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Abstract

This paper addresses trajectory optimization for hypersonic ve-
hicles under atmospheric and aerodynamic uncertainties using
techniques from desensitized optimal control (DOC), wherein
open-loop optimal controls are obtained by minimizing the sum
of the standard objective function and a first-order penalty
on trajectory variations due to parametric uncertainty. The
proposed approach is demonstrated via numerical simulations
of a minimum-final-time Earth reentry trajectory for an X-33
vehicle with an uncertain atmospheric scale height and drag
coefficient. Monte Carlo simulations indicate that dispersions
in the final position footprint and the final energy can be signifi-
cantly reduced without closed-loop control and with little trade-
off in the performance metric set for the trajectory.
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1 INTRODUCTION

Optimal trajectory planning and feedback control are two
critical and interrelated components required to achieve au-
tonomous flight. Traditionally, a nominal trajectory is com-
puted preflight by solving an optimization problem con-
strained by the vehicle’s dynamical model, containing esti-
mated atmospheric and aerodynamic parameters. The guid-
ance law is then given as the sum of this nominal input with
a feedback term, which is added so that the trajectory is
robust to parametric uncertainties and random disturbances.
It follows that, in a clear division of labor, the open-loop nom-
inal control defines the nominal trajectory and the feedback
control reduces sensitivity to uncertainty. Take for example
the Apollo direct entry guidance, which was designed as
part of the Apollo program and later adapted for the Mars
Science Laboratory (MSL) and Mars 2020 entry guidance
[1–3]. A nominal profile of bank angle commands are first set
to determine the nominal entry path, and then feedback gains
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are computed as a function of the adjoint system integrated
backwards along the nominal trajectory.

In this paper, we propose, instead, to reduce dispersions
of hypersonic trajectories due to parametric uncertainties by
selection of the nominal trajectory. The nominal control then
serves a dual role of optimizing the given performance metric
and reducing dispersions. In particular, the desensitized opti-
mal control (DOC) framework [4, 5] is used to construct cost
regularizers to generate trajectories which are less sensitive to
parametric variations, while trading off nominal performance
for robustness to parametric uncertainties.

Early work on trajectory sensitivity design include those of
Winsor and Roy [6], who developed a technique to design
controllers that provide assurance for system performance
under mathematical modeling inaccuracy. The feasibility of
the technique was established with appropriate simulation
results. Following that work, several approaches including
sensitivity-reduction for linear regulators, using increased-
order augmented system [7], modification of weighting ma-
trix [8], feedback [9, 10], and an augmented cost function
[11,12], were all thoroughly analyzed. The approach of using
an augmented cost function was further tested on the linear
quadratic regulator (LQR) problem, which was later applied
for active suspension control in passenger cars [12].

With the work on trajectory sensitivity design mostly re-
stricted to analyzing linear systems, more recent approaches
under the title DOC considered sensitivities to address dis-
persions under modeling uncertainties in general nonlinear
optimal control problems. The work by Seywald et al.
makes use of sensitivity analysis to obtain an optimal open-
loop trajectory that is insensitive to first-order parametric
variations for general optimal control problems [13, 14].
The proposed approach elevates the parameters of interest
to system states, and defines a binary sensitivity function
that provides the first-order variation in the states at time t,
given the variation in the states at some time t′ (t′ ≤ t).
An appropriate sensitivity cost is added to the existing cost
function, and the dynamics of the binary sensitivity function
is augmented in the system dynamics to solve the resulting
optimal control problem. The approach was later extended to
optimal control problems with control constraints [15], and
it was used to solve the Mars pinpoint landing problem [16].
Some extensions to the landing problem include considering
uncertainties in atmospheric density and aerodynamic charac-
teristics [17], and the use of direct collocation and nonlinear
programming [18].
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An alternative approach was presented by Makkapati et al.
[4] wherein the dimensionality of the state-space for the
augmented problem is reduced using traditional sensitivity
functions. A sensitivity function provides information about
the first order variation of the state under parameter variations
at a given time instant along the trajectory. The sensitivity
function follows linear dynamics, expressed using the partial
derivatives of the state dynamics with respect to the state and
the parameter, along a given trajectory. The components of
the sensitivity function are first augmented to the original
state vector. By appropriately regularizing the entries of the
sensitivity function, it is demonstrated that the dispersion in
the optimal trajectory or the state at a particular time instant
(for example, the final state) can be significantly reduced.

On another research direction, recent works have considered
hypersonic guidance as a stochastic control problem with the
atmospheric density considered to be a random process [19,
20]. In this framework, the vehicle trajectory is a random
process with statistics determined by the guidance law, and
both the nominal control and the feedback gains may then
be jointly optimized subject to probabilistic constraints [21,
22]. Aerocapture guidance has similarly been considered as
a stochastic problem with a finite set of uncertain parameters
[23].

The main contribution of this work is to tailor the DOC
techniques [4] for hypersonic vehicle trajectory optimization
with a principled approach to appropriately penalize sensi-
tivity functions, and to this end, we derive inspiration from
the stochastic approaches. We will show that penalizing the
sensitivity matrix is equivalent to minimizing an expected
quadratic error, provided that the uncertain parameters are
given as a Gaussian distributed random vector. The penalty
on the sensitivity matrices may then be derived as a function
of the assumed parameter covariance and the user-defined
weight on expected output variations.

2 HYPERSONIC FLIGHT OVER A
SPHERICAL PLANET

The motion of a vehicle in unpowered, atmospheric flight
around a spherical, non-rotating planet is described by the
system of ordinary differential equations

ṙ = v sin γ, (1a)

θ̇ =
v cos γ sinψ

r cosφ
, (1b)

φ̇ =
v cos γ cosψ

r
, (1c)

v̇ = −D
m
− µ sin γ

r2
, (1d)

γ̇ =
L cosσ

mv
− µ cos γ

r2v
+
v

r
cos γ, (1e)

ψ̇ =
L sinσ

mv cos γ
+
v

r
cos γ sinψ tanφ, (1f)

where r is the radial distance from the center of the planet
to the vehicle, θ and φ are the longitude and latitude, respec-
tively, v is the planet-relative velocity, γ is the planet-relative
flight path angle, andψ is the planet-relative heading azimuth.
The bank angle σ is the angle between the lift vector and the
local vertical measured about the velocity vector, measured
positive to the right; µ is the planet’s gravitational parameter;

m is the vehicle mass, which is assumed to be constant; and
the lift force L and drag force D are given as

L = ρv2CL(α)S/2, D = ρv2CD(α)S/2, (2)

in terms of the atmospheric density ρ, the reference area
S, and the lift and drag coefficients CL and CD, which are
functions of the angle of attack α. The density is assumed to
be an exponential function of the altitude as

ρ(r) = ρ0 exp

(
− r − rp

Hs

)
, (3)

where rp is the radius at the surface of the planet, ρ0 is the
density at the surface, and Hs is the scale height. We remark
that the planet rotation may be taken into account by allowing
for time-dependent targeting constraints.

The vehicle’s trajectory is constrained by the heating rate Q̇,
dynamic pressure q, and normal load n as follows: [24]

Q̇ = kQ
√
ρv3 ≤ Q̇max, (4a)

q =
1

2
ρv2 ≤ qmax, (4b)

n =
√
L2 +D2/m ≤ nmax, (4c)

where kQ is a constant, and where the maximum values Q̇max,
qmax, and nmax are determined by the vehicle characteristics.

Let the bank angle and the angle of attack be the control
inputs for the purposes of trajectory control; accordingly, we
set

u = (σ, α). (5)

Similarly, we let x be the state vector given as

x = (r, θ, φ, v, γ, ψ). (6)

3 DESENSITIZED TRAJECTORY
OPTIMIZATION

Consider the following trajectory optimization problem: Find
the control u(t) and the final time tf that minimize the cost

J (u, tf ) = Γ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t) dt, (7)

subject to the dynamics (1), along with the constraints in (4)
and

Ψ(x(tf ), tf ) = 0. (8)

Here, Γ is the terminal cost, L is the running cost, and the
vector-valued function Ψ defines the terminal condition at the
final time.

Suppose that the control which minimizes the objective (7),
subject to the dynamics and the path constraints, is identified.
Then the resulting optimal trajectory depends on both this
control input and on select, uncertain parameters of interest
in the system, such as the aerodynamic model or the atmo-
spheric model; these parameters will be represented by the `-
dimensional vector p. We denote this dependence by writing
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the state, whose dependence on the control u is suppressed
for notational convenience, as

x(p, t), (9)

which is the solution to the dynamical equations in (1) along
with appropriate initial conditions, which we rewrite as

ẋ = f(x, p, u, t), x(t0) = x0. (10)

The assumed (nominal) values of the parameters will be de-
noted p̂, and the corresponding nominal trajectory is x(p̂, t).

Since the parameters are assumed to be equal to their nominal
values for the purposes of solving for the optimal control
input, it will be useful to quantify how perturbations in
the parameters from the nominal values affects the resulting
vehicle trajectory. We will make use of the well-known first-
order approximation of the deviation of the trajectory x(p, t)
from its nominal value x(p̂, t) [25]

x(p, t)− x(p̂, t) ≈ S(t)(p− p̂), (11)

where S(t) is the so called sensitivity function, which is
obtained as the solution to the ordinary differential equation
[4]

Ṡ(t) = A(t)S(t) +B(t), S(t0) = 0, (12)

where the matrices A(t) and B(t) are the derivatives of
the dynamics with respect to the state and the parameters,
respectively, evaluated along the nominal trajectory x(p̂, t):

A(t) =
∂f

∂x

(
x(p̂, t), p̂, u(t), t

)
, (13)

B(t) =
∂f

∂p

(
x(p̂, t), p̂, u(t), t

)
. (14)

Since A(t) and B(t) are evaluated along the nominal trajec-
tory x(p̂, t), which is a function of the control inputs, the
sensitivity function may be affected by the selection of the
control inputs, and we may therefore seek controls which
result in trajectories which are less sensitive to parametric
variations. The study of finding such controls is known as
desensitized optimal control [5, 26].

To this end, let y be an output vector, whose variations are of
concern, given as a function of the state by

y = g(x). (15)

Suppose that the uncertain parameters are Gaussian dis-
tributed as

p ∼ N(p̂, P ), (16)

where P is a fixed and known positive semi-definite matrix.
We then modify the nominal objective function (7) to include
a sensitivity penalty in the form of the expected quadratic
error of the output:

JD(u, tf ) = J (u, tf )

+ E
(
‖δy(tf )‖2Qf

+

∫ tf

t0

‖δy(t)‖2Q(t)dt

)
, (17)

where Q(t) and Qf are both user-defined, positive semi-
definite weight matrices penalizing output dispersions along
the trajectory and at the final time, respectively.

Next, we approximate the stochastic error term in (17) using a
first-order approximation in terms of the sensitivity function.
The variation of the output parameter from its nominal value
is approximated by

δy = g(x)− g(x̂) ≈ Gδx ≈ GSδp, (18)

where G is the Jacobian of g evaluated at the nominal state
value x̂(t) = x(p̂, t), δx(t) = x(p, t) − x(p̂, t) and δp =
p− p̂, and we drop explicit dependence on time for notational
convenience. The stochastic error terms in (17) may therefore
be given as a function of the sensitivity matrix by

E(‖δy‖2Q) = trQE(δyδyT) ≈ trQGSPSTGT, (19)

where, with a slight abuse of notation, Q can refer to either
the running weight matrixQ(t) or the final weight matrixQf .
The cost (17) is now approximated in terms of the sensitivity
function in such a way that the output-error weight Q and
parameter covariance P determine the relative weight placed
on the stochastic error term as compared to the nominal cost.
If the output-error weight Q is held constant, for example,
then an increase in the parameter uncertainty, by means of
the parameter covariance matrix P increasing, will result in
a larger weight placed on the sensitivity matrix compared to
the nominal cost. Conversely, in an extreme case, when the
parameter uncertainty decreases to zero, the optimization will
approach a standard trajectory optimization problem.

Desensitization for Hypersonic Trajectory Optimization

Consider now the problem of solving for desensitized hyper-
sonic vehicle trajectories. Since the vehicle aerodynamics
and the atmospheric density are both uncertain and they
greatly impact vehicle trajectories [27, 28], we will consider
desensitization with respect to the aerodynamic and atmo-
spheric density models. In particular, we model the vehicle
aerodynamics by the relationship

CD = CD0
+KCNL , (20)

where the values CD0 , K, and N depend on the vehicle
model, and where CD0

is referred to as the parasitic drag
coefficient. The lift coefficient is assumed to be a continuous
and monotonic function of the angle of attack, and hence
CL(α) is bijective. We may therefore optimize over CL in
place of α.

Henceforth, the parasitic drag coefficient CD0
from (20) and

the scale height Hs from (3) will be considered as uncertain
parameters:

p = (CD0
, Hs). (21)

The trajectory deviation approximation (11) for the hyper-
sonic problem is thus given as

δr(t)
δθ(t)
δφ(t)
δv(t)
δγ(t)
δψ(t)

 ≈

Sr,CD0

(t) Sr,Hs(t)
Sθ,CD0

(t) Sθ,Hs
(t)

Sφ,CD0
(t) Sφ,Hs

(t)
Sv,CD0

(t) Sv,Hs(t)
Sγ,CD0

(t) Sγ,Hs
(t)

Sψ,CD0
(t) Sψ,Hs(t)


[
δCD0

δHs

]
. (22)

For this study, the perturbations in the final longitude, final
latitude, and final final mass-specific energy

e =
v2

2
− µ

r
, (23)
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were penalized. The output vector y is accordingly set to be

y = (θ, φ, e). (24)

The first-order approximation of the energy error is given as

δe ≈ µ

r2
δr + vδv, (25)

which is obtained by differentiating (23), and therefore the
Jacobian G of the mapping y = g(x) is

G =

[
0 1 0 0 0 0
0 0 1 0 0 0

µ/r2 0 0 v 0 0

]
. (26)

4 NUMERICAL RESULTS

In this section, we apply the DOC methodology to an example
Earth reentry scenario using the X-33 vehicle model [29,30].
The initial and target states are listed in Table 1, and the
vehicle specification is given in Table 2. The lift coefficient
and the bank angle are constrained by −0.15 ≤ CL ≤ 0.8
and −90◦ ≤ σ ≤ 90◦, and their rates are bounded by ±0.05
s−1 and ±5 deg/s, respectively. Note that h = r − rp
denotes the altitude of the vehicle. The radius of Earth is
rp = 6,371 km, the surface density is ρ0 = 1.225 kg/m3,
the gravitational parameter is µ = 3.986 × 1014 m3/s2, the
nominal scale height is Hs = 7,254.24 m, and the constant
that is used to obtain heating rate in (4a) is kQ = 9.4369 ×
10−5 kg0.5/m1.5.

The angle of attack (equivalently, the lift coefficient) and the
bank angle profiles were set to minimize the final time, sub-
ject to the boundary conditions and the path constraints. The
parasitic drag coefficient and the scale height are assumed to
be Gaussian distributed with the mean value ĈD0 listed in
Table 2 and the mean value Ĥs as above, and with variances
set so that their 3σ variations are equal to 2% of their nominal
values:[

CD0

Hs

]
∼ N

([
ĈD0

Ĥs

]
,

0.022

32

[
Ĉ2
D0

0

0 Ĥ2
s

])
. (27)

The output-error weight matrix at the final time Qf
equally weights the longitude error, latitude error, and non-
dimensionalized energy, which, when given dimensionalized
units is equal to

Qf = β

[
1 0 0
0 1 0
0 0 1/rpg0

]
, (28)

where β is a user-defined, desensitization-weight parameter,
and where g0 = 9.81 m/s2 is the gravitational acceleration at
the Earth’s surface.

The desensitized trajectory is obtained by minimizing the
cost (17) with Q(t) = 0 and Qf as in (28) with β = 3; a
baseline trajectory was similarly solved except with β = 0
(i.e., no desensitization). To improve numerical performance,
the problem is first non-dimensionalized with lengths and
time being scaled by rp (radius of the Earth) and

√
rp/g0

(g0 is the Earth gravitational acceleration at rp), respectively.
The optimal control problem is then solved using GPOPS-
II [31]. The baseline and the desensitized state trajectories

Table 1. Initial and final vehicle state

State Initial Value Final Value Units
h 121.9 30.48 km

θ -123 -81 deg

φ -25 28.61 deg

v 7626 908.15 m/s

γ -1.25 [−6, 0] deg

ψ 45 90 deg

Table 2. X-33 vehicle parameters

Parameter Value Units
S 149.3881 m2

m 38000 kg
Q̇max 4×105 W/m2

qmax 14500 kg/ms2

nmax 5g0 m/s2

CD0
0.12 -

K 1.125 -
N 1.9 -

are shown in Figure 1 and the groundtracks are shown in
Figure 2; the control histories are given Figure 3; and the
dynamic pressure, load factor, and heating rate histories are
shown in Figure 4.

Both the baseline and the desensitized trajectories exhibit
phugoid oscillations, as expected for a high-L/D vehicle;
however, the baseline and the desensitized trajectories no-
ticeably diverge following the first peak in dynamic pressure
around 300 s. The baseline bank angle slowly decreases
from being mostly lift up to having zero lift up after 1,000
s, and then a single bank reversal is performed while hold-
ing zero vertical lift. Shortly following the time that the
baseline bank angle is at −90◦ — that is, when the vehicle
removes any component vertical lift to aggravate its descent
— the baseline trajectory reaches maximum load factor and
dynamic pressure. Interestingly, in contrast, the desensitized
bank angle reaches−90◦ (zero vertical lift) after only ~400 s,
and then the desensitized trajectory follows an irregular path
of oscillating velocity and altitude.

The sensitivity functions, as defined in (22), are plotted in
Figures 6 and 7, wherein the effect of the desensitization is
shown; the sensitivity of the final longitude and latitude to
both the parasitic drag coefficient and the scale height are
clearly decreased when compared to the baseline trajectory.
When plotting the altitude against the velocity, as shown in
Figure 4, we see that the desensitized trajectory slows down
to 4 km/s at a higher altitude before rapidly descending. The
trajectory sensitivity at around this time (~950 s), when the
desensitized trajectory passes through 4 km/s, the absolute
value of the sensitivity of the longitude and latitude to both
CD0

and Hs along the desensitized trajectory begins to
rapidly decrease, as can be seen in Figures 6 and 7.

Next, we ran a 1,000 trial Monte Carlo simulation with the
parameters sampled from the Gaussian distribution as in (27).
In the following, all of the Monte Carlo samples are used
to calculate a sample mean and covariance, but only 100
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Figure 1. Baseline (gray, dashed) and desensitized (black) trajectories.
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(black) trajectory groundtracks.
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5



02468
Velocity (km/s)

30

40

50

60

70

80
A

lti
tu

de
 (k

m
)

Figure 4. Baseline (gray, dashed) and desensitized
(black) trajectories.

samples are shown in scatter plots for visual clarity. Sample
values of the parameters are shown in Figure 8, samples of the
final longitude and latitude error are shown in Figure 9, and
samples of the final altitude and velocity error are shown in
Figure 10. The 3σ confidence ellipses in Figures 9 and 10 are
computed from the sample mean and sample covariance of
the 1,000 Monte Carlo trials; that is, the probability a sample
lies in the ellipse, provided that the sample were Gaussian
with the mean and covariance equal to the sample mean and
covariance, is 99.97%. In Figure 9, we see that the dispersed
footprint of the desensitized trajectory is significantly less
than the baseline trajectory: The semi-major axis of the 3σ
confidence ellipse of the desensitized trajectory footprint is
3.34 km compared to 26.37 km for the baseline trajectory.

The final altitude and velocity errors shown in Figure 10 sim-
ilarly show the desensitized trajectory clearly results in lower
dispersions. In this case, and in contrast to the longitude and
latitude dispersions in Figure 9, the desensitized trajectory
results in a different correlation between final velocity and
final altitude error when compared to the baseline trajectory.
This follows from our penalty on the final energy, which
imposed a relative weighting on the altitude and the velocity
penalty via the G matrix in (19). Finally, histograms of the
final energy error for both the baseline and the desensitized
trajectory are shown in Figure 11; it can be seen that the
desensitized trajectory has significantly decreased the final
energy error. This decrease in the final energy error will be
useful in practice, since terminal guidance is often responsi-
ble for energy management leading to landing [32].

5 CONCLUSION

The paper presents a principled method to construct a cost
regularizer using sensitivity functions that captures output
variations up to first order under parametric uncertainties.
The approach is applied on a trajectory optimization prob-
lem for hypersonic vehicles under model uncertainties. A
time-optimal control formulation is considered for the X-33
model under Earth entry conditions, and the variations in
position and energy at the final time are penalized. Numerical
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Figure 5. Baseline (gray, dashed) and desensitized
(black) dynamic pressure, load factor, and hating rate
histories with the maximum allowable values (gray).

experiments suggest that trade-offs between optimality and
robustness against parametric variations can be efficiently
obtained using the proposed approach.
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