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Abstract. We provide a sharp lower bound on the p-norm of a sum of
independent uniform random variables in terms of its variance when 0 < p < 1.
We address an analogous question for p-Rényi entropy for p in the same range.

1 Introduction and results

Moment comparison inequalities for sums of independent random variables, that is
Khinchin-type inequalities, first established by Khinchin for Rademacher random
variables (random signs) in his proof of the law of the iterated logarithm (see
[14]), have been extensively studied ever since his work. Particularly challenging,
interesting and conducive to new methods is the question of sharp constants in
such inequalities. We only mention in passing several classical as well as recent
references, [1, 9, 11, 15, 17, 18, 23, 26]. This paper finishes the pursuit of sharp
constants in Lp−L2 Khinchin inequalities for sums of independent uniform random
variables, addressing the range 0 < p < 1. We are also concerned with a p-Rényi
entropy analogue.

1.1 Moments. Let U1,U2, . . . be independent random variables uniform
on [−1, 1]. As usual, ‖X‖p = (E|X|p)1/p is the p-norm of a random variable X.
Given p > −1, let cp and Cp be the best constants such that for every integer n ! 1
and real numbers a1, . . . , an, we have

(1) cp

( n∑

j=1

a2
j

)1/2

"
∥∥∥∥

n∑

j=1

ajUj

∥∥∥∥
p
" Cp

( n∑

j=1

a2
j

)1/2

,
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or in other words, since
∥∥∥
∑

ajUj

∥∥∥
2

=

√
Var

(∑
ajUj

)
= 3−1/2

(∑
a2

j

)1/2
,

finding cp and Cp amounts to extremising the p-norm of the sum
∑

ajUj subject to
a fixed variance,

cp = inf
∥∥∥∥

n∑

j=1

ajUj

∥∥∥∥
p
, Cp = sup

∥∥∥∥
n∑

j=1

ajUj

∥∥∥∥
p
,

where the infimum and supremum are taken over all integers n ! 1 and unit vectors
a = (a1, . . . , an) in Rn.

For p > 1, the optimal constants cp,Cp were found by Latała and Oleszkiewicz
in [19] (see also [8] for an alternative approach and [1, 16] for generalisations in
higher dimensions). They read

(2)

cp =





limn→∞ ‖U1+···+Un√

n ‖p = ‖Z‖p/
√

3, 1 " p " 2,

‖U1‖p = (1 + p)−1/p, p ! 2,

Cp =





‖U1‖p, 1 " p " 2,

‖Z‖p/
√

3, p ! 2,

where Z here and throughout the text denotes a standard N(0, 1) Gaussian random
variable. In fact stronger results are available (extremisers are known via Schur-
convexity for each fixed n).

For −1 < p < 0, the behaviour is complicated by a phase transition (similar to
the case of random signs as established by Haagerup in [9]). It has recently been
proved in [4] that

cp = min{‖Z‖p/
√

3, ‖U1 + U2‖p /
√

2}

=





‖Z‖p/

√
3, −0.793 . . . < p < 0,

‖U1 + U2‖p/
√

2, −1 < p " −0.793 . . . ,

and the limiting behaviour of cp as p → −1+ recoversBall’s celebrated cube slicing
inequality from [2].

The fact that
Cp = ‖U1‖p, −1 < p < 1,

follows easily from unimodality and Jensen’s inequality (see, e.g., Proposition 15
in [8]).

Thus what is unknown is the optimal value of cp for 0 < p < 1 and this paper
fills out this gap. Our main result reads as follows.
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Theorem 1. For 0 < p < 1, cp = ‖Z‖p/
√

3 is the best constant in (1).

We record for future use that

‖Z‖p
p =

1√
2π

∫ ∞

−∞
|x|pe−x2/2dx =

2p/2

√
π
"
(1 + p

2

)
.

1.2 Rényi entropy. For p ∈ [0,∞], the p-Rényi entropy of a random
variable X with density f is defined as (see [25]),

hp(X) =
1

1 − p
log
(∫

R
f p
)

with p ∈ {0, 1,∞} defined by taking the limit: h0(f ) = log |supp(f )| is the logarithm
of the Lebesgue measure of the support of f , h1(f ) = − ∫ f log f is the Shannon
entropy, and h∞ = − log ‖f‖∞, where ‖f‖∞ is the ∞-norm of f (with respect to
Lebesgue measure). The question of maximising Rényi entropy under a variance
constraint (or more generally, a moment constraint) for general distributions has
been fully understood and leads to the notion of relative entropy that is of
importance in information theory, providing a natural way of measuring distance
to the extremal distributions (see [5, 13, 20, 22]). In analogy to Theorem 1, we
provide an answer for p-Rényi entropies, 0 < p < 1, for sums of uniforms under
the variance constraints.

Theorem 2. Let 0 < p < 1. For every unit vector a = (a1, . . . , an), we have

hp(U1) " hp

( n∑

j=1

ajUj

)
" hp(Z/

√
3).

The lower bound is a simple consequence of the entropy power inequality.
The upper bound is interesting in that the maximizer among all distributions of
fixed variance is not Gaussian (rather, with density proportional to (1 + x2)−1/(1−p)

for 1
3 < p < 1 and it does not exist for p < 1

3 , see, e.g., [5]). It is derived from
the Lq − L2 Khinchin inequality for even q.

1.3 Organisation of the paper. In Section 2 we give an overview of
the proof of Theorem 1 and show a reduction to two main steps: an integral
inequality and an inductive argument. Then in Section 3 we gather all technical
lemmas needed to accomplish these steps which is then done in Sections 4 and 5,
respectively. Section 6 contains a short proof of Theorem 2.

Acknowledgments. We should verymuch like to thank AlexandrosEskenazis
for the stimulating correspondence. We are also indebted to anonymous referees
for many valuable comments which helped to significantly improve the manuscript.
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2 Proof of the main result

2.1 Overview. We follow an approach developed by Haagerup in [9], with
major simplifications advanced later by Nazarov and Podkorytov in [24]. In
essence, the argument begins with a Fourier-analytic integral representation for
the power function | · |p which allows to take advantage of independence and in
turn, by virtue of the AM-GM inequality, to reduce the problem to establishing
a certain integral inequality involving the Fourier transforms of the uniform and
Gaussian distributions. Since this inequality holds only in a specific range of
parameters, additional arguments are needed, mainly an induction on the number
of summands n (similar problems were faced in, e.g., [4, 24, 15]). In our case,
this is further complicated by the fact that the base of the induction fails for large
values of p (roughly for p > 0.7).

Remark 3. We point out that the main difference between the regimes p ! 1
and p < 1 is that for the former convexity type arguments allow to establish
stronger comparison results, namely the Schur-convexity/concavity of the function

(
√

x1, . . . ,
√

xn) "→ E
∣∣∣∣

n∑

j=1

√
xjUj

∣∣∣∣
p

.

By combining Theorems 2 and 3 of [1] (see also (6.1) therein), a necessary con-
dition for this is the concavity/convexity of the function x "→ E|U1 +

√
x|p. The

calculations following Corollary 1 in the same work show that this is the case only
for p ! 1. In other words, when p < 1, the function above is neither Schur-convex
nor Schur-concave and the Fourier-analytic approach seems to be indispensable.

2.2 Details. The aforementioned Fourier-analytic formula reads as follows
(it can be found for instance in [9], but we sketch its proof for completeness).

Lemma 4. Let 0 < p < 2 and κp = 2
π"(1+p) sin(πp

2 ). For a random variable X
in L2 with characteristic function φX(t) = EeitX, we have

E|X|p = κp

∫ ∞

0

1 − ReφX(t)
tp+1 dt.

Proof. A change of variables establishes |x|p = κp
∫∞
0

1−cos(tx)
tp+1 dt, x ∈ R. We

then apply this to X and take the expectation. #
We begin the proof of Theorem 1. Let 0 < p < 1 and cp = ‖Z‖p/

√
3. Let

a1, . . . , an be (without loss of generality) nonzero real numbers with
∑n

j=1 a2
j = 1.
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By symmetry of the uniform distribution we assume without loss of generality that
they are in fact positive. From Lemma 4, we obtain

E
∣∣∣∣

n∑

j=1

ajUj

∣∣∣∣
p

= κp

∫ ∞

0

1 −∏n
j=1 φ(ajt)

t1+p dt,

where we have used independence and put φ(t) = EeitU1 = sin t
t to be the charac-

teristic function of the uniform distribution. We seek a sharp lower-bound on this
expression (attained when a1 = · · · = an = 1√

n and n → ∞, as anticipated by
Theorem 1). By the AM-GM inequality,

∣∣∣∣
n∏

j=1

φ(ajt)
∣∣∣∣ "

n∑

j=1

a2
j |φ(ajt)|1/a2

j .

As a result,

E
∣∣∣∣

n∑

j=1

ajUj

∣∣∣∣
p

!
n∑

j=1

a2
j Ip(1/a2

j ),

where we have set

Ip(s) = κp

∫ ∞

0

1 − | sin(t/
√

s)
t/
√

s |s
tp+1 dt, s ! 1.

Note that sin(t/
√

s)
t/
√

s = 1 − t2
6s + O(1/s2) for a fixed t as s → ∞ and consequently,

Ip(∞) = lim
s→∞

Ip(s) = κp

∫ ∞

0

1 − e−t2/6

tp+1 dt = E|Z/
√

3|p,

where the last equality follows from Lemma 4 because e−t2/6 is the characteristic
function ofZ/

√
3, Z ∼ N(0, 1) (the exchange of the order of the limit and integration

in the second equality can be easily justified by truncating the integral, see, e.g.,
(15) in [4]). In particular, if for some p and s0,

(3) Ip(s) ! Ip(∞), for all s ! s0,

then

(4) E
∣∣∣∣

n∑

j=1

ajUj

∣∣∣∣
p

! E|Z/
√

3|p = cp
p,

as long as 1/a2
j ! s0 for each j. If (3) were true for all 0 < p < 1 with s0 = 1, then

the proof of Theorem 1 would be complete. Unfortunately, that is not the case. In
Section 4 we show the following result.



6 G. CHASAPIS, K. GURUSHANKA AND T. TKOCZ

Theorem 5. Inequality (3) holds for every 0.6 < p < 1 with s0 = 1.

As a result, when 0.6 < p < 1, (4) holds for arbitrary aj and the proof of
Theorem 1 is complete in this case. For smaller values of p, s0 has to be increased.

Theorem 6. Inequality (3) holds for every 0 < p < 1 with s0 = 2.

This is proved in Section 4. Consequently, (4) holds provided that a2
j " 1

2 for
each j. To remove this restriction, we employ an inductive argument of Nazarov
and Podkorytov from [24] developed for random signs and adapted to the uniform
distribution in [4]. This works for 0 < p < 0.69 and the proof of Theorem 1 is
complete. This is done in Section 5.

3 Auxiliary lemmas

To show Theorems 5 and 6 and carry out the inductive argument, we first prove
some technical lemmas.

3.1 Lemmasconcerning the sinc function. The zeroth sphericalBessel
function (of the first kind) j0(x) = sin x

x = sinc(x) is sometimes referred to as the sinc
function. As the characteristic function of a uniform random variable, it plays a
major role in our approach. We shall need several elementary estimates.

Lemma 7. For 0 < t < π, we have sin t
t < e−t2/6.

Proof. This follows from the product formula, sin t
t =

∏∞
n=1(1 − t2

n2π2 ). Since
each term is positive for 0 < t < π, the lemma follows by applying 1 + x " ex

and
∑∞

n=1
1
n2 = π2

6 . #

Lemma 8. supt∈R | cos t − sin t
t | < 11

10 .

Proof. Since both cos t and sin t
t are even, it suffices to consider positive t. By

the Cauchy-Schwarz inequality, we have | cos t − sin t
t | "

√
1 + 1

t2 , so it suffices to

consider t < 10√
21

. On (0, π2 ), we have | cos t − sin t
t | = sin t

t − cos t < 1 + 0 = 1, so it

remains to consider π2 < t < 10√
21

. Letting t = π
2 + x, we have for 0 < x < 10√

21
− π

2 ,

∣∣∣ cos t − sin t
t

∣∣∣ =
sin t

t
− cos t =

cos x
x + π/2

+ sin x <
1

x + π/2
+ x.

Examining the derivative, the right-hand side is clearly increasing, so it is upper
bounded by its value at x = 10√

21
− π

2 which is
√

21
10 + 10√

21
− π

2 < 1.07. #
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Lemma 9. Let k ! 0 be an integer and let yk be the value of the unique local
maximum of | sin t

t | on (kπ, (k + 1)π). Then

1
(k + 1/2)π

" yk "
1
kπ

.

Moreover, y1 < e−3/2.

Proof. The lower bound follows from taking t = (k + 1/2)π, whereas the
upper bound follows from | sin t| " 1 and t > kπ. The bound on y1 is equivalent to
sin t < e−3/2(t + π), 0 < t < π/2. To show this in turn, it suffices to upper bound
sin t by its tangent at, e.g., t = 1.3. #

Lemma 10. For y ∈ (0, 1
30π ), let t = t0 be the unique solution to sin t

t = y
on (0,π). Then t0 > 0.98π. Let t = t1 be the larger of the two solutions to | sin t|

t = y
on (π, 2π). Then t1 > 1.97π.

Proof. Note that

sin t0
t0

= y <
1

30π
<

sin(0.98π)
0.98π

.

Since sin t
t is decreasing on (0,π), it follows that t0 > 0.98π. Similarly, we check

that | sin(1.97π)|
1.97π

>
1

30π
to justify the claim about t1. #

Lemma 11. For 0 < x < π,

1

sin2 x
>

1
x2 +

1
(π− x)2

.

Proof. It is well known (and follows from sin(2x) = 2 sin x cos x) that

sin x
x

=
∞∏

k=1

cos(x/2k).

In particular, for 0 < x < π, we have ( sin x
x )2 < cos2(x/2), hence

sin2 x
( 1
x2 +

1
(π− x)2

)
=
(sin x

x

)2
+
(sin(π− x)

π− x

)2

< cos2(x/2) + cos2(π/2 − x/2) = 1. #
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Lemma 12. Let k ! 1 be an integer. On ((k − 1)π, kπ), we have

(i) the function | sin t|
t(t−(k−1)π) is nonincreasing,

(ii) the function | sin t|
t(kπ−t) is unimodal (first increases and then decreases).

Proof. (i) The derivative equals

| sin t|
t(t − (k − 1)π)

(
cot(t) − 1

t
− 1

t − (k − 1)π

)

which is negative on ((k − 1)π, kπ) because on this interval, cot(t) < 1
t−(k−1)π (as,

by periodicity, being equivalent to cot(t) < 1
t on (0,π), which is clear—recall that

tan(x) > x on (0, π2 )).
(ii) Here, the derivative reads

| sin t|
t(kπ− t)

h(t), h(t) = cot(t) − 1
t

+
1

kπ− t
.

We shall argue that h(t) is decreasing on ((k−1)π, kπ). This suffices, since h(t) > 0
for t near (k − 1)π and h(t) < 0 for t near kπ. Setting t = (k − 1)π + x, we have

h′(t) = − 1

sin2 t
+

1
t2

+
1

(kπ− t)2

" − 1

sin2 x
+

1
x2

+
1

(π− x)2
< 0,

by Lemma 11. #

3.2 Lemmas concerning sums of p-th powers. Our computations re-
quire several technical bounds on various expressions involving sums of p-th
powers.

Lemma 13. Let 0 < p < 1 and let 1 " m " 29 be an integer. Set

um(p) = Bm

(
bp

0,m + 2
m∑

k=1

bp
k,m

)

with

Bm =
20 log(π(m + 3/2))

11π(m + 3/2)
, bk,m =

1
k + 1

√
6
π2

log(π(m + 3/2)).

Then,

um(p) > 1.
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Proof. Fix m. Plainly, um(p) is a convex function (as a sum of convex func-
tions). Thus, u′

m(p) < u′
m(1) for 0 < p < 1. We have

u′
m(1) = Bm

(
b0,m log b0,m + 2

m∑

k=1

bk,m log bk,m

)

and Table 1 shows that each u′
m(1) is negative, so each um is decreasing. Therefore,

um(p) > um(1), for 0 < p < 1, and Table 1 shows that each um(1) is greater than 1.
This finishes the proof. #

Table 1. Lower bounds on the values of −u′
m(1) and um(1).

m 1 2 4 4 5 6 7 8 9 10
−u′

m(1) 0.24 0.44 0.58 0.70 0.79 0.86 0.91 0.96 0.99 1.02
um(1) 1.06 1.27 1.36 1.40 1.41 1.41 1.40 1.38 1.36 1.34

m 11 12 13 14 15 16 17 18 19 20
−u′

m(1) 1.05 1.07 1.08 1.10 1.11 1.12 1.13 1.13 1.14 1.14
um(1) 1.32 1.29 1.27 1.25 1.23 1.21 1.19 1.17 1.15 1.14

m 21 22 23 24 25 26 27 28 29
−u′

m(1) 1.14 1.14 1.15 1.15 1.15 1.15 1.15 1.15 1.14
um(1) 1.12 1.10 1.09 1.07 1.06 1.04 1.03 1.02 1.00

Lemma 14. For 0 < p < 1, let

αp = 2π−p+1
(
3 − 1

1 − p
+

3
2p

)
, βp =

2
1 − p

+
1.05p

p
, γp =

3π
p

,

δp =
1
p

( 30π
6 log(30π)

)p/2

and
hp(y) = δpy

p
2 −1 + γpyp − βpyp−1 − αp.

Then hp(y) > 0 for every 0 < y < 1
30π .

Proof. Plainly, it suffices to show the following two claims,

h′
p(y) < 0, 0 < y <

1
30π

,(5)

hp

( 1
30π

)
> 0.(6)
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To prove (5), first we find

y2− p
2 h′

p(y) = −
(
1 − p

2

)
δp + pγpy

p
2 +1 + (1 − p)βpy

p
2

which is clearly increasing in y, thus to show that it is negative, it suffices to prove
that at y = 1

30π , which in turn is equivalent to

2.1p + (1 − p)1.05p <
(
1 − p

2

)( 30π√
6 log(30π)

)p
.

Crudely, (1 − p)1.05p < 1.05p < 1 + 0.05p, by convexity, thus it suffices to show
that

1 + 2.15p <
(
1 − p

2

)
Ap,

where we put A = 30π√
6 log(30π)

. Equivalently, after taking the logarithm, the inequal-

ity becomes
p logA + log

(
1 − p

2

)
− log(1 + 2.15p) > 0.

Note that at p = 0 this becomes equality. We claim that the derivative of the
left-hand side is positive for 0 < p < 1, which will finish the argument. The
derivative is log A − 1

2−p − 2.15
1+2.15p which is clearly concave, thus it suffices to

examine whether it is positive at the end-points p = 0 and p = 1, which respectively
become log A > 2.65 and log A > 1 + 2.15

3.15 . Since logA = 2.89 . . ., both are clearly
true.

It remains to show (6), namely that the following is positive for every 0 < p < 1,

30pπp−1hp

( 1
30π

)

= 30
( 30π√

6 log(30π)
)p − 1.05p

p︸ ︷︷ ︸
L(p)

−
(

2
30 − 30p

1 − p
+ 3

30p − 1
p

+ 6 · 30p

︸ ︷︷ ︸
R(p)

)
.

Both L(p) and R(p) are strictly increasing and convex on (0, 1). This is clear for L,
since its Taylor expansion at p = 0 has positive coefficients. Similarly for the
term 30p−1

p in R(p). To see that 30−30p

1−p is strictly increasing and convex, write it

as 30
∫ 30
1 up du

u2 .

Case 1: 0 < p < 0.6. By convexity, using a tangent line

L(p) ! L(0.24) + L′(0.24)(p − 0.24) = )(p)

and a chord
R(p) " p

0.6
R(0.6) +

0.6 − p
0.6

R(0+) = r(p).
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With hindsight, the tangent and the chord are chosen such that ) > r on (0, 0.6),
which can be checked directly by looking at the values of these linear functions at
the end-points.

Case 2: 0.6 < p < 1. Similarly, by convexity, using a tangent line

L(p) ! L(0.8) + L′(0.8)(p − 0.8) = )̃(p)

and a chord
R(p) " 1 − p

0.4
R(0.6) +

p − 0.6
0.4

R(1−) = r̃(p).

Again, with hindsight, the tangent and the chord are chosen such that )̃ > r̃
on (0.6, 1). This completes the proof. #

3.3 Lemmas concerning the gamma function. For the inductive part
of our argument, we will later need bounds on the following function:

ψ(p) =
1 + p√
π

(4
3

)p/2
"
(1 + p

2

)
, 0 < p < 1.

Recall the Weierstrass’ product formula,

"(z) =
e−γz

z

∞∏

n=1

(
1 +

z
n

)−1
ez/n,

where γ = 0.57.. is the Euler–Mascheroni constant. Writing
√
π as"( 1

2 ), we obtain

(7) ψ(p) = e
p
2 (log(4/3)−γ)

∞∏

n=1

(
1 +

p
2n + 1

)−1
e

p
2n .

Lemma 15. For 0 < p < 0.69, we have ψ(p) < 1
2−(3/2)p/2 .

Proof. We show that

f (p) = log(2 − (3/2)p/2) + logψ(p)

is negative on (0, 0.69). By virtue of (7),

f ′′(p) = −1
2

log2
(3
2

) (3/2)p/2

(2 − (3/2)p/2)2
+

∞∑

n=1

1
(2n + 1 + p)2

.

This is plainly a decreasing function. Using
∞∑

n=1

1
(2n + 1 + p)2

!
∞∑

n=1

1
(2n + 2)2

=
π2 − 6

24
,

we get f ′′(0.9) > 0.007, so f is strictly convex on (0, 0.9). Checking that f (0) = 0
and f (0.69) < −0.0001 finishes the proof. #
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Lemma 16. For 0 < p < 1, we have ψ(p) < 1 + p(p+1)
6 .

Proof. We show that

f (p) = − log
(
1 +

p(p + 1)
6

)
+ logψ(p)

is negative on (0, 1). Since f (0) = 0, it suffices to show that f ′(p) < 0 on (0, 1).
Using (7), we have

f ′(p) = − 2p + 1
p2 + p + 6

+
1
2
(log(4/3) − γ) +

∞∑

n=1

( 1
2n

− 1
2n + 1 + p

)
.

Now, for R(p) = − 2p+1
p2+p+6 + 1

2 (log(4/3) − γ),

R′′(p) =
(2p + 1)(17 − p2 − p)

(p2 + p + 6)3
> 0

on (0, 1), so R(p) is convex on (0, 1). Let S(p) =
∑∞

n=1(
1
2n − 1

2n+1+p ). Plainly, this is a
concave function. Thus, using tangents at p = 0 and p=1, S(p) " min{L0(p),L1(p)}
with

L0(p) = S(0) + S′(0)p = (1 − log 2) +
(π2

8
− 1

)
p

and

L1(p) = S(1) + S′(1)(p − 1) =
1
2

+
π2 − 6

24
(p − 1).

We obtain the upper-bounds on f ′(p) by the convex functions R(p) + L0(p) and
R(p) +L1(p). Examining the end-points we conclude that the former is negative on
(0, 0.5) and the latter is negative on (0.4, 1). Thus f ′(p) < 0 on (0, 1), as desired.#

4 Integral inequality: proofs of Theorems 5 and 6

First observe that using the integral expression for Ip(∞), inequality (3) becomes

(8)
0 " Ip(s) − Ip(∞) = κp

∫ ∞

0

e−t2/6 − | sin(t/
√

s)
t/
√

s |s
tp+1

dt

= κps−p/2
∫ ∞

0

e−st2/6 − | sin t
t |s

tp+1 dt.

To tackle such an inequality with an oscillatory integrand, we rely on the following
extremely efficient and powerful lemma of Nazarov and Podkorytov from [24] (for
the proof, see, e.g., [15]).
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Lemma17 (Nazarov–Podkorytov, [24]). Let M ∈ (0,∞] and f, g :X→ [0,M]
be any two measurable functions on a measure space (X, µ). Assume that the
modified distribution functions

F(y) = µ({x ∈ X : f (x) < y}) and G(y) = µ({x ∈ X : g(x) < y})

of f and g respectively are finite for every y ∈ (0,M). If there exists y∗ ∈ (0,M)
such that

G(y) ! F(y) for all y ∈ (0, y∗),

G(y) " F(y) for all y ∈ (y∗,M),

then the function

s "→ 1
sys

0

∫

X
(gs − f s) dµ

is increasing on the set {s > 0 : gs − f s ∈ L1(X, µ)}.

In view of (3), (4) and (8), Theorems 5 and 6 immediately follow from the
following lemma.

Lemma 18. Let f (t) = | sin t
t |, g(t) = e−t2/6, t > 0, and set

H(p, s) =
∫ ∞

0

g(t)s − f (t)s

tp+1 dt.

We have
(a) H(p, s) ! 0 for every 0 < p < 1 and s ! 2,
(b) H(p, s) ! 0 for every 0.6 < p < 1 and s ! 1.

Proof. Fix 0 < p < 1. We examine the modified distribution functions

F(y) = µ(t > 0, f (t) < y),

G(y) = µ(t > 0, g(t) < y), 0 < y < 1,

where dµ(t) = t−p−1dt. It suffices to show that

(+) G − F changes sign exactly once on (0, 1) at some y = y∗ from + to −.

Then Lemma 17 gives that

s "→ 1
sys∗

H(p, s)

is increasing on (0,∞). In particular, (a) and (b) result from the following claims
whose proofs we defer until the end of this proof.

Claim A. H(p, 2) ! 0 for every 0 < p < 1.
Claim B. H(p, 1) ! 0 for every 0.6 < p < 1.
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Towards (+), let 1 = y0 > y1 > y2 > · · · be the consecutive maximum values
of f . On (0,π), f " g (Lemma 7), so G − F < 0 on (y1, 1). We plan to
find a ∈ (0, y1) with the following two properties

(i) (G − F)′ < 0 on (a, y1),
(ii) G − F > 0 on (0, a).

This clearly suffices to conclude (+).
Fix m ∈ {1, 2, . . . } and y ∈ (ym+1, ym). Plainly,

G(y) =
∫ ∞
√

−6 log y

dt
tp+1 =

1
p
(−6 log y)−p/2.

Let t+0 = t+0 (y) be the unique solution to f (t) = y on (0,π) and for each 1 " k " m,
let t−k < t+k be the unique solutions to f (t) = y on (kπ, (k + 1)π) (t±k = t±k (y) are
functions of y). We have

(9) F(y) = µ(t+0 , t−1 ) + µ(t+1 , t−2 ) + · · · + µ(t+m−1, t−m ) + µ(t+m,∞).

f

g

y1

y2
y

π 2π 3π 4π 5π 6π
t−1 t+1 t−2 t+2 t−3 t+3t+0

Figure 1. Functions f , g and the set {t > 0, f (t) < y}. Here m = 3, i.e., y3 < y < y4.

Condition (i). Recall that y ∈ (ym+1, ym). We have,

G′(y) =
3
y

(−6 log y)−p/2−1

and, differentiating (9) with respect to y (using the fundamental theoremof calculus
and chain rule),

F′(y) =
∑

t:f (t)=y

1
tp+1|f ′(t)| .
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To lower bound F′
G′ in order to show that it is greater than 1, we lower bound F′

and 1
G′ separately as follows. First, using |tf ′(t)| = | cos t − sin t

t | < 11
10 for every

t > 0 (Lemma 8), we have

F′(y) >
10
11

∑

t:f (t)=y

t−p >
10
11
π−p

(
1 + 2

m∑

k=1

(k + 1)−p
)

,

by crudely bounding t−0 < π, t±k < (k + 1)π. Second, since y(−6 log y)p/2+1 is
increasing on (0, y1) (it is increasing on (0, e−1−p/2) and e−1−p/2 > e−3/2 > y1),
and ym+1 > 1

π(m+3/2) (Lemma 9),

1
G′(y)

=
1
3
y(−6 log y)p/2+1 >

1
3
ym+1(−6 log ym+1)p/2+1

>
1
3

1
π(m + 3/2)

(6 log(π(m + 3/2)))p/2+1.

We obtain

F′(y)
G′(y)

>
10
33

1
πp+1(m + 3/2)

(6 log(π(m + 3/2)))p/2+1
(

1 + 2
m∑

k=1

(k + 1)−p
)

.

From Lemma 13 the right-hand side is at least 1 for every 0<p<1 and 1"m"29.
Therefore, to guarantee that Condition (i) holds, we can choose any a ! y30.

We set a = y30 and argue next that Condition (ii) holds for every y ∈ (0, a).

f

yk−1

yk

y
A

B

C

kπ
t+k−1

t−kt̄k−1 t̄k

Figure 2. The slope of the segment AB is not smaller than the slope of either AC
or BC.
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Condition (ii). Weassume here thatm!30. Recallwe havefixed y∈(ym+1, ym).
Since G is explicit, it suffices to upper bound F. We have

F(y) =
m∑

k=1

∫ t−k

t+k−1

dt
tp+1 +

∫ ∞

t+m

dt
tp+1 "

m∑

k=1

(t−k − t+k−1)(t
+
k−1)

−p−1 +
1
p
(t+m)−p.

For k ! 3, we crudely estimate t+k−1 ! (k − 1)π, whereas for k = 1, 2, we
have t+0 > 0.98π and t+1 > 1.97π, thanks to Lemma 10. To upper bound the
length t−k − t+k−1, note that with the aid of Figure 2,

2y
t−k − t+k−1

=
| sin t−k

t−k
− sin t+k−1

t+k−1
|

t−k − t+k−1
= |slope(AB)|

! min{|slope(AC)|, |slope(BC)|}.

Let t̄k ∈ (kπ, (k + 1)π) denote the point where f (t) attains its local maximum yk on
(kπ, (k + 1)π). Observe that

|slope(BC)| =
| sin t−k |

t−k (t−k − kπ)
! yk

t̄k − kπ
! yk

π
,

where the first inequality follows from Lemma 12 (i) applied to t−k < t̄k. Similarly,

|slope(AC)| =
| sin t+k−1|

t+k−1(kπ− t+k−1)
! min

{ yk−1

kπ− t̄k−1
,

1
kπ

}
! min

{yk−1

π
,

1
kπ

}
,

where in the first inequality we use Lemma 12 (ii) to lower bound the function
in question by the minimum of its values at the end-points t = t̄k−1 and t = kπ.
Finally, putting these two estimates together and using yk > 1

π(k+ 1
2 )

, we obtain

|slope(AB)| ! 1

π2(k + 1
2)

and, consequently,

t−k − t+k−1 =
2y

|slope(AB)| " 2π2y
(
k +

1
2

)
,

which results in

F(y) < 2π−p+1y
(

3
2
0.98−p−1 +

5
2
1.97−p−1 +

m∑

k=3

(
k +

1
2

)
(k − 1)−p−1

)
+

1
p
(mπ)−p.

Since y > ym+1 > 1
(m+ 3

2 )π
, and m ! 30, we have

1
p
(mπ)−p <

1
p

(m + 3/2
m

)p
yp " 1

p
1.05pyp.
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Moreover, since y < ym < 1
mπ , we have (crudely) m − 1 < 1

πy and, bounding the
sum using the integral, we obtain

m∑

k=3

(
k +

1
2

)
(k − 1)−p−1 =

m−1∑

k=2

k + 3
2

kp+1

<

∫ m−1

1

(
x−p +

3
2
x−p−1

)
dx

<
(πy)p−1 − 1

1 − p
+

3(1 − (πy)p)
2p

.

Therefore, in order to have F(y) < G(y), it suffices to guarantee that

2π−p+1y
(3

2
0.98−p−1 +

5
2
1.97−p−1 +

(πy)p−1 − 1
1 − p

+
3(1 − (πy)p)

2p

)

+
1
p
1.05pyp <

1
p
(−6 log y)−p/2

holds for every 0 < p < 1 and 0 < y < 1
30π . Since −y log y is increasing for y < 1

e ,
we have − log y < log(30π)

30π
1
y for 0 < y < 1

30π . By monotonicity, for 0 < p < 1,
we have 3

20.98−p−1 + 5
21.97−p−1 < 3

20.98−1−1 + 5
21.97−1 < 3. It remains to use

Lemma 14. This shows that Condition (ii) holds and the proof of the lemma is
complete. It remains to show Claims A and B. #

Proof of Claim A. By the integral representation for the p-norm from
Lemma 4,

κpH(p, 2) = E|U1 + U2|p − E
∣∣∣
√

2
3
Z
∣∣∣
p

=
2p+1

(p + 1)(p + 2)
− 1√

π

(4
3

)p/2
"
(1 + p

2

)
.

By Lemma 16, it suffices to prove that 2p+1 > (p + 2)(1 + p(p+1)
6 ) for all 0 < p < 1.

The 3rd derivative of the difference changes sign once on (0, 1) from − to +.
The 2nd derivative is negative at the end-points p = 0 and p = 1, so it is negative
on (0, 1) and hence the difference is concave. It vanishes at the end-points p = 0
and p = 1, which finishes the argument. #

Proof of Claim B. Our argument is split into two steps: first we show
that H(p, 1) increases with p and then we estimate H(0.6, 1). For somewhat
similar computations, but related to random signs, see Section 5 in [21]. In
Step 1, to numerically evaluate the integrals in question, we will frequently use
that given 0 < a < b and an integer m, integrals of the form

∫ b
a (sin t)t−mdt can

be efficiently estimated to an arbitrary precision by expressing them in terms of
the trigonometric integral functions Si,Ci. The same applies to the integrals of
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the form
∫ b
a e−t2 tqdt with 0 < a < b " ∞ and real q, thanks to reductions to

the incomplete gamma function " and the exponential integral Ei. We recall that
for x > 0, s )= 0,−1,−2, . . . ,

Si(x) = −
∫ ∞

x

sin t
t

dt = −π
2

−
∞∑

k=1

(−1)kx2k−1

(2k − 1)(2k − 1)!
,

Ci(x) = −
∫ ∞

x

cos t
t

dt = γ + log x +
∞∑

k=1

(−1)k
x2k

2k(2k)!
,

Ei(−x) = −
∫ ∞

x

e−t

t
dt = γ + log x +

∞∑

k=1

(−x)k

k · k!
,

"(s, x) =
∫ ∞

x
ts−1e−tdt = "(s) −

∞∑

k=0

(−1)kxs+k

k!(s + k)

(here γ = 0.57721 . . . is the Euler–Mascheroni constant). These series representa-
tions allow to obtain arbitrarily good numerical approximations to these integrals.

In Step 2, all the numerical computations are reduced to integrals of the
form

∫ b
a

dt
tq which are explicit.

Step 1: ,
,pH(p, 1) > 0, 0.6 < p < 1. We have

,

,p
H(p, 1) =

∫ ∞

0
(− log t)

g(t) − f (t)
tp+1 dt.

We break the integral into several regions. Recall that g > f on (0,π), by Lemma 7.
Thus, plainly, ∫ 1

0
(− log t)

g(t) − f (t)
tp+1

dt > 0.

Moreover, g − f changes sign from + to − exactly once on (π, 4) at t = 3.578 . . ..
Let t0 = 3.57. On (1, t0), using t−p−1 = t1−pt−2 " t1−p

0 t−2, we obtain

∫ t0

1
(− log t)

g(t) − f (t)
tp+1

dt ! t1−p
0

∫ t0

1
(− log t)

g(t) − f (t)
t2

dt > −0.0297 · t1−p
0 ,

where in the last inequality we use log t " log 5
2 + 2

5 (t − 5
2 ) (by concavity) and then

estimate the resulting integrals. Now,
∫ ∞

t0
(− log t)

g(t) − f (t)
tp+1

dt =
∫ ∞

t0
(log t)

f (t)
tp+1

dt −
∫ ∞

t0
(log t)

g(t)
tp+1

dt.

For t > t0, t−p−1 = t1−pt−2 > t1−p
0 t−2 and for k ! 1, log t ! )k(t) on (kπ, (k + 1)π)

with

)k(t) =
(k + 1)π− t

π
log(kπ) +

t − kπ
π

log((k + 1)π),
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thus
∫ ∞

t0
(log t)

f (t)
tp+1

dt ! t1−p
0

(∫ 2π

t0
)1(t)

− sin t
t3

dt +
n∑

k=2

∫ (k+1)π

kπ
)k(t)

(−1)k sin t
t3

dt
)

.

For n = 5, this gives
∫ ∞

t0
(log t)

f (t)
tp+1

dt > 0.0437 · t1−p
0 .

Finally, since log u " u
e , u > 0, we have log t

tp < 1
ep < 1

0.6e < 0.6132 < 0.6132 ·t1−p
0 ,

thus ∫ ∞

t0
(log t)

g(t)
tp+1 dt " 0.6132 · t1−p

0

∫ ∞

t0

e−t2/6

t
dt < 0.0127 · t1−p

0 .

Putting these together yields

,

,p
H(p, 1) > (0.0437 − 0.0297 − 0.0127)t1−p

0 = 0.0013 · t1−p
0 > 0.

Step 2: H(0.6, 1) > 0. We have

H(0.6, 1) =
∫ π

0

e−t2/6 − sin t
t

t8/5 dt +
∫ ∞

π

e−t2/6

t8/5 dt −
∫ ∞

π

| sin t|
t13/5 dt.

On (0,π), we use Taylor’s polynomial to bound the integrand,

e−t2/6 − sin t
t

>
7∑

k=0

(−t2/6)k

k!
−

6∑

k=0

(−1)kt2k

(2k + 1)!
.

Plugging this into the integral results in
∫ π

0

e−t2/6 − sin t
t

t8/5 dt > 0.0434.

Using the incomplete Gamma function,
∫ ∞

π

e−t2/6

t8/5 dt > 0.0184.

Finally,
∫ ∞

π

| sin t|
t13/5 dt =

∫ π

0
(sin t)

( ∞∑

k=1

1
(t + kπ)13/5

)
dt

"
∫ π

0
(sin t)

( n∑

k=1

1
(t + kπ)13/5

)
dt +

∫ ∞

(n+1)π

dt
t13/5 .

We use Taylor’s polynomial again, sin t " 1− 1
2 (t−π/2)2+ 1

24 (t−π/2)4. Choosing
n = 8 gives ∫ ∞

π

| sin t|
t13/5

dt < 0.0615.

Adding up these estimates yields H(0.6, 1)>0.0434+0.0184−0.0615=0.0003. #
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5 Inductive argument

As explained in Section 2, Theorem 6 gives the following corollary (we use
homogeneity to rewrite (4) in an equivalent form, better suited for the ensuing
arguments). Recall cp = ‖Z‖p/

√
3 and define

ϕp(x) = (1 + x)p/2, x ! 0.

Corollary 19. Let 0 < p < 1. For every n ! 2 and real numbers a2, . . . , an

with
∑n

j=2 a2
j ! 1 and a2

j " 1 for every j = 2, . . . , n, we have

E
∣∣∣∣U1 +

n∑

j=2

ajUj

∣∣∣∣
p

! cp
p · ϕp

( n∑

j=2

a2
j

)
.

The goal here is to remove the restriction on the aj’s. The key idea from [24] is
to replace ϕp with a pointwise larger function, thereby strengthening the inequality
and to proceed by induction on n. We use the function from [24],

.p(x) =





ϕp(x), x ! 1,

2ϕp(1) − ϕp(2 − x), 0 " x " 1.

Even though this function changes from being convex to concave at x = 1, it is
designed to satisfy the following extended convexity property on [0, 2], crucial
for the proof.

Lemma 20 (Nazarov–Podkorytov, [24]). For every 0<p<2 and a, b ∈ [0, 2]
with a + b " 2, we have

.p(a) +.p(b)
2

! .p

(a + b
2

)
.

As in [4], in order to have certain algebraic identities, we run the argument
for /1, /2, . . ., independent random vectors in R3 uniformly distributed on the
centred unit Euclidean sphere S2. Here 〈·, ·〉 and ‖ · ‖ is the standard inner product
and the resulting Euclidean norm in R3, respectively.

Theorem 21. Let 0 < p < 0.69. For every n ! 2 and vectors v2, . . . , vn

in R3, we have

(10) E
∣∣∣∣〈e1, /1〉 +

n∑

j=2

〈vj, /j〉
∣∣∣∣
p

! cp
p ·.p

( n∑

j=2

‖vj‖2
)

.

Here e1 = (1, 0, 0), the unit vector of the standard basis.
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Note 〈vj, /j〉 has the same distribution as ‖vj‖Uj ( by rotational invariance, 〈vj, /j〉
has the same distribution as ‖vj‖〈e1, /j〉 and by the Archimedes’ hat-box theorem,
the projection 〈e1, /j〉 is a uniform random variable on [−1, 1]). Since .p ! ϕp,
this gives Theorem 1 for 0 < p < 0.69, thereby completing its proof. It remains
to show Theorem 21, which is done by repeating almost verbatim the proof of
Theorem 18 from [4]. We repeat the argument for the convenience of the reader.
To adjust the proof of the base case we will need the following lemma.

Lemma 22. For every 0 < x < 1 and 0 < p < 0.69, we have

(1 + x)2+p − (1 − x)2+p

2(2 + p)x
>

1 + p√
π
"
(1 + p

2

)(2
3

)p/2
(21+p/2 − (3 − x2)p/2)

= (‖Z‖p/
√

3)p(1 + p).p(x2).

Proof. We first observe that keeping only the first two terms in the binomial
series expansion, we obtain

(1 + x)2+p − (1 − x)2+p

2(2 + p)x
=

∞∑

k=0

1
p + 2

(
p + 2
2k + 1

)

x2k > 1 +
p(p + 1)

6
x2,

because all the terms are positive. It thus suffices to show that for every 0 < x < 1
and 0 < p < 0.69,

1 +
p(p + 1)

6
x +

1 + p√
π
"
(1 + p

2

)(2
3

)p/2
((3 − x)p/2 − 21+p/2) > 0

(we have replaced x2 by x). By the evident concavity in x, it suffices to check that
the inequality holds at the end-points x = 0 and x = 1 which follows from Lemmas
16 and 15, respectively. #

Proof of Theorem 21. For the case n = 2, we need to show that for
every v ∈ R3

(11) E|〈e1, /1〉 + 〈v, /2〉|p ! cp
p.p(‖v‖2).

We first reduce this claim to the case ‖v‖ " 1: If ‖v‖ > 1, then due to rotational
invariance

E|〈e1, /1〉 + 〈v, /2〉|p = ‖v‖pE
∣∣∣
〈 e1

‖v‖ , /1
〉

+
〈 v

‖v‖ , /2
〉∣∣∣

p

= ‖v‖pE|〈v ′, /1〉 + 〈e1, /2〉|p,

where v ′ ∈ R3 is such that ‖v ′‖ = 1
‖v‖ < 1. On the other hand, due to homogeneity,

.p(‖v‖2) = φp(‖v‖2) = ‖v‖pφp(‖v ′‖2),
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so (11) is equivalent to

E|〈v ′, /1〉 + 〈e1, /2〉|p ! cp
pφp(‖v ′‖2), ‖v ′‖ " 1

and since .p(x) ! φp(x) for x ∈ [0, 1] it is indeed sufficient to restrict to the
case ‖v‖ " 1.

In this case, we set x := ‖v‖ " 1 and compute explicitly the left- and right-
hand side of (11) to deduce that

E|〈e1, /1〉 + 〈v, /2〉|p = E|U1 + xU2|p =
(1 + x)2+p − (1 − x)2+p

2(1 + p)(2 + p)x
! cp

p.p(x2)

with the aid of Lemma 22.
For the inductive step, let n ∈ N and assume that (10) holds for every

v2, . . . , vn−1 ∈ R3. We let v2, . . . , vn ∈ R3, x :=
∑n

k=2 ‖v‖2 and distinguish be-
tween the following mutually exclusive cases.

Case (i): ‖vk‖ > 1 for some 2 " k " n. Then x > 1 and the wanted inequality
is

E
∣∣∣∣

n∑

k=1

〈vk, /k〉
∣∣∣∣
p

! cp
p

( n∑

k=1

‖vk‖2
)p/2

with v1 = e1. For k = 1, . . . , n we let v ′
k = v ∗

k
‖v ∗

1 ‖ , where v ∗
1 , . . . , v ∗

n is any
rearrangement of v1, . . . , vn with ‖v ∗

k ‖ ! ‖v ∗
k+1‖ for every k = 1, . . . , n − 1.

Then ‖v ′
1‖ = 1 and ‖v ′

k ‖ " 1 for k = 2, . . . , n. Due to homogeneity and the fact
that 〈v ′

1 , /1〉 has the same distribution as 〈e1, /1〉 it is enough to prove

E
∣∣∣∣〈e1, /1〉 +

n∑

k=2

〈v ′
k , /k〉

∣∣∣∣
p

! cp
p.p

( n∑

k=2

‖v ′
k ‖2

)
.

This is done on the next cases.
Case (ii): ‖vk‖ " 1 for every 2 " k " n and x ! 1. We then again have that

.p(x) = φp(x), and the desired inequality (10) coincides with

E
∣∣∣∣

n∑

k=1

〈vk, /k〉
∣∣∣∣
p

! cp
p

( n∑

k=1

‖vk‖2
)p/2

.

Note that here we have

max
1!k!n

‖vk‖ = 1 " 1
2
(1 + x) =

1
2

n∑

k=1

‖vk‖2,

and since the distribution of
∑n

k=1〈vk, /k〉 is identical to that of
∑n

k=1 ‖vk‖Uk it is
clear that this case is handled by Theorem 6.
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Case (iii): ‖vk‖ " 1 for every 2 " k " n and x < 1. We use the fact
that (/n−1, /n) has the same distribution as (/n−1,Q/n−1), where Q is a random
orthogonal matrix independent of all the /k’s to write

E
∣∣∣∣〈e1, /1〉 +

n∑

k=2

〈vk, /k〉
∣∣∣∣
p

= E|〈e1, /1〉 + 〈v2, /2〉 + . . . + 〈vn−1, /n−1〉 + 〈Q*vn, /n−1〉|p

= EQ[E(/k)n−1
k=2

|〈e1, /1〉 + 〈v2, /2〉 + · · · + 〈vn−2, /n−2〉 + 〈Q*vn, /n−1〉|p].

By the inductive hypothesis applied to (v2, . . . , vn−2, vn−1 +Q*vn) (conditioned on
the value of Q) we get

E
∣∣∣∣〈e1, /1〉 +

n∑

k=2

〈vk, /k〉
∣∣∣∣
p

! cp
pEQ.p(‖v2‖2 + · · · + ‖vn−2‖2 + ‖vn−1 + Q*vn‖2).

Finally note that

EQ.p

( n−2∑

k=2

‖vk‖2 + ‖vn−1 + Q*vn‖2
)

= EQ
.p(x + 2〈vn−1 + Q*vn〉) +.p(x − 2〈vn−1 + Q*vn〉)

2
! .p(x)

by the symmetry of .p and Lemma 20 (applied for a = x + 2〈vn−1 + Q*vn〉 and
b = x − 2〈vn−1 + Q*vn〉 which satisfy a + b = 2x " 2). This concludes the proof of
the inductive step. #

6 Rényi entropy: Proof of Theorem 2

For the lower bound,

hp

(∑

j

ajUj

)
! h1

(∑

j

ajUj

)
! h1(U1),

where the first inequality follows from the fact that p "→ hp(·) is nonincreasing and
the second one is justified by the entropy power inequality (see, e.g., Theorem 4
in [6]). It remains to note that hp(U1) = log 2 for every p.

Towards the upper bound, we first note that for nonnegative functions f and g,
0 < p < 1, we have

(∫
f p
) 1

p
(∫

gp
) p−1

p

"
∫

fgp−1.
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This follows directly from Hölder’s inequality. Now, fix a unit vector a in Rn, let f
be the density of

∑
j ajUj and g(x) = (2π/3)−1/2e−x2/6, the density of Z/

√
3. In

view of the above inequality, it suffices to show that
∫

fgp−1 "
∫

ggp−1.

Since

g(x)p−1 = (2π/3)
1−p
2

∞∑

k=0

1
k!

(1 − p
6

)k
x2k,

it suffices to show that for each positive integer k,

E
(∑

ajUj

)2k
=
∫

x2kf (x)dx "
∫

x2kg(x)dx = E
( Z√

3

)2k
.

This follows from the main result of [19], that Cp = ‖Z‖p/
√

3, p > 1, see (2). #
We finish by remarking that the problem of maximising hp(

∑
ajUj) under a

variance constraint for a fixed number of summands to the best of our knowledge
remains wide open for p ∈ (0,∞). The case of Shannon entropy, p = 1, seems
to be the most important and interesting, see [7, Question 9], or [3, Question
3], also comprehensively presenting many other related and tangential problems.
The natural conjecture is that: h1(

∑n
j=1 ajUj) " h1(

∑n
j=1

1√
nUj), for every unit

vector a in Rn (see 8.3.1 in [3] for a conceivable approach). The case p = 0 is of
course trivial, whereas the case p = ∞ amounts to the cube-slicing inequalities:
h∞(

∑n
j=1 ajUj) " h∞(U1) is due to Hadwiger and, independently, Hensley (see

[10, 12]), h∞(
∑n

j=1 ajUj) ! h∞((U1 + U2)/
√

2) is due to Ball (see [2]).
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Inst. H. Poincaré Probab. Statist. 43 (2007), 339–351.
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