SHARP BOUNDS ON P-NORMS FOR SUMS OF
INDEPENDENT UNIFORM RANDOM VARIABLES,0 <P <1

By
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Abstract. We provide a sharp lower bound on the p-norm of a sum of
independent uniform random variables in terms of its variance when 0 < p < 1.
We address an analogous question for p-Rényi entropy for p in the same range.

1 Introduction and results

Moment comparison inequalities for sums of independent random variables, that is
Khinchin-type inequalities, first established by Khinchin for Rademacher random
variables (random signs) in his proof of the law of the iterated logarithm (see
[14]), have been extensively studied ever since his work. Particularly challenging,
interesting and conducive to new methods is the question of sharp constants in
such inequalities. We only mention in passing several classical as well as recent
references, [1, 9, 11, 15, 17, 18, 23, 26]. This paper finishes the pursuit of sharp
constants in L, — L, Khinchin inequalities for sums of independent uniform random
variables, addressing the range O < p < 1. We are also concerned with a p-Rényi
entropy analogue.

1.1 Moments. Let Uy, U,,... be independent random variables uniform
on [—1,1]. As usual, || X]|, = (E|X|P)!/P is the p-norm of a random variable X.

Givenp > —1, let ¢, and C, be the best constants such that for every integer n > 1

and real numbers ay, ..., a,, we have
n 172 n n 172
2 2
m o(Xa) <|Tav]| <a(Xa)
j=1 j=1 P j=1
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or in other words, since

HZajUjH2= Var(zal ) 1/2(2%2)1/2’

finding ¢, and C,, amounts to extremising the p-norm of the sum ) a;U; subject to
a fixed variance,

=inf , C,=sup

where the infimum and supremum are taken over all integers #» > 1 and unit vectors
a=(ay,...,a,) inR",

For p > 1, the optimal constants ¢,, C, were found by Latata and Oleszkiewicz
in [19] (see also [8] for an alternative approach and [1, 16] for generalisations in
higher dimensions). They read

o Jlimas o 97 L, = 1Z1,/V3, T<p <2,

10, =1 +p)~'7, p=2,
2)
”Ulllpa 1 gp g 2a

”Z”p/\/ga p 2 2a

P:

where Z here and throughout the text denotes a standard N(0O, 1) Gaussian random
variable. In fact stronger results are available (extremisers are known via Schur-
convexity for each fixed n).

For —1 < p < 0, the behaviour is complicated by a phase transition (similar to
the case of random signs as established by Haagerup in [9]). It has recently been
proved in [4] that

cp = min{ | ZIl,/V/3, | Uy + Uall, /V2}

1ZIl,/V/3, —0.793... <p <0,
|U + Uallp/vV2, —1 <p<—0793...,

and the limiting behaviour of ¢, as p — —1* recovers Ball’s celebrated cube slicing
inequality from [2].

The fact that

G =1IUillp, —l<p<lI,

follows easily from unimodality and Jensen’s inequality (see, e.g., Proposition 15
in [8]).

Thus what is unknown is the optimal value of ¢, for 0 < p < 1 and this paper
fills out this gap. Our main result reads as follows.
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Theorem 1. For0 <p <1, ¢, = ||Z||p/\/§ is the best constant in (1).

We record for future use that

202 1+
b D=2 1. p
1ZI15 = xPe™ 2 dx = _r( ).

Jz \ 2

1.2 Rényi entropy. For p € [0, co], the p-Rényi entropy of a random
variable X with density f is defined as (see [25]),

1
l—p log </pr>

withp € {0, 1, oo} defined by taking the limit: %y(f) = log |supp(f)| is the logarithm
of the Lebesgue measure of the support of f, h1(f) = — [ flogf is the Shannon
entropy, and iy = —1og ||f ||, Where ||f||co is the co-norm of f (with respect to

7= L)

hp(X) =

Lebesgue measure). The question of maximising Rényi entropy under a variance
constraint (or more generally, a moment constraint) for general distributions has
been fully understood and leads to the notion of relative entropy that is of
importance in information theory, providing a natural way of measuring distance
to the extremal distributions (see [5, 13, 20, 22]). In analogy to Theorem 1, we
provide an answer for p-Rényi entropies, 0 < p < 1, for sums of uniforms under
the variance constraints.

Theorem 2. Let 0 < p < 1. For every unit vector a = (ay, . . ., a,), we have
hy(Uy) < hy ( > ajtjj) < hy(Z/V3).
j=1

The lower bound is a simple consequence of the entropy power inequality.
The upper bound is interesting in that the maximizer among all distributions of
fixed variance is not Gaussian (rather, with density proportional to (1 +x?)~1/(1=»)
for % < p < 1 and it does not exist for p < %, see, e.g., [5]). It is derived from
the L, — L, Khinchin inequality for even g.

1.3 Organisation of the paper. In Section 2 we give an overview of
the proof of Theorem 1 and show a reduction to two main steps: an integral
inequality and an inductive argument. Then in Section 3 we gather all technical
lemmas needed to accomplish these steps which is then done in Sections 4 and 5,
respectively. Section 6 contains a short proof of Theorem 2.

Acknowledgments. We should very much like to thank Alexandros Eskenazis
for the stimulating correspondence. We are also indebted to anonymous referees
for many valuable comments which helped to significantly improve the manuscript.
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2 Proof of the main result

2.1 Overview. We follow an approach developed by Haagerup in [9], with
major simplifications advanced later by Nazarov and Podkorytov in [24]. In
essence, the argument begins with a Fourier-analytic integral representation for
the power function | - |’ which allows to take advantage of independence and in
turn, by virtue of the AM-GM inequality, to reduce the problem to establishing
a certain integral inequality involving the Fourier transforms of the uniform and
Gaussian distributions. Since this inequality holds only in a specific range of
parameters, additional arguments are needed, mainly an induction on the number
of summands n (similar problems were faced in, e.g., [4, 24, 15]). In our case,
this is further complicated by the fact that the base of the induction fails for large
values of p (roughly for p > 0.7).

Remark 3. We point out that the main difference between the regimes p > 1
and p < 1 is that for the former convexity type arguments allow to establish
stronger comparison results, namely the Schur-convexity/concavity of the function
P

(VXL - s /) = E

n
> VvaU;
Jj=1

By combining Theorems 2 and 3 of [1] (see also (6.1) therein), a necessary con-
dition for this is the concavity/convexity of the function x — E|U; + /x|’. The
calculations following Corollary 1 in the same work show that this is the case only
for p > 1. In other words, when p < 1, the function above is neither Schur-convex
nor Schur-concave and the Fourier-analytic approach seems to be indispensable.

2.2 Details. The aforementioned Fourier-analytic formula reads as follows
(it can be found for instance in [9], but we sketch its proof for completeness).

Lemmad4. LetO < p <2andk,= %F(l +p) sin(”z—”). For a random variable X
in L, with characteristic function ¢x(t) = Ee"X, we have

*1—-R t
EleP = Kp/ ﬂdr
0 tp+l

Proof. A change of variables establishes |x|’ = x, [;° 1=y, x € R. We

w+ 1

then apply this to X and take the expectation. ([

We begin the proof of Theorem 1. Let 0 < p < 1and ¢, = ||Z||p/\/§. Let
ai, ..., a, be (without loss of generality) nonzero real numbers with Z]'.’:l af =1.
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By symmetry of the uniform distribution we assume without loss of generality that
they are in fact positive. From Lemma 4, we obtain

n P © 1 — ’,1_ a:t
E ZajUj = Kp/ Mdt,
=1

t1+p

where we have used independence and put ¢(¢) = Ee'Vt = %‘” to be the charac-
teristic function of the uniform distribution. We seek a sharp lower-bound on this

expression (attained when a; = --- = g, = ﬁ and n — o0, as anticipated by
Theorem 1). By the AM-GM inequality,
n n )
[To@n| <> aigan)'.
Jj=1 Jj=1
As aresult,
n )4 n
EY aqUl| = a,(/ad),
Jj=1 Jj=1
where we have set
o] — |Siﬂ(t/\/5)|s
_ /s
Jp(s) —ch/o Tdt’ s> 1.

Note that %\//‘E/E) =1- é—zs + O(1/s?) for a fixed t as s — oo and consequently,

) 1 — e—t2/6
Jp(00) = lim J,(s) = x; /0 et = E|Z/V3I,

where the last equality follows from Lemma 4 because ¢~*"/6 is the characteristic
function of Z/+/3, Z ~ N(0, 1) (the exchange of the order of the limit and integration
in the second equality can be easily justified by truncating the integral, see, e.g.,

(15) in [4]). In particular, if for some p and sy,
3) Jp(s) = J,(c0), foralls > so,

then

p
@) E > E|Z/V3)P =d),

n
> aU;
Jj=1

as long as l/aj2 > so for eachj. If (3) were true for all 0 < p < 1 with 59 = 1, then
the proof of Theorem 1 would be complete. Unfortunately, that is not the case. In
Section 4 we show the following result.
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Theorem 5. Inequality (3) holds for every 0.6 < p < 1 with so = 1.

As a result, when 0.6 < p < 1, (4) holds for arbitrary a; and the proof of
Theorem 1 is complete in this case. For smaller values of p, sg has to be increased.

Theorem 6. Inequality (3) holds for every 0 < p < 1 with 5o = 2.

This is proved in Section 4. Consequently, (4) holds provided that af < % for
each j. To remove this restriction, we employ an inductive argument of Nazarov
and Podkorytov from [24] developed for random signs and adapted to the uniform
distribution in [4]. This works for 0 < p < 0.69 and the proof of Theorem 1 is
complete. This is done in Section 5.

3 Auxiliary lemmas

To show Theorems 5 and 6 and carry out the inductive argument, we first prove
some technical lemmas.

3.1 Lemmasconcerning the sinc function. The zeroth spherical Bessel
function (of the first kind) jo(x) = % = sinc(x) is sometimes referred to as the sinc
function. As the characteristic function of a uniform random variable, it plays a
major role in our approach. We shall need several elementary estimates.

. )
Lemma 7. For0 <t < &, we have %“’ < e 1/0,

Proof. This follows from the product formula, %‘” =L, (1 — %). Since
each term is positive for 0 < ¢ < z, the lemma follows by applying 1 + x < €*

2

© 1 _ =
and Zn:l 2= 6 O

Ju—

1

sint
Lemma 8. sup,.g|cost — | < 4

S

Proof. Since both cost and %“’ are even, it suffices to consider positive 7. By

the Cauchy-Schwarz inequality, we have | cost — %l <4/1+ zlz so it suffices to

consider t < \/1%. On (0, 5), we have | cos 7 — SiT“’l =801 cosr < 140=1,s0it

t
: . T 10 . T 10 T
z < < —. - < < - —Z
remains to consider 5 1 AT Lettlng 1= ) + X, we have for O X AT 3

sint sint COSX . 1
COSt— ——| = —— —CcoSt=—— +8inx < ——— +x.
x+mw/2 x+mw/2

Examining the derivative, the right-hand side is clearly increasing, so it is upper

bounded by its value at x = \/% — 7 which is % + \/% -7 < 1.07. O
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Lemma 9. Let k > 0 be an integer and let yy be the value of the unique local
maximum ofISiTml on (kr, (k+ 1)x). Then
1 1

— < < —.
Gh+1/27 Sk

Moreover, y| < e 32,

Proof. The lower bound follows from taking ¢t = (k + 1/2)x, whereas the
upper bound follows from |sin¢| < 1 and # > kz. The bound on y; is equivalent to
sint < e7¥2(t+m),0 <t < m/2. To show this in turn, it suffices to upper bound
sint by its tangent at, e.g., t = 1.3. ([l

Lemma 10. For y € (0, 53-), let t = 1o be the unique solution to 2 = y

|sin?] _

on (0, ). Thenty > 0.98x. Lett =1, be the larger of the two solutions to == =y
on (r,2r). Thent, > 1.97x.

Proof. Note that

sin fg 1 sin(0.987)
Sy < — < —=
to 307 0.987

Since %‘” is decreasing on (0, «), it follows that 7y > 0.98z. Similarly, we check
that .
| sin(1.977)| - L
1.97x 307
to justify the claim about #;. (]

Lemma 11. For0 <x < 7,
1 - 1 N 1
sinx ~ x2 (r—x)?
Proof. Itis well known (and follows from sin(2x) = 2 sin x cos x) that

Siﬂ = H cos(x/Zk).

X k=1

In particular, for 0 < x < 7z, we have (Si%)2 < cos?(x/2), hence

(o) () ()

x2 (m—x)? x T—Xx

< cos?(x/2) +cos®(m/2 — x/2) = 1.
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Lemma 12. Let k > 1 be an integer. On ((k — 1)z, kx), we have
(i) the function —Lsn

m 1S nonincreasing,
(i1) the function

t(lksmtl is unimodal (first increases and then decreases).
Proof. (i) The derivative equals

I sint| 1 1
= (k= l)n)(COt(t) T TS k= 1);:)

which is negative on ((k — 1)z, k7)) because on this interval, cot(¢) < (as,

1
—k—Dx
by periodicity, being equivalent to cot(z) < % on (0, ), which is clear—recall that
tan(x) > x on (0, Z)).

(i1) Here, the derivative reads

| sin¢| 1 1

1 — )h( ), h(t)=cot(t) — — + —

We shall argue that /(z) is decreasing on ((k— 1)z, kz). This suffices, since A(¢) > 0
for ¢ near (k — 1)7 and h(¢) < O for ¢ near k. Setting t = (k — 1)z + x, we have

1 1
Ht)=———+—=+——
2 sint 2 (km—1)?
1 1 1
4 — <0
snly 2 (m—x?
by Lemma 11. O

3.2 Lemmas concerning sums of p-th powers. Our computations re-
quire several technical bounds on various expressions involving sums of p-th
powers.

Lemma 13. Let 0 <p < 1l andlet 1 < m < 29 be an integer. Set

Um(p) = By <b€’m +2 Z bi,m)

k=1

with

_ 20log(m(m+3/2))
" T am+3/2) T kA1

\/— log(w(m + 3/2)).

Then,
un(p) > 1.
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Proof. Fix m. Plainly, u,,(p) is a convex function (as a sum of convex func-
tions). Thus, u,,(p) < u,,(1) for 0 < p < 1. We have

I/l;n(l) = Bm (bO,m IOg bO,m +2 Z bk,m IOg bk,m)
k=1
and Table 1 shows that each i), (1) is negative, so each u,, is decreasing. Therefore,
Un(p) > u, (1), for0 < p < 1, and Table 1 shows that each u,,(1) is greater than 1.
This finishes the proof. (]

Table 1. Lower bounds on the values of —u,,(1) and u,,(1).
m 1 2 4 4 5 6 7 8 9 10
—u, (1) 024 044 058 0.70 0.79 0.86 091 096 099 1.02
U, (1) 1.06 127 136 140 141 141 140 138 1.36 1.34

m 11 12 13 14 15 16 17 18 19 20
—-u,(1) | 1.05 1.07 1.08 1.10 1.11 1.12 1.13 1.13 1.14 1.14
U (1) 1.32 129 1.27 125 123 121 1.19 1.17 1.15 1.14

m 21 22 23 24 25 26 27 28 29
—u,(1) | 1.14 1.14 1.15 1.15 1.15 1.15 1.15 1.15 1.14
U (1) 1.12 1.10 1.09 1.07 1.06 1.04 1.03 1.02 1.00

Lemma 14. For0 <p < 1, let

1 3 2 1.057 3r

=2 —p+l 3 — + — = + =
Op T ( 1—p 2}7)’ ﬁp 1—p » > Vp p:

1 307 p/2
op=—(———
P p (610g(307z:))
and
hp(y) = 5py§_l + ypyp - ﬂpyp_l — Op.

Then hy(y) > 0 for every0 <y < ﬁ.

Proof. Plainly, it suffices to show the following two claims,

5 " 0, 0 —
(%) ,(») <0, <Y< 30

(©) hp(ﬁ) - 0.
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To prove (5), first we find

__ ’ P 4 |4
YT () = —(1 - 5)5,7 +pypyTt + (1 = p)B,y?

which is clearly increasing in y, thus to show that it is negative, it suffices to prove

thataty = ﬁ, which in turn is equivalent to
p 30z p
2.1p+ (1 —=p)1.05° < (1 = Z ) [ ———
p+d=p) ( 2)(,/6log(30n))

Crudely, (1 — p)1.057 < 1.057 < 1 +0.05p, by convexity, thus it suffices to show
that
_P\yr
1+2.15p < (1 2)A ,

30x

\/61log(30m)

plogA +log (1 - g) —log(1+2.15p) > 0.

where we put A = Equivalently, after taking the logarithm, the inequal-

ity becomes

Note that at p = 0O this becomes equality. We claim that the derivative of the

left-hand side is positive for 0 < p < 1, which will finish the argument. The

1 2.15
derivative is log A 5 T Tais

examine whether it is positive at the end-points p = 0 and p = 1, which respectively

become logA > 2.65 and logA > 1+ § ig Since logA = 2.89.. ., both are clearly

which is clearly concave, thus it suffices to

true.
It remains to show (6), namely that the following is positive forevery0 < p < 1,

3077t
T h(307r)
(=22 y — 1.057
NG 30-307 307 —1
= 30 Y000 —(2 +3 +6-30P).
l—p P
L(p) R(p)

Both L(p) and R(p) are strictly increasing and convex on (0, 1). This is clear for L,
since its Taylor expansion at p = O has positive coefficients. Similarly for the
term 30;%1 in R(p). To see that 301__10" is strictly increasing and convex, write it

30
as 30 [ w9,

Case 1: 0 < p < 0.6. By convexity, using a tangent line

L(p) > L(0.24) + L'(0.24)(p — 0.24) = £(p)

and a chord
0.6 — p

R(p) < T=RO.6)+ —2LRO") = r(p).
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With hindsight, the tangent and the chord are chosen such that £ > r on (0, 0.6),
which can be checked directly by looking at the values of these linear functions at
the end-points.

Case 2: 0.6 < p < 1. Similarly, by convexity, using a tangent line

L(p) > L(0.8) + L'(0.8)(p — 0.8) = £(p)

and a chord

1—p p—06_
< — . = F(p).
R(p) < 04 R(0.6) + 0 R(17) = F(p)
Again, with hindsight, the tangent and the chord are chosen such that £ > 7
on (0.6, 1). This completes the proof. ]

3.3 Lemmas concerning the gamma function. For the inductive part
of our argument, we will later need bounds on the following function:

o= D2 (1), 0y

Recall the Weierstrass’ product formula,

ro= ST (1+2) e
e (R

where y = 0.57.. is the Euler—Mascheroni constant. Writing /7 as F(%), we obtain

00 p—
@ yp = oD T (1452 ek
n=1

2n+1

Lemma 15. For0 < p < 0.69, we have y(p) < sz)p/z

Proof. We show that

fp) =1og(2 — (3/2)"%) + log y(p)
is negative on (0, 0.69). By virtue of (7),

3) (3/2)r/? . i 1

1/ __1 2 (= - -
S )= =7 log <2 2= (/202 Qn+1+p)2

n=1

This is plainly a decreasing function. Using

> 1 > 1 2 —6

> >3 = :

= 2n+1+p)? = (2n + 2)2 24

we get f7(0.9) > 0.007, so f is strictly convex on (0, 0.9). Checking that f(0) =0
and £(0.69) < —0.0001 finishes the proof. ]
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Lemma 16. For0 <p < 1, we have y(p) < 1 + p(l”'])
Proof. We show that
+1)
f(p)=—log (1 +p(p6 ) +log w(p)

is negative on (0, 1). Since f(0) = 0, it suffices to show that f'(p) < 0 on (0, 1).
Using (7), we have
2p+1

v - l — 3 i_;
fp)= p2+p+6+2(10g(4/3) y>+;(2n 2n+1+p)'

Now, for R(p) = —p?f;; + L(log(4/3) — ),

2p+ 117 —p* —p)
(p*+p+6)>3

on (0, 1),so R(p) isconvexon (0, 1). Let S(p) = Zf;’l(h 2n+1+p) Plainly, thisis a
concave function. Thus, using tangentsatp = Oandp=1, S(p) < min{Ly(p), L,(p)}
with

>0

R'(p)=

2

Lo(p) = SO)+S'O)p = (1 = log2)+ (- = 1)p

and
Li(p)=S(+SMp -1 = Lz 6(1? —D.
2 24
We obtain the upper-bounds on f’(p) by the convex functions R(p) + Lo(p) and
R(p) + Li(p). Examining the end-points we conclude that the former is negative on
(0, 0.5) and the latter is negative on (0.4, 1). Thus f'(p) < 0 on (0, 1), as desired.(]

4 Integral inequality: proofs of Theorems 5 and 6

First observe that using the integral expression for J,(c0), inequality (3) becomes

e—t2/6 | S ys) sin(t/+/s) s
_ t/\/s
0 < 9,(5) — 7,(00) = &, /O — dr

00 e—st2/6 _ |Lnt|s
= Kps—p/2 ——T I dr.
0 T

®)

To tackle such an inequality with an oscillatory integrand, we rely on the following
extremely efficient and powerful lemma of Nazarov and Podkorytov from [24] (for
the proof, see, e.g., [15]).
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Lemma 17 (Nazarov—Podkorytov, [24]). Let M € (0, oo] andf, g: X — [0, M]
be any two measurable functions on a measure space (X, n). Assume that the
modified distribution functions

F)=u(xeX:f(x) <y} and GOy)=p({xeX:gkx) <y}

of f and g respectively are finite for every y € (0, M). If there exists y, € (0, M)
such that

G(y
G@y

F(y) forally e (0,y.),

>
)S F(y) forally € (y., M),

then the function
1
s = —S/(gs —fHdu
SYo Jx
is increasing on the set {s > 0: g° —f* € L'(X, u)}.

In view of (3), (4) and (8), Theorems 5 and 6 immediately follow from the
following lemma.

Lemma 18. Let f(f) = |520|, g(t) = ¢~"/%, ¢ > 0, and set

H(p.s) = /0 STy,

We have
(a) H(p,s) =2 0 forevery0 <p < lands > 2,
(b) H(p,s) = 0 forevery0.6 <p < 1lands > 1.

Proof. Fix 0 < p < 1. We examine the modified distribution functions

F(y)=pu@ >0, f(r) <y),

G =u>0,g0 <y, O0<y<l,
where du(f) = t7~!dt. It suffices to show that
(%) G — F changes sign exactly once on (0, 1) at some y =y, from + to —.
Then Lemma 17 gives that

1

SYi

Nllard

H(p, s)

is increasing on (0, co). In particular, (a) and (b) result from the following claims
whose proofs we defer until the end of this proof.

Claim A. H(p,2) > 0 forevery0 <p < 1.

Claim B. H(p, 1) > 0 for every 0.6 <p < 1.
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Towards (%), let 1 = y9 > y; > y, > --- be the consecutive maximum values
of f. On (0,7), f < g (Lemma 7), so G — F < 0 on (y;,1). We plan to
find a € (0, y;) with the following two properties

(i) (G—=F) <0on(a,y),
(il) G—F > 0on (0, a).
This clearly suffices to conclude ().

Fixme{1,2,...}and y € (¥;u+1, Ym)- Plainly,

o0 dt 1
G ):/ — = —(—6logy) P2,
(y 4/ —6logy ! p 8y

Let 7§ = £5(y) be the unique solution to f(#) = y on (0, 7) and for each 1 < k < m,
let 1 < ff be the unique solutions to f(#) = y on (kz, (k + 1)) (t,ﬁE = tff(y) are
functions of y). We have

9 FOy)=p(g, t7) + u(t, 65) + -+ u(ty 1, t,) + u(ty,, 00).

Sm 6r

Figure 1. Functions f, g andthe set {¢# > 0,f(¥) < y}. Herem =3,i.e.,y3 <y < ya.

Condition (i). Recall that y € (y,41, ym). We have,
/ 3 —p/2—1
GO = ;(—610gy) b

and, differentiating (9) with respect to y (using the fundamental theorem of calculus

and chain rule),
1
Foy= Y —
p+1| £/
ey TP @
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To lower bound g in order to show that it is greater than 1, we lower bound F’
and é separately as follows. First, using |#f”(f)] = | cost — %l < % for every
t > 0 (Lemma 8), we have

, 10 _ 10 _ " _
FO)> 37 > 17> P<1+2Z(k+1) P),
tf 0=y k=1
by crudely bounding #; < =, £f < (k+ 1)z. Second, since y(—6logy)’/**! is

increasing on (0, y;) (it is increasing on (0, e='77/2) and e~ 17P/? > ¢73/2 > y)),
and y,41 > m (Lemma 9),

1 _ l /2+1

1
y(—6 IOgY)P/2+1 > gym+1(_6 10gym+1)P

Gy 3
1 1
1 /2+1
> 3 7n(m 13/2) (6log(m(m+3/2))y' <.
We obtain
F'(y) 10 1

(6 log(m(m + 3/2))y/**! (1 +2> (k+ 1)—P> .

G() 332 (m+3/2) 2

From Lemma 13 the right-hand side is at least 1 forevery 0 <p <1 and 1 <m<29.
Therefore, to guarantee that Condition (i) holds, we can choose any a > y3.
We set a = y3p and argue next that Condition (ii) holds for every y € (0, a).

Yi—1 |

Yk

k-1

Figure 2. The slope of the segment AB is not smaller than the slope of either AC
or BC.
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Condition (ii). We assume here thatm > 30. Recall we have fixed ye(y,,+1, Vin)-
Since G is explicit, it suffices to upper bound F. We have

>© d 1
F(y)-Z / o / o \Zak DT )

For k > 3, we crudely estimate 7{_, > (k — 1)z, whereas for k£ = 1,2, we
have 7§ > 0.987 and ¢ > 1.97x, thanks to Lemma 10. To upper bound the
length 77 — #;_,, note that with the aid of Figure 2,

|sin_z; _sinfr

2y i T
= = = |slope(AB
e =ty e Istope(4B)]

> min{ |slope(AC)|, |slope(BC)|}.

Let 7 € (kx, (k+ 1)7) denote the point where f(¢) attains its local maximum y; on
(kz, (k+ 1)x). Observe that
| sinz | Vi Vi

1 BO)| = > = > ==
ISlope(BON = = =) i —kx 7

where the first inequality follows from Lemma 12 (i) applied to 7, < fx. Similarly,
[ sin#f_,| . V-1 1 . (V=1 1
1 AC)| = ———F——— > — > =
Islope(AC)| ti_(km —t{_)) = i {kn — fi—q kn} - mln{ T kn}

where in the first inequality we use Lemma 12 (ii) to lower bound the function
in question by the minimum of its values at the end-points # = #;_; and t = k=x.
Finally, putting these two estimates together and using y; > ﬁ, we obtain

2

slope(AB)| > ——
slope(AB)| > s

and, consequently,

2y 1
ty — I —— 2 k
k k=1 = |slope(AB)| d y( M 2)

which results in
i (3 —p=1 —p—1 —p—1 1 -
F(y) < 2z7y(20.9877" 197 r- +Z(k+ S )= D)+ ),
2 o P

Since y > ypui1 > +, and m > 30, we have
(m+3)m

3/2 1
m+3/ )pypggl.ospyp.

Lmm» < 1(
p p

m
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Moreover, since y < y,, < #, we have (crudely) m — 1 < ”Ly and, bounding the

sum using the integral, we obtain

“ 1 o k4l
;(mi)(k—l) p 1:; 2

m—1 3
P 4 = —p—1
</1 (x + 2x )dx
- (wy)’ 1 N 3(1 = (wy) )'
l—p 2p

Therefore, in order to have F(y) < G(y), it suffices to guarantee that

(ryy~' —1 N 31— (ny)”))
IL—p 2p

1 1
+—1.057y" < —(—6logy)F/?
p p

3 5
27r_p+ly<§0.98_”_1 +21.9777 4

holds forevery 0 < p < 1and0 < y < 1. Since —ylogy is increasing fory < é

307
we have —logy < %% for0 <y < ﬁ. By monotonicity, for 0 < p < 1,
we have 30.98777! +31.9777! < 3098771 +31.977! < 3. It remains to use
Lemma 14. This shows that Condition (ii) holds and the proof of the lemma is

complete. It remains to show Claims A and B. (]

)

Proof of Claim A. By the integral representation for the p-norm from
Lemma 4,

p+1 2
K H(p,2) = E|U, + Usl? — E\\Ez\” - oo f)(p”) - %(g)p/ r(%).
By Lemma 16, it suffices to prove that 2°*! > (p +2)(1 + @) forall0 <p < 1.
The 3rd derivative of the difference changes sign once on (0, 1) from — to +.
The 2nd derivative is negative at the end-points p = 0 and p = 1, so it is negative
on (0, 1) and hence the difference is concave. It vanishes at the end-points p = 0
and p = 1, which finishes the argument. O

Proof of Claim B. Our argument is split into two steps: first we show
that H(p, 1) increases with p and then we estimate H(0.6,1). For somewhat
similar computations, but related to random signs, see Section 5 in [21]. In
Step 1, to numerically evaluate the integrals in question, we will frequently use
that given 0 < a < b and an integer m, integrals of the form fab(sin Ht~™dt can
be efficiently estimated to an arbitrary precision by expressing them in terms of
the trigonometric integral functions Si, Ci. The same applies to the integrals of



18 G. CHASAPIS, K. GURUSHANKA AND T. TKOCZ

the form fab e 1dt with 0 < a < b < oo and real ¢, thanks to reductions to
the incomplete gamma function I' and the exponential integral Ei. We recall that
forx > 0,s#0,—-1,-2,...,

0 (_l)kx2k—l

.  sint T
Si) = _/x =g ; 2k— D2k— 1)

o > cost > , xk
Cl(x)——/x le— y+10gx+2(—1) m,

—x)k
k-k!’

Ei(—x) = —/ —dt— y+10gx+z

00 L (_l)kxs+k
F(s,x):/ e ’dz:r(s)—§ -~ -
Y = k'(s+k)

(here y = 0.57721 ... is the Euler—Mascheroni constant). These series representa-
tions allow to obtain arbitrarily good numerical approximations to these integrals.

In Step 2, all the numerical computations are reduced to integrals of the
form [” % which are explicit,

11

Step 1: %H(p, 1) > 0,0.6 <p < 1. We have

O i1y [ toanED =D,
SHp. D= [ (1020 S0

We break the integral into several regions. Recall that g > f on (0, ), by Lemma 7.

/( pSO=S0y

Moreover, g — f changes sign from + to — exactly once on (7, 4) atr = 3.578 .. ..
Let g = 3.57. On (1, ), using t 7~ =¢1=P172 < t(l)_pt_z, we obtain

/ (—10g 2O Dy, té_p/[)(—logt)wm> —0.0297 - 1,7,
1

p+1

Thus, plainly,

where in the last inequality we use log? < log 3 > %(t - %) (by concavity) and then
estimate the resulting integrals. Now,

/Oo(—log 80 f(’)dz_/ (o t)&dt—/ (o t)&dt

Fort > 19, t 7' = 1'7r2 > {71~ and for k > 1, logt > €,(2) on (kz, (k+ 1)7)

with a1
mg:% a(km) + -

log((k + D),
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thus

/too(l )&dt to_p(/tzﬂfl(t)_

For n = 5, this gives

(k+1)m
Z /k {’k(t)i( D Smdt).

/Oo(l t)&dt > 0.0437 - to P,

Finally, since logu < %, u > 0, we have ¢! < L < -1 < 0.6132 < 0.6132- 5",
D e
thus

00 g( ) 1—p 00 e—t2/6 1—p
(log t)—dt 0.6132 - ¢, ; dr < 0.0127 -7, "
0 fo

Putting these together yields
0 _ _
—H(p, 1) > (0.0437 - 0.0297 — 0.0127)1, ™" = 0.0013 - 1, > 0.
P

Step 2: H(0.6, 1) > 0. We have

r p—1/6 _ sint 00 ,—12/6 | sint|
Y —zdt— | 5
H(0.6,1) = /0 s+ /” st /,, T

On (0, 7), we use Taylor’s polynomial to bound the integrand,

: 7 2 /6Vk 6 ky2k
t —1°/6 —1)*t
o—r/6 St Z%_ %
t = ! = 2k + 1)!
Plugging this into the integral results in
—17/6 __ sint
t
/0 — s dr > 0.0434.

Using the incomplete Gamma function,

e—t2/6

Finally,
| sint|
/ 1375 ——dr = / (sinft) (t+ kﬂ)l3/5 dr
o dr
/ (s1nt)< vk )”/5)dt+/(n+1)n PR
We use Taylor’s polynomial again, sinz < 1 —3 Lt—m/2)%+ >4 L(t—m/2)*. Choosing
n = 8§ gives

° | sint|
/7r 1375 dr < 0.0615.

Adding up these estimates yields H(0.6, 1) > 0.0434+0.0184—0.0615=0.0003. [
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S Inductive argument

As explained in Section 2, Theorem 6 gives the following corollary (we use
homogeneity to rewrite (4) in an equivalent form, better suited for the ensuing
arguments). Recall ¢, = ||Z]|,/ V/3 and define

gap(x) = (1 +x)P/25 X 2 0

Corollary 19. Let 0 < p < 1. For every n > 2 and real numbers a, . . ., a,
with 377, af > 1and af < 1foreveryj=2,...,n we have

P n
>c§-¢p(2af>.

J=2

E‘Ul + ZajUj
j=2

The goal here is to remove the restriction on the @;’s. The key idea from [24] is
to replace ¢, with a pointwise larger function, thereby strengthening the inequality
and to proceed by induction on n. We use the function from [24],

(pp(x)a

®,(x) =
X) =
! 20,(1) —pp(2 —x), 0<x< 1.

Even though this function changes from being convex to concave at x = 1, it is
designed to satisfy the following extended convexity property on [0, 2], crucial
for the proof.

Lemma 20 (Nazarov—Podkorytov, [24]). ForeveryO <p <2anda, b € [0, 2]
witha+ b < 2, we have

D,(a) + D,(b) a+b
p . p >q)p( . )

As in [4], in order to have certain algebraic identities, we run the argument
for &1, &, ..., independent random vectors in R? uniformly distributed on the
centred unit Euclidean sphere S?. Here (-, ) and || - || is the standard inner product
and the resulting Euclidean norm in R3, respectively.

Theorem 21. Let 0 < p < 0.69. For every n > 2 and vectors vy, ..., 0,
in R3, we have

n

(e1,&1) + ) (v, &)

J=2

P
(10) E

n
2
> b cD,,(Z [ )
=2

Here ey = (1,0, 0), the unit vector of the standard basis.
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Note (v;, &) has the same distribution as ||v;||U; ( by rotational invariance, (v;, &)
has the same distribution as ||vj|| (e}, &;) and by the Archimedes’ hat-box theorem,
the projection (e, &) is a uniform random variable on [—1, 1]). Since @, > ¢,,
this gives Theorem 1 for 0 < p < 0.69, thereby completing its proof. It remains
to show Theorem 21, which is done by repeating almost verbatim the proof of
Theorem 18 from [4]. We repeat the argument for the convenience of the reader.
To adjust the proof of the base case we will need the following lemma.

Lemma 22. Forevery0 <x <1 and0 < p < 0.69, we have

24p __ )2+
G S (55 () e - -y
= (1Z1l,/ V3P (1 + p)@, ().

Proof. We first observe that keeping only the first two terms in the binomial
series expansion, we obtain

(1+x)2+p_(1_x)2+p:i 1 p+2 x2k>1+p(p+1)x2
22 +p)x p+2\2k+1 6 ’

because all the terms are positive. It thus suffices to show that forevery 0 < x < 1
and 0 < p < 0.69,

plp+1) 1+p_/1+py\ /2\r/2 2 14p)2
1+ 55 x+ﬁr( 5 )(5) (3 —x)P/2 —21*/2y 5

(we have replaced x> by x). By the evident concavity in x, it suffices to check that

the inequality holds at the end-points x = 0 and x = 1 which follows from Lemmas
16 and 15, respectively. (]

Proof of Theorem 21. For the case n = 2, we need to show that for
every v € R3

(11) Eller, &) + (0. &)1 = B, (lv]P.

We first reduce this claim to the case ||v]| < 1: If ||o|| > 1, then due to rotational
invariance

El(er &) + (0 &) = IoWE| (o &) + (o)
= [DIPEI(0, &) + (€1, &)1,

where v’ € R? is such that ||o’|| = IL < 1. On the other hand, due to homogeneity,

D,([[011%) = Bp(Ulol1?) = o 1IP0I,
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so (11) is equivalent to

El(0, &) + (e, &) = (101D, o'l < 1

and since ®,(x) > ¢,(x) for x € [0, 1] it is indeed sufficient to restrict to the
case ||o|| < 1.

In this case, we set x := ||v]| < 1 and compute explicitly the left- and right-
hand side of (11) to deduce that

(1+0)%P — (1 —x)**P

Eler, &) + (. )" = ElUs +alal = = mm

> CZ(I)p(xz)

with the aid of Lemma 22.

For the inductive step, let n € N and assume that (10) holds for every
02, ..., 0n—1 €R3. Weletvy,...,0, € R3 x := Y i lo]|?> and distinguish be-
tween the following mutually exclusive cases.

Case (i): ||og]] > 1 forsome 2 < k < n. Thenx > 1 and the wanted inequality
is

n P n p/2
2
ENY (o &) > cz(Zuvku )
k=1 k=1
with vy = e;. Fork =1,...,n we let v,/ = ”Z‘—;”, where v,*,...,0," is any
1
rearrangement of vy, ..., v, with [lo,*|| > |lv, Il for every k = 1,...,n — 1.

Then ||v}]l =1 and ||v,/|| < 1 for k =2, ..., n. Due to homogeneity and the fact
that (v,’, &) has the same distribution as (e, &) it is enough to prove

P n
> cgcbp(Z ||u,;||2).
k=2

n

(e, &)+ (s )

k=2

E

This is done on the next cases.
Case (ii): |log|| < 1 forevery 2 < k < nand x > 1. We then again have that
®,(x) = ¢,(x), and the desired inequality (10) coincides with

P n ) p/2
>c§<§jnukn ) :
k=1

n

> (o &)

k=1

E

Note that here we have

1 1 &
=1< =1 =_ E 2
max llok |l 2( +x) P okl

1\\

and since the distribution of Y ;_, (, &) is identical to that of > ;_; [lox|| Uy it is
clear that this case is handled by Theorem 6.
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Case (ifi): |log|]| < 1 forevery 2 < k < nmand x < 1. We use the fact
that (&,—1, &) has the same distribution as (&,—1, O&,—1), where Q is a random
orthogonal matrix independent of all the &’s to write

p

(e1,¢1) +zn:<0k,fk>

k=2
= ]E|<€1, §1> + <025 §2> + ot + <Dn—15 é:n—1> + <QTU}’!5 é:n—1>|p
=EolE -1 l{er, &1) + (02, &) + -+ - + (Un—2, &n2) + (O on, S 1.

E

By the inductive hypothesis applied to (va, . . ., y—2, Uu—1 + Q' v,) (conditioned on
the value of Q) we get

n

<€1,51>+Z<0kafk>

k=2

p

2 2 T2
E 2 GEe®@p([[2ll” + -+ + llop—2ll” + log—1 + Q" 0all).

Finally note that

n—2
2 T 2
]EQ(DP(Z Nlokll” + log—1 + Q" vall )
k=2

D,(x +2(0y—1 + O"v,)) + D,(x — 2(vy—1 + 0"v,))

=EQ >

= Op(x)

by the symmetry of ®, and Lemma 20 (applied for a = x + 2(v,—1 + Q" v,) and
b =x—2(v,—1 + Q" v,) which satisfy a + b = 2x < 2). This concludes the proof of
the inductive step. (]

6 Rényi entropy: Proof of Theorem 2

For the lower bound,
hP(ZajUJ) 2 hl (Za]l]]) 2 hl(Ul):
J J

where the first inequality follows from the fact that p — A, (-) is nonincreasing and
the second one is justified by the entropy power inequality (see, e.g., Theorem 4
in [6]). It remains to note that ,(U;) = log 2 for every p.

Towards the upper bound, we first note that for nonnegative functions f and g,

() (fe)" <

0 <p < 1, we have
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This follows directly from Hoélder’s inequality. Now, fix a unit vector a in R”, let f
be the density of Zj a;jU; and g(x) = (27r/3)_1/26_)‘2/6, the density of Z/v/3. In
view of the above inequality, it suffices to show that

/fg”‘1 < /gg”‘l-

_ 1-p 1 l—p k
gxy’ 1=(27T/3)12 ;E(T) xzk,

Since

it suffices to show that for each positive integer &,

B(Y )" = / ) < / 2 g(x)dx = E(%)”‘.

This follows from the main result of [19], that C,, = ||Z||p/\/§, p> 1l,see(2). O

We finish by remarking that the problem of maximising /,(3 a;U;) under a
variance constraint for a fixed number of summands to the best of our knowledge
remains wide open for p € (0, c0). The case of Shannon entropy, p = 1, seems
to be the most important and interesting, see [7, Question 9], or [3, Question
3], also comprehensively presenting many other related and tangential problems.
The natural conjecture is that: 7 (37 @;U) < (30, \/%;Uj), for every unit
vector a in R” (see 8.3.1 in [3] for a conceivable approach). The case p = 0 is of
course trivial, whereas the case p = oo amounts to the cube-slicing inequalities:
hoo 3o, a;jU;) < hoo(Uy) is due to Hadwiger and, independently, Hensley (see
[10, 12]), heo(XSy @iU)) 2 heo(Us + U,)/V/2) is due to Ball (see [2]).
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