< log 5 og 5 +4

Note that the right hand side at x = 01is 0, so it suffices to show that it is decreasing inz.
The derivative of the right hand side equals 5~ +x log =5 Ltz 4 L log + . With the aid

oflogt <t—1,t>0, Weupperboundthlsby—72(1+—T+—):4(E = r2)<0

Thus, o 2h(p, x)|p=2 < 0, as desired. This finishes the proof of the concavity of p —
h(p, z).

To show that p — h(p,x) is decreasing on [0, 2], since it is concave, it suffices to show
that a%h(p, x)|p=0 < 0. We let

0 1+ 2 1+x 1—2\? l—-2 =« 3 — g2
g(x)za—ph(p,mﬂp_o:—( ) log +< ) log — —log .

2 2 2
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The rest of the argument is a tedious analysis of the derivatives of g, which we only
sketch. Since ¢"'(x) = % and z* — 1422 + 9 on [0, 1] changes sign only
once from positive to negative, we get that ¢”(x) on (0,1) is first increasing and then
decreasing. Moreover, ¢g”(0+) = 0 and ¢”"(1—) = —oco. Thus ¢”(x) on (0,1) changes sign
only once from positive to negative. Therefore, ¢’(x) on (0, 1) is first increasing and then
decreasing. Since g'(0+) = —1 + 3 log 3 < 0 and ¢/(1—) = 0, we infer that ¢’(x) on (0, 1)
changes sign only once from negative to positive. Thus g(x) on (0, 1) first decreases and
then increases. Since g(0+) = 0 = g(1—), we get that g(z) < 0 on (0, 1), which finishes
the proof. O

5. Proofs
5.1. Fourier-analytic formula

The following important Fourier-analytic formula for negative moments is the starting
point of our proof. Such formulae for moments rely on Fourier-analytic integral identities
for power functions, integrated with respect to the probability measure, see e.g. Lemma,
2.3 and 4.2 in [15], or Lemma 4 in [14] for analogues in the case of positive moments.

Lemma 13 (Lemma 3 in [1/]). For a random vector X in R and p € (0,d), we have

BILX] 7 = b [ ox (@),
Rd

provided that the right hand side integral exists, where ¢x(t) = Ee®*X) is the character-
—-d/2L((d=p)/2)

istic function of X, || - || is the Euclidean norm on R¢ and by, 4 = 27Pm /%)

If X has a smooth rapidly decaying density, this formula follows from the Fourier trans-
form identity for ||¢||?~¢. In general, some additional technical arguments are needed to
justify the application of Fubini’s theorem, see [14] for details. In the case of a symmetric
bounded random variable X, to which we apply the formula, it follows directly from the
identity |x]™P = b1 [ cos(tx)[t[P~ dt, z € R (easily justified by a change of variables),
by evaluating at x = X (w) and taking the expectation.

Using Lemma 13, we have

" sin(agt) _ T
o () -

R k=1 0

—-p

E

n
E arUp
k=1

ﬁ —Sin(a’“t)> #1dt.
Pl at
(10)
The proof proceeds using completely different arguments depending on whether there

is a large weight aj, or not.
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5.2. All weights are small
Our goal here is the following special case of Theorem 1.

Theorem 14. For every p € (0,1), every n > 1 and every real numbers aq,...,a, such
that maxp<y |ak| < %(22;1 a2)'/2, the inequality (6) holds.

For the proof, we can assume that Y ;_, af = 1 and by symmetry, additionally, that
each ay, is positive. Thus in this case 0 < ap < for every k. Recall (10). By Holder’s
inequality, since Y a2 =1,

o0 n . ( t) n o0 a2
S ag 1
—— Pt <
/ (H ait ) h H /
0 = 0

2
sin(axt) ‘1/% 14

agt

where we define

7 f Crtar, (12)

o1

The next step is to maximize W¥,(s) over s > 2. The answer varies depending on the

value of p and is given by either s =2 or s — 0.

Lemma 15. Let p € (po,1). For every s > 2, we have ¥,(s) < ¥, (2). Moreover, ¥,(2) =
(2bp,1) " te2(p)-

Lemma 16. Let p € (0,po). For every s > 2, we have V,(s) < limy_, o ¥, (s"). Moreover,
limy 00 Wp(s') = (2bp,1)~ Coo(p)

Taking these lemmas for granted for a moment, we can finish the proof as follows.
Suppose that p € (pg,1). Then combining (10), (11) and Lemma 15, we have

—-Pp

<2 ﬁ ( 2bp,1) p))ai = c2(p),

obtaining “half” of (6), that is when C, = c2(p). Of course, we proceed identically for
p € (0,pg) using Lemma 16 to obtain the other half. Therefore, to finish the proof of
Theorem 14, it remains to prove Lemmas 15 and 16.
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Proof of Lemma 15. Recalling (12), the definition of ¥, by a change of variables, the
inequality ¥, (s) < ¥,(2) is equivalent to

/

0

S

sint _ _
tP=ldt < s7P/20,(2),

which can be thought of as a Ball’s integral inequality with the weight #*~! (Ball’s
inequality corresponds to the case p = 1, see [3,34]). For the proof, we rewrite the right
hand side as [~ gp(¢)PtP~dt with a Gaussian function

gp(t) = exp(—a§t2)

for o, > 0 defined such that for every s,

T(p/2) [
sfp/Qa;p—(Z;/ ) = /gp(t)stpfldt = sfp/Q\IJp(Q).
0

We emphasize that this identity holds for every s with o, depending only on p and that
sint
t

this is why the Gaussian function g, is a good function to compare
is then to show that

with. Our goal

tP=1dt < /gp(t)Stpfldt, 5> 2, (13)
0

and o, in the definition of g, is such that there is equality for s = 2 in (13). We remark
that the equality for s = 2 is equivalent to

E|Uy + Us| ™ = E[20,2] 77,

where Uy, Uy are i.i.d. uniform [—1,1] random variables and Z is a standard Gaussian

random variable (because (%)2 is the characteristic function of Uy + Uz and g,(t)? is

the characteristic function of 20,7). This allows to explicitly compute oy,

p_op_ EIZITT

C1-pj2_— 1-p
=P Tl 971 P/2 12 _py2—p)D | —= ).
7 E[U; + Up| S

To prove (13), we use the following “lemma on distribution functions” from [34]. Recall
that given a non-negative function h : X — [0,400) on a measure space (X, p) its
distribution function is the non-increasing function H : (0, +00) — [0, 00) defined by

H(y) :== p({z € X : h(z) > y}).
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Lemma 17 ([3/]). Let f and g be two non-negative measurable functions on a measure
space (X, p) and F, G be the distribution functions of f and g respectively. If F(y) and
G(y) are finite for every y > 0 and there is some point yo such that F(y) > G(y) for all
0<y<wyo and F(y) < G(y) for all y > yo, then the function

1

sY§

/(fs —9°)du

is decreasing on the set S ={s>0: f* —g° € L*(X,u)}.
In particular, if [ (f% — g*)dp =0 for some so > 0, then [(f*—g°)du <0 for
every s = sg.

Let p be the Borel measure on (0, +0c) with du(t) = tP~1dt. Let F and G, be the
distribution functions respectively of

sint

=5

and gp(t) = exp(—aitg).

By Lemma 17, to establish the validity of (13) it suffices to show that the difference
F — G, changes sign on (0, 1) exactly once (since both f and g, are bounded by 1, both
F and G, vanish on [1,400)). Notice that for ¢t € (0, ),

2

s t2 b >
- —t2/6
f(t)—k|_|1<1_m><||ewik?—e /8,

k=1

—p
Moreover, thanks to Lemma 7, our assumption p € (pg, 1) is equivalent to E ‘%’ <

P
E ’% which in turn by the definition of o), is equivalent to cf;f < %. Thus, f(t) <

e~t2/6 < et — gp(t) for t € (0, 7). Consequently,

F(y) < Gply)  forye (y1,1), (14)

where Y, = maxXicpmn,(m+1)x f(t), m =1,2,... is the decreasing sequence of successive
maxima of f, as in [34]. Since [;° 2y(F(y) — Gp(y))dy = [;°(f(£)? — gp(£)?)du(t), we
have that F' — G, changes its sign at least once on (0, 1). Therefore, to prove that this
happens exactly once, it suffices to prove that G, — F is strictly increasing on (0,y1), and
since G, and I’ are negative, equivalently that |F'| > |G} | on every interval (ym, ym+1),
m > 1.

To this end, fix an integer m > 1 and y € (Ym+1, Ym ). Note that there is one solution,
call it tg = to(y), to the equation f(t) = y on (0,7) and for every k = 1,...,m, there
are two solutions ¢, =t; (y) and ] =t (y) on (km, (k + 1)7). We can then write
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F(y) :/1[f(t)>y](t) = dt
0

m (k+1)m to N tk+

-2 / 1[f<t>>y](t)t”‘1dtz/t”—ldt+2/tz)—1 dt.
k=0 g : k:1t7
k

Differentiating with respect to y we get

Fl(y) =5 to+ Y (0P ) — ()P ()
k=1

so that

tp—1

rwl= 2 T

{t>0:7(t)=y}

With the aid of Lemma 8 we then have

[F'(y)| >

>

{t>0:f(t)=y}

| Ut

Since tf > kr for every k > 1 and, by Lemma 9, ty > 2 it follows that

[F'(y)] > % (2” +27rp2kp> :

k=1

We remark that this estimate is valid for all p € (0,1).
For G,, we have

Gpy) = p ((0,0;1 —logy)) = M,

P
bop

thus

1 _
G| = 2ohu(=logy) 2,

Since y(—logy)'~P/? is increasing if y < e?/2~t and y; < 77! < e < eP/?71 it is in
sin(w(m+3/2) | _

particular increasing on (0,y1), so using y > Ym+1 = w33 | = W(m}r?)m), we have
log (w(m +3/2)))
Jad ( og (m(m + 3/2 ) m
| /(y>| > §(75 2P+2ﬂ-pzk.’0 ) (15)
(AR w(m +3/2) 2
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Note that this estimate holds for all p € (0,1). Applying Lemma 10 to lower bound oy
by m=1/221/2=P and then Lemma 11 to lower bound the whole expression by 1 finishes
the proof. O

Proof of Lemma 16. Finding the limit

lim @, (s) = (2b.1) "o (p) (16)

S—» 00

is standard. For instance, if the limit is taken along integral even s, this follows from
Lemma 13 combined with the central limit theorem. In general, a simple analytic argu-

S
, splitting the integration as

ment goes as follows: letting K(t) =

NG

oo /s
:/Ks P tdt = /K pldt—s—/K P Lde
0 /s

and using K, (t) < ‘é
TPgP/2
(s=p)m !
wise im0 K (f) = limg o0 ’1 — % +o0 (é)‘ = ¢°/6 we obtain (16) from the first

, we see the second integral is bounded by s*/2 [>° et 1=sdt =

—t%/6

which goes to 0 as s — oo. Since K(t)1jg r5(t) < e and in fact point-

integral by Lebesgue’s dominated convergence theorem.
Fix s > 2. By a change of variables, W, (s) < (2b,,1) *coo(p) can be rewritten as

/ tp_ldt</exp (—st?/6)tP~ dt. (17)

0 0

. S
sint

From this point onwards, we repeat the proof of Lemma 15 with f(t) = |*2¢| and g(t) =
exp(—t%/6), so g(t) = g,(t) with o, set to be constant, equal to %. For s = 2 inequality
(17) is equivalent to ¢a(p) < ¢oo(p) which holds true and is in fact a strict inequality for
every p € (0,po) (Lemma 7). We next look at the sign changes of the difference F'— G of
the distribution functions F', G of f and g, respectively. If there is no sign change, we are
immediately done (in view of the identity [(f* — g*)du = [~ sy* (F(y) — G(y))dy).
Thus, in view of Lemma 17, it remains to check that F' — G changes sign at most once.
Since (14) holds here as well (with G, replaced by G), as in Lemma 15, it suffices to
check that |F’| > |G’| on every interval (Y, Ym-+1), m = 1. As in the proof of Lemma 15,
we have inequality (15) with op replaced by 6-P/2. Since 677/2 > 7=1/221/2=P for every
€ (0,1), Lemma 11 allows to finish the proof. O

5.83. There is a large weight

We finish the proof of Theorem 1 by following the inductive approach from [34]. In
[3], this case is handled by a geometric argument whose analytic analogue for negative



G. Chasapis et al. / Journal of Functional Analysis 281 (2021) 109185 17

moments is too weak (see Remark 21 below). The Nazarov-Podkorytov approach relies
on strengthening the right hand side of (6) to allow the induction on the number of
summands n to work. To this end, we define

dp(z) = (1+2)772

and

(I) ({L‘) _ ¢p(x)7 X
! 26,(1) — ¢p(2 — ), 0

By this construction, the graph of ®,(x) on [0, 1] is the graph of ¢,(z) on [1, 2] reflected
about the point (1, ¢,(1)). In particular, to the left of z = 1, ®,, and ¢, share the common
tangent line at « = 1. Consequently, ®,(x) < ¢,(x) for every . By homogeneity, (6) is

. .
< Cpobyp (Z az) .
k=2

We shall inductively show a strengthening. As it will be clear from the proof, it is natural

equivalent to

E|\U, + ZakUk
k=2

to run the inductive argument for spherically symmetric random vectors &.

Theorem 18. For every p € (0,1), every n = 2 and every vectors va,...,v, in R3, we
have

n

(e1,&1)+ > (vk,&k)

k=2

E

—p n
< Gy (Z ||Uk||2> - (18)
k=2

Since (vg, &) has the same distribution as ||v||Ug, (18) gives (6).

Proof of Theorem 18. We use induction on n. For n = 2, we have the following lemma,
the proof of which we defer for now.

Lemma 19. For every vector v in R3, we have

El{e1, &1)+(v, &2)| 77 < c2(p) Dy ([J0]]*). (19)

Let n > 3 and suppose (18) holds for every sequence of n — 1 vectors in R3. Let
Vo, ...,y € R3 and z = ||Jua|? + -+ + ||va]|?. We want to show (18). There are 3 cases.
Case (a): ||ug|| > 1 for some 2 < k < n. Then = > 1, so (18) coincides with

—-p
< Gpllonll? + lozl® + .. + lloal*) 772, (20)

n

E > (v &)

k=1
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where vy = e1. Let vf,...,v;; be a rearrangement of vy, ..., v, such that [[vg|| = [lv;, |
for every k=1,...,n—1 and let v, = ”Zﬁ for every k =1,...,n, so that ||v]]| =1 and

||| < 1for k=2,...,n. Then due to the homogeneity of (20) and the fact that (v, &)
has the same distribution as {(eq, &), it is enough to prove

p
< Cp®p([la])* + -+ + [l %),

(e, &) + > (viée)
k=2

which is handled by the next cases.
Case (b): |lvg]] < 1 for every 2 < k < n and = > 1. Then again (18) coincides with
the homogeneous estimate (6). Moreover, we have that

l\')l»—t

=1<
s, ol

1 n
_ 2
(1+2) =53 lul?,
k=1
so this case reduces to Theorem 14 where all the ||vg|| are small.
Case (c): ||ug|| < 1 for every 2 < k < n and x < 1. Since the pair (§,-1,&,) has the
same distribution as (£,-1, Q&,—1) for a random orthogonal matrix @ independent of all
the &, we have,

p

=E |<61,€1>+<U2,§2>+ e +<vn—la5n—1>+<QTvn7§n—l>|p

n

<617£1>+ Z<Uka§k>

k=2

=Eq {E(gk)g;g Kex, &)+ (v, &2)+ - - +(vn—2,&n—2)+(vn_1 + QTvn,ﬁn_1>|p} :

E

By the inductive hypothesis applied to the sequence (vs,...,vn_2,vn_1 + Q v,) (con-
ditioned on the value of @), we get

p
< CpEQ@p([[v2]1? + -+ + [vn—2|* + llvn—1 + Q@ Twall?).

61761 + Z ’Ukaé-k
k=2

Note that
211 4+ - + lon—2l” + [[va—1 + QT vnl* = & + 2(vn-1, QT vn),
thus, by the symmetry of @,

Eq®@p(|[v2]® + -+ [ln-2[* + vn-1 + QT vn?)

o, (517 + 2<Un—17 QTvn» + 9, (I - 2<Un—1a QTvn»
5 .

We shall now need a lemma about concavity of ®,, the proof of which we also defer.
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Lemma 20. Let p € (0,1). For every a,b > 0 with aT'"b < 1, we have

GELAODPY (a;b) |

This lemma applied to a = = + 2<vn,1,QTvn> and b = x — 2<vn,1,QTvn> (which
satisfy a,b > 0 and GTH’ =z < 1) finishes the proof of the inductive step.
It remains to show the lemmas we have used. O

Proof of Lemma 19. First note that if ||v]| > 1 then, due to rotational invariance,

-p

El(er,€1) + (0, €2)[? = |0l 7E ‘<H5> + <W5>

= |lv| PE|(v', &) + (e1,&2)| 7P

for any v’ € R? such that |[v/[| = ﬁ < 1, while at the same time

Op(I[vl*) = eu(llvll®) = vl P op(ll'[I?)-

This shows that the desired inequality is then equivalent to

El{er, &) + (v, &)17F < ca(p)dp([V']1), [0 < 1.

Since ®,(z) < ¢p(x) for x € [0, 1], it is sufficient to prove the lemma in the case ||v|| < 1.

Fix v € R3 with 2 = |lv]| < 1. To compute explicitly the left hand side of (19),
recall that for any w € R3, (w, £) has the same distribution as ||w|U where £ and U are
uniformly distributed on S? and [—1, 1], respectively. Then, we have that

11
1
El{e1,&1) + (v, &) P =E|U; +2Us| 7P = Z//|u1 + zug| "Pduydusg

(1+2)2>P—(1—a)*P
20-p)2-plz

Recalling the definition of ¢s(p) and @, on [0, 1], we thus get that (19) becomes

(1+2)27P —(1—a)*P
2x

< 21—p/2(21—p/2 _ (3 _ x2)—p/2)

for every 0 < x < 1. Note that we can write this as

2-p 2—p 2\ —P/2
1+x 1—=x 3—x
- < )

so Lemma 12 finishes the proof. O
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Proof of Lemma 20. We can assume without loss of generality that a < b. If b < 1, the
desired inequality follows from the concavity of ®, on [0, 1]. So, assume that b > 1. Then
using the facts a < b and “T“’ < 1, we can write

0 <a + b) 1do, 1d%,
=, (— | ==—2

<=2

0 Py(a) + Dy(b)

r=a o 8(1 2 ’

da 2 T2 dx

using the fact that the derivative of @ is decreasing on [0, 1]. This implies that

b, (12 - Bola) 0

is a decreasing function of a, so to prove the desired inequality, it suffices to show that
the latter is nonnegative for the maximum value of a, that is a = ag = 2—b. Since b > 1,
ap < 1 and by the definition of ®,, ®,(ap) = 2¢p(1) — dp(2 — (2 = b)) = 2¢,(1) — ¢p(b)
and @, (b) = ¢,(b), we get

Byfa0) + By _ 20,(1) = 6,0) + 6,(0) o+
el U : o) =2, (210).

that is, the desired inequality is in fact an equality in this case. O

Remark 21. Let p € (0,1). Let X be a rotationally invariant random vector in R3. For
every nonzero vector y in R3, observing that || X + y||* has the same distribution as
1 X1% + llylI® + 2| X |||ly||U, where U is uniform on [—1, 1], independent of X, we have

X1+ )™~ = [1X ) = [yl ™"

E[|X +y||™" = JE(
22 = pI Xyl

In particular, by the concavity of t — t' P,
EIX +y|™" <E[X[7".

This combined with independence gives

n —p
E < i P,
D akk| < min a|
k=1
For p = 1, this immediately gives (2) in the case of a large weight, maxy<, |ax| >

% (ZZ:1 az)l/2 and Theorem 18 is not needed (this corresponds to the simple projec-
tion argument from [3] handling this case). For p < 1, this argument yields the nonsharp
constant 2P/2 instead of (1 — p)C,.
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5.4. Proof of Corollary /

Let G = (G1,G2,G3) be a standard Gaussian random vector in R3 (mean 0, co-
variance I), independent of the sequence (£;)7_,. Then for every vector z in R3,
since (z, G) has the same distribution as ||z||G1, we have ||z 7P = a,E|(z, G)| 7P with
ap = (E|G1]7P)~!. Therefore,

-p

-Pp n

> (6 AL G)

k=1

(21)

= Oép]EG

> Arée
h=1

Using this and inequality (6), we obtain

-p n -p

> (6 ALG)

k=1

E = Ozp]Eg]Ef

" —p/2
< CrpEg (Z ||AkTG||2> :

k=1

> Ag
k=1

Rewriting the sum of squares using the second moment, applying Minkowski’s inequality
(with the negative exponent —2) and using (21) again, we get
P

2 —p/2

S (6. 416)

k=1

n —p/2
CrapEq <Z ||A;—G||2> = CpopEq | 3E¢

k=1
-2/p -p/2

n —p

> (6 ALG)

k=1

<37P2C,0, | B¢ | Eq

2 —p/2

Z Ak

k=1

=370, | B¢

. n 2 n
Finally, 3E¢ | h_, Avérll” = Sre, |4kl%s- O
6. Conclusion

Continuing a long line of work and particularly addressing some questions raised in
[2], we have established a sharp Khinchin-type L_, — L, moment comparison inequality
when p € (0,1) for weighted sums of independent random variables uniform on [—1, 1],
equivalently uniform vectors on the unit sphere S in R3. In this case, this provides a
sharp version of the very general results from [14].

We have not tried to optimise various technical numerical estimates which would
certainly allow to extend our results to p € (0,p1), p1 = 1.38 (the negative moments of
order —p for S2-uniform vectors exist for all p < 2). The arguments seem robust enough
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to handle cases of S"—uniform vectors for other values of r (most notably the case of
r = 1 corresponding to Steinhaus random variables as well as the case of » = 3 which
would provide extensions of the polydisc slicing inequality of Oleszkiewicz and Pelczyriski
from [35], just as our result extends Ball’s cube slicing inequality from [3]). All this is
the topic of ongoing and future work. Some time after this manuscript was completed,
the question of a sharp L, — Ly, 0 < p < 1, moment comparison for Y ;_, axUi was
addressed in [8] (see Question 5 and Proposition 15 in [12]).
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