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In this paper, pursuit-evasion scenarios in a stochastic flow field involving one pursuer and
one evader are analyzed. Using a forward reachability set based approach and the associated
level set equations, nominal solutions of the players are generated. The dynamical system
is linearized along the nominal solution to formulate a chance-constrained, linear-quadratic
stochastic dynamic game. Assuming an affine disturbance feedback structure, the proposed
game is solved using the standard Gauss-Seidel iterative scheme. Numerical simulations demon-
strate the proposed approach for realistic flow-fields.

I. Introduction

Coordination strategies for autonomous vehicles that are obtained under the framework of pursuit-evasion (PE)
games address many of the challenges involving multi-agent systems such as of collision avoidance, surveillance

and target acquisition [1–4]. Planning under environmental disturbances, such as wind fields and uncertain currents, is a
necessity for technological solutions employing many aerial and underwater autonomous vehicles. Traditionally, such
disturbances are assumed to be stochastic, and there is a vast amount of work available for planning under stochastic
uncertainties, both endogenous and exogenous. To this end, stochastic pursuit-evasion games have received a great deal
of attention by many researchers over the years, who have proposed various formulations and numerical techniques
[5–8].

One of the most promising approaches for solving deterministic pursuit-evasion (PE) games involves reachability
and level set based analysis [9, 10]. These have been applied in aerospace applications such as for the construction
of safety envelope [11]. Sun et al. derived capture conditions and open-loop strategies for agents in multi-player PE
problems with dynamic flow fields using a reachability based approach [10]. The work by Sun et al. employs forward
reachable sets by solving the level set equations. Under the assumption that the evader is slower than the pursuer in the
one-pursuer-one-evader game, the approach led to a simplified capture condition, stating that the optimal capture time is
the minimum time taken by the pursuer’s reachability set to contain the evader’s reachability set. In the stochastic realm,
forward reachability based analysis is a relatively new idea with limited previous work, and the system dynamics was
mostly assumed to be linear [12–15]. This work attempts to extend forward reachability set based approaches to address
pursuit-evasion under general stochastic flow fields, while employing techniques from covariance control theory [16].

The problem of steering the state of a stochastic dynamic system from a given initial Gaussian distribution to a
desired one is referred to as the covariance steering problem. The idea of covariance control has its genesis in the 1980s
[17]. The problem of finite-horizon covariance control in continuous time was however analyzed only recently by Chen
et al. [18–20]. In Ref. [21], state chance constraints were introduced to the covariance control problem in the context of
path planning with static obstacles and system uncertainties. The approach was subsequently modified to deal with
general nonlinear dynamics [22], and was applied to spacecraft control [16, 23, 24]. Finally, a game-theoretic version of
the discrete-time covariance steering problem was analyzed in Ref. [25].

In this work, we consider two-agent PE problems with both agents traversing a stochastic flow field. It is assumed
that both agents have speed constraints, and the pursuer is superior to the evader in terms of its speed capabilities.
Initially, a forward reachability analysis is performed while considering only the drift term in the flow field to obtain the
nominal trajectories for the agents. Assuming a linear feedback control architecture, we then formulate a discrete-time
chance-constrained covariance game about the players’ nominal trajectories, which is solved using the standard
Gauss-Seidel method, to obtain closed-loop controls for both players.
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The rest of the paper is organized as follows. Section II presents a mathematical formulation of the stochastic
pursuit-evasion problem, and the linearized dynamical model that is used to analyze the problem. Section III discusses the
reachability approach and the level set methods that are used to obtain the nominal trajectories. The chance-constrained
covariance steering game, formulated using the nominal solution from Section III, is presented in Section IV. Numerical
simulations demonstrating the proposed approach in the cases of linear and nonlinear flow fields are presented in Section
V. Section VI concludes the paper.

II. Problem Formulation
Consider a two agent pursuit-evasion scenario in an external stochastic flow field. The dynamics of each agent are

given by

d𝑥𝑖 (𝑡) = 𝑢𝑖 (𝑡)d𝑡 + 𝐷 (𝑥𝑖 (𝑡), d𝑡, d𝑤𝑖), 𝑥𝑖 (0) = 𝑥𝑖0, (1)

where 𝑥𝑖 ∈ R2, for 𝑖 ∈ {𝑝, 𝑒}, denotes the position of an agent (𝑝 - pursuer, 𝑒 - evader) with 𝑥𝑖0 being the 𝑖𝑡ℎ agent’s
fixed initial position, known to both players. Here, 𝑢𝑖 is the 𝑖𝑡ℎ agent’s control input (velocity) such that 𝑢𝑖 (𝑡) ∈ R2, and

‖𝑢𝑖 (𝑡)‖2 ≤ 𝑢𝑖max. (2)

It is assumed that the pursuer is strictly superior in terms of its speed capabilities compared to the evader, i.e., 𝑢𝑝max > 𝑢
𝑒
max.

The instantaneous dynamic flow field 𝐷 (𝑥, d𝑡, d𝑤) is assumed to have the form

𝐷 (𝑥, d𝑡, d𝑤) = 𝑓 (𝑥)d𝑡 + 𝑔(𝑥)d𝑤, (3)

where 𝑓 : R2 → R2 is a position-dependent function, and 𝑔 : R2 → R2×2. Here, 𝑤 = [𝑤1 𝑤2]T where 𝑤1 and 𝑤2 are
two independent standard Wiener processes. Also, 𝑤𝑝 and 𝑤𝑒 are assumed to be independent.

In a general pursuit-evasion scenario, the aim of the pursuer is to capture the evader in the shortest time possible,
while the evader tries to postpone capture indefinitely. In a deterministic pursuit-evasion game, capture occurs when the
Euclidean distance between the agents is less than the capture radius 𝜀 > 0. In the proposed formulation, and since
the positions of the agents are driven by stochastic processes, capture can only be defined in probabilistic terms. The
capture probability at time 𝑡 is given by

C(𝑡) = P{‖𝑥𝑝 (𝑡) − 𝑥𝑒 (𝑡)‖ ≤ 𝜀}. (4)

The goal of this work is to arrive at the control inputs 𝑢𝑖 , 𝑖 ∈ {𝑝, 𝑒}, that achieve the players’ objectives: the pursuer
wants to capture the evader in the shortest time possible with high certainty (capture probability); and the evader wants
to ensure that the capture probability is as low as possible for all times. To this end, we first obtain the players’ nominal
trajectories using reachability set analysis while ignoring the disturbance term in the players’ dynamics. The system is
subsequently linearized along this nominal solution. Then, using the theory of discrete-time linear-quadratic stochastic
games, feedback control inputs are constructed that track the trajectory under flow uncertainties while optimizing for the
capture probability.

Let (𝑥𝑖 (𝑡), 𝑢̂𝑖 (𝑡)), 𝑖 ∈ {𝑝, 𝑒}, for 𝑡 ∈ [0, 𝑇] be the 𝑖𝑡ℎ player’s nominal solution. Here, 𝑇 is the final time of the
nominal solution when capture occurs, and 𝑇 = ∞ indicate that capture is not possible. The linearized dynamics along
the nominal trajectory is given in an augmented fashion as

d𝑥(𝑡) ≈ (𝑢(𝑡) + 𝑟 (𝑡) + 𝐴(𝑡)𝑥(𝑡)) d𝑡 + 𝐺 (𝑡)d𝑤, (5)

where 𝑥(𝑡) = [𝑥𝑝T (𝑡), 𝑥𝑒T (𝑡)]T, 𝑢(𝑡) = [𝑢𝑝T (𝑡), 𝑢𝑒T (𝑡)]T, 𝑤 = [𝑤𝑝T, 𝑤𝑒T]T. Here, 𝐺 (𝑡) = blkdiag(𝑔(𝑥𝑝 (𝑡)), 𝑔(𝑥𝑒 (𝑡))),
𝐴(𝑡) = blkdiag(𝐴𝑝 (𝑡), 𝐴𝑒 (𝑡)), where

𝐴𝑖 (𝑡) = 𝜕 𝑓

𝜕𝑥
(𝑥𝑖 (𝑡)), (6)

and 𝑟 (𝑡) = [𝑟 𝑝T (𝑡), 𝑟𝑒T (𝑡)]T, where 𝑟 𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) − 𝐴𝑖 (𝑡)𝑥𝑖 (𝑡).
A discrete-time representation of the dynamics in (5) can be expressed as

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑟𝑘 + 𝐺𝑘𝑤𝑘 , (7)
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where 𝑥𝑘 = 𝑥(𝜏𝑘 ), 𝑢𝑘 = 𝑢(𝜏𝑘 ), for all 𝜏𝑘 = 𝑘𝑇/𝑁 , 𝑘 = {0, 1, . . . , 𝑁}. Assuming a zero-order-hold discretization, we
obtain

𝐴𝑘 = Φ(𝜏𝑘+1, 𝜏𝑘 ), (8a)

𝐵𝑘 =

∫ 𝜏𝑘+1

𝜏𝑘

Φ(𝜏𝑘+1, 𝜏)d𝜏, (8b)

𝑟𝑘 =

∫ 𝜏𝑘+1

𝜏𝑘

Φ(𝜏𝑘+1, 𝜏)𝑟 (𝜏)d𝜏, (8c)

𝐺𝑘𝐺
T
𝑘 =

∫ 𝜏𝑘+1

𝜏𝑘

Φ(𝜏𝑘+1, 𝜏)𝐺 (𝜏)𝐺T (𝜏)ΦT (𝜏𝑘+1, 𝜏)d𝜏, (8d)

where Φ(𝜏, 𝑠) is the state transition matrix for the system in (7). Using the notation introduced in [22, 25], the system
dynamics in (7) can be alternatively expressed as

𝑋 = A𝑥0 + B𝑈 + R + G𝑊, (9)

where 𝑋 = [𝑥T
1, 𝑥

T
2, . . . , 𝑥

T
𝑁
]T,𝑈 = [𝑢T

0, 𝑢
T
1, . . . , 𝑢

T
𝑁−1]

T,𝑊 = [𝑤T
0, 𝑤

T
1, . . . , 𝑤

T
𝑁−1]

T, and

A =


𝐴0

𝐴1𝐴0
...

𝐴𝑁−1 . . . 𝐴1𝐴0


, B =


𝐵0 0 . . . 0
𝐴1𝐵0 𝐵1 . . . 0
...

...
. . .

...

𝐴𝑁−1 . . . 𝐴1𝐵0 𝐴𝑁−1 . . . 𝐴2𝐵1 . . . 𝐵𝑁−1


, (10a)

R =


𝑟0

𝐴1𝑟0 + 𝑟1
...

𝐴𝑁−1 . . . 𝐴1𝑟0 + · · · + 𝑟𝑁−1


, G =


𝐺0 0 . . . 0
𝐴1𝐺0 𝐺1 . . . 0
...

...
. . .

...

𝐴𝑁−1 . . . 𝐴1𝐺0 𝐴𝑁−1 . . . 𝐴2𝐺1 . . . 𝐺𝑁−1


. (10b)

The mean and error terms of the augmented position vector are defined as 𝑋̄ = E[𝑋] and 𝑋̃ = 𝑋 − 𝑋̄ , respectively.
In order to retrieve the coordinates, and the controls of the agents at each time-step individually from the augmented

vectors (𝑋 ,𝑈), the matrices 𝐸𝑘 = [02×2(𝑘−1) , 𝐼2, 02×2(𝑁−𝑘) ],

𝐸 𝑝 =


𝐼2 02 02 . . . 02 02

02 02 𝐼2 . . . 02 02
...

...
...

. . .
...

...

02 02 02 . . . 𝐼2 02

2𝑁×4𝑁

, (11a)

𝐸𝑒 =


02 𝐼2 02 02 . . . 02

02 02 02 𝐼2 . . . 02
...

...
...

...
. . .

...

02 02 02 02 . . . 𝐼2

2𝑁×4𝑁

, (11b)

are introduced. Note that 𝐸 𝑖
𝑘
= 𝐸𝑘𝐸

𝑖 , for 𝑖 = {𝑝, 𝑒}, 1 ≤ 𝑘 ≤ 𝑁 . Consequently, 𝐸 𝑖𝑋 = [𝑥𝑖1, . . . , 𝑥
𝑖
𝑁
], and 𝐸 𝑖

𝑘
𝑋 = 𝑥𝑖

𝑘
.

The relative position vector at time-step 𝑘 is defined as 𝑥𝑟
𝑘
= 𝑥

𝑝

𝑘
− 𝑥𝑒

𝑘
= 𝐸

𝑝

𝑘
𝑋 − 𝐸𝑒

𝑘
𝑋 . The mean and error terms of

the relative position vector can be obtained as

E[𝑥𝑟𝑘 ] = E[𝐸
𝑝

𝑘
𝑋 − 𝐸𝑒𝑘𝑋] = (𝐸

𝑝

𝑘
− 𝐸𝑒𝑘 )E[𝑋]

= (𝐸 𝑝
𝑘
− 𝐸𝑒𝑘 ) 𝑋̄, (12)

𝑥𝑟𝑘 − E[𝑥
𝑟
𝑘 ] = (𝐸

𝑝

𝑘
− 𝐸𝑒𝑘 )𝑋 − (𝐸

𝑝

𝑘
− 𝐸𝑒𝑘 ) 𝑋̄ = (𝐸 𝑝

𝑘
− 𝐸𝑒𝑘 ) (𝑋 − 𝑋̄)

= (𝐸 𝑝
𝑘
− 𝐸𝑒𝑘 ) 𝑋̃ . (13)
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As a result, the covariance of the relative position vector is given by

Σ𝑟𝑘 = E[(𝐸
𝑝

𝑘
− 𝐸𝑒𝑘 ) 𝑋̃ 𝑋̃

> (𝐸 𝑝
𝑘
− 𝐸𝑒𝑘 )

>] . (14)

The capture probability at the 𝑘 𝑡ℎ time-step is given by P{‖𝑥𝑟
𝑘
‖ ≤ 𝜀}. The capture probability can be considered

as the payoff function at each time-step, which the pursuer tries to minimize while the evader tries to maximize. An
alternative formulation involves the players optimizing over the minimum value within which the relative distance of the
players lie with high probability, given by

𝜖𝑘 = inf{𝜖 > 0 : P{‖𝑥𝑟𝑘 ‖ ≤ 𝜖} ≥ 1 − 𝛽}, (15)

1 > 𝛽 > 0, 1 ≤ 𝑘 ≤ 𝑁 . The following result provides a lower bound for such an 𝜖𝑘 in terms of the mean and the
covariance of the relative distance vector 𝑥𝑟

𝑘
at the 𝑘 𝑡ℎ time-step.

Theorem II.1. ([24]) Let 𝑧 ∈ N (𝜇,Σ) be an 𝑚-dimensional random vector, where 𝑚 = 1 or 𝑚 = 2, let 𝜎 =
√︁
𝜆max (Σ),

let 𝜌 > 0, and let 1 > 𝛽 > 0. Then,

‖𝜇‖ + 𝜎

√︄
2 log

1
𝛽
≤ 𝜌 =⇒ P(‖𝑧‖ ≤ 𝜌) ≥ 1 − 𝛽. (16)

Note that the above result provides a lower bound for any 𝜖 > 0 that satisfies the condition P{‖𝑥𝑟
𝑘
‖ ≤ 𝜖} ≥ 1 − 𝛽. In

this paper, we consider the lower bound of 𝜖𝑘 , as per (16), to be the payoff function that the players try to optimize. To
this end, using the result in Theorem II.1, we choose to optimize over the mean and covariance of the relative distance
vector. From (16), it can be observed that by increasing the norm of the mean and/or covariance, the lower bound of 𝜖𝑘
can be increased. As a result, the maximizing player can establish guarantees on the minimum relative distance that can
be achieved with high probability at every time-step. However, the minimizing player can only hope to minimize 𝜖𝑘 by
reducing its lower bound, and in this case guarantees on 𝜖𝑘 cannot be established.

In the proposed formulation, the mean trajectory is assumed to be essentially driven by the players’ controls obtained
from the reachability analysis, i.e., the nominal control inputs. Therefore, for the chance-constrained covariance game,
the players optimize primarily over the covariance of the relative position vector alone. To this end, we consider the
payoff function, which the pursuer tries to minimize while the evader tries to maximize,

𝐽 (𝑈) = ‖Σ𝑟 ‖2𝐹 = ‖E[(𝐸 𝑝 − 𝐸𝑒) 𝑋̃ 𝑋̃> (𝐸 𝑝 − 𝐸𝑒)>] ‖2𝐹 , (17)

subject to the deterministic constraints

‖𝐸 𝑖𝑘 ( 𝑋̄ − 𝑋̂)‖2 ≤ 𝛿
𝑖
𝑥 , (18a)

‖𝐸 𝑖𝑘 (𝑈̄ − 𝑈̂)‖2 ≤ 𝛿
𝑖
𝑢 , (18b)

for 𝑖 = {𝑝, 𝑒}. Here, 𝑋̂ and 𝑈̂ are concatenated vectors for the nominal solution that are obtained similar to 𝑋 and𝑈,
respectively. In (17), it is understood that in the case of the pursuer, by minimizing the norm of the covariance of the
augmented relative distance vector, it is minimizing the uncertainty in the relative position at every time-step 1 ≤ 𝑘 ≤ 𝑁 ,
and vice versa for the evader. Note that the norm in (17) is the Forbenius norm that captures the sum of the squares
of the eigenvalues, as opposed to the maximum eigenvalue, suggested by Theorem II.1. This is done for the sake of
numerical implementation. The constraints in (18) ensure that the linearized dynamics in (5) remains valid. To account
for the control bounds in (2), and since a feedback control structure is considered, we also enforce chance constraints at
each time-step 𝑘 of the form

P{‖𝐸 𝑖𝑘𝑈‖2 ≤ 𝑢
𝑖
max} ≥ 1 − 𝛽𝑖 , 𝑖 = {𝑝, 𝑒}. (19)

A reachable set based approach to obtain the nominal trajectories for the players is presented in the next section.

III. Reachability Analysis
In this section, the concept of a reachable set is first introduced. To this end, we present some definitions and discuss

existing results in the area of reachability set based pursuit-evasion under deterministic flow fields. Finally, a scheme
to obtain nominal control inputs of the players using level set methods is presented. In order to obtain the nominal
trajectories using reachability analysis, we ignore the disturbance term in (3) so that the flow field is deterministic.

The following definitions hold for the case where the agents’ dynamics are deterministic.
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Definition III.1. An agent’s reachable set at time 𝑡 with the initial state at 𝑥𝑖0, R𝑖 (𝑥𝑖0, 𝑡), 𝑡 ≥ 0, is the set of all points
that can be reached in time 𝑡. The boundary of the reachable set is the reachability front, denoted by 𝜕R𝑖 (𝑥𝑖0, 𝑡).

Definition III.2. The usable reachable set of the evader R𝑒∗ (𝑥𝑒0 , 𝑡) is the set of all terminal points of the evader at time 𝑡,
for which the trajectories do not pass through the reachable set of the pursuer at any time in the interval [0, 𝑡]. Formally,

R𝑒∗ (𝑥𝑒0 , 𝑡) = {𝑥 ∈ R
2 : 𝑥 = 𝑥𝑒 (𝑡) and 𝑥𝑒 (𝜏) ∉ R 𝑝 (𝑥𝑝0 , 𝜏), ∀ 𝜏 ∈ [0, 𝑡]}. (20)

From Definition III.2, it can be observed that the usable reachable set of the evader contains the set of terminal
points of the evader’s trajectories that are deemed safe. If for some time 𝑡𝑐 > 0, R𝑒 (𝑥𝑒0 , 𝑡𝑐) ⊆ R

𝑝 (𝑥𝑝0 , 𝑡𝑐), then it follows
that for every 𝑢𝑒, there exists 𝑢𝑝 such that 𝑥𝑝 (𝑡𝑐) = 𝑥𝑒 (𝑡𝑐). In other words, in the deterministic pursuit-evasion scenario,
if R𝑒∗ (𝑋𝑒0 , 𝑡𝑐) = ∅, then the capture of the evader is guaranteed at time 𝑡𝑐 and vice versa. Consequently, the optimal
capture time for pursuit-evasion problems with deterministic flow fields can be established from the following result.

Theorem III.3. ([10]) Let 𝑇 = inf{𝑡 ≥ 0 : R𝑒∗ (𝑥𝑒0 , 𝑡) = ∅}. If 𝑇 < ∞, then capture is guaranteed for any time greater
than 𝑇 , whereas the evader can always escape within a time smaller than 𝑇 . Hence, 𝑇 is the time to capture if both
players play optimally. Furthermore, let 𝑥 𝑓 denote the location where the evader is captured. Then, we have that
𝑥 𝑓 ∈ X = {𝑥 ∈ R2 : 𝑥 = 𝑥𝑒 (𝑇) and 𝑥𝑒 (𝑡) ∉ R 𝑝 (𝑥𝑝0 , 𝜏), ∀ 𝜏 ∈ [0, 𝑇)}

While the above result provides a criterion for the evader’s capture based on its usable reachable set, an instantaneous
condition that is easier to implement can be stated as follows. For 𝑢𝑝max > 𝑢

𝑒
max, and assuming the magnitude of the flow

field is bounded from above by some suitable constant, we have R𝑒∗ (𝑥𝑒0 , 𝑡) = R
𝑒 (𝑥𝑒0 , 𝑡) \ R 𝑝 (𝑥𝑝0 , 𝑡), for all 𝑡 ≥ 0. In such

cases, the condition R𝑒∗ (𝑥𝑒0 , 𝑡) = ∅ is equivalent to the condition R𝑒 (𝑥𝑒0 , 𝑡) ⊆ R
𝑝 (𝑥𝑝0 , 𝑡) [10].

The above definitions and results form the crux of the theory related to the reachable set based pursuit-evasion with
deterministic equations of motion. The evolution of the reachability front can be traced using, for instance, the level set
methods [26]. The reachability front is embedded as a hypersurface in a higher dimension with time as the additional
dimension. An implicit representation of the front using the signed distance function is considered in this paper. The
signed distance function 𝜑(𝑥) with respect to a set S is defined as

𝜑(𝑥) =


min
𝑦∈𝜕S
|𝑥 − 𝑦 |, if 𝑥 ∉ S,

−min
𝑦∈𝜕S
|𝑥 − 𝑦 |, if 𝑥 ∈ S.

(21)

For any 𝑐 ∈ R, the 𝑐-level set of a 𝜑 is the set {𝑥 : 𝜑(𝑥) = 𝑐}. The zero-level set of the signed distance function with
respect to an agent’s reachable set is expressed as the corresponding reachability front.

Given the signed distance function of an agent’s reachable set R𝑖 (𝑥𝑖0, 𝑡) as 𝜙𝑖 (𝑥, 𝑡), 𝑖 ∈ {𝑝, 𝑒}, the evolution of the
corresponding reachability front is governed by the viscosity solution of the Hamilton-Jacobi equation

𝜕𝜙𝑖 (𝑥, 𝑡)
𝜕𝑡

+ 𝑢̄𝑖 |∇𝜙𝑖 (𝑥, 𝑡) | + ∇𝜙𝑖 (𝑥, 𝑡) 𝑓 (𝑥) = 0, (22)

with initial condition 𝜙𝑖 (𝑥, 0) = |𝑥 − 𝑥𝑖0 | [27]. Note that R𝑖 (𝑥𝑖0, 𝑡) = {𝑥 ∈ R
2 : 𝜙𝑖 (𝑥, 𝑡) ≤ 0}, and 𝜕R𝑖 (𝑥𝑖0, 𝑡) = {𝑥 ∈ R

2 :
𝜙𝑖 (𝑥, 𝑡) = 0}. Once the reachable set of the evader is contained in the pursuer’s reachable set at time 𝑇 , the nominal
trajectories of the players can be obtained in the following manner [10, 27].

From Theorem III.3, it can be observed that the terminal point of the evader’s nominal trajectory 𝑥 𝑓 is the point in its
reachable set that is not covered by the pursuer’s reachable set until time 𝑇 . Consequently, 𝑥 𝑓 is the point to which the
pursuer can drive its nominal trajectory at 𝑇 using its control input 𝑢̂𝑝 . This point resides on the pursuer’s reachability
front. When 𝜙𝑖 is differentiable, the nominal trajectory of the pursuer can be obtained from the differential equation

d𝑥𝑝

d𝑡
= 𝑢̂

𝑝
max
∇𝜙𝑝
|∇𝜙𝑝 | + 𝑓 (𝑥

𝑝), (23)

and the corresponding optimal control is given by

𝑢̂𝑝 = 𝑢̂
𝑝
max
∇𝜙𝑝
|∇𝜙𝑝 | . (24)

Here, 𝑢̂𝑝max ≤ 𝑢𝑝max is the bound on the nominal control input of the pursuer.
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Similarly, the evader’s nominal trajectory is obtained from the differential equation

d𝑥𝑒

d𝑡
= 𝑢̂𝑒max

∇𝜙𝑒
|∇𝜙𝑒 | + 𝑓 (𝑥

𝑒), (25)

and the corresponding optimal control is given by

𝑢̂𝑒 = 𝑢̂𝑒max
∇𝜙𝑒
|∇𝜙𝑒 | , (26)

where 𝑢̂𝑒max ≤ 𝑢𝑒max is the bound on the nominal control input of the evader. The chance-constrained covariance control
problem, introduced in Section II, is analyzed and solved using an iterative numerical technique in the following section.

IV. Covariance Control Game
A linear feedback control structure for the players’ control inputs is considered in order to solve the covariance

control problem, formulated in Section II. Subsequently, the players’ inputs are assumed to take the form

𝑢𝑘 = 𝑣𝑘 + 𝐾𝑘 𝑦𝑘 , (27)

where 𝐾𝑘 ∈ R4×4, and 𝑦𝑘 ∈ R4 is obtained from the difference equation

𝑦𝑘+1 = 𝐴𝑘 𝑦𝑘 + 𝐺𝑘𝑤𝑘 , 𝑦0 = 0. (28)

In order to calculate 𝑦𝑘 , 1 ≤ 𝑘 ≤ 𝑁 − 1, as per (28), we assume that each player can observe the instantaneous positions
of the players and the control input of their adversary at the previous time-step to evaluate the noise term 𝐺𝑘𝑤𝑘
experienced by the players at an earlier time-step in (28). Note that 𝑢𝑘 = [𝑢𝑝T

𝑘
, 𝑢𝑒T
𝑘
]T contains the control inputs of both

the pursuer and the evader at time-step 𝑘 .
Using the matrices introduced in Section II, we obtain

𝑌 = G𝑊, (29)

where 𝑌 = [𝑦T
0, . . . , 𝑦

T
𝑁−1]

T ∈ R4𝑁 . Therefore,

𝑈 = 𝑉 + 𝐾𝑌, (30)

where 𝑉 = [𝑣T
0, 𝑣

T
1, . . . , 𝑣

T
𝑁−1]

T and 𝐾 = blkdiag (𝐾0, 𝐾1, . . . , 𝐾𝑁−1). Substituting (30) in (9), the mean and the error
terms of the augmented state vector 𝑋 can be obtained as

𝑋̄ = A𝑥0 + B𝑉 + R, (31a)
𝑋̃ = 𝑋 − 𝑋̄ = B𝐾G𝑊 + G𝑊
= (𝐼 + B𝐾)G𝑊, (31b)

and for the augmented control vector𝑈, we obtain

𝑈̄ = E[𝑈] = 𝑉, 𝑈̃ = 𝑈 − 𝑈̄ = 𝐾G𝑊. (32)

Subsequently, the covariance matrices are given by

Σ𝑦 = E[𝑌𝑌 T] = GGT (33a)
Σ𝑥 = E[𝑋̃ 𝑋̃T] = (𝐼 + B𝐾)Σ𝑦 (𝐼 + B𝐾)T (33b)
Σ𝑟 = E[(𝐸 𝑝 𝑋̃ − 𝐸𝑒 𝑋̃) (𝐸 𝑝 𝑋̃ − 𝐸𝑒 𝑋̃)T]

= (𝐸 𝑝 − 𝐸𝑒)Σ𝑥 (𝐸 𝑝 − 𝐸𝑒)T (33c)
Σ𝑢 = E[𝑈̃𝑈̃T] = 𝐾Σ𝑦𝐾T (33d)

The payoff function in (17) can be rewritten in the form

J (𝑉, 𝐾) = ‖Σ𝑟 ‖2𝐹 = tr{(𝐸 𝑝 − 𝐸𝑒)T (𝐸 𝑝 − 𝐸𝑒)Σ𝑥}. (34)
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The deterministic constraints in (18) can be expressed as

‖𝐸 𝑖𝑘 (A𝑥0 + B𝑉 + R − 𝑋̂)‖2 ≤ 𝛿𝑖𝑥 , (35a)
‖𝐸 𝑖𝑘 (𝑉 − 𝑈̂)‖2 ≤ 𝛿

𝑖
𝑢 , (35b)

for 𝑖 = {𝑝, 𝑒}. Finally, consider the chance constraints on the control inputs of the players given in (19). Using Theorem
II.1, the control chance constraint in (19) can be captured using the expression

‖𝐸 𝑖𝑘𝑉 ‖ + ‖Σ
𝑦1/2

𝐾T𝐸 𝑖T𝑘 ‖

√︄
2 log

1
𝛽𝑖
≤ 𝑢𝑖max, 𝑖 = {𝑝, 𝑒}. (36)

The augmented vector 𝑉 and the matrix 𝐾 contains the control inputs of both the pursuer and the evader. The
pursuer tries to minimize the payoff function in (34) by choosing its control inputs (𝐸 𝑝𝑉, 𝐸 𝑝𝐾) ∈ P, while the evader
tries to maximize the payoff function by choosing its control inputs (𝐸𝑒𝑉, 𝐸𝑒𝐾) ∈ E. the set P contains all possible
tuples (𝐸 𝑝𝑉, 𝐸 𝑝𝐾) ∈ R2𝑁 × R2𝑁×4𝑁 such that the constraints (35) and (36) are satisfied for 𝑖 = 𝑝 and for all possible
𝑘 ∈ {0, . . . , 𝑁 − 1}. Similarly, the set E contains all possible tuples (𝐸𝑒𝑉, 𝐸𝑒𝐾) ∈ R2𝑁 × R2𝑁×4𝑁 such that the
constraints (35) and (36) are satisfied for 𝑖 = 𝑒 and for all possible 𝑘 ∈ {0, . . . , 𝑁 − 1}. Therefore, the proposed
stochastic game in Section II, given by (17)-(19), is transformed by considering an equivalent payoff function in (34),
and constraints in (35) and (36). Note that the constraints in (35) and (36) are orthogonal constraints [28], which are
player-specific and are not coupled.

In order to arrive at a saddle point equilibrium for the aforementioned game, assuming one exists, a simple
Gauss-Seidel procedure given in Algorithm 1 is considered. For Algorithm 1 to converge to an equilibrium solution for
any 𝑉 (0) , 𝐾 (0) , the solution must be stable [29]. The necessary conditions for the existence of a stable equilibrium can
be found in Ref. [29].

Algorithm 1 Gauss–Seidel procedure to obtain saddle points

1: procedure G-S(𝑉 (0) ,𝐾 (0) )
2: for i = 0,1,2,. . . do
3: [𝐸 𝑝𝑉 (𝑖+1) , 𝐸 𝑝𝐾 (𝑖+1) ] ← arg min

(𝐸 𝑝𝑉 ,𝐸 𝑝𝐾 ) ∈P
J (𝑉, 𝐾) such that 𝐸𝑒𝑉 = 𝐸𝑒𝑉 (𝑖) , 𝐸𝑒𝐾 = 𝐸𝑒𝐾 (𝑖)

4: [𝐸𝑒𝑉 (𝑖+1) , 𝐸𝑒𝐾 (𝑖+1) ] ← arg max
(𝐸𝑒𝑉 ,𝐸𝑒𝐾 ) ∈E

J (𝑉, 𝐾) such that 𝐸 𝑝𝑉 = 𝐸 𝑝𝑉 (𝑖+1) , 𝐸 𝑝𝐾 = 𝐸 𝑝𝐾 (𝑖+1)

5: end for
6: return 𝑉 (𝑖+1) , 𝐾 (𝑖+1)
7: end procedure

V. Simulations
In this section, we present simulation results for pursuit-evasion scenarios in realistic flow fields with disturbances.

The chance constrained covariance steering game is implemented in MATLAB using its in-built function fmincon
in conjunction with YALMIP [30]. The convergence criterion for the iterative method is ‖𝑉 (𝑖+1) − 𝑉 (𝑖) ‖ ≤ 𝜖𝑣 , and
‖𝐾 (𝑖+1) − 𝐾 (𝑖) ‖ ≤ 𝜖𝑘 . First, a generalized Rankine vortex model is used to generate state-dependent wind field
approximations to analyze the performance of the proposed approach on linear flow fields [31]. We then consider a
third-order nonlinear flow field that is constructed using orthogonal polynomials [32].

For linear flow fields, the drift part of the wind field is assumed to be of the form

𝑓 (𝑥) = 𝐴(𝑥 − 𝑥𝑠), (37)

and the diffusion part is a constant matrix 𝑔(𝑥) = 𝐺. The simulation parameters are

𝐴 =

[
0.2 0.3
−0.15 0.1

]
, 𝑥𝑠 =

[
10
10

]
, (38)
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Fig. 1 Nominal trajectories in the case of a linear flow field
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Fig. 2 Capture probabilities at 𝑇 for different values of 𝛼 under open-loop and closed-loop control inputs

𝑥
𝑝

0 = [12 12]>, 𝑥𝑒0 = [14 14]>, 𝑇/𝑁 = 0.1, 𝜀 = 0.09, 𝑢𝑝max = 3, 𝑢𝑒max = 1, 𝑢̂𝑖max = 0.8𝑢𝑖max, 𝛿𝑖𝑢 = 0.2𝑢𝑖max, 𝛿𝑖𝑥 = 0.1,
𝛽𝑖 = 0.01, 𝑖 ∈ {𝑝, 𝑒}, and finally 𝜖𝑣 = 𝜖𝑘 = 5 × 10−3. The diffusion matrix of the flow field is assumed to be of the form
𝐺 = 𝛼0.25𝐼2.

As explained earlier, the forward reachable sets of the players are first propagated until the pursuer’s reachable set
fully engulfs the evader’s reachable set. The closed curves in the Fig. 1 are the reachable sets of the players at the final
time 𝑇 for the aforementioned simulation parameters. The differential equations (23), (26) are solved backwards in time
from the capture point to obtain the nominal trajectories in Fig. 1 (red - pursuer, blue - evader). Subsequently, the
closed-loop trajectories (solid line) are obtained by solving the associated covariance steering game along the nominal
(or open-loop) trajectories.
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Fig. 3 Trajectory dispersion of the players in the linear flow field for different 𝛼 values: Red - pursuer; Blue -
evader.

Along the trajectory, the capture probability at each time-step can be obtained by numerically evaluating the integral

C𝑘 =
∫
‖𝑥 ‖≤𝜀

1
2𝜋

√︁
|Σ𝑟
𝑘
|
exp

(
−
(𝑥 − 𝜇𝑟

𝑘
)>Σ−1

𝑘
(𝑥 − 𝜇𝑟

𝑘
)

2

)
d𝑥, (39)

where 𝜇𝑟
𝑘
= 𝐸𝑘 (𝐸 𝑝 −𝐸𝑒) 𝑋̄ . Figure 2 presents the capture probabilities at the final time (𝑇) under nominal and optimized

control inputs for 𝛼 = {0.05, 0.1, 0.2}. Figure 3 presents the trajectory dispersion experienced by the players under the
closed-loop control for the three 𝛼 values. It can be observed as 𝛼 becomes lower, the trajectory dispersion reduces,
leading to higher capture probability.

The drift part of the nonlinear flow field, for 𝑥 = [𝑥1, 𝑥2]> ∈ R2 is assumed to be of the form

𝑓 (𝑥) =
[
𝑎>𝜙(𝑥1, 𝑥2)
𝑏>𝜙(𝑥1, 𝑥2)

]
, (40)

where 𝜙(𝑦, 𝑧) = [1, 𝑦, 𝑧, 𝑦2, 𝑦𝑧, 𝑧2, 𝑦3, 𝑦2𝑧, 𝑦𝑧2, 𝑧3]> is the basis of the third-order polynomial vector space. The
coefficients are set to 𝑎> = (1/25) × [10.8,−0.421,−1.46,−1.78× 10−3, 2.42× 10−3, 1.07× 10−4,−8.61× 10−7, 1.17×
10−7,−3.03 × 10−5,−3.32 × 10−8], and 𝑏> = (1/25) × [8.67, 0.689,−3.88 × 10−2, 2.41 × 10−4, 2.26 × 10−3, 9.96 ×
10−4, 1.26 × 10−6,−2.23 × 10−5,−3.55 × 10−5,−4.29 × 10−5]. The above nonlinear function represents a single critical
point model that was employed to approximate the wind field during Hurricane Hugo [32]. The diffusion part of the
nonlinear flow field is consider to be a constant matrix 𝐺 = 0.033𝐼2. The initial points of the players are chosen to be
𝑥
𝑝

0 = [15 14]>, 𝑥𝑒0 = [11 11]>, and 𝑇/𝑁 = 0.15. The rest of the simulation parameters are same as the ones used for the
case of linear flow fields.

The nominal trajectories of the players along with the reachable sets at the final time 𝑇 are shown in Fig. 4(a). The
trajectory dispersion of the players under closed loop control can be seen in Fig. 4(b). For this simulation, the capture
probability at the final time is found to be 46.29% under open-loop control, while it is 82.78% under the closed-loop
control. From the simulation results, it can be observed that the proposed closed-loop control strategy for the pursuer is
effective in maximizing the capture probability in stochastic flow fields.

VI. Conclusion
A novel approach to addressing pursuit-evasion problems under external stochastic flow fields is presented. The

players’ nominal trajectories are obtained using forward reachability analysis while ignoring the diffusion part of the
flow field. The nominal solution thus obtained is time-optimal for the players under deterministic conditions. Assuming
a linear feedback control strategy, a chance-constrained covariance game is constructed around the nominal solution.
The proposed covariance steering game involves optimizing over the value of the smallest relative distance that can
be achieved with high probability. The pursuer tries to minimize this value while the evader tries to maximize it by
equivalently optimizing over the covariance of the relative distance. The proposed approach is tested on realistic linear
and nonlinear flow fields. Numerical simulations suggest that the pursuer can effectively steer the game towards capture
while controlling the covariance of the relative distance.
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Fig. 4 Simulation results in the case of a nonlinear flow field: Red - pursuer; Blue - evader.
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