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ABSTRACT

We establish several optimal moment comparison inequalities (Khinchin-
type inequalities) for weighted sums of independent identically distributed
symmetric discrete random variables which are uniform on sets of con-
secutive integers. Specifically, we obtain sharp constants for the second
moment and any moment of order at least 3 (using convex dominance by
Gaussian random variables). In the case of only 3 atoms, we also establish
a Schur-convexity result. For moments of order less than 2, we get sharp
constants in two cases by exploiting Haagerup’s arguments for random
signs.

1. Introduction

The classical Khinchin inequality asserts that all moments of weighted sums of
independent random signs are comparable (see [13]). More specifically, if we
consider independent random signs €1, €9, . . ., the probability of each ¢; taking
the value +1 is a half and form a weighted sum S = """ | a;&; with real coeffi-
cients a;, then for every p,q > 0, there is a positive constant C}, ; independent
of n and the a; such that

(1) 151> < Cp.qllSlla-
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As usual,
X1, = (BIX[P)!/P

denotes the p-th moment of a random variable X. Moment comparison inequal-
ities like this one are well understood up to universal constants in a great gener-
ality due to Latala’s formula from [18]. They have found numerous applications
in classical results in analysis (for example in the proof of the Littlewood—Payley
decomposition or Grothendieck’s inequality) and, especially their extensions to
vector valued settings (Kahane’s inequalities), have been widely used in (local)
theory of Banach spaces (see [21], [23]). One of the major challenges is to find
the best constants C), ,, which has attracted considerable attention and has im-
portant applications (for instance in geometry, Cs 1 is directly linked with the
maximum volume projections of the n-dimensional cross-polytope onto n — 1
dimensional subspaces, see [3, 5]). Besides, attacking sharp inequalities forces
us to uncover often deep and effective mechanisms explaning bigger pictures
and providing insights as to why certain inequalities are true.

For results concerning the best constant C), 4 in the classical Khinchin inequal-
ity (1), we mention in passing works [7, 11, 14, 19, 24, 25, 26, 30, 32, 34, 36, 37,
highlighting only that the optimal value of Cp 4 is known when p < ¢ (trivial),
either p or ¢ is 2, or both p and ¢ are even. There have been only a handful
of results concering random variables other than random signs. They involve
continuous random variables uniformly distributed on symmetric intervals and
generalisations for random vectors uniformly distributed on Euclidean spheres
and balls (see [2, 15, 16, 20]), mixtures of centred Gaussians (see [1, 8]), the so-
called exponential family given by the density e~!*I" and uniform distributions
on unit £7 balls (see [4, 8, 9]), dependent random signs (see [31, 33]), as well as
general random variables via their spectral properties (see [17, 29]).

This paper concerns Khinchin-type inequalitites with sharp constant for sym-
metric discrete random variables, generalising random signs by allowing more
than just two atoms. Specifically, in the simplest case, let L be a positive integer
and let X be uniform on the set {—L,...,—1}U{l,..., L}. What are the best
constants in moment comparison inequalities for weighted sums of independent
copies of X7 Note that the following two extreme cases have been understood:
when L = 1, X is a symmetric random sign discussed above, whereas when
L — o0, X/L converges in distribution to a random variable uniform on [—1, 1],
the case analysed in [20].
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We present our results in the next section and then proceed with their proofs
in their order of statement. We say that a random variable X is symmetric
if —X has the same distribution as X, equivalently eX and ¢|X| have the same
distribution as X, where ¢ is an independent symmetric random sign, that
is, P(e = —1) = P(e = 1) = 1. We usually denote by G a standard Gaussian
random variable, that is, a real-valued random variable with density \/%6_5”2/ 2,
For p > 0, we have

IGIl, = 2"/2(x 20 ((p + 1) /2) V7,

where I' stands for the gamma function.

ACKNOWLEDGEMENTS. We are indebted to Krzysztof Oleszkiewicz for his help
and valuable feedback.

2. Results

Given pg € [0,1] and a positive integer L, consider a random variable X with

_1=po

(2) P(X=0)=pp and PX=j)=P(X=—j)=—r

for j=1,..., L.

For a = (a1,...,a,) € R™ and p > 1, we let

n
E a; X;
i=1

where X7, Xo,... are i.i.d. copies of X. Throughout, G stands for a standard

(3) Np(a) =

)

P

Gaussian random variable. We refer to the classical monograph [12], or to [6]
for a concise exposition of majorisation and Schur-convexity. Our main results

are as follows.

THEOREM 1: Let pg € [0, %] and L =1. If p > 3, then the function
(a1,...,an) = Np(y/a1,...,\/an)

is Schur-concave on [0, +00)™.

As an immediate corollary, we obtain the best constants in Khinchin inequal-
ities (it can be done as, for instance, in the proof of Corollary 25 from [8]).

COROLLARY 2: Under the assumptions of Theorem 1, the best constant C), such
that the inequality Np(a) < CpNa(a) holds for all n and a € R™ is Cp, = ||G||p.
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Our next result concerns Khinchin inequalities for p > 3 for arbitrary L
and po=0.

THEOREM 3: Let po = 0 and L > 1 be an integer. If p > 3, then the best
constant C,, such that the inequality Np(a) < Cp,Nz(a) holds for all n and
a e R” is Cp = ||G|p.

Finally, in the presence of large mass at 0 and arbitrarily many atoms L, we
obtain a sharp L; — Lo inequality, which holds in a greater generality.

THEOREM 4: Let pg € [%, 1) and let Y,Y1,Y5,... be iid. symmetric random
variables with P(Y = 0) = po. Define Np(a) = || >i—, a;Y;||p. The best con-
stant ¢ such that the inequality Ny(a) > ¢1Na(a) holds for all n and a € R™ is
cr = Y[ /Y]]2-

Some restrictions on pg in our theorems are needed, however our specific ones

may not be optimal. We defer a discussion to the last section.

Remark 5: When p is a positive even integer, Theorem 3 can be deduced from
Newman’s results from [27] (see also [28]).

Remark 6: Using [25], Theorem 3 can be extended to a sharp moment compar-
ison between all even moments with an optimal restriction on py, which will
appear elsewhere.

Remark 7: When L =1 and Y = X, Theorem 4 follows from general results
of Oleszkiewicz from [29] concerning arbitrary symmetric random variables and
coefficients in Banach space (see Corollary 2.4 therein).

We finish this section with a few words on proofs. Our proof of Theorem 1 fol-
lows a direct approach from Eaton’s work [7], combined with techniques (used,
for instance, in [10], or [9]) exploiting linearity and allowing to reduce verifica-
tion of certain inequalities needed for averages of power functions |- | to simple
(piecewise linear) functions. To prove Theorem 3, we employ an inductive ar-
gument (on n) which crucially uses independence and convexity of certain func-
tions and is based on swapping the X; one by one with independent Gaussians.
For Theorem 4, we extend Haagerup’s short proof from [11] of Szarek’s result
from [34] saying that the best constant Cy ;1 in (1) is v/2 (for the latter, see also
[19, 22, 35]). We rely on an integral representation for the first moment used by
Haagerup, combined with convexity arguments allowing to handle more atoms.
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3. Proofs

3.1. A SCHUR-CONVEXITY RESULT: PROOF OF THEOREM 1. We begin with
two technical lemmas. Let C be the linear space of all continuous functions on R
equipped with pointwise topology. Let C; C C be the cone of all odd functions
on R which are nondecreasing convex on (0,+o00) and let Co C C be the cone
of all even functions on R which are nondecreasing convex on (0,400). Note
that Cs is the closure (in the pointwise topology) of the set S ={(|x|—~), 7> 0}.

LEMMA 8: Let ¢ > 2, w > 0 and
dw(x) = sgn(z + w)|z + w|? + sgn(z — w)|lz —w|?, zeR.

Then ¢, € C1. Let ry(z) = %T(ac)’ x € R (with the value at 2 = 0 understood
as the limit). Then r,, € Cs.

Proof. The case w=0 is clear. For w >0, verifying that ¢,, €C; and r,, €Cs, by
homogeneity, is equivalent to doing so for w = 1. Let w = 1 and denote ¢ = ¢,
and r = r1. Suppose we have shown that r» € Co. Then, plainly, ¢(x) = xr(z)
is also nondecreasing on (0, c0) and

¢"(x) = (r(z) + 2r'(x))" = 2r'(x) + 2r"(z)

is nonnegative on (0, 00) since v’ and " are nonnegative on (0, 00).
It remains to prove that r € Co. Plainly ¢(x) is odd and thus r(z) is even.
Thus we consider x > 0.

CAsSE 1. z > 1. We have, ¢(z) = (z + 1)+ (z — 1)9,

r(x) = ¢(x)  ox) q(:c 1) @D (@ 1) (o 1)

and

ZL'BT”(:C) :.CCS ¢”(SC) o 2¢)/(1‘) 2¢£§:§)

T x? +
=q(q = Da?[(x + )72 + (z — 1) ?2gz[(x + DT 4 (2 — 1)771]
(e + 1)1+ (o 1)),

Taking one more derivative gives

(2°r"(2)) = ala = V(g — 2)a®[(x + )" + (z — 1)
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which is clearly positive for z > 1 since ¢ > 2. Thus, for x > 1, we have

5\2 7
237" (z) > r"(1) = qlg—1)-297% —2¢-2971 +2.29 = 2q72((q — 5) + —) > 0.
Therefore, r’(x) > 0 for x > 1. Since 7/(1) = ¢2971 — 29 = 2971(g —2) > 0, we
also get that r/(x) is positive for = > 1.

CASE 2. 0 < z < 1. The argument and the computations are very similar
to Case 1. We have ¢(x) = (1 4+ 2)? — (1 — 2)?, we find that

(@ (@) = ala =Dl — 2021 +2)75 + (1= )],
If ¢ > 2, this is positive for 0 < < 1. Then in this case, consequently,
SCSTN(:L‘) > 5637"”(:6”93:0 _ 0,
so '’ (z) is positive for 0 < = < 1. As a result, 7/ (x) > r/(0+) =0 for 0 < < 1.
If ¢ = 2, we simply have ¢(z) = 42 and r(x) = 4.
Combining the cases, we see that both r' and 7" are nonnegative on (0, 4+00),

which finishes the proof. |

LEMMA 9: The best constant D such that the inequality

platb)—¢(b—a) éla+b)+¢(b—a) ¢(b) _ ¢(a)
@ b 2a N 20 }Z{b_a}
holds for all 0 < a < b and every function ¢(x) of the form xzr(z), r € Co,

isD=1.

Proof. For ¢(x) = zr(z), r(x) = |z|, by homogeneity, inequality (4) is equiva-
lent to: for all 0 < a < 1, we have

D. (1+a)2*(1*“)2f(Ha)“(lia)Q} >1-a,
2a 2

that is, D-(1—a?) > (1 —a) for all 0 < a < 1, which holds if and only if D > 1.
Now we show that in fact (4) holds with D = 1 for every ¢(z) = zr(z), where
r € Cy. Since Cy is the closure of S, by linearity, it suffices to show this for

all simple functions r € S, that is, r(z) = (Jz| — v)+. By homogeneity, this is
equivalent to showing that for all ¥ > 0 and 0 < a < 1, we have

(I+a)(1+a—7)+—(1-a)(l-a—7)+ (+a)(l+a—7)++(1-a)(l-a—7)+

2a 2
2 (1 =7)+—(a—7)+
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Fix 0 < a < 1. Let hq(y) be the left-hand side minus the right-hand side.
For v > 1 + a, he(y) = 0. Since as a function of ~, he(7) is piecewise linear,
showing that it is nonnegative on [0,1 + a] is equivalent to verifying it at the
nodes v € {0,1,a,1 —a}. We have h,(0) = a — a® > 0. Next,
(I+a)a (14+a)a 1
ha(1) = - =1 1— 0.
1y ="4% L (a1 a) >

Finally, to check v = a and v =1 — a, we consider two cases.
Case 1. a<1—a,thatis, 0 <a < % Then
(I+a)—(1-0a)1-2a) (1+a)+(1-a)(l-2a)

a = — (1 —
hala) = . (1-a)
=a(l—a)>0
and
1 2 1 2 1 1 1
ha(lfa):( +a)2a_ | +a)a—a:1—a2—a21——f—:—.
2a 2 4 2 4
CASE 2. a > 1 — a, that is, % < a < 1. Then
(I1+a) (1+a) (1—a)?
a — — — 1— = —_—
ha(a) 5a 5 (1—a) o >0
and
1 2 1 2
ho(l—a) = UF @20 (AFa2a 0 o0 1y _gi—a)>0. u

2a 2

Proof of Theorem 1. Fix p > 3 and let F(z) = |x|P. We would like to show
that the function

@(al,...,an)EF(i\/a_iXi)

is Schur concave. Since ® is symmetric, by Ostrowski’s criterion (see, e.g.,
Theorem I1.3.14 in [6]), ® is Schur concave if and only if g—i > g—i, ap < ag,
which is equivalent to

1 1
—E[X F'(S)] > —E[X,F'(S
\/a[l ()]_\/@[2 (9],
where S = (/a1 X1 + \/aaXo + W and W = Zi>2 Vai X;. We take the expec-
tation with respect to X; and Xs. Suppose pg < 1. Since F”’ is odd and W is

symmetric, we get,

—EF'(—/a1 + W) = EF'(Vag + W)



288 A. HAVRILLA AND T. TKOCZ Isr. J. Math.

and similarly for the other terms that show up. Consequently, the inequality
can be equivalently rewritten as

3%(2/)01&?(@ £ W)+ (1= po)E[F (VT + vaz + W)
- Fl(=Va1 + Vaz + W)])
Z\/%(QPOEF/(\/@ W) + (1 - po)EIF (Vs + yar + W)
+ F(az — ar+ W),
Set a = /a1, b = \/az and
é(z) =EF'(z + W), z€R

(¢ is also odd). Suppose pg > 0. Then, the validity of the above inequality is
equivalent to the question whether for all 0 < a < b,

pla+b)—¢b—a) ¢(a+b)+¢(ba)] > {fb(b) _ ¢(a)}

(5) (/)01 1) % % b o

By the symmetry of W, it has the same distribution as e|W|, where ¢ is an
independent symmetric random sign, so we can write ¢(z) = $Ed|y|(x), where
for w > 0, we set

dw(x) = F'(z +w) + F'(x — w).

By Lemmas 8 and 9, inequality (5) holds for ¢,, in place of ¢ (for every w>0) as
long as p,, 11 >1. Taking the expectation against |W| yields the inequality for ¢,
as desired. For pg=0, we can for instance argue by taking the limit pg—0+. B

3.2. SECOND, THIRD AND HIGHER MOMENTS: PROOF OF THEOREM 3. The
value of (), is seen to be sharp by taking ay = --- = a, = \/Lﬁ, letting n — oo
and applying the central limit theorem.

To establish Np(a) < C,Na(a), we set

L+1)(2L +1)\1/2
(6) o= VEXP = (LD D)
and let G, G, ... be ii.d. centred Gaussian random variables with variance o2.
Since
n 2\ p/2 n ) p/2 2 _
BT R ET o0 S
i=1 i=1
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inequality Np(a) < C,N2(a) is equivalent to

n n
E a; X; E a;G;
im1 i—1

By independence and induction, it suffices to show that for all reals a, b, we have

P

P
E <E

(7) Ela + bX1|? < Ela + bG1|P.
This will follow from the following claim.

CrAaM: For every convex nondecreasing function h: [0, +00) — [0, +00), we have
(8) Eh(X2) < ER(GR).

Indeed, (7) for b = 0 is clear. Assuming b # 0, by homogeneity, (7) is
equivalent to
E|Q+X1|p §E|a+G1|p

Using the symmetry of X;, we can write
2E|a + X1|” = Ela + | X1]|” + Ela — | X1||P = Eha(X7),
where
(9) ha(z) = la+ VP +la —VzlP, >0
(and similarly for G1). The convexity of h, is established in the following
standard lemma (see also, e.g., Proposition 3.1 in [10]).
LEMMA 10: Let p > 3, a € R. Then h, defined in (9) is convex nondecreasing
on [0, 00).

Proof. The case a = 0 is clear (and the assertion holds for p > 2). The case
a # 0 reduces by homogeneity to, say a = 1. We have
@) = 5=+ VAl sen(Va - DV = 1177
and it suffices to show that the function
[1+y[P~" +sgn(y — Dy — 1~
9(y) = )

is nondecreasing on (0, 00). Call the numerator f(y). Since g(y) = w, it

suffices to show that f is convex (0, 00). We have

) =@-D01+yP 2 +]y—17?)
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which is convex on R for p > 3, hence nondecreasing on (0, c0) (as being even).
This justifies that k] is nondecreasing, hence h; is convex. Since

h1(0) = f'(0) =2(p—1) > 0,
we get b} (z) > h{(0) > 0, so hy is increasing on (0, 00). |

Thus 2E|a + X1|P = Eha(X?) < Eho(G?) = 2E|a + G1|P by the claim, as
desired. It remains to prove the claim.

Proof of the Claim. When L = 1, the claim follows immediately because X7 =1
and by Jensen’s inequality,

Eh(G?) > h(EG?) = h(1) = Eh(X?3).

We shall assume from now on that L > 2.

By standard approximation arguments, it suffices to show that the claim holds
for h(z) = (z — a)4 for every a > 0. Here and throughout z; = max{x,0}.
Note that

L L
1 1
E(X%*G)Jrzi E (kQ*a)Jr:f E (K —a)

fe=— k=[/al

and

Rl ]. —x2/252 2 ° —x2/202
E(G%*G)Jr:/ (:EQfa)Jr—We 1207 dg = ”m/\/_(:fa)e /27 da

with o (depending on L) defined by (6). Fix an integer L > 2 and set, for

nonnegative a,

oo L
fla) =1/ % /\/a (2% — a)e_c”z/2‘72d:c — % Z (% — a).
k=[Va]

Our goal is to show that f(a) > 0 for every a > 0. This is clear for a > L?
because then the second term is 0. Note that f is continuous (because x — x4
is continuous). For a € (b%,(b+ 1)?) with b € {0,1,...,L — 1} our expression
becomes

L

2 > 2,0 2 1
fla) =/ = /ﬁ (@ — ) e - 2 S (1~ a),

k=b+1
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[27 [ 2,2 1 &
Y —x°/20 - _
—3 /\/E e dz I g (-1)

k=b+1

2 o L—-b
—\/—2/ e 20 g ¢ 2
wo? )& L

Bounding b < /a yields

o %/w612/202d$+L\/a
V mo va L
/2 |7 et (1298
™ Jva/o L

Let g(a) denote the right-hand side. We have obtained f’ > g on (0, L?) (except
for the points 12, 22 ..). Since f is absolutely continuous and f(0) = 0, we can

is differentiable and

(10)

write f(a fo x)da and consequently
fa) > g(a), aecl0,L?,

where we define

o) = | " g(a)da.

o= (fBe )

which changes sign from positive to negative (since \/E 1_1 7 > 0for L >2).

g

Note:

This implies that ¢’ is first strictly increasing, then strictly decreasmg and, to-
gether with ¢’(0) = g(0) = 0, ¢’(c0) = —o0, it gives that ¢’ is first positive,
then negative. Consequently, g is first strictly increasing and then strictly de-
creasing. Since g(0) = 0, to conclude that g is nonnegative on [0, L?] (hence f),
it suffices to check that g(L?) > 0. We have

= [ AR  ere (1- D)a
= \/;/OL/U(L2 %) 2dr — 212
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Note that for t = ¢t(L) = g—j = #22&%1)’ the expression ( ") becomes

Vit
2
= \/j/ (t— x2)e_:”2/2dx — =t
™ Jo
0~ E [

For L > 7, we have t > to = ¢(7) = 33. We check that #'(to) = #’(32) > 0.2 and
since I/ is increasing, h'(t) is pos1t1ve for t > to, hence h(t) >h(tg) =h(35)>0.01
for t > ty. Consequently, g(L?) > 0 for every L > 7, which completes the proof
for L > 7.

It remains to address the cases 2 < L < 6. Here lower-bounding f by g

We have

incurs too much loss, so we show that f is nonnegative on [0, L?] by direct
computations. First note that f’(a) (see (10)) is strictly increasing on each
interval a € (b%,(b+ 1)?), b € {0,1,...,L — 1}. Clearly f'(0+) = 0 and we
check that 01, = f/(b>+) > 0 for every b € {1,...,L — 2} and 3 < L < 6 (see
Table 1), so f(a) is strictly increasing for a € (0, (L —1)?). Since f(0) = 0, this
shows that f(a) > 0 for a € (0, (L —1)?). On the interval ((L —1)?, L?), we use
the convexity of f and we lower-bound f by its tangent at a = (L — 1)?+ with
the slope 61, 1,1 (which is negative), that is,

fla)>0p1(a—(L—1)*)+ f((L—1)%).

It remains to check that vy = 0, _1(2L — 1) + f((L — 1)?), the values of the
right hand side at the end point a = L? are positive. We have vy > 0.2, v3 > 0.7,
vy > 1.2, v5 > 1.9, vg > 2.6. This finishes the proof. |

Table 1. Lower bounds on the values of the slopes 6, , = f/(b*+)

b=1 b=2 b=3 b=4
035 | 0.02

615 | 0.03 0.03

055 | 0.03  0.05 0.03

055 | 003 0.05 005 0.02
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Remark 11: We can drop the assumption in Theorem 3 of the X; being iden-
tically distributed and only assume their independence (we stated it in the
ii.d. case for simplicity). The proof does not change: we only have to choose
the independent Gaussian random variables G; to be such that E|G;|* = E| X;|?
and then (8), hence (7), holds for each Xj;.

3.3. FIRST AND SECOND MOMENTS: PROOF OF THEOREM 4. For a1 = 1,
as = --- = a, = 0, inequality Ni(a) > ¢1Na(a) becomes equality, so the value
of the constant c¢; is sharp. To prove the inequality, we shall closely follow
Haagerup’s approach from [11]. Note that Y has the same distribution as 6z R,
where 6 is a Bernoulli random variable with parameter 1 — pg, € is a symmetric
random sign, R is a positive random variable and 0, ¢ and R are independent (the
law of R is the same as the law of | X| conditioned on X # 0). Let ¢y (t) = Ee!¥’
be the characteristic function of Y. We have

¢y (t) = po+ (1 = po)Ecos(tR) = po — (1 — po) = 2po — 1 = 0.
We also define

2 [ to\|s1dt
F(s) == {1 — ‘ (—) }—, >1
(S) 7T/0 oy \/g 2 5=
By symmetry, without loss of generality we can assume that ai,...,a, are

positive with > a? = 1. By Lemma 1.2 from [11] and independence,
2 [ dt
Zanj :—/ |:1—H(by(a]f):|—2
- ™ Jo ; t
j J
By the AM—GM inequality,

2
[Tov(at) <D adley(at) s,
thus Ny(a) > Y, a?F(a;?). If we show that

Nl(a) =K

(11) F(s)> F(1), s>1

then 0
F(1
——=Ns(a).
E[Y 2 (@)
Since ¢y is nonnegative, using again Lemma 1.2 from [11], we have

F =2 [Tn-lovol =2 [T ev 1 — By,

Ni(a) = ZafF(l) =F(1) =

T t2

so the proof of Ny(a) > ¢1Na2(a) with ¢ = ||Y||1/]|Y]|2 is finished.
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It remains to show (11). For a fixed s > 1, the left-hand side

=2 [ [ - e ()]

is concave as a function of pg, whereas the right-hand side

F(1) =EY]=(1-p)ER

is linear as a function of pg. Therefore, it is enough to check the cases: 1) pg =1
which is clear, 2) pg = 1/2 which becomes

2 [-lp e (R) 15> g

cosztl — cos?(2/2) and then employing convexity, the left-hand side can

Using
be rewrltten and lower bounded as follows:

) e G122 [ - (57)

A change of variables t = v/2t'/R allows to write the right-hand side as

2s:| @

E{% /000 [1 - )cos (\/t%) 25} %%] = E_\/];FHaa(2S),
where
o2 [ o ()1

is Haagerup’s function (see Lemmas 1.3 and 1.4 in [11]). He showed therein
that it is increasing, so for s > 1, we get Fyaa(2$) > Fuaa(2) = % and this
finishes the proof.

Remark 12: Thanks to Remark 2.5 from [11], the same proof also works if we
replace the first moment by the po-th one, where pg = 1.847... is the unique
solution to I'(2£}) = 4, p € (0,2). The cases of other values of p € (1,2) have
been elusive.

4. Necessity of the restrictions on pg

We use the notation from (2) and (3). We derive some necessary conditions
on po, justifying to some extent our restrictions on py made in Theorems 1, 3
and 4.

Remark 13: For Theorem 1 to hold, we necessarily have -4 oV VAV =
for A € (0, 3). Letting A — 0+ yields (1 — po)(1 —2po) > 0, hence py < 3
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Remark 14: In Theorem 3, a necessary condition on pg is

27T
<1l——=0. 2....
po < 198 0.3373

This follows from N3(1) < ||G||3N2(1) with L — oc.

Remark 15: In Theorem 4, a necessary condition on pg is pg > v/2 — 1. This
follows from Ny(1,1) > ¢; N2(1,1) applied to Y = X, which is equivalent to

1
2L—+22_\/§’

(1 =po) 3L

soLzlgivespOZ\/i—l.

Thus the restriction in Theorem 1 is sharp, while those in Theorems 3 and 4
are by-products of our proofs and can perhaps be improved. We believe the
optimal ones are indicated above (for the following reasons: one can check that
the case n = 2 and Y = X of Theorem 4 holds for py € [\/5 — 1, 1); moreover,
in the context of Theorem 3, Ny4(1) < ||G[4N2(1) with L — oo is a sufficient
condition for Ngy(a) < HgHZNP(a) to hold for all 2 < p < ¢ even integers—see

Remark 6).
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