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ABSTRACT

We establish several optimal moment comparison inequalities (Khinchin-

type inequalities) for weighted sums of independent identically distributed

symmetric discrete random variables which are uniform on sets of con-

secutive integers. Specifically, we obtain sharp constants for the second

moment and any moment of order at least 3 (using convex dominance by

Gaussian random variables). In the case of only 3 atoms, we also establish

a Schur-convexity result. For moments of order less than 2, we get sharp

constants in two cases by exploiting Haagerup’s arguments for random

signs.

1. Introduction

The classical Khinchin inequality asserts that all moments of weighted sums of

independent random signs are comparable (see [13]). More specifically, if we

consider independent random signs ε1, ε2, . . ., the probability of each εi taking

the value ±1 is a half and form a weighted sum S =
∑n

i=1 aiεi with real coeffi-

cients ai, then for every p, q > 0, there is a positive constant Cp,q independent

of n and the ai such that

(1) ‖S‖p ≤ Cp,q‖S‖q.
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As usual,

‖X‖p = (E|X |p)1/p

denotes the p-th moment of a random variable X . Moment comparison inequal-

ities like this one are well understood up to universal constants in a great gener-

ality due to Lata"la’s formula from [18]. They have found numerous applications

in classical results in analysis (for example in the proof of the Littlewood–Payley

decomposition or Grothendieck’s inequality) and, especially their extensions to

vector valued settings (Kahane’s inequalities), have been widely used in (local)

theory of Banach spaces (see [21], [23]). One of the major challenges is to find

the best constants Cp,q, which has attracted considerable attention and has im-

portant applications (for instance in geometry, C2,1 is directly linked with the

maximum volume projections of the n-dimensional cross-polytope onto n − 1

dimensional subspaces, see [3, 5]). Besides, attacking sharp inequalities forces

us to uncover often deep and effective mechanisms explaning bigger pictures

and providing insights as to why certain inequalities are true.

For results concerning the best constant Cp,q in the classical Khinchin inequal-

ity (1), we mention in passing works [7, 11, 14, 19, 24, 25, 26, 30, 32, 34, 36, 37],

highlighting only that the optimal value of Cp,q is known when p < q (trivial),

either p or q is 2, or both p and q are even. There have been only a handful

of results concering random variables other than random signs. They involve

continuous random variables uniformly distributed on symmetric intervals and

generalisations for random vectors uniformly distributed on Euclidean spheres

and balls (see [2, 15, 16, 20]), mixtures of centred Gaussians (see [1, 8]), the so-

called exponential family given by the density e−|x|α and uniform distributions

on unit "nα balls (see [4, 8, 9]), dependent random signs (see [31, 33]), as well as

general random variables via their spectral properties (see [17, 29]).

This paper concerns Khinchin-type inequalitites with sharp constant for sym-

metric discrete random variables, generalising random signs by allowing more

than just two atoms. Specifically, in the simplest case, let L be a positive integer

and let X be uniform on the set {−L, . . . ,−1}∪ {1, . . . , L}. What are the best

constants in moment comparison inequalities for weighted sums of independent

copies of X? Note that the following two extreme cases have been understood:

when L = 1, X is a symmetric random sign discussed above, whereas when

L → ∞, X/L converges in distribution to a random variable uniform on [−1, 1],

the case analysed in [20].
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We present our results in the next section and then proceed with their proofs

in their order of statement. We say that a random variable X is symmetric

if −X has the same distribution as X , equivalently εX and ε|X | have the same

distribution as X , where ε is an independent symmetric random sign, that

is, P(ε = −1) = P(ε = 1) = 1
2 . We usually denote by G a standard Gaussian

random variable, that is, a real-valued random variable with density 1√
2π

e−x2/2.

For p > 0, we have

‖G‖p = 21/2(π−1/2Γ((p+ 1)/2))1/p,

where Γ stands for the gamma function.

Acknowledgements. We are indebted to Krzysztof Oleszkiewicz for his help

and valuable feedback.

2. Results

Given ρ0 ∈ [0, 1] and a positive integer L, consider a random variable X with

(2) P(X=0)=ρ0 and P(X=j)=P(X=−j) =
1−ρ0
2L

for j=1, . . . , L.

For a = (a1, . . . , an) ∈ Rn and p ≥ 1, we let

(3) Np(a) =

∥∥∥∥
n∑

i=1

aiXi

∥∥∥∥
p

,

where X1, X2, . . . are i.i.d. copies of X . Throughout, G stands for a standard

Gaussian random variable. We refer to the classical monograph [12], or to [6]

for a concise exposition of majorisation and Schur-convexity. Our main results

are as follows.

Theorem 1: Let ρ0 ∈ [0, 12 ] and L = 1. If p ≥ 3, then the function

(a1, . . . , an) )→ Np(
√
a1, . . . ,

√
an)

is Schur-concave on [0,+∞)n.

As an immediate corollary, we obtain the best constants in Khinchin inequal-

ities (it can be done as, for instance, in the proof of Corollary 25 from [8]).

Corollary 2: Under the assumptions of Theorem 1, the best constant Cp such

that the inequality Np(a) ≤ CpN2(a) holds for all n and a ∈ Rn is Cp = ‖G‖p.
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Our next result concerns Khinchin inequalities for p ≥ 3 for arbitrary L

and ρ0=0.

Theorem 3: Let ρ0 = 0 and L ≥ 1 be an integer. If p ≥ 3, then the best

constant Cp such that the inequality Np(a) ≤ CpN2(a) holds for all n and

a ∈ Rn is Cp = ‖G‖p.

Finally, in the presence of large mass at 0 and arbitrarily many atoms L, we

obtain a sharp L1 − L2 inequality, which holds in a greater generality.

Theorem 4: Let ρ0 ∈ [ 12 , 1) and let Y, Y1, Y2, . . . be i.i.d. symmetric random

variables with P(Y = 0) = ρ0. Define Np(a) = ‖
∑n

i=1 aiYi‖p. The best con-

stant c1 such that the inequality N1(a) ≥ c1N2(a) holds for all n and a ∈ Rn is

c1 = ‖Y ‖1/‖Y ‖2.

Some restrictions on ρ0 in our theorems are needed, however our specific ones

may not be optimal. We defer a discussion to the last section.

Remark 5: When p is a positive even integer, Theorem 3 can be deduced from

Newman’s results from [27] (see also [28]).

Remark 6: Using [25], Theorem 3 can be extended to a sharp moment compar-

ison between all even moments with an optimal restriction on ρ0, which will

appear elsewhere.

Remark 7: When L = 1 and Y = X , Theorem 4 follows from general results

of Oleszkiewicz from [29] concerning arbitrary symmetric random variables and

coefficients in Banach space (see Corollary 2.4 therein).

We finish this section with a few words on proofs. Our proof of Theorem 1 fol-

lows a direct approach from Eaton’s work [7], combined with techniques (used,

for instance, in [10], or [9]) exploiting linearity and allowing to reduce verifica-

tion of certain inequalities needed for averages of power functions | · |p to simple

(piecewise linear) functions. To prove Theorem 3, we employ an inductive ar-

gument (on n) which crucially uses independence and convexity of certain func-

tions and is based on swapping the Xi one by one with independent Gaussians.

For Theorem 4, we extend Haagerup’s short proof from [11] of Szarek’s result

from [34] saying that the best constant C2,1 in (1) is
√
2 (for the latter, see also

[19, 22, 35]). We rely on an integral representation for the first moment used by

Haagerup, combined with convexity arguments allowing to handle more atoms.
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3. Proofs

3.1. A Schur-convexity result: Proof of Theorem 1. We begin with

two technical lemmas. Let C be the linear space of all continuous functions on R
equipped with pointwise topology. Let C1 ⊂ C be the cone of all odd functions

on R which are nondecreasing convex on (0,+∞) and let C2 ⊂ C be the cone

of all even functions on R which are nondecreasing convex on (0,+∞). Note

that C2 is the closure (in the pointwise topology) of the set S={(|x|−γ)+, γ≥0}.

Lemma 8: Let q ≥ 2, w ≥ 0 and

φw(x) = sgn(x+ w)|x + w|q + sgn(x − w)|x − w|q, x ∈ R.

Then φw ∈ C1. Let rw(x) =
φw(x)

x , x ∈ R (with the value at x = 0 understood

as the limit). Then rw ∈ C2.

Proof. The case w=0 is clear. For w>0, verifying that φw∈C1 and rw∈C2, by
homogeneity, is equivalent to doing so for w = 1. Let w = 1 and denote φ = φ1

and r = r1. Suppose we have shown that r ∈ C2. Then, plainly, φ(x) = xr(x)

is also nondecreasing on (0,∞) and

φ′′(x) = (r(x) + xr′(x))′ = 2r′(x) + xr′′(x)

is nonnegative on (0,∞) since r′ and r′′ are nonnegative on (0,∞).

It remains to prove that r ∈ C2. Plainly φ(x) is odd and thus r(x) is even.

Thus we consider x > 0.

Case 1. x ≥ 1. We have, φ(x) = (x+ 1)q + (x− 1)q,

r′(x) =
φ′(x)

x
− φ(x)

x2
= q

(x+ 1)q−1 + (x− 1)q−1

x
− (x+ 1)q + (x− 1)q

x2

and

x3r′′(x) =x3
[φ′′(x)

x
− 2

φ′(x)

x2
+ 2

φ(x)

x3

]

=q(q − 1)x2[(x + 1)q−2 + (x− 1)q−2]2qx[(x+ 1)q−1 + (x − 1)q−1]

+ 2[(x+ 1)q + (x− 1)q].

Taking one more derivative gives

(x3r′′(x))′ = q(q − 1)(q − 2)x2[(x+ 1)q−3 + (x− 1)q−3]
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which is clearly positive for x > 1 since q ≥ 2. Thus, for x > 1, we have

x3r′′(x) > r′′(1) = q(q− 1) · 2q−2 − 2q · 2q−1 +2 · 2q = 2q−2
((

q− 5

2

)2
+

7

4

)
> 0.

Therefore, r′′(x) > 0 for x > 1. Since r′(1) = q2q−1 − 2q = 2q−1(q − 2) ≥ 0, we

also get that r′(x) is positive for x > 1.

Case 2. 0 < x < 1. The argument and the computations are very similar

to Case 1. We have φ(x) = (1 + x)q − (1− x)q, we find that

(x3r′′(x))′ = q(q − 1)(q − 2)x2[(1 + x)q−3 + (1− x)q−3].

If q > 2, this is positive for 0 < x < 1. Then in this case, consequently,

x3r′′(x) > x3r′′(x)|x=0 = 0,

so r′′(x) is positive for 0 < x < 1. As a result, r′(x) > r′(0+) = 0 for 0 < x < 1.

If q = 2, we simply have φ(x) = 4x and r(x) = 4.

Combining the cases, we see that both r′ and r′′ are nonnegative on (0,+∞),

which finishes the proof.

Lemma 9: The best constant D such that the inequality

(4) D ·
[φ(a+ b)− φ(b− a)

2a
− φ(a + b) + φ(b− a)

2b

]
≥

[φ(b)
b

− φ(a)

a

]

holds for all 0 < a < b and every function φ(x) of the form xr(x), r ∈ C2,
is D = 1.

Proof. For φ(x) = xr(x), r(x) = |x|, by homogeneity, inequality (4) is equiva-

lent to: for all 0 < a < 1, we have

D ·
[ (1 + a)2 − (1− a)2

2a
− (1 + a)2 + (1 − a)2

2

]
≥ 1− a,

that is, D · (1−a2) ≥ (1−a) for all 0 < a < 1, which holds if and only if D ≥ 1.

Now we show that in fact (4) holds with D = 1 for every φ(x) = xr(x), where

r ∈ C2. Since C2 is the closure of S, by linearity, it suffices to show this for

all simple functions r ∈ S, that is, r(x) = (|x| − γ)+. By homogeneity, this is

equivalent to showing that for all γ ≥ 0 and 0 < a < 1, we have

(1+a)(1+a−γ)+− (1−a)(1−a−γ)+
2a

− (1+a)(1+a−γ)++ (1−a)(1−a−γ)+
2

≥ (1 − γ)+ − (a− γ)+.
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Fix 0 < a < 1. Let ha(γ) be the left-hand side minus the right-hand side.

For γ ≥ 1 + a, ha(γ) = 0. Since as a function of γ, ha(γ) is piecewise linear,

showing that it is nonnegative on [0, 1 + a] is equivalent to verifying it at the

nodes γ ∈ {0, 1, a, 1− a}. We have ha(0) = a− a2 > 0. Next,

ha(1) =
(1 + a)a

2a
− (1 + a)a

2
=

1

2
(1 + a)(1− a) > 0.

Finally, to check γ = a and γ = 1− a, we consider two cases.

Case 1. a ≤ 1− a, that is, 0 < a ≤ 1
2 . Then

ha(a) =
(1 + a)− (1 − a)(1− 2a)

2a
− (1 + a) + (1− a)(1 − 2a)

2
− (1− a)

= a(1 − a) > 0

and

ha(1 − a) =
(1 + a)2a

2a
− (1 + a)2a

2
− a = 1− a2 − a ≥ 1− 1

4
− 1

2
=

1

4
.

Case 2. a > 1− a, that is, 1
2 < a < 1. Then

ha(a) =
(1 + a)

2a
− (1 + a)

2
− (1− a) =

(1 − a)2

2a
> 0

and

ha(1− a) =
(1 + a)2a

2a
− (1 + a)2a

2
− [a− (2a− 1)] = a(1− a) > 0.

Proof of Theorem 1. Fix p ≥ 3 and let F (x) = |x|p. We would like to show

that the function

Φ(a1, . . . , an) = EF
( n∑

i=1

√
aiXi

)

is Schur concave. Since Φ is symmetric, by Ostrowski’s criterion (see, e.g.,

Theorem II.3.14 in [6]), Φ is Schur concave if and only if ∂Φ
∂a1

≥ ∂Φ
∂a2

, a1 < a2,

which is equivalent to

1
√
a1

E[X1F
′(S)] ≥ 1

√
a2

E[X2F
′(S)],

where S =
√
a1X1 +

√
a2X2 +W and W =

∑
i>2

√
aiXi. We take the expec-

tation with respect to X1 and X2. Suppose ρ0 < 1. Since F ′ is odd and W is

symmetric, we get,

−EF ′(−
√
a1 +W ) = EF ′(

√
a1 +W )
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and similarly for the other terms that show up. Consequently, the inequality

can be equivalently rewritten as

3
1

√
a1

(2ρ0EF ′(
√
a1 +W ) + (1− ρ0)E[F ′(

√
a1 +

√
a2 +W )

− F ′(−
√
a1 +

√
a2 +W )])

≥ 1
√
a2

(2ρ0EF ′(
√
a2 +W ) + (1− ρ0)E[F ′(

√
a2 +

√
a1 +W )

+ F ′(
√
a2 −

√
a1 +W )]).

Set a =
√
a1, b =

√
a2 and

φ(x) = EF ′(x+W ), x ∈ R

(φ is also odd). Suppose ρ0 > 0. Then, the validity of the above inequality is

equivalent to the question whether for all 0 < a < b,

(5) (ρ−1
0 − 1)

[
φ(a+ b)− φ(b− a)

2a
− φ(a+ b) + φ(b− a)

2b

]
≥

[
φ(b)

b
− φ(a)

a

]
.

By the symmetry of W , it has the same distribution as ε|W |, where ε is an

independent symmetric random sign, so we can write φ(x) = 1
2Eφ|W |(x), where

for w ≥ 0, we set

φw(x) = F ′(x+ w) + F ′(x− w).

By Lemmas 8 and 9, inequality (5) holds for φw in place of φ (for every w≥0) as

long as ρ−1
0 −1≥1. Taking the expectation against |W | yields the inequality for φ,

as desired. For ρ0=0, we can for instance argue by taking the limit ρ0→0+.

3.2. Second, third and higher moments: Proof of Theorem 3. The

value of Cp is seen to be sharp by taking a1 = · · · = an = 1√
n
, letting n → ∞

and applying the central limit theorem.

To establish Np(a) ≤ CpN2(a), we set

(6) σ =
√

E|X1|2 =
((L+ 1)(2L+ 1)

6

)1/2

and let G1, G2, . . . be i.i.d. centred Gaussian random variables with variance σ2.

Since

Cp
p

(
E
∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣
2)p/2

= Cp
p

( n∑

i=1

a2i

)p/2

σp/2 = E
∣∣∣∣

n∑

i=1

aiGi

∣∣∣∣
p

,
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inequality Np(a) ≤ CpN2(a) is equivalent to

E
∣∣∣∣

n∑

i=1

aiXi

∣∣∣∣
p

≤ E
∣∣∣∣

n∑

i=1

aiGi

∣∣∣∣
p

.

By independence and induction, it suffices to show that for all reals a, b, we have

(7) E|a+ bX1|p ≤ E|a+ bG1|p.

This will follow from the following claim.

Claim: For every convex nondecreasing function h: [0,+∞)→ [0,+∞), we have

(8) Eh(X2
1 ) ≤ Eh(G2

1).

Indeed, (7) for b = 0 is clear. Assuming b ,= 0, by homogeneity, (7) is

equivalent to

E|a+X1|p ≤ E|a+G1|p.

Using the symmetry of X1, we can write

2E|a+X1|p = E|a+ |X1||p + E|a− |X1||p = Eha(X
2
1 ),

where

(9) ha(x) = |a+
√
x|p + |a−

√
x|p, x ≥ 0

(and similarly for G1). The convexity of ha is established in the following

standard lemma (see also, e.g., Proposition 3.1 in [10]).

Lemma 10: Let p ≥ 3, a ∈ R. Then ha defined in (9) is convex nondecreasing

on [0,∞).

Proof. The case a = 0 is clear (and the assertion holds for p ≥ 2). The case

a ,= 0 reduces by homogeneity to, say a = 1. We have

h′
1(x) =

p

2
√
x
[|1 +

√
x|p−1 + sgn(

√
x− 1)|

√
x− 1|p−1]

and it suffices to show that the function

g(y) =
|1 + y|p−1 + sgn(y − 1)|y − 1|p−1

y

is nondecreasing on (0,∞). Call the numerator f(y). Since g(y) = f(y)−f(0)
y−0 , it

suffices to show that f is convex (0,∞). We have

f ′(y) = (p− 1)(|1 + y|p−2 + |y − 1|p−2)
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which is convex on R for p ≥ 3, hence nondecreasing on (0,∞) (as being even).

This justifies that h′
1 is nondecreasing, hence h1 is convex. Since

h′
1(0) = f ′(0) = 2(p− 1) > 0,

we get h′
1(x) ≥ h′

1(0) > 0, so h1 is increasing on (0,∞).

Thus 2E|a + X1|p = Eha(X2
1 ) ≤ Eha(G2

1) = 2E|a + G1|p by the claim, as

desired. It remains to prove the claim.

Proof of the Claim. When L = 1, the claim follows immediately becauseX2
1 =1

and by Jensen’s inequality,

Eh(G2
1) ≥ h(EG2

1) = h(1) = Eh(X2
1 ).

We shall assume from now on that L ≥ 2.

By standard approximation arguments, it suffices to show that the claim holds

for h(x) = (x − a)+ for every a > 0. Here and throughout x+ = max{x, 0}.
Note that

E(X2
1 − a)+ =

1

2L

L∑

k=−L

(k2 − a)+ =
1

L

L∑

k=$
√
a%

(k2 − a)

and

E(G2
1−a)+ =

∫ ∞

−∞
(x2−a)+

1√
2πσ2

e−x2/2σ2

dx =

√
2

πσ2

∫ ∞

√
a
(x2−a)e−x2/2σ2

dx

with σ (depending on L) defined by (6). Fix an integer L ≥ 2 and set, for

nonnegative a,

f(a) =

√
2

πσ2

∫ ∞

√
a
(x2 − a)e−x2/2σ2

dx− 1

L

L∑

k=$
√
a%

(k2 − a).

Our goal is to show that f(a) ≥ 0 for every a ≥ 0. This is clear for a > L2

because then the second term is 0. Note that f is continuous (because x )→ x+

is continuous). For a ∈ (b2, (b + 1)2) with b ∈ {0, 1, . . . , L − 1} our expression

becomes

f(a) =

√
2

πσ2

∫ ∞

√
a
(x2 − a)e−x2/2σ2

dx− 1

L

L∑

k=b+1

(k2 − a),
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is differentiable and

(10)

f ′(a) = −
√

2

πσ2

∫ ∞

√
a
e−x2/2σ2

dx− 1

L

L∑

k=b+1

(−1)

= −
√

2

πσ2

∫ ∞

√
a
e−x2/2σ2

dx+
L− b

L
.

Bounding b <
√
a yields

f ′(a) ≥ −
√

2

πσ2

∫ ∞

√
a
e−x2/2σ2

dx+
L−

√
a

L

= −
√

2

π

∫ ∞

√
a/σ

e−x2/2dx+
(
1−

√
a

L

)
.

Let g̃(a) denote the right-hand side. We have obtained f ′ ≥ g̃ on (0, L2) (except

for the points 12, 22, . . .). Since f is absolutely continuous and f(0) = 0, we can

write f(a) =
∫ a
0 f ′(x)dx and consequently

f(a) ≥ g(a), a ∈ [0, L2],

where we define

g(a) =

∫ a

0
g̃(x)dx.

Note:

g′′(a) = g̃′(a) =
1

2
√
a

(√
2

π

1

σ
e−

a
2σ − 1

L

)

which changes sign from positive to negative (since
√

2
π

1
σ − 1

L > 0 for L ≥ 2).

This implies that g′ is first strictly increasing, then strictly decreasing and, to-

gether with g′(0) = g̃(0) = 0, g′(∞) = −∞, it gives that g′ is first positive,

then negative. Consequently, g is first strictly increasing and then strictly de-

creasing. Since g(0) = 0, to conclude that g is nonnegative on [0, L2] (hence f),

it suffices to check that g(L2) ≥ 0. We have

g(L2) =

∫ L2

0

[
−
√

2

π

∫ ∞

√
a/σ

e−x2/2dx+
(
1−

√
a

L

)]
da

=

√
2

π

∫ L/σ

0
(L2 − σ2x2)e−x2/2dx− 2

3
L2.
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Note that for t = t(L) = L2

σ2 = 6L2

(L+1)(2L+1) , the expression g(L2)
σ2 becomes

h(t) =

√
2

π

∫ √
t

0
(t− x2)e−x2/2dx− 2

3
t.

We have

h′(t) =

√
2

π

∫ √
t

0
e−x2/2dx− 2

3
.

For L ≥ 7, we have t ≥ t0 = t(7) = 49
20 . We check that h′(t0) = h′(4920 ) > 0.2 and

since h′ is increasing, h′(t) is positive for t ≥ t0, hence h(t)≥h(t0)=h(4920 )>0.01

for t ≥ t0. Consequently, g(L2) > 0 for every L ≥ 7, which completes the proof

for L ≥ 7.

It remains to address the cases 2 ≤ L ≤ 6. Here lower-bounding f by g

incurs too much loss, so we show that f is nonnegative on [0, L2] by direct

computations. First note that f ′(a) (see (10)) is strictly increasing on each

interval a ∈ (b2, (b + 1)2), b ∈ {0, 1, . . . , L − 1}. Clearly f ′(0+) = 0 and we

check that θL,b = f ′(b2+) > 0 for every b ∈ {1, . . . , L − 2} and 3 ≤ L ≤ 6 (see

Table 1), so f(a) is strictly increasing for a ∈ (0, (L− 1)2). Since f(0) = 0, this

shows that f(a) > 0 for a ∈ (0, (L− 1)2). On the interval ((L− 1)2, L2), we use

the convexity of f and we lower-bound f by its tangent at a = (L− 1)2+ with

the slope θL,L−1 (which is negative), that is,

f(a) ≥ θL,L−1(a− (L− 1)2) + f((L− 1)2).

It remains to check that vL = θL,L−1(2L − 1) + f((L − 1)2), the values of the

right hand side at the end point a = L2 are positive. We have v2 > 0.2, v3 > 0.7,

v4 > 1.2, v5 > 1.9, v6 > 2.6. This finishes the proof.

Table 1. Lower bounds on the values of the slopes θL,b = f ′(b2+)

b = 1 b = 2 b = 3 b = 4

θ3,b 0.02

θ4,b 0.03 0.03

θ5,b 0.03 0.05 0.03

θ6,b 0.03 0.05 0.05 0.02
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Remark 11: We can drop the assumption in Theorem 3 of the Xi being iden-

tically distributed and only assume their independence (we stated it in the

i.i.d. case for simplicity). The proof does not change: we only have to choose

the independent Gaussian random variables Gi to be such that E|Gi|2 = E|Xi|2

and then (8), hence (7), holds for each Xi.

3.3. First and second moments: Proof of Theorem 4. For a1 = 1,

a2 = · · · = an = 0, inequality N1(a) ≥ c1N2(a) becomes equality, so the value

of the constant c1 is sharp. To prove the inequality, we shall closely follow

Haagerup’s approach from [11]. Note that Y has the same distribution as θεR,

where θ is a Bernoulli random variable with parameter 1− ρ0, ε is a symmetric

random sign, R is a positive random variable and θ, ε and R are independent (the

law of R is the same as the law of |X | conditioned onX ,= 0). Let φY (t) = EeitY

be the characteristic function of Y . We have

φY (t) = ρ0 + (1− ρ0)E cos(tR) ≥ ρ0 − (1 − ρ0) = 2ρ0 − 1 ≥ 0.

We also define

F (s) =
2

π

∫ ∞

0

[
1−

∣∣∣φY

( t√
s

)∣∣∣
s]dt

t2
, s ≥ 1.

By symmetry, without loss of generality we can assume that a1, . . . , an are

positive with
∑

a2j = 1. By Lemma 1.2 from [11] and independence,

N1(a) = E
∣∣∣∣
∑

j

ajYj

∣∣∣∣ =
2

π

∫ ∞

0

[
1−

∏

j

φY (ajt)

]
dt

t2
.

By the AM–GM inequality,
∏

φY (ajt) ≤
∑

a2j |φY (ajt)|a
−2
j ,

thus N1(a) ≥
∑

j a
2
jF (a−2

j ). If we show that

(11) F (s) ≥ F (1), s ≥ 1,

then

N1(a) ≥
∑

j

a2jF (1) = F (1) =
F (1)√
E|Y |2

N2(a).

Since φY is nonnegative, using again Lemma 1.2 from [11], we have

F (1) =
2

π

∫ ∞

0
[1− |φY (t)|]

dt

t2
=

2

π

∫ ∞

0
[1− φY (t)]

dt

t2
= E|Y |,

so the proof of N1(a) ≥ c1N2(a) with c1 = ‖Y ‖1/‖Y ‖2 is finished.



294 A. HAVRILLA AND T. TKOCZ Isr. J. Math.

It remains to show (11). For a fixed s ≥ 1, the left-hand side

F (s) =
2

π

∫ ∞

0

[
1−

∣∣∣ρ0 + (1− ρ0)E cos
( tR√

s

)∣∣∣
s]dt

t2

is concave as a function of ρ0, whereas the right-hand side

F (1) = E|Y | = (1− ρ0)ER

is linear as a function of ρ0. Therefore, it is enough to check the cases: 1) ρ0 = 1

which is clear, 2) ρ0 = 1/2 which becomes

2

π

∫ ∞

0

[
1−

∣∣∣
1

2
+

1

2
E cos

( tR√
s

)∣∣∣
s]dt

t2
≥ 1

2
ER.

Using cos x+1
2 = cos2(x/2) and then employing convexity, the left-hand side can

be rewritten and lower bounded as follows:

2

π

∫ ∞

0

[
1−

∣∣∣E cos2
( tR

2
√
s

)∣∣∣
s]dt

t2
≥ E 2

π

∫ ∞

0

[
1−

∣∣∣ cos
( tR

2
√
s

)∣∣∣
2s]dt

t2
.

A change of variables t =
√
2t′/R allows to write the right-hand side as

E
[
2

π

∫ ∞

0

[
1−

∣∣∣ cos
( t′√

2s

)∣∣∣
2s]dt′

t′2
R√
2

]
=

ER√
2
FHaa(2s),

where

FHaa(s) =
2

π

∫ ∞

0

[
1−

∣∣∣ cos
( t√

s

)∣∣∣
s]dt

t2

is Haagerup’s function (see Lemmas 1.3 and 1.4 in [11]). He showed therein

that it is increasing, so for s ≥ 1, we get FHaa(2s) ≥ FHaa(2) = 1√
2
and this

finishes the proof.

Remark 12: Thanks to Remark 2.5 from [11], the same proof also works if we

replace the first moment by the p0-th one, where p0 = 1.847 . . . is the unique

solution to Γ(p+1
2 ) =

√
π
2 , p ∈ (0, 2). The cases of other values of p ∈ (1, 2) have

been elusive.

4. Necessity of the restrictions on ρ0

We use the notation from (2) and (3). We derive some necessary conditions

on ρ0, justifying to some extent our restrictions on ρ0 made in Theorems 1, 3

and 4.

Remark 13: For Theorem 1 to hold, we necessarily have d
dλN

3
3 (
√
λ,

√
1− λ) ≥ 0

for λ ∈ (0, 1
2 ). Letting λ → 0+ yields (1− ρ0)(1 − 2ρ0) ≥ 0, hence ρ0 ≤ 1

2 .
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Remark 14: In Theorem 3, a necessary condition on ρ0 is

ρ0 ≤ 1− 27π

128
= 0.33732 . . . .

This follows from N3(1) ≤ ‖G‖3N2(1) with L → ∞.

Remark 15: In Theorem 4, a necessary condition on ρ0 is ρ0 ≥
√
2 − 1. This

follows from N1(1, 1) ≥ c1N2(1, 1) applied to Y = X , which is equivalent to

(1 − ρ0)
2L+ 1

3L
≥ 2−

√
2,

so L = 1 gives ρ0 ≥
√
2− 1.

Thus the restriction in Theorem 1 is sharp, while those in Theorems 3 and 4

are by-products of our proofs and can perhaps be improved. We believe the

optimal ones are indicated above (for the following reasons: one can check that

the case n = 2 and Y = X of Theorem 4 holds for ρ0 ∈ [
√
2 − 1, 1); moreover,

in the context of Theorem 3, N4(1) ≤ ‖G‖4N2(1) with L → ∞ is a sufficient

condition for Nq(a) ≤ ‖G‖q

‖G‖p
Np(a) to hold for all 2 ≤ p < q even integers—see

Remark 6).
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